
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 688–697,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

A Simple Unsupervised Learner for POS Disambiguation Rules
Given Only a Minimal Lexicon

Qiuye Zhao Mitch Marcus
Dept. of Computer & Information Science

University of Pennsylvania
qiuye, mitch@cis.upenn.edu

Abstract
We propose a new model for unsupervised
POS tagging based on linguistic distinc-
tions between open and closed-class items.
Exploiting notions from current linguis-
tic theory, the system uses far less infor-
mation than previous systems, far simpler
computational methods, and far sparser
descriptions in learning contexts. By ap-
plying simple language acquisition tech-
niques based on counting, the system is
given the closed-class lexicon, acquires a
large open-class lexicon and then acquires
disambiguation rules for both. This sys-
tem achieves a 20% error reduction for
POS tagging over state-of-the-art unsuper-
vised systems tested under the same con-
ditions, and achieves comparable accuracy
when trained with much less prior infor-
mation.

1 Introduction

All recent research on unsupervised tagging, as
well as the majority of work on supervised tag-
gers, views POS tagging as a sequential labeling
problem and treats all POS tags, both closed- and
open-class, as roughly equivalent. In this work we
explore a different understanding of the tagging
problem, viewing it as a process of first identifying
functional syntactic contexts, which are flagged
by closed-class items, and then using these func-
tional contexts to determine the POS labels. This
disambiguation model differs from most previous
work in three ways: 1) it uses different encod-
ings over two distinct domains (roughly open- and
closed-class words) with complementary distribu-
tion (and so decodes separately); 2) it is determin-
istic and 3) it is non-lexicalized. By learning dis-
ambiguation models for open- and closed- classes
separately, we found that the deterministic, rule-
based model can be learned from unannotated data

by a simple strategy of selecting a rule in each ap-
propriate context with the highest count.

In contrast to this, most previous work on un-
supervised tagging (especially for English) con-
centrates on improving the parameter estima-
tion techniques for training statistical disambigua-
tion models from unannotated data. For exam-
ple, (Smith&Eisner, 2005) proposes contrastive
estimation (CE) for log-linear models (CRF),
achieving the current state-of-the-art performance
of 90.4%; (Goldwater&Griffiths, 2007) applies
a Bayesian approach to improve maximum-
likelihood estimation (MLE) for training genera-
tive models (HMM). In the main experiments of
both of these papers, the disambiguation model
is learned, but the algorithms assume a complete
knowledge of the lexicon with all possible tags for
each word. In this work, we propose making such
a large lexicon unnecessary by learning the bulk
of the lexicon along with learning a disambigua-
tion model.

Little previous work has been done on this nat-
ural and simple idea because the clusters found by
previous induction schemes are not in line with the
lexical categories that we care about. (Chan, 2008)
is perhaps the first with the intention of generat-
ing ”a discrete set of clusters.” By applying simi-
lar techniques to (Chan, 2008), which we discuss
later, we can generate clusters that closely approx-
imate the central open-class lexical categories, a
major advance, but we still require a closed-class
lexicon specifying possible tags for these words.
This asymmetry in our lexicon acquisition model
conforms with our understanding of natural lan-
guage as structured data over two distinct domains
with complementary distribution: open-class (lex-
ical) and closed-class (functional).

Provided with only a closed-class lexicon of
288 words, about 0.6% of the full lexicon, the sys-
tem acquires a large open-class lexicon and then
acquires disambiguation rules for both closed- and

688



open-class words, achieving a tagging accuracy of
90.6% for a 24k dataset, as high as the current
state-of-the-art (90.4%) achieved with a complete
dictionary. In the test condition where both algo-
rithms are provided with a full lexicon, and are
trained and evaluated over the same 96k dataset,
we reduce the tagging error by up to 20%.

In Section 2 we explain our understanding of the
POS tagging problem in detail and define the no-
tions of functional context and open- and closed-
class elements. Then we will introduce our meth-
ods for acquiring the lexicon (Section 3) and learn-
ing disambiguation models (Section 4, 5 and 6)
step by step. Results are reported in Section 7 fol-
lowed by Section 8 which discusses the linguistic
motivation behind this work and the simplicity and
efficiency of our model.

2 The Tagging Problem

In most work on both unsupervised and supervised
problem, tagging is viewed as a sequential label-
ing problem. In this work, however, we would like
to explore another view on tagging especially con-
sidering language as structured data.

The engineering concept of POS tags derives
from the linguistic notion of syntactic category
which specifies the combinatorial properties of a
word in an underlying (syntactic) structure. Given
the parse structure for a given word sequence
which breaks the input into recursive functional
domains such as IP, VP and NP, the POS tag of
each word can be directly inferred. Of course, as-
suming a pre-parsed structure as input to POS tag-
ging is somewhat ridiculous, but it strongly mo-
tivates us to highlight the features of structural
information for POS tagging. Without resorting
to any intermediate representations richer than the
input string, we propose for engineering purposes
to capture the features of interest for POS tagging
by the functional items in language themselves.
Then tagging is considered to be a process of iden-
tifying the functional contexts (functional items in
context) in which the categorical property of the
target item can be inferred.

Following ideas in current linguistic theory dis-
cussed in Section 8, we observe that the functional
categories and some morphological endings serve
as markers of the functional domains themselves
(discussed above) and sit abstractly at the edge of
those domains; the open-class (lexical) items must
sit within appropriate functional domains. More

specifically, although long distance dependencies
are not at all rare, for a token in sequence, we
only consider adjacent closed-class words and the
verbal categorical feature (but not morphology) as
functional contexts, the core concept in our disam-
biguation model.

Our system uses five open-class categories:
three basic lexical categories verb, noun and ad-
verb, and two derived Nominal categories (the two
kinds of participles in English); and consider all
other words not included in those categories to be
closed-class items.

Overall, for the task of unsupervised tagging,
we use a rule-based disambiguation model con-
taining disambiguation rules conditioned on func-
tional contexts, and the model is learned from
unannotated data constrained by much less lexi-
cal knowledge than most previous work, namely
the closed-class lexicon as introduced below.

2.1 Closed-class Lexicon
A dictionary containing all possible tags for each
word is very useful to constrain the unsupervised
learning of a POS disambiguation model, and in
most previous work, a full lexicon computed from
the WSJ corpus (the source of both training and
test datasets) is used for both learning and tagging.
Since a full lexicon is not a reasonable resource,
we aim to limit the required knowledge to func-
tional (closed-class) words only.

It is hard to define functional words in a lin-
guistically strict sense, but this category is close
to the notion within the engineering field of NLP
of closed-class words, classes of words that are
not open for new members. From the engineer-
ing point of view, this implies that a closed class
has a finite and static number of members, so its
members can be listed once and for all.

For English, lists of closed-class categories such
as preposition, pronoun or even degree adverb, are
obtainable resources, but this is not necessarily the
case for other languages. In this paper, we leave
the automatic acquisition of a closed-class lexicon
for future work. For experiments in this work, we
automatically compute a closed-class lexicon from
the WSJ treebank 00-24 sections by picking out
those words that are labeled predominantly with
closed-class tags1. For each word selected as a
closed-class word, all possible tags encountered

1For each word, if the number of instances labeled by
closed-class tags is greater than by open-class tags, we select
it as a closed-class word.

689



more than twice in the WSJ corpus are reserved
in the closed-class lexicon, so closed-class words
may also have open-class tags in our data set, a
source of noise in our results. As a core part of
language, this closed-class lexicon containing 288
entries, about 0.6% of the full lexicon by types,
should be invariant over various genres, which is
confirmed in experiments on both WSJ and Brown
corpus2.

2.2 Tagset
The 45 tags in the Penn Tagset (Marcus et al.,
2003) contain more information than just basic
lexical categories. In recent work on unsupervised
learning of POS taggers following (Smith&Eisner,
2005), the Penn tagset is reduced to 17 tags which
nicely improves the tagging performance.

Based on our view of POS tags as local mark-
ers of underlying syntactic structure, we derive 27
tags from a feature-based analysis of the original
Penn tagset. The main principle for reduction is
that we collapse any two tags which are not distin-
guishable by structural features; such features in-
clude +/-N, +/-V for predication and +/-wh, +/-en
for movement3. For example, under our analysis,
the tag ’VBG’ has the features [+V, +N, -tense, -
en], tag ’VBD’ [+V, +tense(past), -en], and ’VB’
[+V, -tense(finite), -en]. However, since we do not
consider the tense feature to be a structural feature,
we do not distinguish ’VBD’ from ’VB’; since
N(ominal) is a structural feature, ’VBG’ remains
distinct from both ’VBD’ and ’VB’. The 27 tags
do not cover all cases of ambiguities of closed-
class words in the original Penn tagset. Most no-
tably, adjectives are not separated from nouns.

This reduction naturally follows the crucial
properties of our disambiguation model. First of
all, our model is not lexicalized, so it can only
capture basic interactive relations between cate-
gories but cannot capture lexical dependencies,
which are heavily required to disambiguate ’RP’

2There are two special classes of words worthy of dis-
cussion with respect to being closed or open. 1. While the
morphological ending ’-ly’ freely introduces adverbs, this
category is otherwise essentially closed class; and 2. There
are obviously unboundedly many numbers(CD), but all these
match some regular pattern. So we include adverbs without
explicit morphological marking in the closed-class lexicon
(we frankly doubt adverbs can be acquired by distributional
clustering); and as for numbers, we embed exactly such a
regular pattern in our model.

3Not all features of tags are listed here, and further dis-
cussion of the feature-based analysis of the tagset is to be
reported in other work. This analysis of tags is motivated by
Chomsky.

Tagset #tags #closed #open amb./token
Smith&Eisner 17 7 6 2.07

ThisWork 27 12 6 1.83
Penn 45 15 15 2.74

Table 1: Comparison of tagsets

Category Open tags Closed tags
Verbal VB ...

Nominal NN, VBN, VBG DT, CD, PRP($), WDT, WP($)
None RB CC, EX, IN, MD, POS, TO

Table 2: N/V categories of 27 POS tags

with ’IN’ or ’PDT’ with ’DT’ (so these two pairs
are collapsed). More importantly, the structural
information carried by the closed-class items is
the key feature of our disambiguation model, but
nouns and adjectives are not distinguishable by
their structural positions (in NP), so they are not
to be distinguished in our tagset4.

We use this new reduced tagset with 27 tags in
our experiments5. For the purposes of comparison,
we map the results using our 27 tag tagset to the
commonly-used 17 tag tagset6, and evaluate our
algorithms for both tagsets. Table 1 compare the
three tagsets, and the ambiguity column shows the
average number of ambiguous tags per token in
WSJ corpus section 00-24.

2.3 NV category

By using the reduced 27 tags, we found in this
work that the heart of the disambiguation task
for open-class words is to distinguish them in the
Nominal vs. Verbal domains; and for the closed-
class words, the Nominal vs. Verbal property of
the adjacent context words is also very helpful for

4Due to the indistinguishable roles of adjectives and
nouns in Noun Phrase, it is also hard to extract the adjectives
from nouns for lexicon acquisition.

5For open-class categories, we keep VB (for VB*), NN
for (NN*), VBG, VBN and RB (for RB*), and we reduce the
JJ* tags to the tag NN and for closed-class tags, we keep al-
most all the original distinctions, except for two pairs: ’PDT’
and ’DT’; ’RP’ and ’IN’. Also ’WRB’ is reduced to ’RB’.

6In our tagset, there are two coarser tags which stand for
more than one tag in the 17 tags: ’NN’ stands for both ’N’ and
’ADJ’ and ’IN’ for both ’RP’ and ’IN’. So to map the output
of coarser tags to the finer ones, we need to look up the full-
lexicon, since adjectives are not extracted from nouns in the
lexicon acquisition process. For a word tagged as ’NN’ with
a possible tag of ’JJ’, if the following word is also tagged as
’NN’, then the current ’NN’ is mapped to ’JJ’. On the other
hand, no action is done for mapping ’IN’, so gold ’RP’ is
always mis-tagged as ’IN’ after mapping. If our tagging sys-
tem outputs a finer tag (e.g. WDT) then it is reduced to the
corresponding coarser one (e.g. ’W’) in mapping to 17 tags.

690



disambiguation. The Nominal vs. Verbal property
is defined through N/V categories of POS tags, and
we list each category containing both closed-class
and open-class tags in table 2.

3 Acquiring the open-class lexicon

Not being equipped with a full lexicon, our system
takes the closed-class lexicon as given, and auto-
matically computes possible tags, which must be
open class, for all other words in the acquisition
process as described below. There are five open-
class tags in our reduced tagset, as we describe
above: ’VBG’ and ’VBN’ represent two kinds
of derived Nominal elements, with correspond-
ing morphological endings attached to the verbal
roots; and ’RB’ represents the adverbial class into
which new words can only be introduced if affixed
with the special ending ’-ly’. Taking into account
this special morphology, we divide our construc-
tion of the open-class lexicon into two steps: N/V-
Clustering and Morphing. At the N/V-clustering
step, we classify the base-forms (roots) of open-
class words into two clusters in a sparse feature
space. At the Morphing step, we count on the em-
bedded functional elements (i.e. morphology) to
derive specific tags for words in each cluster.

3.1 Clustering

Inducing syntactic categories is a language ac-
quisition task on which there has been ex-
tensive research, e.g. (Clark, 2003) and
(Schütze, 1993), based largely on variants
of distributional clustering. In a standard
setup of POS clustering, each target word to
be clustered, wi, is represented as a vector,
<count(wi,C1), count(wi,C2),...,count(wi,Cm)>,
collecting counts of occurrences of wi in each con-
text, Cj . Then the chosen algorithm clusters the
feature vectors according to similarity.

In previous work, the contextual features are
lexical, so the length of a feature vector varies
from hundreds to thousands of features. The
clustering algorithm then runs over this high-
dimensional space, which is computationally quite
intensive. Unlike previous work, our system only
employs seven features, all functional, to represent
target words, and we are paid back by a substantial
improvement in efficiency. Each open-class word
is represented in the feature space by the following
seven component vector: <left:DT, left:MD, mid:-
φ, mid:-ed, mid:-ing, right:DT, right:MD>. The

first two values in this vector represent the counts
of modal verbs (MD) and determiners (DT) occur-
ring to the left of all forms of a base form; the three
values in the middle represent the counts of three
possible morphological forms of a word; and the
last two values represent the counts of an immedi-
ately following MD and DT. This radical reduction
of the feature space eliminates any need for so-
phisticated clustering techniques. For the purpose
of convenience, we use a basic k-means clustering
algorithm which allows us to specify the number
of output clusters (Maffi, 2007).

As is well known, clustering all words in a cor-
pus using distributional clustering results in a high
number of clusters. For example, (Schütze, 1993)
induces 200 clusters and (Clark, 2003) chooses
between 16-128; and most of these induced cate-
gories are difficult to associate with a specific POS
tag. Chan’s recent thesis work (Chan, 2008) pro-
vides us with a solution to this problem. In the first
pass of Chan’s model for unsupervised lexical cat-
egory induction, verbs are separated from all other
categories with a high level of purity; the second
pass separates adjectives from nouns by using the
categorical results from the first pass as an addi-
tional feature7. His experiments for a wide range
of languages show that the ”restriction to clus-
ter base forms only8” is crucial to induce clusters
more in line with the definition of the open-class
syntactic categories we care about here.

Here, we follow a variant of Chan’s approach,
grouping words with their base-forms for cluster-
ing. For example, we group all occurrences of the
transformed (morphological) forms, (start, starts,
starting and started), in a particular context, Cj ,
together with the base form start to form a single
count for (start, Cj), in forming the correspond-
ing feature vectors. Given this, since all inflections
of one base form share the same feature vector, all
inflections enter into the same class of their base-
form. In (Chan, 2008), morphological base forms
are the output of a new morphology induction al-
gorithm he develops. Here, we simply extract the
base form of a word by stripping three possible
forms of endings: -s, -ing and -ed9.

7For simplicity, we don’t run a second pass but reduce
adjectives to noun.

8See p.139 in (Chan, 2008)
9This simple strategy, as well as more complex morpho-

logical analyzers, cannot deal with irregular verbs, so we list
in memory the corresponding ’regular’ ending of each irreg-
ular verb. For example, we know that the ending of ran is
’-ed’, but we DO NOT know that ran is only the past tense

691



3.2 Morphing

After the clustering step, which we intend to sep-
arate the Nominal and Verbal classes, two clusters
as desired are induced, but we still need a method
to automatically decide which one is which. A
trick that works well in practice is simply to pick
the smaller class as the Verbal class. These two
classes reflect the basic categories of the roots;
by a generative mechanism observed in most lan-
guages, roots (base-forms) are transformed into
derived categories by fusing with functional el-
ements, which surface as the few morphological
endings in English.

For all words in the Nominal class, except for
those with the ending -ly, the only possible tag for
each is ’NN’, since no finer categories of ’NN’ ex-
ist in our reduced tagset. On the other hand, for a
word with ending -ly falling into the N class, we
simply assume that its tag must be ’RB’, although
this assumption may have a few exceptions.

The Verbal class contains all words with ver-
bal roots. There are two specific endings in En-
glish serving as morphological markers of derived
Nominal categories, -ed and -ing, correspond-
ing to derived categories ’VBN’ and ’VBG’ re-
spectively. So for each word ending with -ed,
we assign two possible tags to it, ’VB’(our re-
duced form of ’VBD’) and ’VBN’; and for each
word ending with -ing we assume only one pos-
sible tag, ’VBG’, although this assumption may
systematically introduce tagging error confusing
’VBG’ and ’NN’. For example, if the feature vec-
tor representing the base-form group start, starts,
started,starting is classified into the verbal class,
then both starts and start will receive one possi-
ble tag ’VB’; starting will receive one possible tag
’VBG’; but started will receive two possible tags
’VBN’ and ’VB’.

As one may notice, start and starts should have
two senses, noun and verb, but the Nominal sense
is lost in the Morphing step. For such cases, we
introduce a simple supplemental process to com-
pensate for the missing Nominal sense. For a word
with the possible tag ’VB’ (not ’VBG’ or ’VBN’)
as determined in the Morphing step, if it is ever
seen following a determiner in context, another
possible tag ’NN’ will be assigned to it.

Remember that, as introduced in Sect 2.2,

form of run, because the ending ’-ed’ is ambiguous for both
past tense and past participle. The list of irregular verbs is
obtained from http://www.englishpage.com.

’VBN’, ’VBG’ and ’NN’ are of category N and
’VB’ is of category V. Then for each word in the
resulting lexicon, there is maximally one possible
tag of it falling in either category N or V, so the
category information (N or V) is enough for the
disambiguation task, as specified in Section 6.

4 Unsupervised Tagging

Taking a dictionary as input, the task of unsuper-
vised tagging is to learn a disambiguation model
from unannotated data and apply this model for
disambiguating the occurrences of words in con-
text. In this section, we are going to introduce the
representation of our disambiguation model first,
and then discuss how it affects the system design.
In the following two sections, we will describe the
algorithms for learning and decoding the language
model respectively.

4.1 Disambiguation Model

Again, we view tagging as a process of identifying
functional context, from which the proper tagging
simply follows. Given this, we represent the lan-
guage model as a set of disambiguation rules con-
ditioned on functional contexts that predict cate-
gorical information, with each rule of the form of
r = (con : cat) with con and cat the functional
context and categorical information respectively.

In both open- and closed-class domains, given
a pair of words (Wl,Wr), the disambiguation
rules check the functional property of Wl and pre-
dicts the N/V category of Wr. However, in the
open-class disambiguation model, con represents
closed-class items as well as verbal feature, but in
the closed-class disambiguation model, con rep-
resents closed-class categories (closed-class POS
tags). In disambiguating an open-class word, con
is checked against the preceding closed-class word
or verbal feature (if any), and cat of the follow-
ing open-class word is predicted. In disambiguat-
ing a closed-class word cw, each possible tag of
cw may invoke a rule and each rule will predict a
N/V category of the following item; if some rule
makes the right prediction, the corresponding tag
is assigned to cw. For example, he:V, a disam-
biguation rule for open-class words, says that if an
open-class token follows the closed-class item he,
then the Verbal tag should be assigned to this to-
ken. On the other hand, IN:N, a disambiguation
rule for closed-class words, says that if a closed-
class token precedes a Nominal word (open- or

692



closed- class) in context and has a possible tag of
’IN’, then tag it with ’IN’.

This rule-based disambiguation model is deter-
ministic in the sense that for each token in context
there is maximally one tag that can be predicted.
Not being statistically parameterized, this greedy
prediction requires that 1) each rule is determin-
istic and 2) in each context, only one rule is in-
voked (which is guaranteed by the selection step
introduced in Section 5.2). Moreover, this disam-
biguation model is non-lexicalized in that it is only
conditioned on the functional items in context but
not the target word itself.

4.2 System Design
Ideally, we should use closed-class tags in con-
text for disambiguating open-class words because
closed-class words are potentially ambiguous; but
this would cause a chicken-egg problem. If we
did this, then the learning of disambiguation rules
for closed-class words requires category informa-
tion for open-class items and vice versa, but none
of the required category information is available
from the unannotated data10. Thanks to how lan-
guage works (including principally the low de-
gree of ambiguity of closed-class words), it is
good enough practically, as shown by our exper-
iments, to encode the disambiguation model for
open-class words using closed-class items without
categorical information.

In this way, we can learn the disambiguation
model of open-class items from raw data; how-
ever, closed-class disambiguation model is better
learned after open-class words are disambiguated.
Then there are four models in the system for learn-
ing and tagging over two distinct domains: Model-
LC and Model-LO for learning the disambigua-
tion model of closed- and open-class words re-
spectively; Model-DC and Model-DO for disam-
biguating closed- and open-class words respec-
tively; and they must be executed in a strict order
as follows: Model-LO → Model-DO → Model-
LC → Model-DC, as illustrated in Figure 1.

5 Learning Disambiguation Rules

In this section, we describe the learning algorithm
used in both Model-LO and Model-LC. Although
there is no annotated data available for learning,

10Our disambiguation model is not statistically parameter-
ized, so this problem can not be resolved by any kind of pa-
rameter estimation technique as in previous work on unsuper-
vised tagging.

Disamb.

LO

Learning

LC

DO

DC

Open

Closed

Figure 1: The order of the four models in system.

we can use the unambiguous events in data to
establish the disambiguation rules and apply the
rules to ambiguous events. The only difference in
implementation of the two models lies in the ’rule-
extraction’, corresponding to different interpreta-
tions of unambiguous events for learning open-
and closed-class disambiguation models. After
being extracted from pairs of adjacent words in the
input sequence, the rules are counted and selected
using the same algorithm in both models.

5.1 Rule-extraction

For open-class words, disambiguation rules are
extracted from raw data. A pair of adjacent words
(Wl,Wr) is considered unambiguous if it satis-
fies the following two conditions: 1. Wl is in
the closed class or an unambiguous type with only
possible tag of ’VB’; and 2. all possible tags of Wr

fall in the same N/V category (Nominal or Verbal
but not mixed). If (Wl,Wr) is unambiguous in this
sense, then extract rule r = (con : cat), where
con is Wl (for closed-class words) or ’V’ (for un-
ambiguous verbal words), and cat is the N/V cat-
egory of Wr. For example, in the sequence (...he
has claimed..), the pair (he, has) is unambiguous
in that he is a closed-class item and has has only
one possible tag, ’VB’, so a rule ((he : V ) is
extracted; but (has, claimed) is not usable since
claimed has two possible tags: ’VB’ of category
V and ’VBN’ of category N.

Disambiguation rules for closed-class words are
extracted after open-class disambiguation. A pair
of adjacent words (Wl,Wr) is considered unam-
biguous if it satisfies the following two conditions:
1. Wl is in the closed class and has only one
possible tag in the closed-class lexicon; 2. Wr

is either disambiguated or all possible tags of Wr

fall in the same N/V category. If (Wl,Wr) is un-
ambiguous in the above sense, then extract rule
r = (con : cat), where con is the single tag of
Wl, and cat is the N/V category of Wr. For ex-
ample, in the sequence ”...for his stepping...”, the
pair (for his) is unambiguous in that for has only

693



one possible tag ’IN’ and both possible tags of his,
’PRP’ and ’PRP$’, fall into the Nominal category,
then a rule (IN : N) is extracted; but (his about)
is not usable since his has more than one possi-
ble tag and about has two possible tags, ’RB’ and
’IN’, which are neither both ’N’ nor both ’V’.

5.2 Counting and Selecting

In the counting step, a set of rules R is first initial-
ized to be empty, and then, as each disambigua-
tion rule r is generated while passing through the
data, if not already in R, it is added with an ini-
tial count of one; otherwise, Nr, the count of r,
is incremented by one. Note that we know that
for a rule, (con : cat), the prediction cat can
only be either N or V; then for each context con,
there are two forms of rules counted, (con : N)
or (con : V ). By selecting the rule with a greater
count for each context, we guarantee that the re-
sulting disambiguation model is deterministic.

6 Tagging

Given our rule-based, deterministic language
model, tagging is a straightforward process of
decoding the disambiguation rules. Recall that
there are two separate tagging models in the sys-
tem, Model-DO and Model-DC for disambiguat-
ing open- and closed-class respectively.

The inputs to Model-DO are the open-class lex-
icon, the disambiguation rules learned in Model-
LO and raw data in sequence. For each ambiguous
open-class word w in sequence if the preceding
closed-class word (if any) invokes a disambigua-
tion rule, r = (con : cat), then pick the possible
tag of w that falls in the category of cat (N or V),
as discussed in Section 3.2. If no rule is triggered
our default choice is ’NN’; but if ’NN’ is not a pos-
sible tag, we assume the default domain is Verbal
(so the ‘VB’ tag is favored).

The application of disambiguation rules in
Model-DC is a little more complex. For each
ambiguous closed-class word cw in sequence fol-
lowed by a token of category cat, N or V, pick a
possible tag of cw, con, such that (con : cat) is
a rule learned in Model-LC. If no tag is picked,
a random choice is made. While there are resid-
ual cases that no functional context can help with
tagging, the disambiguation model proposed here
combined with random choice results in a good
overall performance, as shown in section 7.3.

dict. with words of count > d
d 1 2 3 ∞ #tag

(percent lex.) (100%) (55%) (41%) (0.6%) -
BHMM2 87.3 79.6 65.0 - 17
CRF/CE 90.4 77.0 71.7 - 17
model-17 91.8 ... ... 90.6 17
model-27 93.2 ... ... 92.1 27
LDA+AC 93.4 91.2 89.7 - 17

Table 3: Tagging accuracy with partial dictionaries over
24k dataset; our closed-class lexicon is the closest approxi-
mation to the∞ column .

7 Results

Our unsupervised tagging system is com-
pared to the following models As reported in
(Banko&Moore, 2004), ’the quality of the lexicon
made available to unsupervised learner made the
greatest difference to tagging accuracy’. So we
only compare our experiments to recent work
built over the same dataset and a full lexicon
automatically extracted from the Penn Treebank.
As described in section 2.1, the closed-class
lexicon, special in our experiments, is also auto-
matically constructed from the WSJ corpus, and
will be used in experiments on both WSJ and
Brown corpora below11. CRF/CE (Smith&Eisner,
2005) and BHMM2 (Goldwater&Griffiths, 2007)
have been discussed briefly in the introduction.
LDA+AC (Toutanova&Johnson, 2007) is actually
a semi-unsupervised model given the prior on
p(t|w); despite this additional information, our
model outperforms it in experiments with partial
dictionaries. For the purpose of comparison,
our experiments use the same dataset as in these
previous work, varying in sizes from 12K to 96K.
In addition to reporting on our own tagset with 27
tags, we also map the results onto the 17 tags used
in other models as explained above.

7.1 Unsupervised Tagging over Partial
Dictionaries

As shown in Table 3, reducing the dictionary by
filtering rare words (with count<= d) has not been
a promising track to follow for accomplishing the
task with as little information as possible. How-
ever, by introducing a lexicon acquisition step, we
achieve a tagging accuracy of 90.6% for the 24K
test data with no prior open-class lexicon, pro-
vided with only a minimal lexicon of closed-class
items (about 0.6% of the full lexicon), as high as

11If we control the quality of the closed-class lexicon (but
still leave the full-lexicon untouched) by filtering out errors
in the Treebank, the performance is considerably higher.

694



size 12K 24k 48k 96K #tag lex.
BHMM2 85.8 84.4 85.7 85.8 17 full
CRF/CE 86.2 88.6 88.4 89.4 17 full
Model-17 91.0 91.6 91.6 91.5 17 full
Model-27 93.1 93.6 93.5 93.4 27 full
model-17 88.9 89.3 90.2 90.4 17 closed
model-27 90.9 91.2 92.0 92.2 27 closed

Table 4: Tagging Accuracy of models trained over dataset
varying in sizes with full/closed-class lexicon

the best previous performance of 90.4 given a full
lexicon (CRF/CE with d = 1)12.

One other work that investigates the use of a
limited lexicon is (Haghighi&Klein, 2006), which
develops a prototype-drive approach to propagate
the categorical property using distributional simi-
larity features; using only three exemplars of each
tag, they achieve a tagging accuracy of 80.5% us-
ing a somewhat larger dataset but also the full
Penn tagset, which is much larger.

7.2 Varying in sizes
As shown in Table 4, our new algorithm reduces
tagging error by up to 20% over the state-of-the-
art given a full lexicon, from 89.4% to 91.5% over
the 96k dataset13.

To better understand the learning property of
our system and to get an estimate of the vari-
ance of our results above, we repeated the exper-
iments above, starting with either the full lexicon
or just the closed-class lexicon, with datasets vary-
ing from 0.5K to 96K in size, and repeated each
experiment 60 times on different sequences, with
four samples randomly selected from the Brown
corpus, one from the training data reported above
and the others from the WSJ corpus. As shown in
Figure 2, for the closed-class lexicon experiments,
the standard deviation of tagging accuracy over the
dataset of each size sharply decreases as the size of
the data increases, as expected. It is also clear that

12Since we are facing an unsupervised task, the training set
is unannotated, and hence there is no reason not to use it as the
test set as well. For the sake of comparison, we use the same
split of the dataset for training as previous work. In Table 3
the tagging model is trained over 96k and evaluated on 24k,
but in Table 4, the tagging model is trained and evaluated over
test and training sets of the same size.

13With a full lexicon, we need to disambiguate between
open-class tags which fall into the same N/V category, which
is beyond the ability of our disambiguation rules which pre-
dict N or V only. When more than one possible tag in the
same category predicted by the disambiguation rule, we sim-
ply make a random choice. Although not as constrained as
the acquired lexicon, a full lexicon does improve the tagging
performance, since the automatic lexicon acquisition is far
from perfect.

 88

 89

 90

 91

 92

 93

 94

 95

 96

0.5k 1k 3k 6k 12k 24k 48k 96k
 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

A
cc

ur
ac

y 
(%

) 
(t

ag
gi

ng
 a

ll 
w

or
ds

)

st
an

da
rd

 d
ev

ia
tio

n 
of

 a
cc

ur
ac

y 
ov

er
 s

am
e 

si
ze

Size of data (k)

60 samples per size
standard deviation

training data
brown corpus

Figure 2: Standard Deviation of Tagging Accuracy with
closed-class lexicon; 60 samples for each size, randomly se-
lected from both Brown and WSJ corpus.

system with system with
closed-class lexicon full lexicon

sub-model #errors accuracy #errors accuracy
Model-DO 1089 87.3% 3546 78.9%
Model-DC 1694 89.6% 1709 89.7%

random 1148 44.2% 981 44.9%
recall 3650 - 75 -
total 7581 75.2% 6311 82.1%

#ambiguous 30563 35229

Table 5: The number of errors and percent ambiguous to-
kens tagged correctly in the 96k dataset with 27 tags. For ei-
ther system built upon closed-class lexicon or full lexicon, the
table shows the disambiguation accuracy and number of er-
rors for each sub-model in the system: Model-DO for disam-
biguating open-class, Model-DC for disambiguating Closed-
class and random choice. The numbers of recall errors (gold
tag not in dictionary) and total errors for each system are also
shown.

the performance of our algorithm on the Brown
corpus is as strong as on the WSJ corpus. Results
for the full-lexicon are similar.

7.3 Error Analysis

There are certainly cases that no functional context
can help with tagging, since our disambiguation
models are encoded by functional context only.
Thus it is worth a closer look to how often the
system resorts to random choice, as well as to the
disambiguation accuracy of either disambiguation
model for open- and closed- class learned from
unannotated data. We show the disambiguation
accuracy of ambiguous words only for each model
in Table 5, and also the number of errors due to
imperfect lexicons or random choice.

8 Discussion and Future Work

In this work on unsupervised tagging, we com-
bine lexicon acquisition with the learning of a

695



POS disambiguation model. Moreover, the dis-
ambiguation model we used is deterministic, non-
lexicalized and defined over two distinct do-
mains with complementary distribution (open- and
closed-class).

Building a lexicon based on induced clusters
requires our morphological knowledge of three
special endings in English: -ing, -ed and -s; on
the other hand, to reduce the feature space used
for category induction, we utilize vectors of func-
tional features only, exploiting our knowledge of
the role of determiners and modal verbs. How-
ever, the above information is restricted to the lex-
icon acquisition model. Taking a lexicon as in-
put, which either consists of a known closed-class
lexicon together with an acquired open-class lexi-
con or is composed by automatic extraction from
the Penn Treebank, we need NO language-specific
knowledge for learning the disambiguation model.

We would like to point the reader to (Chan,
2008) for more discussion on Category induc-
tion14; and discussions below will concentrate on
the proposed disambiguation model.

Current Chomskian theory, developed in the
Minimalist Program (MP) (Chomsky, 2006), ar-
gues (very roughly speaking) that the syntactic
structure of a sentence is built around a scaffold-
ing provided by a set of functional elements15.
Each of these provides a large tree fragment
(roughly corresponding to what Chomsky calls a
phase) that provide the piece parts for full utter-
ances. Chomsky observes that when these frag-
ments combine, only the very edge of the frag-
ments can change and that the internal structure of
these fragments is rigid (he labels this observation
the Phase Impenetrability Condition, PIC). With
the belief in PIC, we propose the concept of func-
tional context, in which category property can be
determined; also we notice the distinct distribution
of the elements (functional) on the edge of phase
and those (lexical) assembled within the phase.

Instead of chasing the highest possible perfor-
mance by using the strongest method possible, we
wanted to explore how well a deterministic, non-
lexicalized model, following certain linguistic in-
tuitions, can approach the NLP problem. For the

14In our experiment, using the base-forms and adding a
compensation process improves the coverage rate of the ac-
quired lexicon from 79% to 93%.

15Such as determiners (for NPs), complementizers like that
(for clauses), and case assigning elements associated with
transitive verbs (for propositions).

unsupervised tagging task, this simple model, with
less than two hundred rules learned, even outper-
forms non-deterministic generative models with
ten of thousands of parameters.

Another motivation for our pursuit of this deter-
ministic, non-lexicalized model is computational
efficiency16. It takes less than 3 minutes total for
our model to acquire the lexicon, learn the disam-
biguation model, tag raw data and evaluate the out-
put for a 96k dataset on a small laptop17. And a
model using only counting and selecting is com-
mon in the research field of language acquisition
and perhaps more compatible to the way humans
process language.

We are certainly aware that our work does not
yet address two problems: 1). How the system
can be adapted to work for other languages and
2) How to automatically obtain the knowledge of
functional elements. We believe that, given the
proper understanding of functional elements, our
system will be easily adapted to other languages,
but we clearly need to test this hypothesis. Also,
we are highly interested in completing our system
by incorporating the acquisition of functional el-
ements. (Chan, 2008) presents an extensive dis-
cussion of his work on morphological induction
and (Mintz et al., 2002) presents interesting psy-
chological experiments we can build on to acquire
closed-class words.

9 Acknowledgments

We thank the National Science Foundation for its
support of this work under grant IIS-0415138. We
greatly appreciate the comments of the anony-
mous reviewers; section 7.3 is newly added and
two more paragraphs are added to section 2.2 in
response to their comments. Also, we would like
to thank an anonymous reviewer of a earlier ver-
sion of this paper, whose thoughtful suggestion led
to a restructuring of the current version. We bene-
fited greatly from our discussions with Dr. Charles
Yang. Noah Smith provided the data sets and de-
tails of the 17 tag tagset used in previous work.
Finally, we thank Constantine Lignos for his care-
ful editing of earlier versions.

16In some sense, the Minimalist Program was proposed to
explore the idea that the existence of Syntax is especially mo-
tivated by efficient language processing.

17On a Intel Core 2 Duo P8600 2.40 GHz CPU.

696



References
Michele Banko and Robert C. Moore. 2004. Part of

speech tagging in context. In COLING, 2004.

Erwin Chan. 2008. Structures and distributions in
morphological learning. Ph.D. dissertation, Dept.
of Computer and Information Science, UPenn.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proceedings of the 10th Meeting of the
EACL.

Chomsky, N. 2006. Approaching UG from below.
MIT.

Frank, Robert. 2006. Phase theory and Tree Adjoining
Grammar. Lingua.

Sharon Goldwater and Thomas L. Griffiths. 2007.
A fully Bayesian approach to unsupervised Part-of-
Speech tagging. In Proceedings of ACL.

Haghighi and D. Klein. 2006. Prototype-driven learn-
ing for sequence models. In Proceedings of HLT-
NAACL.

Kroch, A. and Joshi, A. K. 1985. Linguistic Relevance
of Tree Adjoining Grammars. Technical Report MS-
CIS-85-18, Department of Computer and Informa-
tion Science, University of Pennsylvania.

Charles N. Li, Sandra A. Thompson. Mandarin Chi-
nese: A Functional Reference Grammar University
of California Press, 1989

Hrafn Loftsson. Tagging Icelandic text: A linguistic
rule-based approach Nordic Journal of Linguistics
(2008), 31:47-72 Cambridge University Press

Leonardo Maffi. Implementation of K-means cluster-
ing in Python.
http://www.fantascienza.net/leonardo/so/kmeans/kmeans.html

Mitchell P. Marcus , Mary Ann Marcinkiewicz , Beat-
rice Santorini, 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, v.19 n.2, June 1993.

T.H. Mintz, E.L. Newport and T.G. Bever. 2002. The
distributional structure of grammatical categories in
speech to young children. Cognitive Science 26
(2002), pp. 393C424.

Hinrich Schütze. 1993. Part-of-speech induction from
scratch. In Proceedings of the 31st Meeting of the
ACL.

Noah A. Smith. Novel Estimation Methods for Un-
supervised Discovery of Latent Structure in Natural
Language Text. Ph.D. thesis, Johns Hopkins Uni-
versity Department of Computer Science, Baltimore,
MD, October 2006.

L Shen, G Satta and A Joshi. 2007. Guided Learning
for Bidirectional Sequence Classification In Pro-
ceedings of ACL.

Noah Smith and Jason Eisner. 2005. Contrastive es-
timation: Training log-linear models on unlabeled
data. In Proceedings of the 43rd Meeting of the ACL.

Kristina Toutanova and Mark Johnson. 2007. A
Bayesian LDA-based model for semi-supervised
part-of-speech tagging. In NIPS2007.

Charles Yang. 2002. Knowledge and learning in natu-
ral language. Oxford University Press. (Chapter 3).

697


