
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 737–745,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Word Buffering Models for Improved Speech Repair Parsing∗

Tim Miller

University of Minnesota – Twin Cities

tmill@cs.umn.edu

Abstract

This paper describes a time-series model

for parsing transcribed speech containing

disfluencies. This model differs from pre-

vious parsers in its explicit modeling of a

buffer of recent words, which allows it to

recognize repairs more easily due to the

frequent overlap in words between errors

and their repairs. The parser implement-

ing this model is evaluated on the stan-

dard Switchboard transcribed speech pars-

ing task for overall parsing accuracy and

edited word detection.

1 Introduction

Speech repair is a phenomenon in spontaneous

speech where a speaker interrupts the flow of

speech (at what’s called the interruption point),

backtracks some number of words (the reparan-

dum), and continues the utterance with material

meant to replace the reparandum (the alteration).1

The utterance can be rendered syntactically cor-

rect by excising all the words that the speaker

skipped over when backtracking. Speech with re-

pair is difficult for machines to process because in

addition to detecting repair, a system must know

what words are meant to be excised, and parsing

systems must determine how to form a grammat-

ical structure out of the set of words comprising

both the error speech and the correct speech.

Recent approaches to syntactic modeling of

speech with repairs have shown that significant

gains in parsing accuracy can be achieved by mod-

eling the syntax of repairs (Hale et al., 2006;

Core and Schubert, 1999). In addition, others

have shown that a parser based on a time-series

model that explicitly represents the incomplete

∗This research was supported by NSF CAREER award
0447685. The views expressed are not necessarily endorsed
by the sponsors .

1This terminology follows Shriberg (1994).

constituents in fluent and disfluent speech can also

improve parsing accuracy (Miller and Schuler,

2008). However, these parsing approaches are still

not as accurate at detecting reparanda as classifica-

tion systems which use a variety of features to de-

tect repairs (Charniak and Johnson, 2001; Johnson

and Charniak, 2004; Heeman and Allen, 1999).

One highly salient feature which classification

systems use to detect repair is the repetition of

words between the error and the repair. Johnson

and Charniak report that 60% of words in the al-

terations are copies of words in reparanda in the

Switchboard corpus. Typically, this information

is not available to a parser trained on context-free

grammars.

Meanwhile, psycholinguistic models suggest

that the human language system makes use of

buffers both to keep track of recent input (Bad-

deley et al., 1998) and to smooth out generation

(Levelt, 1989). These buffers are hypothesized

to contain representations of recent phonological

events, suggesting that there is a short window

where new input might be compared to recent in-

put. This could be represented as a buffer which

predicts or detects repeated input in certain con-

strained circumstances.

This paper describes a hybrid parsing sys-

tem operating on transcribed speech which com-

bines an incremental parser implemented as a

probabilistic time-series model, as in Miller and

Schuler, with a buffer of recent words meant to

loosely model something like a phonological loop,

which should better account for word repetition ef-

fects in speech repair.

2 Background

This work uses the Switchboard corpus (Godfrey

et al., 1992) for both training and testing. This

corpus contains transcribed and syntactically an-

notated conversations between human interlocu-

tors. The reparanda in speech repairs are ulti-

737

mately dominated by the EDITED label, and in

cases where the reparandum ends with an unfin-

ished constituent, the lowest constituent label is

augmented with the -UNF tag. These annotations

provide necessary but not sufficient information

for parsing speech with repairs, and thus many im-

provements in performing this task come as the re-

sult of modifying these annotations in the training

data.

As mentioned above, both Hale and colleagues

(2006) and Miller and Schuler (2008) showed

that speech repairs contain syntactic regularities,

which can improve the parsing of transcribed

speech with repairs when modeled properly. Hale

et al. used ‘daughter annotation’, which adds the

label of an EDITED node’s child to the EDITED

label itself, and ‘-UNF propagation’, which la-

bels every node between an original -UNF node

and the EDITED with an -UNF tag. Miller and

Schuler used a ‘right-corner transform’ to convert

standard phrase structure trees of the Penn Tree-

bank into ‘right-corner trees’, which have highly

left-branching structure and non-standard tree cat-

egories representing incomplete constituents be-

ing recognized. These trees can be mapped into a

fixed-depth Hierarchical Hidden Markov Model to

achieve improved parsing and reparandum-finding

results over standard CYK parsers.

Work by Johnson and Charniak (2004; 2001)

uses much of the same structure, but is not a pars-

ing approach per se. In earlier work, they used a

boosting algorithm using word identity and cate-

gory features to classify individual words as part

of a reparandum or not, and achieved very im-

pressive accuracy. More recent work uses a tree-

adjoining grammar (TAG) to model the overlap in

words and part-of-speech tags between reparan-

dum and alteration as context sensitive syntax

trees. A parser is then used to rank the multiple

outputs of the TAG model with reparandum words

removed.

Another approach that makes use of the corre-

spondence between words in the reparandum and

alteration is Heeman and Allen (1999). This ap-

proach uses several sources of evidence, including

word and POS correspondence, to predict repair

beginnings and correct them (by predicting how

far back they are intended to retrace). This model

includes random variables between words that cor-

respond to repair state, and in a repair state, allows

words in the reparandum to ‘license’ words in the

. . .

. . .

. . .

. . .

f3
t−1

f2
t−1

f1
t−1

q1
t−1

q2
t−1

q3
t−1

ot−1

f3
t

f2
t

f1
t

q1
t

q2
t

q3
t

ot

Figure 1: Graphical representation of the depen-

dency structure in a standard Hierarchic Hidden

Markov Model with D = 3 hidden levels that

can be used to parse syntax. Circles denote ran-

dom variables, and edges denote conditional de-

pendencies. Shaded circles denote variables with

observed values.

alteration with high probability, accounting for the

high percentage of copied words and POS tags be-

tween reparandum and alteration.

3 Model Description

This work is based on a standard Hierarchical Hid-

den Markov Model parser (Schuler, 2009), with

the addition of two new random variables for

tracking the state of speech repair. The HHMM

framework is a desirable starting point for this

work for two reasons: First, its definition in terms

of a graphical model makes it easy to think about

and to add new random variables. Second, the

HHMM parser operates incrementally in a left-to-

right fashion on word input, which allows this sys-

tem to run in a single pass, conditioning current

words on a hypothesized buffer and interruption

point variable. The incremental nature of this sys-

tem is a constraint that other systems are not bound

by, but makes this model more psycholinguisti-

cally plausible. In comparison, a CYK parsing

framework attempting to use the same probabilis-

tic model of word dependency between reparanda

and alterations would need to do a second pass af-

ter obtaining the most likely parses, in order to tell

if a particular word’s generation probability in a

specific parse is influenced by a recent repair.

The graphical model representation of this

framework is illustrated in Figures 1 and 4. The

original model, shown in Figure 1, has complex

variables Q and F broken down into several qd
t

and fd
t for time step t and depth d. These ran-

738

dom variables will be explained shortly, but for

now suffice it to say that in this work they are un-

altered from the original HHMM parsing frame-

work, while those labeled I and B (Figure 4) are

additions specific to the system described in this

paper. This section will next describe the stan-

dard HHMM parsing framework, before describ-

ing how this work augments it.

3.1 Right-corner Transform

The HHMM parser consists of stacks of a fixed

depth, which contain hypotheses of constituents

that are being processed. In order to minimize

the number of stack levels needed in processing,

the phrase structure trees in the training set are

modified using a ‘right-corner transform’, which

converts right expansion in trees to left expansion,

leaving heavily left-branching structure requiring

little depth. The right-corner transform used in

this paper is simply the left-right dual of a left-

corner transform (Johnson, 1998a).

The right-corner transform can be defined as

a recursive algorithm on phrase-structure trees in

Chomsky Normal Form (CNF). Trees are con-

verted to CNF first by binarizing using stan-

dard linguistically-motivated techniques (Klein

and Manning, 2003; Johnson, 1998b). Remaining

unbinarized structure is binarized in a brute force

fashion, creating right-branching structure by cre-

ating a single node which dominates the two right-

most children of a ‘super-binary’ tree, with the la-

bel being the concatenation of its children’s labels

(see Figure 2).

Taking this CNF phrase structure tree as input,

the right-corner transform algorithm keeps track

of two separate trees, the original and the new

right-corner tree it is building. This process be-

gins at the right-most preterminal of the original

tree, and works its way up along the right ‘spine’,

while building its way down a corresponding left

spine of the new right-corner tree. The trees be-

low shows the first step of the algorithm, with the

tree on the left being disassembled, the tree on the

right being built from its parts, and the working

positions in the trees shown in bold.

A

B

b

X

Y:Ψ Z

z

A

A/Z

·

Z

z

The bottom right corner of the original tree is

made the top right corner of the new tree, and the

left corner of the new tree is made the newworking

position and given a ‘slash’ category A/Z. The

‘slash’ category label A/Z represents a tree that

is the start of a constituent of type A that needs

a right-child of type Z in order to complete. The

new right-corner of the original tree is the parent

(X) of the previous right corner, and its subtree is

now added to the right-corner derivation:

A

B

b

X

Y:Ψ

A

A/Z

A/X

·

Y:Ψ

Z

z

After the first step, the subtrees moved over to

the right-corner tree may have more complex sub-

structure than a single word (in this case, Ψ rep-

resents that possibly complex structure). After be-

ing attached to the right-corner tree in the correct

place, the algorithm is recursively applied to that

now right-branching substructure.

Again, the left child is given a new slash cat-

egory: The ‘active constituent’ (the left side of a

slash category) is inherited from the root, and the

‘awaited constituent’ (the right side of a slash cat-

egory) is taken from the constituent label of the

right-corner it came from.

This algorithm proceeds iteratively up the right

spine of the original tree, moving structure to the

right-corner tree and recursively transforming it as

it is added. The final step occurs when the original

root (A in this case) is reduced to having a single

child, in which case its child is added as a child

of the leftmost current branch of the right-corner

tree, and it is transformed recursively.

Figures 2 and 3 show an example tree from

the Switchboard corpus before and after the right-

corner transform is applied.

739

S

INTJ

so

INTJ S

INTJ

uh

S

NP

you

VP

VBP

live

PP

IN

in

NP

dallas

Figure 2: Input to the right-corner transform. This

tree also shows an example of the ‘brute-force’ bi-

narization done on super-binary branches that can-

not be otherwise be binarized with linguistically-

motivated rules.

S

S/NP

S/PP

S/VP

S/S

S/INTJ S

INTJ

so

INTJ

uh

NP

you

VBP

live

IN

in

NP

dallas

Figure 3: Right-corner transformed version of the

tree in Figure 2.

3.2 Hierarchical Hidden Markov Model

A Hierarchical Hidden Markov Model is essen-

tially an HMM with a specific factorization that

is useful in many domains — the hidden state at

each time step is factored into d random variables

which function as a stack, and d additional ran-

dom variables which regulate the operations of the

stack through time. For the model of speech repair

presented here, an interruption point is identified

by one of these regulator variables firing earlier

than it would in fluent speech. This concept will

be formalized below. The stack regulating random

variables are typically marginalized out when per-

forming inference on a sequence.

While the vertical direction of the hidden sub-

states (at a fixed t) represents a stack at a sin-

gle point in time, the horizontal direction of the

hidden sub-states (at a fixed d) can be viewed as

a simple HMM at depth d, expanding the state

from the HMM above it across multiple time steps

and causing the HMM below it to expand its own

states. This interpretation will be useful when for-

mally defining the transitions between the stack el-

ements at different time steps below.

Formally, HMMs characterize speech or text as

a sequence of hidden states qt (which may con-

sist of speech sounds, words, and/or other hypoth-

esized syntactic or semantic information), and ob-

served states ot at corresponding time steps t (typ-
ically short, overlapping frames of an audio sig-

nal, or words or characters in a text processing

application). A most likely sequence of hidden

states q̂1..T can then be hypothesized given any se-

quence of observed states o1..T , using Bayes’ Law

(Equation 2) and Markov independence assump-

tions (Equation 3) to define a full P(q1..T | o1..T)
probability as the product of a Language Model

(ΘL) prior probability and an Observation Model

(ΘO) likelihood probability:

q̂1..T = argmax
q1..T

P(q1..T | o1..T) (1)

= argmax
q1..T

P(q1..T) · P(o1..T | q1..T) (2)

def= argmax
q1..T

T∏
t=1

PΘL
(qt | qt–1)·PΘO

(ot | qt)

(3)

Language model transitions PΘL
(qt | qt−1) over

complex hidden states qt can be modeled us-

ing synchronized levels of stacked-up compo-

nent HMMs in a Hierarchic Hidden Markov

Model (HHMM) (Murphy and Paskin, 2001).

HHMM transition probabilities are calculated in

two phases: a ‘reduce’ phase (resulting in an in-

termediate, marginalized state ft), in which com-

ponent HMMs may terminate; and a ‘shift’ phase

(resulting in a modeled state qt), in which unter-

minated HMMs transition, and terminated HMMs

are re-initialized from their parent HMMs. Vari-

ables over intermediate ft and modeled qt states

are factored into sequences of depth-specific vari-

ables — one for each of D levels in the HMM hi-

erarchy:

ft = 〈f1
t . . . fD

t 〉 (4)

qt = 〈q1
t . . . qD

t 〉 (5)

Transition probabilities are then calculated as a

product of transition probabilities at each level, us-

ing level-specific ‘reduce’ ΘF and ‘shift’ ΘQ mod-

740

els:

PΘL
(qt|qt–1) =

∑
ft

P(ft|qt–1)·P(qt|ft qt–1) (6)

def=
∑
f1..D

t

D∏
d=1

PΘF
(fd

t | fd+1
t qd

t–1q
d–1
t–1)·

PΘQ
(qd

t |fd+1
t fd

t qd
t–1q

d–1
t)

(7)

with fD+1
t and q0

t defined as constants.

Shift and reduce probabilities are now defined

in terms of finitely recursive FSAs with probabil-

ity distributions over transition, recursive expan-

sion, and final-state status of states at each hierar-

chy level. In the HHMM used in this paper, each

intermediate state variable is a reduction state vari-

able fd
t ∈ G ∪ {0,1} (where G is the set of all

nonterminal symbols from the original grammar),

representing a reduction to the final syntactic state

in G, a horizontal transition to a new awaited cate-

gory, or a top-down transition to a new active cat-

egory. Each modeled state variable is a syntactic

element (qd
t ∈ G × G) with an active and awaited

category represented with the slash notation.

The intermediate variable fd
t is probabilistically

determined given a reduction at the stack level be-

low, but is deterministically 0 in the case of a non-

reduction at the stack level below. 2

PΘF
(fd

t | fd+1
t qd

t−1q
d−1
t−1) def={

if fd+1
t /∈ G : [fd

t =0]
if fd+1

t ∈ G : PΘF-Reduce
(fd

t | qd
t−1, q

d−1
t−1)

(8)

where fD+1 ∈ G and q0
t = ROOT.

Shift probabilities at each level are defined

using level-specific transition ΘQ-T and expan-

sion ΘQ-E models:

PΘQ
(qd

t | fd+1
t fd

t qd
t−1q

d−1
t) def=

if fd+1
t /∈G, fd

t /∈G : [qd
t = qd

t−1]
if fd+1

t ∈G, fd
t /∈G : PΘQ-T

(qd
t | fd+1

t fd
t qd

t−1q
d−1
t)

if fd+1
t ∈G, fd

t ∈G : PΘQ-E
(qd

t | qd−1
t)

(9)

where fD+1 ∈ G and q0
t = ROOT. This model

is conditioned on final-state switching variables at

and immediately below the current HHMM level.

If there is no final state immediately below the cur-

rent level (the first case above), it deterministically

2Here [·] is an indicator function: [φ] = 1 if φ is true, 0
otherwise.

copies the current HHMM state forward to the

next time step. If there is a final state immediately

below the current level (the second case above),

it transitions the HHMM state at the current level,

according to the distribution ΘQ-T. And if the state

at the current level is final (the third case above), it

re-initializes this state given the state at the level

above, according to the distribution ΘQ-E. The

overall effect is that higher-level HMMs are al-

lowed to transition only when lower-level HMMs

terminate. An HHMM therefore behaves like a

probabilistic implementation of a pushdown au-

tomaton (or ‘shift-reduce’ parser) with a finite

stack, where the maximum stack depth is equal to

the number of levels in the HHMM hierarchy.

All of the probability distributions defined

above can be estimated by training on a corpus of

right-corner transformed trees, by mapping tree el-

ements onto the random variables in the HHMM

and computing conditional probability tables at

each random variable. This process is described in

more detail in other work (Schuler et al., in press).

3.3 Interruption Point and Word Buffer

This paper expands upon this standard HHMM

parsing model by adding two new sub-models to

the hidden variables described above, an interrup-

tion point (I) variable, and a word buffer (B) .

This model is illustrated in Figure 4, which takes

Figure 1 as a starting point and adds random vari-

ables just mentioned.

Buffers are hypothesized to be used in the hu-

man language system to smooth out delivery of

speech (Levelt, 1989). In this work, a buffer of

that sort is placed between the syntax generating

elements and the observed evidence (words). Its

role in this model is not to smooth the flow of

speech, but to keep a short memory that enables

the speaker to conveniently and helpfully restart

when a repair is produced. This in turn gives as-

sistance to a listener trying to understand what the

speaker is saying, since the listener also has the

last few words in memory.

The I variable implements a state machine that

keeps track of the repair status at each time point.

The domain of this variable is {0,1,ET}, where
1 indicates the first word of an alteration, ET in-

dicates editing terms in between reparandum and

alteration, and 0 indicating no repair.3

3Actually, 0 can occur during an alteration, but in those
cases that fact is indicated by the state of the buffer.

741

f3
t−2

f2
t−2

f1
t−2

q1
t−2

q2
t−2

q3
t−2

ot−2

Qt−2

Ft−2

it−2

bt−2

f3
t−1

f2
t−1

f1
t−1

q1
t−1

q2
t−1

q3
t−1

ot−1

Qt−1

Ft−1

it−1

bt−1

f3
t

f2
t

f1
t

q1
t

q2
t

q3
t

ot

Qt

Ft

it
bt

Figure 4: Extended HHMM parsing model with variables for interruption points (I) and a modeled word

buffer (B). Arrows within and between complex hidden variables F andQ have been removed for clarity.

The value of I is deterministically constrained

in this work by its inputs, but it can be conceived

as a conditional probability P(it | it−1, qt, qt−1, rt)
to allow footholds for future research.4 While

depending formally on many values, in practice

its dependencies are highly context-dependent and

constrained:

P(it | it−1, qt, qt−1, qt)
def=

if it−1 =1 : [it =0]
if it−1 =ET ∧ (INTJ ∨ PRN) ∈ qt : [it =ET]
if it−1 =ET : [it =1]
if it−1 =0 ∧ EDITED ∈ (qt−1 ∪ ft)

∧(INTJ ∨ PRN) ∈ qt : [it =ET]
if it−1 =0 ∧ EDITED ∈ (qt−1 ∪ ft) : [it =1]
if it−1 =0 : [it =0]

These conditions are meant to be evaluated in

a short-circuiting fashion, i.e., the first condition

which is true starting from the top is applied. The

default (last) case is most common, going from

non-repair to non-repair state. When the syntax

generated something with the category EDITED

at the last time step (as evidenced by either the

modeled state variable qt−1 or the reduction state

variable ft depending on the length of the reparan-

dum), the interruption point variable is triggered to

change, either to ET if an interjection (INTJ) or

4Most obviously, this variable could be made prior to its
conditions to be their cause, if a suitable model for the causa-
tion of interruption points was designed using prosodic cues.
For this work, it is simply an intermediary that is not strictly
necessary but makes the model design more intuitive.

parenthetical (PRN) followed, otherwise to 1 for

the first word of an alteration. The ET state con-

tinues as long as the syntax at the current level is

generating something containing INTJ or PRN.

The random variable for the word buffer is more

complex, containing at each time step t an integer

index for keeping track of a current position in the

buffer (ct ∈ 〈0, 1, . . . , n− 1〉 for buffer size n),
and an array of several recently generated words

(~wt). This can be represented as the following con-

ditional probability:

P(bt | bt−1, it, qt) = P(ct | ct−1, it)·
P(~wt | ~wt−1, ct) (10)

The operation of the buffer is governed by four

cases:

Case 1: During normal operation (i.e. for fluent

speech), the interruption point variable is 0 and

at the previous time step the buffer index points

at the end of the buffer (it =0 ∧ ct−1 =n−1). In

this simple case, the buffer pointer remains point-

ing at the end position in the buffer (ct =n− 1),
and the last n− 1 items in the buffer are determin-

istically copied backwards one position. A new

word is generated probabilistically to occupy the

last position in the buffer (where ct is pointing).

This probability is estimated empirically using the

same model used in a standard HHMM to gener-

ate words, by conditioning the word on the deepest

non-empty qt value in the stack.

Case 2: When an editing term is being gener-

ated, (it =ET), the buffer is not in use. Practi-

742

cally, this means that the value of the index c and

all wj are just copied over from time t−1 to time

t. This makes sense psycholinguistically, because

a buffer used to smooth speech rates would by def-

inition not be used when speech is interrupted by

a repair. It also makes sense from a purely engi-

neering point of view, since words used as editing

terms are usually stock phrases and filled pauses

that are not likely to have much predictive value

for the alteration, and are thus not worth keeping in

the buffer. The probability of the actual observed

word is modeled the same way word probabilities

are modeled in a standard HHMM, conditioned on

the deepest non-empty qt value, and ignoring the

buffer.

Case 3: The alteration case applies to the first

word after the reparandum and optional editing

terms (it =1). In this case, the index ct for the cur-

rent position of the buffer is obtained by subtract-

ing a number of words to replace, with that num-

ber drawn from a prior distribution. This distribu-

tion is based on the function f(k) = 1.22 · 0.45k.

This function was taken from Shriberg (1996),

where it was estimated based on several differ-

ent training corpora, and provided a remarkable

fit to all of them. Since this model uses a fixed

size buffer, the values are precomputed and renor-

malized to form a probability distribution. With

a buffer size of only n = 4, approximately 96%

of the probability mass of the original function is

accounted for.

After the indices are computed, the buffer at po-

sition ct is given a word value. The model first

decides whether to substitute or copy the previous

word over. The probability governing this decision

is also determined empirically, by computing how

often the first word in a alteration in the Switch-

board training set is a copy of the first word it is

meant to replace. If the copy operation is selected,

the word is added to the buffer without further di-

luting its probability. If, however, the substitution

operation was selected, the word is added to the

buffer with probability distributed across all pos-

sible words.

Case 4: The final case to account for

is alterations of length greater than one

(it =0 ∧ ct−1 6= n−1). This occurs when the

current index was moved back more than one

position, and so even though i is set to 0, the

current index into the buffer is not pointing at the

end. In this case, again the index ct is selected

according to a prior probability distribution. The

value selected from the distribution corresponds

to different actions that may be selected when

retracing the words in the reparandum to generate

the alteration.

The first option is that the current index remains

in place, which corresponds to an insertion oper-

ation, where the alteration is given an extra word

relative to the reparandum at its current position.

Following an insertion, a new word is generated

and placed in the buffer at the current index, with

probability conditioned on the syntax at the most

recent time step. The second option is to continue

the alignment, moving the current index forward

one position in the buffer, and then either perform-

ing a substitution or copy operation in alignment

with a word from the alteration. Word probabil-

ities for the copy and substitution operations are

generated in the same way as for the first word of

an alteration. Finally, the current index may skip

forward more than one value, performing a dele-

tion operation. Deletion skips over words in the

reparandum that do not correspond to words in the

alteration. After the deletion moves the current in-

dex pointer forward, a word is again either copied

or substituted against the newly aligned word.

The prior probability distributions over align-

ment operations is estimated from data in the

Switchboard in a similar manner to Johnson and

Charniak (2004). Briefly, using the disfluency-

annotated section of the Switchboard corpus (.dps

files), a list of reparanda and alterations corre-

sponding to one another are compiled. For each

pair, the minimal cost alignment is computed,

where a copy operation has cost 0, substitution

has cost 4, and deletion and insertion each have

cost 7. Using these alignments, probabilities are

computed using relative frequency counts for both

the first word of an alteration, and for subsequent

operations. Copy and substitution are the most fre-

quent operations (copying gives information about

the repair itself, while substitution can correct the

reason for the error), insertion is somewhat less

frequent (presumably for specifying further infor-

mation), and deletion is relatively rare (usually a

repair is not made to remove information).

4 Evaluation

This model was evaluated on the Switchboard

corpus (Godfrey et al., 1992) of conversational

telephone speech between two human interlocu-

743

System Precision Recall F-Score

Plain CYK 18.01 17.73 17.87

Hale et al. CYK 40.90 35.41 37.96

Hale et al. Lex. n/a n/a 70.0

TAG 82.0 77.8 79.7

Plain HHMM 43.90 47.36 45.57

HHMM-Back 44.12 57.49 49.93

HHMM-Retrace 48.82 59.41 53.59

Table 1: Table of results of edit-finding accuracy.

Italics indicate reported, rather than reproduced,

results.

System Configuration Parseval-F Edited-F

Plain CYK 71.03 17.9

Hale et al. CYK 68.47 37.96

Hale et al. Lex. 80.16 70.0

Plain HHMM 74.23 45.57

HHMM-Back 74.58 49.93

HHMM-Retrace 74.23 53.59

Table 2: Table of parsing results.

tors. The input to this system is the gold standard

word transcriptions, segmented into individual ut-

terances. The standard train/test breakdown was

used, with sections 2 and 3 used for training, and

subsections 0 and 1 of section 4 used for testing.

Several held-out sentences from the end of section

4 were used during development.

For training, the data set was first standardized

by removing punctuation, empty categories, ty-

pos, all categories representing repair structure,

and partial words – anything that would be diffi-

cult or impossible to obtain reliably with a speech

recognizer.

The two metrics used here are the standard Par-

seval F-measure, and Edit-finding F. The first takes

the F-score of labeled precision and recall of the

non-terminals in a hypothesized tree relative to the

gold standard tree. The second measure marks

words in the gold standard as edited if they are

dominated by a node labeled EDITED, and mea-

sures the F-score of the hypothesized edited words

relative to the gold standard.

Results are shown in Tables 1 and 2. Table 1

shows detailed results on edited word finding, with

two test systems and several related approaches.

The first two lines show results from a re-

implementation of Hale et al. parsers. In both

those cases, gold standard part-of-speech (POS)

tags were supplied to the parser. The follow-

ing two lines are reported results of a lexicalized

parser from Hale et al. and the TAG system of

Johnson and Charniak. The final three lines are

evaluations of HHMM systems. The first is an

implementation of Miller and Schuler, run with-

out gold standard POS tags as input. The second

HHMM result is a systemmuch like that described

in this paper, but designed to approximate the best

result that can come from simply trying to match

the first word of an alteration with a recent word.

Levelt (1989) notes that in over 90% of repairs, the

first word of the alteration is either identical or a

member of the same category as the first word of

the reparandum, and this clue is enough for listen-

ers to understand what the alteration is meant to

replace. This implementation keeps the I variable

to model repair state, but rather than a modeled

buffer being part of the hidden state, it keeps an

observed buffer that simply tracks the last n words

seen (n = 4 in this experiment). This buffer is

used only to generate the first word of a repair, and

only when the syntactic state allows the word. Fi-

nally, the system described in Section 3 is shown

on the final line.

Table 2 shows overall parsing accuracy results,

with the same set of systems, with the exception

of the TAG system which did not report parsing

results.

5 Discussion and Conclusion

These results first show that the main contribution

of this paper, a model for a buffer of recent words

which influences speech repairs, results in drastic

improvements in the ability of an HHMM system

to discover edited words. This model does this in

a single pass through the observed words, incre-

mentally forming hypotheses about the state of the

syntactic process as well as the state of repair, just

as humans must recognize spontaneous speech.

Another interesting result is the relative effec-

tiveness of a buffer that is not modeled, but rather

just a collection of words used to condition the first

words of repair (‘HHMM-Back’). While this re-

sult is superior to the plain HHMM system, it still

falls well short of the retracing model using a mod-

eled buffer. This suggests that, though one word

is sufficient to align a reparandum and alteration

when the existence of a repair is given, more in-

formation is often necessary when the task is not

just alignment of repair but also detection of re-

744

pair. A model that takes into account information

sources that identify the existence of repair, such

as prosodic cues (Hale et al., 2006; Lickley, 1996),

may thus result in improved performance for the

simpler unmodeled buffer.

These results also confirm that parsing sponta-

neous speech with an HHMM can be far superior

to a CKY parser, even when the CKY parser is

given the advantage of correct POS tags as input.

Second, even the baseline HHMM system also

improves over the CYK parser in finding edited

words, again without the advantage of correct POS

tags as input.

In conclusion, the model described here uses a

buffer inspired by the phonological loop used in

the human auditory system to keep a short mem-

ory of recent input. This model, when used to as-

sist in the detection and correction of repair, re-

sults in a large increase in accuracy in detection

of repair over other most basic parsing systems.

This system does not reach the performance lev-

els of lexicalized parsers, nor multi-pass classifi-

cation systems. Future work will explore ways to

apply additional features of these systems or other

sources of information to account for the remain-

der of the performance gap.

References

Alan Baddeley, Susan Gathercole, and Costanza Pa-
pagno. 1998. The phonological loop as a language
learning device. Psychological Review, 105(1):158–
173, January.

Eugene Charniak and Mark Johnson. 2001. Edit de-
tection and parsing for transcribed speech. In 2nd
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 118–
126.

Mark G. Core and Lenhart K. Schubert. 1999. A syn-
tactic framework for speech repairs and other disrup-
tions. In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics (ACL
99).

John J. Godfrey, Edward C. Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech cor-
pus for research and development. In Proc. ICASSP,
pages 517–520.

John Hale, Izhak Shafran, Lisa Yung, Bonnie Dorr,
Mary Harper, Anna Krasnyanskaya, Matthew Lease,
Yang Liu, Brian Roark, Matthew Snover, and Robin
Stewart. 2006. PCFGs with syntactic and prosodic
indicators of speech repairs. In Proceedings of the
45th Annual Conference of the Association for Com-
putational Linguistics (COLING-ACL).

Peter A. Heeman and James F. Allen. 1999. Speech
repairs, intonational phrases, and discourse markers:
Modeling speakers’ utterances in spoken dialogue.
Computational Linguistics, 25:527–571.

Mark Johnson and Eugene Charniak. 2004. A tag-
based noisy channel model of speech repairs. In
Proceedings of the 42nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL ’04),
pages 33–39, Barcelona, Spain.

Mark Johnson. 1998a. Finite state approximation of
constraint-based grammars using left-corner gram-
mar transforms. In Proceedings of COLING/ACL,
pages 619–623.

Mark Johnson. 1998b. PCFG models of linguistic tree
representation. Computational Linguistics, 24:613–
632.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430.

Willem J.M. Levelt. 1989. Speaking: From Intention
to Articulation. MIT Press.

R. J. Lickley. 1996. Juncture cues to disfluency. In
Proceedings of The Fourth International Conference
on Spoken Language Processing (ICSLP ’96), pages
2478–2481.

Tim Miller and William Schuler. 2008. A syntac-
tic time-series model for parsing fluent and dis-
fluent speech. In Proceedings of the 22nd Inter-
national Conference on Computational Linguistics
(COLING’08).

Kevin P. Murphy and Mark A. Paskin. 2001. Lin-
ear time inference in hierarchical HMMs. In Proc.
NIPS, pages 833–840.

William Schuler, Samir AbdelRahman, TimMiller, and
Lane Schwartz. in press. Broad-coverage incremen-
tal parsing using human-like memory constraints.
Computational Linguistics.

William Schuler. 2009. Parsing with a bounded
stack using a model-based right-corner transform.
In Proceedings of the North American Association
for Computational Linguistics (NAACL ’09), Boul-
der, Colorado.

Elizabeth Shriberg. 1994. Preliminaries to a Theory
of Speech Disfluencies. Ph.D. thesis, University of
California at Berkeley.

Elizabeth Shriberg. 1996. Disfluencies in Switch-
board. In Proceedings of International Conference
on Spoken Language Processing.

745

