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Abstract 

Knowledge of noun phrase anaphoricity might 
be profitably exploited in coreference resolu-
tion to bypass the resolution of non-anaphoric 
noun phrases. However, it is surprising to no-
tice that recent attempts to incorporate auto-
matically acquired anaphoricity information 
into coreference resolution have been some-
what disappointing. This paper employs a 
global learning method in determining the 
anaphoricity of noun phrases via a label 
propagation algorithm to improve learning-
based coreference resolution. In particular, 
two kinds of kernels, i.e. the feature-based 
RBF kernel and the convolution tree kernel, 
are employed to compute the anaphoricity 
similarity between two noun phrases. Experi-
ments on the ACE 2003 corpus demonstrate 
the effectiveness of our method in anaphoric-
ity determination of noun phrases and its ap-
plication in learning-based coreference resolu-
tion. 

1 Introduction 

Coreference resolution, the task of determining 
which noun phrases (NPs) in a text refer to the 
same real-world entity, has long been considered 
an important and difficult problem in natural 
language processing. Identifying the linguistic 
constraints on when two NPs can co-refer re-
mains an active area of research in the commu-
nity. One significant constraint on coreference, 
the anaphoricity constraint, specifies that a non-
anaphoric NP cannot be coreferent with any of 
its preceding NPs in a given text. Therefore, it is 
useful to skip over these non-anaphoric NPs 
rather than attempt an unnecessary search for an 
antecedent for them, only to end up with inaccu-
rate outcomes. Although many existing machine 
learning approaches to coreference resolution 
have performed reasonably well without explicit 
anaphoricity determination (e.g., Soon et al 2001; 

Ng and Cardie 2002b; Strube and Muller 2003; 
Yang et al 2003, 2008), anaphoricity determina-
tion has been studied fairly extensively in the 
literature, given the potential usefulness of NP 
anaphoricity in coreference resolution. One 
common approach involves the design of heuris-
tic rules to identify specific types of non-
anaphoric NPs, such as pleonastic pronouns (e.g. 
Paice and Husk 1987; Lappin and Leass 1994; 
Kennedy and Boguraev 1996; Denber 1998) and 
existential definite descriptions (e.g., Vieira and 
Poesio 2000). More recently, the problem has 
been tackled using statistics-based (e.g., Bean 
and Riloff 1999; Bergsma et al 2008) and learn-
ing-based (e.g. Evans 2001; Ng and Cardie 
2002a; Ng 2004; Yang et al 2005; Denis and 
Balbridge 2007) methods. Although there is em-
pirical evidence (e.g. Ng and Cardie 2002a, 
2004) that coreference resolution might be fur-
ther improved with proper anaphoricity informa-
tion, its contribution is still somewhat disap-
pointing and lacks systematic evaluation. 

This paper employs a label propagation (LP) 
algorithm for global learning of NP anaphoricity. 
Given the labeled data and the unlabeled data, 
the LP algorithm first represents labeled and 
unlabeled instances as vertices in a connected 
graph, then propagates the label information 
from any vertex to nearby vertices through 
weighted edges and finally infers the labels of 
unlabeled instances until a global stable stage is 
achieved. Here, the labeled data in this paper 
include all the NPs in the training texts with the 
anaphoricity labeled and the unlabeled data in-
clude all the NPs in a test text with the ana-
phoricity unlabeled. One major advantage of LP-
based anaphoricity determination is that the ana-
phoricity of all the NPs in a text can be deter-
mined together in a global way. Compared with 
previous methods, the LP algorithm can effec-
tively capture the natural clustering structure in 
both the labeled and unlabeled data to smooth 
the labeling function. In particular, two kinds of 
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kernels, i.e. the feature-based RBF kernel and 
the convolution tree kernel, are employed to 
compute the anaphoricity similarity between two 
NPs and weigh the edge between them. Experi-
ments on the ACE 2003 corpus show that our 
LP-based anaphoricity determination signifi-
cantly outperforms locally-optimized one, which 
adopts a classifier (e.g. SVM) to determine the 
anaphoricity of NPs in a text individually and 
significantly improves the performance of learn-
ing-based coreference resolution. It also shows 
that, while feature-based anaphoricity determi-
nation contributes much to pronoun resolution, 
its contribution on definite NP resolution can be 
ignored. In comparison, it shows that tree ker-
nel-based anaphoricity resolution contributes 
significantly to the resolution of both pronouns 
and definite NPs due to the inclusion of various 
kinds of syntactic structured information. 

The rest of this paper is organized as follows. 
In Section 2, we review related work in ana-
phoricity determination. Then, the LP algorithm 
is introduced in Section 3 while Section 4 de-
scribes different similarity measurements ex-
plored in the LP algorithm. Section 5 shows the 
experimental results. Finally, we conclude our 
work in Section 6.  

2 Related Work 

Given its potential usefulness in coreference 
resolution, anaphoricity determination has been 
studied fairly extensively in the literature and 
can be classified into three categories: heuristic 
rule-based (e.g. Paice and Husk 1987; Lappin 
and Leass 1994; Kennedy and Boguraev 1996; 
Denber 1998; Vieira and Poesio 2000), statis-
tics-based (e.g., Bean and Riloff 1999; Cherry 
and Bergsma 2005; Bergsma et al 2008) and 
learning-based (e.g. Evans 2001; Ng and Cardie 
2002a; Ng 2004; Yang et al 2005; Denis and 
Balbridge 2007). 

For the heuristic rule-based approaches, 
Paice and Husk (1987), Lappin and Leass (1994), 
Kennedy and Boguraev (1996), Denber (1998), 
and Cherry and Bergsma (2005) looked for par-
ticular constructions using certain trigger words 
to identify pleonastic pronouns while Vieira and 
Poesio (2000) recognized non-anaphoric definite 
NPs through the use of syntactic cues and case-
sensitive rules and found that nearly 50% of 
definite NPs are non-anaphoric. As a representa-
tive, Lappin and Leass (1994), and Kennedy and 
Boguraev (1996) looked for modal adjectives 
(e.g. “necessary”) or cognitive verbs (e.g. “It is 

thought that … ”) in a set of patterned construc-
tions.  

For the statistics-based approaches, Bean 
and Riloff (1999) developed a statistics-based 
method for automatically identifying existential 
definite NPs which are non-anaphoric. The intui-
tion behind is that many definite NPs are not 
anaphoric since their meanings can be under-
stood from general world knowledge. They 
found that existential NPs account for 63% of all 
definite NPs and 76% of them could be identi-
fied by syntactic or lexical means. Using 1600 
MUC-4 terrorism news documents as the train-
ing data, they achieved 87% in precision and 
78% in recall at identifying non-anaphoric defi-
nite NPs. Cherry and Bergsma (2005) extended 
the work of Lappin and Leass (1994) for large-
scale anaphoricity determination by additionally 
detecting non-anaphoric instances of it using 
Minipar’s pleonastic category Subj. This is done 
by both employing Minipar’s named entity rec-
ognition to identify time expressions, such as “it 
was midnight… ”, and providing a number of 
other linguistic patterns to match common non-
anaphoric it cases, such as in expressions “darn 
it” and don’t overdo it”. Bergsma et al (2008) 
proposed a distributional method in detecting 
non-anaphoric pronouns by first extracting the 
surrounding textual context of the pronoun, then 
gathering the distribution of words that occurred 
within that context from a large corpus and fi-
nally learning to classify these distributions as 
representing either anaphoric and non-anaphoric 
pronoun instances. Experiments on  the Science 
News corpus of It-Bank 1  in identifying non-
anaphoric pronoun it show that their distribu-
tional method achieved the performance of 
81.4%, 71.0% and 75.8 in precision, recall and 
F1-measure, respectively, compared with the 
performance of 93.4%, 21.0% and 34.3 in preci-
sion, recall and F1-measure, respectively using 
the rule-based approach as described in Lappin 
and Leass (1994), and  the performance of 
66.4%, 49.7% and 56.9 in precision, recall and 
F1-measure, respectively using the rule-based 
approach as described in Cherry and Bergsma 
(2005).  

Among the learning-based methods, Evans 
(2001) applied a machine learning approach on 
identifying the non-anaphoricity of pronoun it. 
Ng and Cardie (2002a) employed various do-
main-independent features in identifying ana-
phoric NPs and showed how such information 

                                                 
1 www.cs.ualberta.ca/~bergsma/ItBank/ 
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can be incorporated into a coreference resolution 
system. Experiments show that their method im-
proves the performance of coreference resolu-
tion by 2.0 and 2.6 to 65.8 and 64.2 in F1-
measure on the MUC-6 and MUC-7 corpora, 
respectively, due to much more gain in precision 
compared with the loss in recall. Ng (2004) ex-
amined the representation and optimization is-
sues in computing and using anaphoricity infor-
mation to improve learning-based coreference 
resolution systems. He used an anaphoricity 
classifier as a filter for coreference resolution. 
Evaluation on the ACE 2003 corpus shows that, 
compared with a baseline coreference resolution 
system of no explicit anaphoricity determination, 
their method improves the performance by 2.8, 
2.2 and 4.5 to 54.5, 64.0 and 60.8 in F1-measure 
(due to the gain in precision) on the NWIRE, 
NPAPER and BNEWS domains, respectively, 
via careful determination of an anaphoricity 
threshold with proper constraint-based represen-
tation and global optimization. However, he did 
not look into the contribution of anaphoricity 
determination on coreference resolution of dif-
ferent NP types, such as pronoun and definite 
NPs. Yang et al (2005) made use of non-
anaphors to create a special class of training in-
stances in the twin-candidate model (Yang et al 
2003) and thus equipped it with the non-
anaphoricity determination capability. Experi-
ments show that the proposed method improves 
the performance by 2.9 and 1.6 to 67.3 and 67.2 
in F1-measure on the MUC-6 and MUC-7 cor-
pora, respectively, due to much more gain in 
precision compared with the loss in recall. How-
ever, surprisingly, their experiments also show 
that eliminating non-anaphors using an ana-
phoricity determination module in advance 
harms the performance.  Denis and Balbridge 
(2007) employed an integer linear programming 
(ILP) formulation for coreference resolution 
which models anaphoricity and coreference as a 
joint task, such that each local model informs the 
other for final assignments. Experiments on the 
NWIRE, NPAPER and BNEWS domains of the 
ACE 2003 corpus shows that this joint ana-
phoricity-coreference ILP formulation improves 
the F1-measure by 0.7-1.0 over the coreference-
only ILP formulation. However, their experi-
ments assume true ACE mentions(i.e. all the 
ACE mentions are already known from the an-
notated corpus). Therefore, the actual effect of 
this joint anaphoricity-coreference ILP formula-
tion on fully-automatic coreference resolution is 
still unclear. 

3 Label Propagation  

In the LP algorithm (Zhu and Ghahramani 2002), 
the natural clustering structure in data is repre-
sented as a connected graph. Given the labeled 
data and unlabeled data, the LP algorithm first 
represents labeled and unlabeled instances as 
vertices in a connected graph, then propagates 
the label information from any vertex to nearby 
vertices through weighted edges and finally in-
fers the labels of unlabeled instances until a 
global stable stage is achieved. Figure 1 presents 
the label propagation algorithm. 
___________________________________________
Assume:  

Y : the rn * labeling matrix, where ijy  represents 

the probability of vertex )1( nixi K=  with 

label )1( rjr j K= ; 

LY : the top l  rows of 0Y . LY corresponds to the 
l  labeled instances; 

UY : the bottom u  rows of 0Y . UY corresponds to 
the u  unlabeled instances; 

T : a nn *  matrix, with ijt  is the probability 

jumping from vertex ix to vertex jx ; 
 

BEGIN (the algorithm) 
Initialization:  

1)  Set the iteration index 0=t ;  
2)  Let 0Y  be the initial soft labels attached to 

each vertex;  
3)  Let 0

LY  be consistent with the labeling in the 

labeled data, where 0
ijy = the weight of the 

labeled instance if ix  has the label jr  ;  

4)  Initialize 0
UY ; 

REPEAT 
Propagate the labels of any vertex to nearby ver-

tices by tt YTY =+1 ; 
Clamp the labeled data, that is, replace 1+t

LY  

with 0
LY ; 

UNTIL Y converges(e.g. 1+t
LY  converges to 0

LY ); 
Assign each unlabeled instance with a label: for 

)( nilxi ≤p , find its label with 

j
ijymaxarg ; 

END (the algorithm) 
___________________________________________ 

Figure 1: The LP algorithm 

Here, each vertex corresponds to an instance, 
and the edge between any two instances ix  and 

jx  is weighted by ijw  to measure their similar-
ity. In principle, larger edge weights allow labels 
to travel through easier. Thus the closer the in-
stances are, the more likely they have similar 
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labels. The algorithm first calculates the weight 

ijw  using a kernel, then transforms it 

to ∑
=

=→=
n

k
kjijij wwijpt

1

/)( , which meas-

ures the probability of propagating a label from 
instance jx to instance ix , and finally normal-

izes ijt row by row using ∑
=

=
n

k
ikijij ttt

1

/  to maintain 

the class probability interpretation of the label-
ing matrix Y .  

During the label propagation process, the la-
bel distribution of the labeled data is clamped in 
each loop using their initial weights and acts like 
forces to push out labels through the unlabeled 
data. With this push originating from the labeled 
data, the label boundaries will be pushed faster 
along edges with larger weights and settle in 
gaps along those with lower weights. Ideally, we 
can expect that ijw  across different classes 

should be as small as possible and ijw  within the 

same class as big as possible. In this way, label 
propagation tends to happen within the same 
class. This algorithm has been shown to con-
verge to a unique solution (Zhu and Ghahramani 
2002), which can be obtained without iteration 
in theory, and the initialization of YU

0 (the unla-
beled data) is not important since YU

0 does not 
affect its estimation. However, proper initializa-
tion of YU

0 actually helps the algorithm converge 
more rapidly in practice. In this paper, each row 
in YU

0 , i.e. the label distribution for each test 
instance, is initialized to the weighted similarity 
of the test instance with the labeled instances. 

4 Kernel-based Similarity  

The key issue in label propagation is how to 
compute the similarity ijw between two in-

stances ix  and jx . This paper examines two 

similarity measures: the feature-based RBF ker-
nel and the convolution tree kernel. 

Feature Type Feature Description 
IsPronoun 1 if current NP is a pronoun, else 0 
IsDefiniteNP 1 if current NP is a define NP, else 0 
IsDemonstrativeNP 1 if current NP is a demonstrative NP,  else 0 
IsArg0 1 if the semantic role of current NP is Arg0/agent, else 0 
IsArg0MainVerb 1 if current NP has the semantic role of Arg0/agent for the 

main predicate of the sentence, else 0 
IsArgs 0 if current NP has no semantic role, else 1 
IsSingularNP 1 if current NP is a singular noun, else 0 

Features  
related with  

current NP itself 

IsMaleFemalePronoun 1 if current NP is a male/female personal pronoun, else 0 
StringMatch 1 if there is a full string match between current NP and one 

of other phrases in the context, else 0 
NameAlias 1 if current NP and one of other phrases in the context is a 

name alias or abbreviation of the other, else 0 
Appositive 1 if current NP and one of other phrases in the context are 

in an appositive structure, else 0 
NPNested 1 if current NP is nested in another NP, else 0 
NPNesting 1 if current NP nests another NP, else 0 
WordSenseAgreement 1 if current NP and one of other phrases in the context agree 

in the WordNet sense, else 0 
IsFirstNPinSentence 1 if current NP is the first NP of this sentence, else 0 
BackwardDistance The distance between current NP and  the nearest backward 

clause, indicated by coordinating words (e.g. that,which). 

Features  
related with  

the local context 
surrounding 
current NP 

ForwardDistance The distance between the nearest forward clause, indicated 
by coordinating words (e.g. that, which), and current NP. 

Table 1: Features in anaphoricity determination of NPs. Note: the semantic role-related features are derived from 
an in-house state-of-the-art semantic role labeling system.

4.1 Feature-based Kernel 

In our feature-based RBF kernel to anaphoricity 
determination, an instance is represented by 17 
lexical, syntactic and semantic features, as 
shown in Table 1, which are specifically de-
signed for distinguishing anaphoric and non-

anaphoric NPs, according to common-sense 
knowledge and linguistic intuitions. Since the 
local context surrounding an NP plays a critical 
role in discriminating whether an NP is ana-
phoric or not, the features in Table 1 can be clas-
sified into two categories: (a) current NP (i.e. the 
NP in anaphoricity consideration) itself, e.g. 
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types and semantic roles of  current NP; (b) con-
textual information, e.g.  whether current NP is 
nested in another NP, the distance between cur-
rent NP and a clause structure, indicated by co-
ordinating words (e.g. that, this, which). 

4.2 Tree Kernel 

Given a NP in anaphoricity determination, a 
parse tree represents the local context surround-
ing current NP in a structural way and thus con-
tains much information in determining whether 
current NP is anaphoric or not. For example, the 
commonly used knowledge for anaphoricity de-
termination, such as the grammatical role of cur-
rent NP or whether current NP is nested in other 
NPs, can be directly captured by a parse tree 
structure.  

Given a parse tree and a NP in consideration, 
the problem is how to choose a proper parse tree 
structure to cover syntactic structured informa-
tion well in the tree kernel computation. Gener-
ally, the more a parse tree structure includes, the 
more syntactic structured information would be 
provided, at the expense of more 
noisy/unnecessary information. In this paper, we 
limit the window size to 5  chunks (either NPs or 
non-NPs), including previous two chunks, cur-
rent chunk (i.e. current NP) and following two 
chunks, and prune out the substructures outside 
the window.  Figure 2 shows the full parse tree 
for the sentence “Mary said the woman in the 
room hit her too”, using the Charniak parser 
(Charniak 2001), and the chunk sequence de-
rived from the parse tree using the Perl script2 
written by Sabine Buchholz from Tilburg Uni-
versity. 

Here, we explore four parse tree structures 
in NP anaphoricity determination: the common 
tree (CT), the shortest path-enclosed tree (SPT), 
the minimum tree (MT) and the dynamically 
extended tree (DET), motivated by Yang et al 
(2006) and Zhou et al (2008). Following are the 
examples of the four parse tree structures, corre-
sponding to the full parse tree and the chunk se-
quence, as shown in Figure 2, with the NP chunk 
“(NP (DT the) (NN woman))” in anaphoricity 
determination. 

Common Tree (CT) 
As shown in Figure 3(a), CT is the complete 
sub-tree rooted by the nearest common ancestor 
of the first chunk “(NP (NNP Mary))” and the 

                                                 
2 http://ilk.kub.nl/~sabine/chunklink/  

last chunk “(NP (DT the) (NN room))” of the 
five-chunk window.  

Shortest Path-enclosed Tree (SPT) 
As shown in Figure 3(b), SPT is  the smallest 
common sub-tree enclosed by the shortest path 
between the first chunk “(NP (NNP Mary))” and 
the last chunk “(NP (DT the) (NN room))” of the 
five-chunk window.  

 
(a) the full parse tree 

(NP (NNP Mary)) (VP (VBD said)) (NP-E (DT the) 
(NN woman)) (PP (IN in)) (NP (DT the) (NN room)) 
(VP (VBD hit)) (NP (PRP her)) (ADVP (RB too)) 

(b) the chunk sequence 

Figure 2: The full parse tree for the sentence “Mary 
said the woman in the room hit her too”, using the 
Charniak parser, and the corresponding chunk se-
quence derived from it. Here, the label “E” indicates 
the NP in consideration. 

 
(a) CT: Common Tree 

 
(b) SPT: Shortest Path-enclosed Tree 
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(c) MT: Minimum Tree 

 
(d) DET: Dynamically Extended Tree 

Figure 3: Examples of parse tree structures. 

Minimum Tree (MT) 
As shown in Figure 3(c), MT only keeps the root 
path from the NP in anaphoricity determination 
to the root node of SPT. 

Dynamically Extended Tree (DET),  
The intuitions behind DET are that the informa-
tion related with antecedent candidates (all the  
antecedent candidates compatible3 with current 
NP in anaphoricity consideration), predicates 4 
and right siblings plays a critical role in corefer-
ence resolution. Given a MT, this is done by:  
1)  Attaching all the compatible antecedent can-

didates and their corresponding paths. As 
shown in Figure 3(d), “Mary” is attached 
while “the room” is not since the former is 
compatible with the NP “the woman” and 
the latter is not compatible with the NP “the 
woman”. In this way, possible coreference 
between current NP and the compatible an-
tecedent candidates can be included in the 
parse tree structure. In some sense, this is a 
natural extension of the twin-candidate 

                                                 
3 With matched number, person and gender agreements. 
4 For simplicity, only verbal predicates are considered in 
this paper. However, this can be extended to nominal predi-
cates with automatic identification of nominal predicates. 

learning method proposed in Yang et al 
(2003), which explicitly models the compe-
tition between two antecedent candidates.  

2)  For each node in MT, attaching the path from 
the node to the leaf node of the correspond-
ing predicate, if it is predicate-headed, in the 
sense that such predicate-related information 
is useful in identifying certain kinds of ex-
pressions with non-anaphoric NPs, e.g. the 
non-anaphoric it in “darn it”. As shown in 
Figure 3(d), “said” and “hit” are attached.  

3)  Attaching the path to the head word of the 
first right sibling if the parent of current NP 
is a NP and current NP has one or more right 
siblings. Normally, the NP in anaphoricity 
consideration, NP-E, in the production of 
“NP->NP-E+PP” introduces a new entity 
and thus non-anaphoric. 

4)  Pruning those nodes (except POS nodes) 
with the single in-arc and the single out-arc 
and with its syntactic phrase type same as its 
child node.  
In this paper, the similarity between two 

parse trees is measured using a convolution tree 
kernel, which counts the number of common 
sub-trees as the syntactic structure similarity 
between two parse trees. For details, please refer 
to Collins and Duffy (2001). 

5 Experimentation  

We have systematically evaluated the label 
propagation algorithm on global learning of NP 
anaphoricity determination on the ACE 2003 
corpus, and its application in coreference resolu-
tion. 

5.1 Experimental Setting 

The ACE 2003 corpus contains three domains: 
newswire (NWIRE), newspaper (NPAPER), and 
broadcast news (BNEWS). For each domain, 
there exist two data sets, training and devtest, 
which are used for training and testing respec-
tively.  

As a baseline coreference resolution system, 
a  raw test text is first preprocessed automati-
cally by a pipeline of NLP components, includ-
ing sentence boundary detection, POS tagging, 
named entity recognition and phrase chunking, 
and then a training or test instance is formed by 
a anaphor and one of its antecedent candidates, 
similar to Soon et al (2001). Among them, 
named entity recognition, part-of-speech tagging 
and noun phrase chunking apply the same Hid-
den Markov Model (HMM)-based engine with 
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error-driven learning capability (Zhou and Su, 
2000 & 2002). During training, for each anaphor 
encountered, a positive instance is created by 
pairing the anaphor and its closest antecedent 
while a set of negative instances is formed by 
pairing the anaphor with each of the non-
coreferential candidates. Based on the training 
instances, a binary classifier is generated using a 
particular learning algorithm. In this paper, we 
use SVMLight developed by Joachims (1998). 
During resolution, an anaphor is first paired in 
turn with each preceding antecedent candidate to 
form a test instance, which is presented to a 
classifier. The classifier then returns a confi-
dence value indicating the likelihood that the 
candidate is the antecedent. Finally, the candi-
date with the highest confidence value is se-
lected as the antecedent. As a baseline, the NPs 
with mismatched number, person and gender 
agreements are filtered out. On average, an ana-
phor has ~7 antecedent candidates. In particular, 
the test corpus is resolved in document-level, i.e. 
one document by one document. 

For anaphoricity determination, we report 
the performance in Acc+ and Acc-, which meas-
ure the accuracies of identifying anaphoric NPs 
and non-anaphoric NPs, respectively. Obviously, 
higher Acc+ means that more anaphoric NPs 
would be identified correctly, while higher Acc- 
means that more non-anaphoric NPs would be 
filtered out. For coreference resolution, we re-
port the performance in terms of recall, precision, 
and F1-measure using the commonly-used 
model theoretic MUC scoring program (Vilain 
et al., 1995). For separate scoring of different 
NP types, a recognized reference is considered 
correct if the reconized antecedent is in the 
coreferential chain of the anaphor. To see 
whether an improvement is significant, we con-
duct significance testing using paired t-test. In 
this paper, ‘>>>’, ‘>>’ and ‘>’ denote p-values 
of an improvement smaller than 0.01, in-
between (0.01, 0,05] and bigger than 0.05, 
which mean significantly better, moderately 
better and slightly better, respectively.  

5.2 Experimental Results 

Table 2 shows the performance of LP-based ana-
phoricity determination using the feature-based 
RBF kernel. It shows that our method achieves 
the accuracies of 74.8/84.4, 76.2/81.3 and 
71.8/81.7 on identifying anaphoric/non-
anaphoric NPs in the NWIRE, NPAPER and 
BNEWS domains, respectively. This suggests 
that our approach can effectively filter out about 

82% of non-anaphoric NPs. However, it can 
only keep about 74% of anaphoric NPs. Table 2 
also shows the performance on different NP 
types. Considering the effectiveness of ana-
phoricity determination on indefinite NPs (due 
to that most of anaphoric indefinite NPs are in 
an appositive structure and thus can be easily 
captured by the IsAppositive feature) and that 
most of errors in anaphoricity determination on 
proper nouns are caused by the named entity 
recognition module in the preprocessing), it in-
dicates the difficulty of anaphoricity determina-
tion in filtering out non-anaphoric pronouns and 
identifying anaphoric definite NPs. As a com-
parison, Table 2 also shows the performance of 
locally-optimized anaphoricity determination 
using a classifier (SVM with the feature-based 
RBF kernel, as adopted in this paper) to deter-
mine the NPs in a text individually. It shows that 
the LP-based method systematically outperforms 
(>>>) the SVM-based method. This suggests the 
effectiveness of the LP algorithm in global mod-
eling of the natural clustering structure in ana-
phoricity determination. 

Table 3 shows the performance of LP-based 
anaphoricity determination using the convolu-
tion tree kernel on different parse tree structures. 
It shows that while MT performed worst due to 
its simple structure, DET outperforms MT(>>>), 
SPT(>>>) and CT(>>>) on all the three domains 
due to fine inclusion of necessary structural in-
formation, although inclusion of more informa-
tion in both CT and SPT also improves the per-
formance. It again verifies that LP-based ana-
phoricity determination outperforms (>>>) 
SVM-based one, using the tree kernel. Table 4 
further indicates that all the three kinds of struc-
tural information related with antecedent candi-
dates, predicates and right siblings in DET con-
tribute significantly (>>>). In addition, Table 5 
shows the detailed performance of LP-based 
anaphoricity determination on different anaphor 
types using DET. Compared with the feature-
based RBF kernel as shown in Table 2, it shows 
that the convolution tree kernel significantly 
outperforms (>>>) the feature-based RBF kernel 
in all the three domains, with much contribution 
due to performance improvement on both pro-
nouns and definite NPs, although the tree kernel 
performs moderately worse than the feature-
based RBF kernel due to the effectiveness of 
anaphoricity determination on proper nouns and 
indefinite NPs using the IsNameAlias and IsAp-
positive features respectively. 
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NWIRE NPAPER BNEWS Anaphor 
Type Acc+ 

(%) 
Acc-

(%) 
Acc+ 

(%) 
Acc-

(%) 
Acc+ 

(%) 
Acc-

(%) 
Pronoun 88.7 56.2 90.2 58.6 87.4 57.8 

ProperNoun 72.5 85.2 74.6 80.5 70.6 78.8 
DefiniteNP 66.6 83.1 72.1 77.5 65.3 81.5 

InDefiniteNP 95.4 93.7 90.5 95.8 87.2 97.3 
Overall 74.8 84.4 76.2 81.3 71.8 81.7 

Overall(SVM) 71.3 80.2 73.5 79.1 68.4 78.6 
Table 2: The performance of LP-based anaphoric-

ity determination using the feature-based RBF kernel  

Parse Tree structure  
Scheme 

NWIRE
( %)  

NPAPER
( %)  

BNEWS
( %)  

Acc+ 72.6 74.3 74.2 CT 
Acc- 82.1 80.2 72.3 
Acc+ 72.4 74.1 73.8 SPT Acc- 80.8 79.5 72.5 
Acc+ 71.4 70.5 66.9 MT Acc- 77.2 75.3 78.2 
Acc+ 79.2 81.2 76.5 DET Acc- 87.8 84.5 85.3 
Acc+ 76.5 78.9 74.3 DET(SVM) 
Acc- 82.3 81.6 83.2 

Table 3: The performance of LP-based anaphoric-
ity determination using the convolution tree kernel on 

different parse tree structures 

Performance Change 
NWIRE
( %)  

NPAPER
( %)  

BNEWS
( %)  

Acc+ -4.0 -3.8 -4.3 - antecedent 
candidates Acc- -5.2 -5.3 -4.5 

Acc+ -5.2 -4.8 -5.6 -predicate 
Acc- -4.3 -3.5 -4.9 
Acc+ -3.6 -4.1 -3.1 -first right 

sibling Acc- -4.8 -5.2 -4.4 
Table 4: The contribution of structural information 

in DET 

 

NWIRE NPAPER BNEWS Anaphor 
Type Acc+ 

(%) 
Acc-

(%) 
Acc+ 

(%) 
Acc-

(%) 
Acc+ 

(%) 
Acc-

(%) 
Pronoun 90.1 75.6 90.7 79.2 89.2 77.5 

ProperNoun 71.4 83.5 72.8 78.1 68.3 77.2 
DefiniteNP 74.6 89.1 77.3 85.5 75.3 88.7 

InDefiniteNP 93.2 92.1 90.2 94.2 89.4 95.5 
Overall 79.2 87.8 81.2 84.5 76.5 85.3 
Table 5: The performance of LP-based anaphoric-
ity determination using the tree kernel on DET 

Finally, we evaluate the effect of LP-based 
anaphoricity determination on coreference reso-
lution by including it as a preprocessing step to a 
baseline coreference resolution system without 
explicit anaphoricity determination, which em-
ploys the same set of features, as adopted in the 
single-candidate model of Yang et al (2003), 
using a SVM-based classifier and the feature-
based RBF kernel. It shows that anaphoricity 
determination with the feature-based RBF Ker-
nel much improves (>>>) the performance of 
coreference resolution with most of the contribu-
tion due to pronoun resolution while its contri-
bution on definite NPs can be ignored. It indi-
cates the usefulness of anaphoricity determina-
tion in filtering out non-anaphoric pronouns and 
the difficulty in identifying anaphoric definite 
NPs, using the feature-based RBF kernel. It also 
shows that tree kernel-based anaphoricity deter-
mination can not only improve (>>>) the per-
formance on pronoun resolution but also im-
prove (>>>) the performance on definite NP 
resolution due to the much better performance of 
tree kernel-based anaphoricity determination on 
definite NPs. This suggests the necessity of ex-
ploring structural information in identifying 
anaphoric definite NPs. 

NWIRE NPAPER BNEWS System 
R% P% F R% P% F R% P% F 

Pronoun 66.5 61.6 64.0 70.1 64.2 67.0 61.7 63.2 62.4 
DefiniteNP 26.9 80.3 40.2 34.5 62.4 44.4 30.5 71.4 42.9 BaseLine (No Anaphoricity) 

Overall 53.1 67.4 59.4 57.7 67.0 62.1 48.0 65.9 55.5 
Pronoun 64.1 67.9 66.0 67.3 72.4 69.8 59.5 75.7 66.6 

DefiniteNP 26.7 80.6 40.3 34.2 62.5 44.3 30.4 71.9 43.1 
+Anaphoricity determination  

with the feature-based RBF kernel 
Overall 50.6 75.4 60.7 54.4 77.1 63.8 45.9 76.9 57.4 
Pronoun 63.5 70.9 67.0 68 74.9 71.3 61.1 77.6 68.3 

DefiniteNP 28.5 82.4 42.1 36.2 65.3 46.1 32.3 73.1 44.2 
+Anaphoricity determination 

with the convolution tree kernel 
Overall 51.6 77.2 61.8 55.2 78.6 65.2 47.5 80.3 59.6 

Table 6: Employment of anaphoricity determination in coreference resolution 

6 Conclusion  

This paper systematically studies a global learn-
ing method in identifying the anaphoricity of 
noun phrases via a label propagation algorithm 

and the application of an explicit anaphoricity 
determination module in improving learning-
based coreference resolution. In particular, two 
kinds of kernels, i.e. the feature-based RBF ker-
nel and the convolution tree kernel, are em-
ployed to compute the anaphoricity similarity 
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between two NPs. Evaluation on the ACE 2003 
corpus indicates that LP-based anaphoricity de-
termination using both the kernels much im-
proves the performance of coreference resolu-
tion. It also shows the usefulness of various 
structural information, related with antecedent 
candidates, predicates and right siblings, in  tree 
kernel-based anaphoricity determination and in 
coreference resolution of both pronouns and 
definite NPs. 

To our knowledge, this is the first system-
atic exploration of both feature-based and tree 
kernel methods in anaphoricity determination 
and the application of an explicit anaphoricity 
determination module in learning coreference 
resolution.  
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