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Abstract

It is well known that pragmatic knowl-
edge is useful and necessary in many dif-
ficult language processing tasks, but be-
cause this knowledge is difficult to acquire
and process automatically, it is rarely used.
We present an open information extrac-
tion technique for automatically extracting
a particular kind of pragmatic knowledge
from text, and we show how to integrate
the knowledge into a Markov Logic Net-
work model for quantifier scope disam-
biguation. Our model improves quantifier
scope judgments in experiments.

1 Introduction

It has long been a goal of the natural language
processing (NLP) community to be able to inter-
pret language utterances into logical representa-
tions of their meaning. Quantifier scope ambigu-
ity has been recognized as one particularly chal-
lenging aspect of this problem. For example, the
following sentence has two possible readings, de-
pending on the scope of its quantifiers:

Every boy wants a dog.

One reading of this sentence is that there exists a
single dog in the world which all boys want. The
second, and usually preferred, reading is that the
sentence is describing a separate “wanting” rela-
tion for each boy, and that the dog in question is
a function of the boy who wants it. In this read-
ing, there may be as many different dogs as boys,
although it leaves open the possibility that several
of the boys want the same dog. In logic, these two
readings can be represented as follows:

1. ∃d∈Dogs ∀b∈Boys wants(b, d)
2. ∀b∈Boys ∃d∈Dogs wants(b, d)

The readings differ only in the order of the quanti-
fiers. The quantifier that comes first in each ex-
pression is said to havewide scope; the second
quantifier hasnarrow scope.

Linguists and NLP researchers have come up
with several theories and mechanisms for automat-
ically determining the scope of quantified linguis-
tic expressions. Despite a long history of proposed
solutions, however, researchers have for the most
part abandoned this task as hopeless because of
“overwhelming evidence suggesting that quanti-
fier scope is a phenomenon that must be treated at
the pragmatic level” (Saba and Corriveau, 2001).
For example, in active voice clauses, the quantifier
for the subject noun is usually preferred for wide
scope over the quantifier of the predicate noun
(Kurtzman and MacDonald, 1993). But such pref-
erences can easily be overruled by world knowl-
edge:
A doctor lives in every city.
1. ∃d∈Docs ∀c∈Cities lives in(d, c)

(A single doctor lives in all cities.)
2. ∀c∈Cities ∃d∈Docs lives in(d, c)

(Each city has a different doctor living there.)
Syntactic preferences would normally indicate
that reading 1 is better, but in this particular case
common-sense knowledge of the world overrules
that preference and makes reading 2 far more
probable.

Open-domain pragmatic knowledge is usually
not available to language processing systems, but
that is beginning to change. Recent research in
open information extraction (Banko and Etzioni,
2008; Davidov and Rappaport, 2008) has shown
that we can extract large amounts of relational data
from open-domain text with high accuracy. Here,
we show how we can connect the two fields, by ex-
tracting a targeted form of pragmatic knowledge
for use in quantifier scope disambiguation. Our
contributions are:
1) We build an extraction mechanism for extract-
ing pragmatic knowledge about relations. In par-
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ticular, we extract knowledge about the expected
sizes of the sets of objects that participate in the
relations. The task of identifying functional re-
lationships is a subtask of our extraction problem
that has received recent attention in the literature
(Ritter et al., 2008).
2) We devise a novel probabilistic model in the
Markov Logic Network framework for reasoning
over possible readings of sentences that involve
quantifier scope ambiguities. The model is able
to assign a probability that a particular reading is
plausible, given the pragmatic knowledge we ex-
tract.
3) We provide an empirical demonstration that our
system is able to resolve quantifier scope ambigu-
ities in cases where the syntactic and lexical fea-
tures used by previous systems are of no help.

The remainder of this paper is organized as fol-
lows. The next section describes previous work.
Section 3 shows how the problem can be formu-
lated as a task of assigning probabilities to possi-
ble worlds, and that the crucial difference between
them has to do with the number of objects partic-
ipating in individual relationships. Section 4 dis-
cusses our techniques for extracting the pragmatic
knowledge that allows us to make judgments about
quantifier scope. Section 5 presents our proba-
bilistic model for resolving scope ambiguities. We
present an empirical study in section 6, and section
7 concludes and suggests items for future work.

2 Related Work

Quantifier scope disambiguation has received at-
tention in linguistics and computational linguis-
tics since at least the 1970s. Montague (1973)
gave a seminal treatment of quantifier ambiguities,
and argued that a particular syntax-based mech-
anism known as “quantifying-in” could resolve
scope ambiguities. Since then, most work on dis-
ambiguation has focused on syntactic clues for de-
termining which readings of an ambiguous state-
ment are possible, and of the set of possible read-
ings, which ones are preferred (Van Lehn, 1978;
Hobbs and Shieber, 1987; Poesio, 1993a; Hurum,
1988; Moran, 1988). For instance, one linguis-
tic study (Kurtzman and MacDonald, 1993) deter-
mined that in active voice sentences where quan-
tifiers in the subject and object give rise to scope
ambiguity, there is a preference for the reading in
which the subject quantifier has wide scope — the
direct reading is acceptable 70-80% of the time,
whereas the indirect reading is acceptable 30-40%

of the time. Sentences that are similar in all re-
spects except that they are passive voice have no
such preference. Nevertheless, in these studies
both readings are often quite plausible. In addition
to syntactic clues, other studies have noted that
the choice of quantifier has a significant effect on
scope disambiguation (e.g., “each” has a greater
tendency for wide scope than “every”) (Van Lehn,
1978; Alshawi, 1990). Most authors have noted
that both syntactic and lexical evidence fall short
of a full solution, and that pragmatic knowledge
(knowledge about the world) is necessary for this
task (Van Lehn, 1978; Saba and Corriveau, 1997;
Moran, 1988). Saba and Corriveau (2001) recently
proposed a test for quantifier scope disambigua-
tion using pragmatic knowledge. However, they
do not show how to extract the necessary infor-
mation, nor do they implement or evaluate their
proposed test.

Due to the difficulty of the problem, several
authors have devised techniques for “underspec-
ified” logical representations that can efficiently
store multiple ambiguous readings, and they de-
vise techniques for automated reasoning using un-
derspecified representations (Reyle, 1995; Late-
cki, 1992; Poesio, 1993b). Others (Hobbs and
Shieber, 1987; Park, 1988) have devised compu-
tational mechanisms for generating all of the pos-
sible readings of statements exhibiting quantifier
ambiguity, especially in cases involving more than
two quantifiers.

Detecting functions in extracted relational data
has been studied in several contexts. Ritteret
al.(2008) use knowledge of functions to determine
when two extracted relationships contradict one
another. Knowledge of functions has also been
important in finding synonyms (Yates and Etzioni,
2009) and in review mining (Popescu, 2007). We
extend this work by extracting not just a binary
determination of whether a relation is functional,
but a distribution over the expected number of ar-
guments for that relation. Our technique also dif-
fers from previous work based on extracted rela-
tionships between named entities. We leverage
domain-independent extraction patterns involving
numeric phrases, as discussed below; our tech-
nique is complementary to existing approaches
and could in fact be combined with them for even
greater accuracy. Finally, we apply the extracted
knowledge in a novel way to quantifier scope dis-
ambiguation.

Our work is similar in spirit to several recent
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projects that use semantic reasoning over extracted
knowledge for a novel approach to well-known
tasks. For example, Schoenmackerset al.(2008)
have recently used extracted knowledge for the
task of predicting whether a new extracted fact is
correct. Yateset al.(2006) use extracted knowl-
edge to determine whether a parse of a sentence
has a plausible semantic interpretation. We extend
this new line of attack to a hard problem in lan-
guage understanding.

3 Possible Worlds Framework

We now present a framework for reasoning about
quantifier scope ambiguities, and for choosing
among possible readings based on pragmatic
knowledge (or world knowledge — we use the
terms interchangeably). We first present a formal
description of the quantifier scope disambiguation
(QSD) problem. We then describe the crucial dif-
ferences between the “possible worlds” evoked by
different readings of an ambiguous statement.

3.1 Representation of Readings

We follow Copestakeet al. (2005), among oth-
ers, in representing quantifiers as modal oper-
ators with three arguments: a variable name
for the variable being quantified; a logical for-
mula, called therestriction, which defines the set
of objects over which the variable may range;
and a second logical formula, called thebody,
which defines the expression in which the quan-
tified variable takes part. For example, we
represent the sentence “Every dog barks” as:
every(x,dog(x),barks(x)).

For the sake of clarity and convenience, we re-
strict our attention to a common syntactic form
of sentences, where the semantic representation
is relatively well-understood: active-voice English
sentences in which the subject noun phrase is
quantified, and a noun phrase in the predicate (ei-
ther an object of the verb, or an object of a prepo-
sition attached to the verb) is also quantified. For
a sentence with the following structure, in which
pi andqj represent predicates introduced by mod-
ifiers like adjectives and prepositional phrases,

(S (NP (DET Q1)(N [p1, . . . , pn]C1))
(V P (V R)(NP (DET Q2)(N [q1, . . . , qm]C2))

we can represent the two possible readings of the

sentence as:

direct reading:
Q1(x, C1(x) ∧ p1(x) ∧ . . . ∧ pn(x),

Q2(y, C2(y) ∧ q1(y) ∧ . . . ∧ qm(y),
R(x, y)))

(1)

indirect reading:
Q2(y, C2(y) ∧ q1(y) ∧ . . . ∧ qm(y),

Q1(x, C1(x) ∧ p1(x) ∧ . . . ∧ pn(x),
R(x, y)))

(2)

By making the restriction to this type of sen-
tences, we can isolate the effects of pragmatics on
scope disambiguation decisions from the effects
of syntax, since all test cases have essentially the
same syntax. As we show below, for certain types
of relations, the preference for interpretations may
be drastically different from the general preference
for the direct reading, even though the syntax of
the sentences we investigate matches the syntax
studied by Kurtzman and MacDonald (1993).

3.2 Readings, Possible Worlds, and World
Knowledge

The different logical forms for the direct and indi-
rect readings describe different “possible worlds.”
For instance, the direct reading of “A doctor lives
in every city” describes worlds in which there is a
single doctor who manages to reside in each city
of the world simultaneously. This reading is “pos-
sible” in the sense that it does not contradict itself.
In logical terms, ifφ represents the direct reading
of this sentence,φ 0 ⊥. Using some imagination
one could devise a scenario, perhaps in an online
game world, that satisfiesφ.

Nevertheless, the indirect reading is strongly
preferred for this statement in the absence of any
context that indicates an abnormal world. The
indirect readingφ′ describes worlds where every
city is inhabited by some doctor, but potentially a
different doctor per city. Using pragmatic knowl-
edge, the reader can easily deduce that this logical
statement is a much more likely reading thanφ.
LetB represent the reader’s pragmatic knowledge,
including facts like “People don’t simultaneously
live in more than one city,” and, “There are at least
hundreds of cities in the world.” The reader can
easily deduce thatB � ¬φ. We now turn to meth-
ods for extracting the necessary pragmatic knowl-
edgeB from text.
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4 Extraction Techniques to Support QSD
Decisions

Saba and Corriveau (2001) point out that there is
a restricted form of pragmatic knowledge that can
be used in many instances of QSD. Consider the
facts that were used above to determine thatφ′
is preferable toφ. The facts fall into two basic
categories of knowledge: 1) the size of classC
(e.g., how many cities are there?), and 2) the ex-
pected number ofY participants in a relationship
R, given that there is exactly 1X participant (e.g.,
how many cities does 1 doctor live in?). In both
cases, we are concerned with extracting sizes of
sets.

Previous extraction systems have attempted to
estimate set sizes based on extracted named en-
tities. Downeyet al. (2005)estimate the size of
classes based on the number of named-entities ex-
tracted for the class. As far as we are aware, find-
ing the expected size of an argument set for a rela-
tion is a novel task for information extraction, but
several researchers (Ritter et al., 2008; Yates and
Etzioni, 2009) have investigated the special case
of detecting functional relations — those relations
where the expected size of theY argument set is
precisely 1. As with class size extraction, they
use extractions involving named-entity arguments
to find functional relations.

Approaches that depend on named-entity ex-
tractions have several disadvantages: they must
find a large set of named-entities for every set,
which can be time-consuming and difficult. Also,
many classes, like “trees” and “hot dogs,” have no
or very few named instances, but many un-named
instances, so approaches based on named entities
have little hope. In fact, besides classes like peo-
ple, locations, and organizations (and their sub-
classes), there are few classes that have a large
number of named instances. For classes that do
have named instances, synonymy, polysemy, and
extraction errors are common problems that can
all affect estimates of size (Ritter et al., 2008).

Rather than indirectly determining set sizes
from extracted instances, our system directly ex-
tracts estimates of set sizes. It usesnumeric
phrases, like “two trees,” “hundreds of students,”
or “billions of stars,” to associate numeric values
with sets. Table 1 lists the numeric phrases we use.
Currently, we use only numeric phrases with ex-
plicit values or ranges of values, but it may be pos-
sible to increase the recall of our extraction tech-
nique by incorporating more approximate phrases

Numeric Phrase Value

no | none| zero 0
a | one| this | the 1
two 2
...

...
one hundred| a hundred 100
...

...

hundreds of 100
thousands of 1,000
tens of thousands of 10,000
...

...

Table 1: Numeric phrases used in our extraction pat-

terns. For the word “the”, we require that it be followed di-

rectly by a singular noun, to try to weed out plural usages.

like “several,” “many,” or even bare plurals. We
do not match numbers expressed in digits (e.g.,
1234) because we found that they produced too
many noisy extractions, such as dates and times.
For words like “hundreds,” we set the value of the
word to be the lower limit (i.e., 100). This gives
a conservative estimate of the value, but our tech-
niques described below can help to compensate for
this bias.

Table 2 lists examples of the hand-crafted,
domain-independent extraction patterns we use.
Our extraction patterns generate two types of ex-
tractions, one for classes and one for relations. For
classes, each extractionE consists of a class name
Ec and a numberEn indicating the size of some
subsetS ⊆ Ec. For instance, the 4gram “hun-
dreds of students are” matches our first pattern.
The numeric phrase “hundreds of” here indicates
that some subsetS ⊆ Ec = students has a size in
the hundreds. After processing a large corpus, our
system can determine a probability distribution for
the size of a class given by:

PC (size(C) = N) =
|{E | Ec = C ∧ En = N}|

|{E | Ec = C}|
In practice, we only include the largest 20% of the
numbersN in the set of extractions for a class to
estimate that class’s size.

The second type of extraction we get from our
patterns are relational extractions. Each relational
extractionF consists of a relation nameFr, and
possibly names for the classes of its two argu-
ments,Fc1, Fc2. In addition, the extraction con-
tains values for the size of both arguments,Fn1

1468



Pattern Extraction

<numeric> <word>+ (of | are | have) Ec = <word>+, En = value(<numeric>)

(I | he | she) <word>+ <numeric> <noun> Fr = <word>+, Fc1 = people, Fc2 = <noun>,
Fn1 = 1, Fn2 = value(<numeric>)

it is pastParticiple(<verb>) by <numeric> Fr = <verb>, Fc2 = thing,
Fn1 = value(<numeric>), Fn2 = 1

is the <word> of <numeric> Fr = is the <word> of,
Fn1 = 1, Fn2 = value(<numeric>)

Table 2:Sample extraction patterns for discovering classes (Ec) and their sizes (En), or relations (Fr) and the expected

set size of their arguments (Fn1 and Fn2).

andFn2 respectively. For example, the fragment
“she visited four countries” matches the second
pattern in Table 2, withFr = visited, Fn1 = 1,
andFn2 = 4. Note that in our extraction patterns,
one of of the arguments is always constrained to be
a singleton set, like “he” or “it.” This restriction
allows us to avoid quantifier scope ambiguity in
the extraction process: if we extracted phrases like
“Two men married two women,” it would be un-
clear which quantifier has wide scope, and there-
fore how many men and women are participating
in each “married” relationship. By using singular
pronouns, we avoid this confusion; in almost all
cases, these pronouns have wide scope, and indi-
cate a single element.1

Based on these extractions, our system de-
termines two distributions for each relation:
PLeft

R (n) andPRight
R (n). ThePLeft

R distribution
represents the probability that the left argument of
R is a set of sizen, given that the right argument
is a singleton set, and likewise forPRight

R . We de-
termine the distributions from the extractions by
maximum likelihood estimation:

PLeft
R (n) =

|{F | Fr = R, Fn1 = n, Fn2 = 1}|
|{F | Fr = R, Fn2 = 1}|

PRight
R (n) =

|{F | Fr = R, Fn2 = n, Fn1 = 1}|
|{F | Fr = R, Fn1 = 1}|

For example, for the relationis the father
of, we might see the fragment “he is the father
of two children” far more often than “he is the
father of twenty children.” PRight

is the father of
would therefore have a relatively low probability
for n = 20. As one would expect, the relation

1An example of an exception to this rule from our data set
is the sentence “It is worn by millions of women.” Here, “it”
refers to a class of items such as a brand, and thus may refer
to a different item for each of the “millions of women.”

visited appears more often with “twenty,” and
the relationmarried never does. TheirPRight

distributions are comparatively higher and lower,
respectively than the one foris the father
of atn = 20.

In practice, we create histograms of the ex-
tracted counts for both ourE andF extractions,
and our probability distributions are really dis-
tributions over the buckets in these histograms,
rather than over all possible set sizes. To help
combat sparse counts for large numeric values, we
use buckets of exponentially increasing width for
larger numeric values. Thus betweenn = 0 and
10, buckets have size 1, between 10 and 100 they
have size 10, and so on.

We also create distributions in the same way for
relations together with their extracted argument
classes. Since counts for these extractions tend to
be much more sparse, we interpolate these distri-
butions with the distribution for just the relation,
and with the distribution for the relation and just
one class. We use equal weights for all interpo-
lated distributions.

5 A Probabilistic Model for Quantifier
Scope Disambiguation

QSD requires reasoning about different possible
states of the world. This involves logical reason-
ing, since the direct and indirect readings differ in
the number of objects that exist in models satis-
fying each reading, and the number of relation-
ships between those objects. QSD also involves
probabilistic reasoning, since none of the extracted
knowledge is certain. We leverage recent work on
Markov Logic Networks (MLNs) (Richardson and
Domingos, 2006) to incorporate both types of rea-
soning into our technique for QSD. We next briefly
review MLNs, before describing our model and
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methods for training it.

5.1 Markov Logic Networks

Syntactically, an MLN consists of a set of first-
order logical formulasF and a real-valued weight
wF for eachF ∈ F. Semantically, an MLN
defines a probability distribution over possible
groundingsof the logical formulas. That is, ifU
denotes the set of all objects in the universe, andG
denotes the set of all possible ways to ground ev-
ery F ∈ F (i.e., substitute an element fromU for
every variable inF ), then an MLN defines a distri-
bution over truth assignments to the grounded for-
mulasG ∈ G. Let I denote the set of all possible
interpretations ofG — that is, eachI ∈ I assigns
true or false to everyG ∈ G. The probabil-
ity of a particular interpretationI according to the
MLN is given by :

P (I) =
1
Z

exp

(∑
F∈F

wF · n(F, I)

)

Z =
∑
I∈I

exp

(∑
F∈F

wF · n(F, I)

)

wheren(F, I) gives the number of groundings of
F that are true in interpretationI.

The equation above provides an expression for
P (I) whenU , or at least the size ofU , is known
and fixed. When we are interpreting expressions
like “every city” or “every doctor”, however, we
require extracted knowledge to inform the system
of the correct number of “city” or “doctor” objects.
Since our extractions are uncertain, they provide a
distribution P (|U | = n) for the size of a class.
Using P (|U |), we can still calculateP (I), even
without knowing the exact size ofU :

P (I) =
∑

n

P (|U | = n)P (I | |U | = n)

5.2 MLN Classifier for QSD

Let Q be a QSD problem, consisting of a rela-
tion Qr, a class for the first argument of the re-
lation Qc1, a class for the second argumentQc2,
and quantifiiersQq1, Qq2 for each argument. We
construct an MLN model forQ using the follow-
ing logical formulas:

1) Clustering:We allow members of each class
to belong to clusters denoted byγ, but each ele-
ment can belong to no more than one cluster. This
is represented by the following formula, which has

infinite weight.

∀x∈Qc1∪Qc2,γ,γ′x ∈ γ ∧ x ∈ γ′ ⇒ γ = γ′

2) Relation between clusters:Every cluster of
class 1 elements must participate in the relation
Qr with exactly one cluster of class 2 elements,
andvice versa. We represent this participation in
Qr with a series of logical relationsRm,n, each of
which indicates that a cluster of sizem is partic-
ipating in Qr with a cluster of sizen. We use a
set of formulas for each setting ofm andn, each
having infinite weight.

∀γ⊂Qc1∃!γ′⊂Qc2,m,n Rm,n(γ, γ′)
∀γ′⊂Qc2∃!γ⊂Qc1,m,n Rm,n(γ, γ′)

∀γ,γ′ Rm,n(γ, γ′) ⇒ |γ| = m ∧ |γ′| = n

3) Prefer relations between clusters of the ap-
propriate size:We include a set of formulas with
finite weight that express the preference for a par-
ticular relation to have arguments of a certain size.
There is a separate formula for each setting ofm
andn, with a separate weightwm,n for each.

∀γ,γ′Rm,n(γ, γ′)

This formula does most of the work of our clas-
sifier. For a given relation, such as thelives
in(Person, City) relation, we can set the
weights wm,n so that the model prefers worlds
where each person lives in just one place. For in-
stance, we can set the weightw1,1 relatively high,
so that the model is more likely to make clusters of
size 1, which then participate in theR1,1 relation.

We describe how we choose thewm,n weights
below, but first we explain how to incorporate the
quantifiersQq1 andQq2 into the model. Unfortu-
nately, every natural language quantifier has dif-
ferent semantics (Barwise and Cooper, 1981), and
thus they affect our model in different ways. Here,
we restrict our attention to the two common quan-
tifiers “a” and “every”, but note that the MLN
framework is a powerful tool for incorporating
the logical semantics and statistical preferences of
other quantifiers.

For the quantifier “a”, we require that the rela-
tion have no argument clusters with size more than
1 for that class. Thus ifQq1 = “a”, we restrict
Rm,n to R1,n, andvice versaif Qq2 = “a.” Fur-
thermore, we require that at least one element of
the class belong to a cluster:∃x,γx ∈ γ has infi-
nite weight. For “every,” we require that every el-
ement of the class that “every” modifies to be part
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of some cluster. To effect this change, we simply
put an infinite weight on the formula∀x∃γx ∈ γ.

Our MLN model is general in the sense that
for any QSD problemQ, it can determine prob-
abilities for any possible world corresponding to
a reading ofQ. For our purposes, we are primar-
ily interested in the direct and indirect readings of
any Q involving “a” and “every.” To predict the
correct reading for a givenQ, we simply check to
see which has the higher probability according to
our MLN model.

5.3 Parameter Estimation

Our MLN model for QSD requires settings for
the wm,n parameters for each QSD problemQ.
The standard approach to this problem would be
to estimate these parameters from labeled train-
ing data. We reject the standard supervised frame-
work, however, because each distinct relationQr

requires different settings of the parameters, and
therefore a standard supervised approach would
require manually labeled training data for every
relationQr.

A second approach that is made possible by
our extraction technique is to set the parameters
using the extracted distributions. We tried this
approach by settingw1,n = log PRight

Qr
(n) and

wm,1 = log PLeft
Qr

(m); since we only consider
sentences containing the quantifier “a”, one ofm
andn will always be 1. Unfortunately, in our ex-
periments we found that this setting for the param-
eters often gave far too little weight for large val-
ues ofm andn, and as a consequence, the classi-
fier would systematically judge one reading to be
more likely than another.

To counteract this problem, we take a hybrid ap-
proach to parameter estimation, informed by both
labeled training data and the extracted distribu-
tions. Crucially, our approach, which we call ZIPF

FLATTENING, has only two parameters that need
to be trained using a supervised approach, and
these parameters do not depend on the relationR.
Thus, the approach minimizes the amount of train-
ing data we need to a practical level.

ZIPF FLATTENING works by correcting thePR

distributions to give higher weight to larger values
of m andn. First, we estimate a Zipf distribution
from the raw extracted counts for each argument
of relationR. To fit a Zipf curve, we use least-
squares linear regression on the log-log plot of the
extracted counts to find parameterszR andcR such

that

log (count) = zR · log (argSize) + cR

⇒ count = ecR · argSizezR

We can perform this part automatically, using only
the extraction data and no manually labeled train-
ing data, for every relation. However, the fitted
Zipf distribution needs to be corrected for the sys-
tematic bias in the extracted counts. To do this, we
introduce two parameters,α1 andα2, that we use
to scale back the sharp falloff in the Zipf distribu-
tion. Ourflatteneddistribution has the form:

count = eα1cR · argSizeα2zR

Whenα2 is less than 1, the resulting curve has a
less steep slope, and greater weight is placed on
the large values ofm andn, as desired. Our last
step is to interpolate thePRight

R andPLeft
R distri-

butions with the flattened Zipf distribution to come
up with corrected distributions for the right and
left argument sizes ofR. We use equal weights
on the two distributions to interpolate. Note that if
the original counts from the extraction system in-
clude counts for only one argument size, then it is
impossible to estimate a Zipf distribution, and we
simply fall back on the extracted distribution. We
do not include counts for an argument size of zero
in this process.

To estimate the parametersαi, we collect a
training set of QSD problemsQ, labeled with the
correct reading for each (direct or indirect), and
run the extractor for the relationsQr appearing in
the training set. We then perform a gradient de-
scent search to find optimal settings for theαi on
the training data.

6 Experiments

We report on two sets of experiments. The first
tests our extraction technique on its own, and the
second tests the accuracy of our complete QSD
system, including the extraction mechanisms and
the prediction model, on a quantifier scope disam-
biguation task.

6.1 Function Detection Experiment

Function detection is an important task in its own
right, and has been used in several previous ap-
plications (Ritter et al., 2008; Yates and Etzioni,
2009; Popescu, 2007). To turn our extraction
system into a classifier for functions vs. non-
functions, we simply checked whether there were
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Num Precision Recall F1

Functions 54 .79 .76 .77
Non-functions 74 .83 .85 .84

Table 3:Precision and recall for detecting functions us-

ing the numeric extraction technique.

any extractions forR with Fn2 > 1. If so, we pre-
dicted that theR was nonfunctional, and otherwise
we predicted it was functional.

We used the Web1Tgram Corpus of n-grams
provided by Google, Inc to extract classes, rela-
tions, and counts. This corpus contains counts for
2- through 5-grams that appear on the Web pages
indexed by Google. Counts are included in this
data set for all n-grams that appeared at least 40
times in their text. We ran our extraction tech-
niques on the 3-, 4- and 5-grams. To create a test
set, we sampled a set of 200 relations from our ex-
tractions, removed any relations that consisted of
punctuations, stopwords, or other non-relational
items. We then manually labeled the remainder
as functions or non-functions.

Table 3 shows our results. A baseline sys-
tem that simply predicts the majority class (non-
functions) on this data set would achieve an ac-
curacy of 56%, well below the 81% accuracy
of our classifier. Many of the relations in our
test set, likebuilt(Person, House) andis
riding(Person,Animal), do not ordinarily
have named-entity extractions for both arguments,
and would therefore not be amenable to previous
function detection approaches.

Some of our technique’s errors highlight inter-
esting difficulties with function detection. For in-
stance, while we labeled theis capital of
relation as a function, our technique predicted that
it was not. It turns out that the country of Bolivia
has two capitals, and the South Asian region of
Jammu and Kashmir also has two capitals. Both
of these facts are prominent enough on the Web
to cause our system to detect a small probability
for PRight

capital of (2). Thus any label for this rela-
tion is somewhat unsatisfying: it is almost entirely
functional, but not strictly so. By generalizing the
problem to one of determining a distribution for
the size of the argument, we can handle these bor-
der cases in a useful way for QSD, as discussed
below.

6.2 Preliminary QSD Experiments

We test our complete QSD system on two impor-
tant tasks. In the first, the system is presented
with a series of QSD problemsQ in which the
first quantifierQq1 is always “a,” and the second
(Qq2) is always “every.” Each example is manu-
ally labeled to indicate whether a direct or indirect
reading of the sentence is preferred, and the sys-
tem is charged with predicting the preferred read-
ing. In the second task, eachQ has “every” as
the first quantifier, and “a” as the second quanti-
fier. Since indirect readings are very rarely pre-
ferred for active-voice sentences of this form,we
charge the system with making a different type of
prediction: determine whether the indirect reading
is plausible or not. The system assumes that ev-
ery sentence has a plausible direct reading, but by
determining whether the indirect reading is plau-
sible, it can determine whether the sentence is am-
biguous between the two readings.

We created data sets for these tasks by sampling
our 5grams for examples containing the relations
in our function experiment. From this set, we se-
lected phrases that involved named classes for the
arguments to the relation. When a class was miss-
ing, we either manually supplied one, or discarded
the example. We then constructed two examples
from each combination of relation and argument
classes: one example in which the first argument
is constrained by the quantifier “a” and the sec-
ond by “every,” and a second example in which
the quantifiers are reversed. Finally, we manually
labeled every example with a preference for direct
or indirect reading (in the case of “a/every” exam-
ples) or with a plausibility judgment for the indi-
rect reading (in the case of “every/a” examples).
Our final test sets included 46 labeled examples
for each task. Further experiments involving mul-
tiple annotators, as in the experiments of Kurtz-
man and MacDonald (1993), are of course desir-
able, but note that even their experiments included
just 32 labeled examples.

Table 4 shows our results for the first QSD task,
and Table 5 shows our results for the second one.
In each case, we compare our supervised Cor-
rected MLN model against an Uncorrected MLN
model that uses no supervised data, and simply
takes its weights straight from our extracted distri-
butions. The supervised model uses a training cor-
pus of 10 manually labeled examples for each task,
five from each class. We also compare against a
majority class baseline. Note that the Corrected
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Direct Indirect
System Acc. P R P R

All-Direct BL .53 .53 1.0 0.0 0.0
Uncorrected MLN .58 .78 .30 .53 .90
Corrected MLN .74 .77 .74 .71 .75

Table 4: Our trained MLN outperforms two other sys-

tems at predicting whether sentences of the form “A/some

<class 1> <relation> every <class 2>” should have di-

rect or indirect readings. We measure accuracy over the

whole dataset, as well as precision and recall for the two sub-

sets labeled with direct and indirect readings, respectively.

Plausible Implaus.
System Acc. P R P R

All-Plausible BL .67 .67 1.0 0.0 0.0
Uncorrected MLN .49 .89 .28 .38 .93
Corrected MLN .72 .76 .86 .60 .43

Table 5: Our trained MLN outperforms two other sys-

tems at predicting whether sentences of the form “Every

<class 1> <relation> a/some<class 2>” have a plausi-

ble indirect reading or not. We measure accuracy over the

whole dataset, as well as precision and recall for the two sub-

sets labeled with plausible and implausible indirect readings.

MLN model has balanced recall numbers for the
two classes in both of our tasks, compared with the
Uncorrected MLN. This indicates that our ZIPF

FLATTENING technique is accurately learning bet-
ter weights to remove the systematic bias in the
Uncorrected MLN.

Our results demonstrate the utility of our ex-
tracted distributions for these difficult tasks. Al-
though the extracted data prevents us from deter-
mining thatis capital of should be classi-
fied as a function, since almost all of the prob-
ability mass inPRight is still on n ∈ {0, 1}.
Thus, the probability for the direct reading of
a sentence like “Some city is the capital of ev-
ery country” is still very low. Likewise, even
though our system (correctly) determines that the
relation is a parent of is non-functional,
it does not therefore group it with other non-
functional relations likevisited. The dis-
tribution PRight

is parent of(n) is skewed to much
smaller numbers forn than is the distribution for
visited, and thus the indirect reading for “A
person is the parent of every child” is much more
likely than the indirect reading of “A person vis-
ited every country.”

The biggest hurdle for better performance is
noise in our extraction technique. Polysemous re-
lations sometimes have large counts for large ar-
gument sizes in one sense, but not another. Us-
ing argument classes to disambiguate relations can
help, but extractions for relations in combination
with argument classes are much more sparse. Im-
proved extraction techniques could directly impact
performance on the QSD task.

7 Conclusion and Future Work

We have demonstrated targeted methods for ex-
tracting world knowledge that is necessary for
making quantifier scope disambiguation deci-
sions. We have also demonstrated a novel,
minimally-supervised, statistical relational model
in the Markov Logic Network framework for mak-
ing QSD decisions based on extracted pragmatics.

While our preliminary results for QSD are
promising, there are clearly many areas for im-
provement. We will need to handle more kinds of
quantifiers in our MLN model. Our current system
is biased towards using purely pragmatic knowl-
edge, but a complete system should also integrate
syntactic and lexical constraints and preferences.
Also, discourses can introduce knowledge that di-
rectly affects QSD problems, such as constraints
on the size of a particular set that is discussed in
the discourse. Integrating our technique for QSD
with discourse processing is a major challenge that
we hope to address.
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