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Abstract

Mapping and classification of chemical
compound names are important aspects of
the tasks of BioNLP. This paper introduces
the architecture of a system for the syntac-
tic and semantic analysis of such names.
Our system aims at yielding both the de-
noted chemical structure and a classifica-
tion of a given name. We employ a novel
approach to the task which promises an
elegant and efficient way of solving the
problem. The proposed system differs sig-
nificantly from existing systems, in that it
is also able to deal with underspecifying
names and class names.

1 Introduction

BioNLP is the branch of computational linguistics
developing tools and algorithms tailored to the life
sciences domain. Scientific and patent literature
in this domain are growing at an enormous pace.
This results in a valuable resource for researchers,
but at the same time it poses the problem that it can
hardly be processed manually by humans. Thus, a
major goal of BioNLP is to automatically support
humans by means of research in the area of infor-
mation retrieval, data mining and information ex-
traction. Term identification is of great importance
in these tasks. Krauthammer and Nenadic (2004)
divide the identification task into the subtasks of
term recognition (marking the interesting words
in a text), term classification (classifying them ac-
cording to a taxonomy or an ontology) and term
mapping1 (identifying a term with respect to a ref-
erent data source).

1Term mapping is also called term grounding, amongst
others by Kim and Park (2004).

Chemical compound names, i. e. names of
molecules, are terms which prominently occur in
scientific publications, patents and in biochemi-
cal databases. Any chemical compound can be
unambiguously denoted by its molecular struc-
ture, either graphically or by certain representa-
tion standards. Established representation formats
are SMILES strings (Simplified Molecular Input
Line Entry System (Weininger, 1988)) and In-
ChIs 2. For example, a SMILES string such as
CC(OH)CCC unambiguously describes a chain of
five carbon (C) atoms connected by single bonds
having an oxygen (O) and a hydrogen (H) atom
connected to the second carbon atom by another
single bond (Figure 1).
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Figure 1: SMILES = CC(OH)CCC,
Name = pentan-2-ol

However, for communication purposes, e. g. in
scientific publications and even in databases, it is
common to use names for chemical compounds
instead of a structural representation. Contrary to
the structural representations, these names are nei-
ther always unique nor unambiguous. Biochem-
ical terminology is a subset of natural language
which appears to be highly regulated and system-
atic. The International Union of Pure and Applied
Chemistry (IUPAC) (1979; 1993) has developed a
nomenclature for chemical compounds. It spec-
ifies how to name a molecule systematically, as

2Cf. http://www.iupac.org/inchi/ (accessed May 17,
2009).
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well as by use of certain trivial names.
The morphemes constituting a name determine

the chemical structure it denotes by specifying
the type and number of the present atoms and
bonds. Morphemes also interact with each other
on this structural level. Typically, morphemes de-
scribe the atoms and bonds by introducing actions
concerning so-called functional groups. About
50 different functional groups can be identified
to be the most common ones in organic chem-
istry.3 Functional groups are certain groups of
atoms which determine the characteristic proper-
ties of a molecule, especially its chemical reac-
tions. Hence, the presence or absence of certain
functional groups plays a crucial role in classifi-
cation of chemical compounds. For example, hy-
droxy, used as a prefix of a name, specifies the
presence of an OH-group (consisting of an oxygen
atom and a hydrogen atom). A molecular struc-
ture containing an OH-group can be classified to
be an alcohol. The morpheme dehydroxy in con-
trast causes deletion of such an OH-group. Thus,
it presupposes the existence of some OH-group,
which consequently needs to be introduced by an-
other morpheme of the given name. In case there
is no additional OH-group left in this molecule af-
ter deletion, it does not belong to the class alcohol.
Apart from addition and deletion, another frequent
operation on functional groups, specified by the
name’s morphemes, is substitution. In this case, a
presupposed functional group is replaced by a dif-
ferent functional group. Again, this may change
the classes this chemical compound belongs to.

Despite the IUPAC nomenclature, name varia-
tions are still in use. On the one hand this is due
to competing rules in different editions of the IU-
PAC nomenclature and on the other hand to the
actual usage by chemists who can hardly know ev-
ery single nomenclature rule. Thus, there can be a
number of different names and name types for one
chemical compound, namely several systematic,
semi-systematic, trivial and trade names. For ex-
ample, pentan-2-ol is the recommended name for
the compound in Figure 1, but the same compound
can be called 2-pentanol or 2-hydroxypentane as
well.

Besides synonymy, names allow the omission
of specific information about the structure of the
compound they denote. This results in not only

3Cf. (Ertl, 2003) and Wikipedia, Functional group,
http://en.wikipedia.org/wiki/Functional group (accessed
May 17, 2009).

having a single compound as their reference but a
whole set of compounds. Class names like alcohol
or alkene are obvious cases. So-called underspeci-
fying or underspecified4 names (Reyle, 2006) like
pentanol, butene or 3-chloropropenylidyne also
lack some structural information necessary to fully
specify one compound, even though except for
this, their names are built according to system-
atic naming rules. Pentanol, for instance, is miss-
ing the locant number and could hence stand for
pentan-1-ol, pentan-2-ol, as well as pentan-3-ol.
We distinguish underspecification from ambiguity,
in that underspecifying names do not need to be re-
solved but denote a set of compounds, analogous
to class names.

The particularities of chemical compound
names mentioned above, namely synonymy, class
names, underspecifying names and interaction be-
tween morpheme’s meanings, complicate auto-
matic classification and mapping of the names.

To achieve mapping of synonymous chemical
compound names, name normalization is a possi-
ble approach. Rules can be set up to transform
syntactic as well as morphological variations of
names into a normalized name form. Basic trans-
formations can be achieved via pattern match-
ing (regular expressions) while for more com-
plex transformations a linguistic parser, yielding a
syntactic analysis, would be needed. For exam-
ple, the names glyceraldehyde-3-phosphate and
3-phospho-Glyceraldehyde could both be normal-
ized to the form 3-phosphoglyceraldehyde by such
rules since the prefix phospho is synonymous with
the suffix phosphate. This way, a synonym rela-
tion can be established between any two names
which resulted in the same normalized name form.
By using this method together with large reference
databases5 providing many synonymous names
for their entries, the task of name mapping can be
successfully solved in many cases.

However, there are limits to this string based ap-
proach. First, it relies on the quality of the refer-
ent data source and the quantity of synonyms pro-
vided by it. Currently available databases which
could be used as a reference lack either quality
or quantity. But whether a molecular structure
for a term can be determined, or a term classi-

4Hereafter we will call these names underspecifying
names because we consider them to underspecify a chemical
structure rather than being underspecified.

5E. g. PubChem: http://pubchem.ncbi.nlm.nih.gov/ (ac-
cessed May 17, 2009).
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fication can be achieved, depends only on this
referent data source. Second, it is hardly possi-
ble to include every morphosyntactic name varia-
tion in the set of transformation rules. 2-hydroxy-
3-oxopropyl dihydrogen phosphate, for example,
is the IUPAC name recommended for the chemi-
cal compound glyceraldehyde-3-phosphate, men-
tioned above. Obviously, a synonym relation can
not be discovered by morphosyntactic name trans-
formations in this case. Finally, this method is not
able to deal with class names or underspecifying
names.

These observations result in the need to take the
meaning of a name’s morphemes, i. e. the chem-
ical structure, into account as well. A number of
systems for name-to-structure conversion are be-
ing developed. The best known commercial sys-
tems are Name=Struct6, ACD/Name7 and Lexi-
chem8. Being commercial, detailed documenta-
tion about their methods and evaluation results is
not available. Academic approaches are OPSIN
(Corbett and Murray-Rust, 2006) and ChemNom-
Parse9. The greatest shortcoming of all these ap-
proaches is that they are not able to deal with un-
derspecifying names. Instead, they either guess
the missing information, in order to determine one
specific structure for a given name, or simply fail.
But for really underspecifying names and class
names, to the best of our knowledge no chemi-
cal representation format, like a SMILES string,
is provided. In addition, these approaches do not
yield any classification of the processed names, re-
gardless of whether these are underspecifying or
not.

To overcome these limitations, CHEMorph
(Kremer et al., 2006) has been developed. It con-
tains a morphological parser, built according to
the IUPAC nomenclature rules. The parser yields
a syntactic analysis of a given name and also
provides a semantic representation. This seman-
tic representation can be used as a basis for fur-
ther processing, namely for structure generation
or classification. In the CHEMorph project, rules
have been set up to achieve these two tasks, but
there are limits in the number and correctness of

6Cf. http://www.cambridgesoft.com/databases/details/?db=16
(accessed May 17, 2009).

7Cf. http://www.acdlabs.com/products/name lab/rename/
batch.html (accessed May 17, 2009).

8Cf. http://demo.eyesopen.com/products/toolkits/lexichem-
tk ogham-tk.html (accessed May 17, 2009).

9Cf. http://chemnomparse.sourceforge.net/ (accessed
May 17, 2009).

structures and classes retrieved. These limits are
partly due to the lack of a comprehensive valence
and numbering model for the chemical structures.
Also, classification should be based on the struc-
tural level rather than on the semantic represen-
tation, to ensure that not only the numbering but
also default knowledge about chemical structures
is included correctly.

The objectives of our own name-to-structure
system are the following: Naturally, it should yield
a chemical compound structure, in some represen-
tation format, as well as a classification for a given
name. In case the name does not fully specify
one compound, but refers to a set of structures,
the system should still allow for structure compar-
ison (mapping) and classification. Several default
rules about the names and the chemical structures
have to be taken into account. By including de-
fault knowledge, a structure can be specified fur-
ther even if the name itself has left it underspec-
ified. Similarly, a comprehensive way of dealing
with valences of atoms has to be included, since
the valences restrict the way a chemical structure
can be composed.

Our approach to achieve these goals is to use
constraint logic programming (CLP). CLP over
graph domains is ideal for modeling each name-
to-structure task as a so-called constraint satisfac-
tion problem (CSP) and thereby accomplish map-
ping and classification. We will describe our sys-
tem, CLP(name2structure), in more detail in the
following section.

In this introduction we described the particular-
ities of biochemical terminology. Related work in
the area of processing these terms was overviewed
and we gave the motivation for our own approach.
After presenting our system in Section 2 we will
conclude this paper with Section 3, indicating di-
rections for future research.

2 Our Approach

Following Reyle (2006), we observed that any
chemical compound name can be seen as a de-
scription of a chemical structure – in other words
it contains constraints on how the structure is
composed. Even if a partial name or a class
name does not specify the structure completely
but leaves a certain part underspecified, there
will at least be some constraints about the struc-
ture. On account of this, our proposed system –
CLP(name2structure) – employs constraint logic
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programming (CLP) to automatically model so-
called constraint satisfaction problems (CSPs) ac-
cording to given names. Such a CSP captures a
name’s meaning in that it represents the problem
of finding the chemical structure(s) denoted by the
name. The solutions to a CSP are determined by
a constraint solver. It will find all the structures
which satisfy every constraint given by the name.
In the case of a fully specified chemical structure,
the solution is exactly one structure. This struc-
ture is then mapped and classified. For underspec-
ified structures or class names, we distinguish two
methods: Either all the structures can be enumer-
ated or the CSP itself can be used for mapping and
classification.

Figure 2 shows an overview of the system’s ar-
chitecture. Its component details will be described
in the following subsections.

2.1 Parsing and Semantic Representation
We decided to use the CHEMorph parser which
is implemented in Prolog. It provides a morpho-
semantic grammar which was built according
to IUPAC nomenclature rules. The lexicon of
this grammar contains the morphemes which can
constitute systematic chemical compound names.
Also, the lexicon contains a number of trivial and
class names. In addition to a syntactic analy-
sis, the CHEMorph parser also yields a seman-
tic representation of the input name. This repre-
sentation is a term which describes the meaning
of the given chemical name in a kind of functor-
arguments logic.10 Example (1), (2) and (3) each
show a compound name and its semantic represen-
tation generated by CHEMorph:

(1) compound name: pentan-2,3-diol
semantic representation: compd(ane(5*’C’),
pref([]), suff([2*[2, 3]-ol]))

(2) compound name: 2,3-dihydroxy-pentane
semantic representation: compd(ane(5*’C’),
pref([2*[2, 3]-hydroxy]), suff([]))

(3) compound name: propyn-1-imine
semantic representation: compd(yne(??
*[??], ane(3*’C’)), pref([]), suff([?? *[1]-
imine]))

The general compd functor of each semantic
representation has three arguments, namely the

10Kremer et al. (2006) define the language of the semantic
representation in Extended Backus-Naur Form.

parent, prefix and suffix representation. The parent
argument represents the basic molecular structure,
denoted by the parent term of the name. In Exam-
ple (1) and (2), the parent structure consists of five
carbon (C) atoms. This semantic information is
encoded with the morpheme pent in CHEMorph’s
lexicon. The parent structure is modified by the
functor ane, which denotes single bond connec-
tions. Prefix and suffix operators, if present, spec-
ify further modifications of the basic parent struc-
ture. In the case of underspecifying names, as in
example (3), the missing pieces of information are
represented as ??.

This way, the semantic representation provides
all the information about the chemical structure
that is given by the name. Thus, it is an ideal
basis for further processing. The next section ex-
plains how our system models constraint satisfac-
tion problems on the basis of CHEMorph’s seman-
tic representations.

2.2 CSP Modeling

A chemical compound structure can be described
as a labeled graph, where the vertices are la-
beled as atoms and the edges are labeled as bonds.
Hence, a chemical compound name can be seen as
describing such a graph in that it gives constraints
which the graph has to satisfy. In other words,
it picks out some specific graph(s) out of the un-
limited number of possible graphs in the universe
by constraining the possibilities. This observa-
tion serves us as a basis for modeling the name-to-
structure task as a constraint satisfaction problem
(CSP).

A CSP represents a problem as a collection of
constraints over a collection of variables. Each of
the variables has a domain, which is the set of pos-
sible values the variable can take. For the reasons
named above, we are working with graph variables
and graph domains. The number of chemical com-
pounds, i. e. graphs, could possibly be infinite but
we decided it was reasonable and safe to use fi-
nite domains. We hence limit the number of pos-
sible atoms and bonds for each compound in some
way, e. g. on 500 vertices and the corresponding
edges or another number estimated according to
the semantic representation of the name being pro-
cessed.

We implement the CSP in ECLiPSe11, an open-
source constraint logic programming (CLP) sys-

11Cf. http://eclipse-clp.org/ (accessed May 17, 2009).
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Figure 2: system architecture of CLP(name2structure)

tem, which contains a high-level modeling lan-
guage, as well as several constraint solver libraries
and interfaces for third-party solvers.

To model a CSP for a given input name, several
steps have to be taken. First, the semantic repre-
sentation term provided by CHEMorph has to be
parsed. According to its functors and their argu-
ments, the respective constraints have to be called.
For this, we are developing a comprehensive set of
functions which call the constraints with the cor-
rect parameters for the given input name. In these
functions, it is determined which constraints over
the graph variables a specific functor and argument
of the semantic representation is imposing. Thus,
in the form of constraints, the functions contain
the actions concerning specific functional groups
of the denoted molecule, which were described
by the name’s morphemes. As mentioned in Sec-
tion 1, these actions include addition, deletion and
substitution of certain groups of atoms.

In any case, default rules have to be included
while modeling the CSP. Default rules provide
constraints about the chemical structures which
are not mentioned by any morpheme of the name.
For our system they are collected from IUPAC
rules as well as from expert knowledge. For ex-

ample, H-saturation is a default which applies to
every chemical compound. This means that ev-
ery atom of a structure, whose valences are not all
occupied by other atoms, has as many H-atoms at-
tached to it as there were free valences. This is one
of the reasons why the valences of all the different
types of atoms need to be taken into account. We
decided to include them as axioms for our mod-
els. Knowledge about valences also proves useful
for the resolution of underspecification in the case
of partial names. Consider a name like propyn-
1-imine (cf. example (3) in Section 2.1) where it
is not specified where the triple bond (denoted by
yn) is located. However, there are only three C-
atoms (introduced by prop) to consider, the first
of which is connected to an N-atom with a dou-
ble bond (introduced by 1-imine). The valence ax-
ioms included in our CSPs determine that C-atoms
always have a valence of 4, so the first C-atom
has only two free valences left until now, since
the =N occupies two of them. Consequently, there
cannot be a triple bond connected to the same C-
atom, as this would use three valences. Hence,
the only possibility left is that the triple bond must
be located between the second and third C-atom.
With the given constraints and axioms, the sys-
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tem is thus able to infer the fully specified com-
pound structure of what would correctly have to
be named prop-2-yn-1-imine (Figure 3).

CH

N

H

H

C

C

Figure 3: prop-2-yn-1-imine

After modeling a CSP according to the semantic
represenation of the input name, the next step in
processing is to run a constraint solver. This will
be described in the following section.

2.3 Constraint Solver

A constraint solver is a library of tests and oper-
ations on constraints. Its purpose is to decide for
every conjunction of constraints whether there is
a model, i. e. a variable assignment, that satis-
fies these constraints. This is achieved by consis-
tency checking as well as search techniques, tak-
ing the respective variable domains, i. e. the pos-
sible values, into account. Besides just deciding
whether there is a model for a given CSP, a con-
straint solver is also able to yield the successful
variable assignment(s).

In CLP(name2structure) we use GRASPER12

(Viegas and Azevedo, 2007), a graph constraint
solver based on set constraints. GRASPER en-
ables us to model CSPs using graph variables. In
GRASPER, a graph is defined by its set of ver-
tices and its set of edges. Therefore, the domain of
a graph consists of a set of possible vertices, in our
case for the atoms, and possible edges, in our case
for the bonds. The constraints can then narrow
these two sets in several ways. For example, cer-
tain vertices can be defined to be included as well
as the cardinality of a set can be constrained. Also,
subgraphs can be defined independently which are
then constrained to be part of the final graph solu-
tion.

The constraint solver finds one graph solution
for graphs which are fully specified by the con-
straints our system models according to a name.
For underspecified graphs, for which the con-
straints are gathered from underspecifying or class
names, the constraint solver could find and enu-

12GRASPER is distributed with recent builds of the
ECLiPSe CLP system.

merate all possible graph solutions if this is de-
sired. This outcome would be the set of all chem-
ical graphs which satisfy the constraints known
so far. For example, chlorohexane would lead to
the set of graphs representing 1-chlorohexane, 2-
chlorohexane and 3-chlorohexane.

In general, a chemical name-to-structure system
aims at providing the chemical structures in a stan-
dard representation format, rather than in a graph
notation. In our system, the SMILES generation
component carries out this step.

2.4 Generation of a Structural
Representation Format

Once a graph is derived from the input name
as a solution to its CSP, it specifies the chem-
ical structure completely. It contains the exis-
tent vertices and the edges between them, together
with labels indicating their respective types and
other information like the numbering of atoms.
Thus, no additional information has to be con-
sidered to generate a chemical representation for-
mat from the graph. We focus on generating
SMILES strings, rather than some other format,
because SMILES themselves use the concept of
a graph for representing the molecular structures
(Weininger, 1988). For example, the graph so-
lution determined for pentan-2,3-diol as well as
for 2,3-dihydroxy-pentane (cf. example (1) and (2)
in Section 2.1) can be translated into the SMILES
string CC(OH)C(OH)CC. In case more than one
graph is determined as solution to the CSP (for un-
derspecifying and class names), all the respective
SMILES strings could be generated.

Once a SMILES string has successfully been
generated, the name-to-structure task is fulfilled
and the SMILES string can then be used for tasks
such as mapping, classification, picture generation
and the like. The next section will describe how
classification – one of our main objectives – is ac-
complished in our approach.

2.5 Classification
Our system offers three different procedures for
compound classification. Selection of the appro-
priate procedure depends on the starting point
which could either be a SMILES string, a graph
(or a set of graphs) or a CSP.

First, a given SMILES string can be classified
based on the functional groups it is comprised of.
We use the SMILES classification tool described
by Wittig et al. (2004).

41



Second, a graph which is found as solution to
a CSP representing an input name can be classi-
fied according to a given set of class names. This
could for example be some taxonomy which is
freely available (like ChEBI (Degtyarenko et al.,
2008)). Those class names first have to be trans-
formed into CSPs by use of the parsing and mod-
eling modules of the CLP(name2structure) sys-
tem. Subsequently, the constraint solver checks
whether the graph, or even a set of graphs in the
case of an underspecified compound, is a solu-
tion to a CSP representing one of the given class
names. If the graph or the set of graphs are so-
lutions to one of these CSPs, the compound be-
longs to the class which provided that CSP. The
constraints for the class name alcohol for instance,
include (amonst others) the presence of an OH-
group. Consequently, pentanol can be determined
to be an alcohol, since its three graph solutions,
representing pentan-1-ol, pentan-2-ol and pentan-
3-ol, each satisfy the constraints given by alcohol.

Third, for some underspecifying names and for
class names, it would not be reasonable to gener-
ate and classify all the graph solutions or all the
SMILES strings – it could simply be too many or
even infinitely many. That would slow down per-
formance significantly. Therefore, the system also
aims at classifying CSPs themselves, by compar-
ing them directly. If the constraints of CSP-1 are a
subset of the constraints of CSP-2, the name which
provided CSP-2 is classified to be a hyponym of
the more general name which provided CSP-1.

Besides classification, our system aims at map-
ping chemical compounds. The last module of our
system therefore provides algorithms to fulfill this
task.

2.6 Mapping

Mapping is needed to fulfill the identification task
and to resolve coreference of synonyms. Given a
referent data source of chemical compounds, an
identity relation should be established if the cur-
rently processed compound can successfully be
mapped to one of the entries. Again, the procedure
depends on whether there is a SMILES string, a set
of graph solutions or a CSP to be mapped.

First, matching a SMILES string can be done
by simple string comparison. An identity rela-
tion between any two compounds holds if their
unique SMILES strings (Weininger et al., 1989)
match exactly. For example, this is the case for

pentan-2,3-diol and 2,3-dihydroxy-pentane since
they both yield the same SMILES string (cf. Sec-
tions 2.1 and 2.4).

Second, if an underspecifying input name leads
to an enumerable number of graph solutions, the
set of all the corresponding SMILES strings can be
generated. Subsequently, it can be compared to the
sets of SMILES strings having been determined
for the underspecifying names of the referent data
source. If it equals one of the reference SMILES
sets, the input name and the respective reference
name are successfully identified and thus detected
to be synonyms.

Third, mapping of CSPs becomes necessary
for class names and underspecifying names with
too many graph solutions to enumerate. This
works analogously to CSP classification described
in Section 2.5 above. The only difference is that
a synonym relation between two names, leading
to CSP-1 and CSP-2 respectively, is established if
the constraints of CSP-1 equal the constraints of
CSP-2.

3 Conclusions and Future Work

In this paper we presented the architecture of
CLP(name2structure), a system for semantic
and syntactic processing of chemical compound
names. In the introductory section, we described
the characteristic phenomena of biochemical ter-
minology which challenge any such system. Our
approach is composed of several modules, carry-
ing out the defined tasks of structure generation,
classification and mapping. By employing a mor-
phological parser and constraint logic program-
ming over graph variables, our approach is able
to handle the particularities of the chemical com-
pound names.

However, the proposed system
CLP(name2structure) still requires work on
several of its components. The central task
to be completed is to enrich the repository of
functions which call the appropriate constraints
corresponding to CHEMorph’s semantic repre-
sentation output. This is not a trivial task since it
requires to formalize the IUPAC rules of syntax
and semantics of the relevant morphemes. This
formalization needs to result in an abstract de-
scription of the respective constraints over graph
variables. Thereby, phenomena like interaction of
morphemes’ meanings play an important role.

Before we can accomplish the implementation
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of the complete system according to the proposed
architecture, we need to answer a couple of re-
maining open questions. For example, the exact
method on how to compare two CSPs has to be
elaborated. Gennari (2002) describes algorithms
for normalizing CSPs to enable subsequent equiv-
alence checking. However, these methods can not
be applied to our case as they stand but will have
to be substantially adapted. Another problem we
need to deal with is that labeled graphs, which are
required by our system, are not directly supported
by the constraint solver GRASPER. Therefore we
are currently working on a way to handle the labels
indirectly.

Another important task we plan to
carry out in the future is the evaluation of
CLP(name2structure). Since no gold standard
for name-to-structure generation or classification
is available yet, such a gold standard or dataset
needs to be created first. We propose to use as
such a dataset a subset of the entries of an existing
curated database, such as ChEBI, which contains
names, chemical structures and a classification
for currently 17842 compounds. Unless the mor-
phological parser and the repository of constraint
functions is further enriched, we suppose our
system will yield a high precision rather than a
high coverage. To evaluate underspecification
handling of our system, underspecifying names
from general reaction descriptions13 could be
collected. For this kind of evaluation, determining
the correctness of the analysis would require the
help of domain experts.
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