
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 109–112,
Suntec, Singapore, 4 August 2009. c©2009 ACL and AFNLP

Using Generation for Grammar Analysis and Error Detection

Michael Wayne Goodman∗

University of Washington
Dept. of Linguistics

Box 354340 Seattle, WA 98195, USA
goodmami@u.washington.edu

Francis Bond
NICT Language Infrastructure Group
3-5 Hikaridai, Seika-cho, S̄oraku-gun,

Kyoto, 619-0289 Japan
bond@ieee.org

Abstract

We demonstrate that the bidirectionality
of deep grammars, allowing them to gen-
erate as well as parse sentences, can be
used to automatically and effectively iden-
tify errors in the grammars. The system is
tested on two implemented HPSG gram-
mars: Jacy for Japanese, and the ERG for
English. Using this system, we were able
to increase generation coverage in Jacy by
18% (45% to 63%) with only four weeks
of grammar development.

1 Introduction

Linguistically motivated analysis of text provides
much useful information for subsequent process-
ing. However, this is generally at the cost of re-
duced coverage, due both to the difficulty of pro-
viding analyses for all phenomena, and the com-
plexity of implementing these analyses. In this
paper we present a method of identifying prob-
lems in a deep grammar by exploiting the fact that
it can be used for both parsing (interpreting text
into semantics) and generation (realizing seman-
tics as text). Since both parsing and generation use
the same grammar, their performance is closely
related: in general improving the performance or
cover of one direction will also improve the other.
(Flickinger, 2008)

The central idea is that we test the grammar on
a full round trip: parsing text to its semantic repre-
sentation and then generating from it. In general,
any sentence where we cannot reproduce the orig-
inal, or where the generated sentence significantly
differs from the original, identifies a flaw in the
grammar, and with enough examples we can pin-
point the grammar rules causing these problems.
We call our systemEgad, which stands for Erro-
neous Generation Analysis and Detection.

∗This research was carried out while visiting NICT.

2 Background

This work was inspired by the error mining ap-
proach of van Noord (2004), who identified prob-
lematic input for a grammar by comparing sen-
tences that parsed and those that didn’t from a
large corpus. Our approach takes this idea and fur-
ther applies it to generation. We were also inspired
by the work of Dickinson and Lee (2008), whose
“variation n-gram method” models the likelihood
a particular argument structure (semantic annota-
tion) is accurate given the verb and some context.

We testedEgadon two grammars: Jacy (Siegel,
2000), a Japanese grammar and the English Re-
source Grammar (ERG) (Flickinger, 2000, 2008)
from the DELPH-IN1 group. Both grammars are
written in the Head-driven Phrase Structure Gram-
mar (HPSG) (Pollard and Sag, 1994) framework,
and use Minimal Recursion Semantics (MRS)
(Copestake et al., 2005) for their semantic rep-
resentations. The Tanaka Corpus (Tanaka, 2001)
provides us with English and Japanese sentences.

The specific motivation for this work was to in-
crease the quality and coverage of generated para-
phrases using Jacy and the ERG. Bond et al.
(2008) showed they could improve the perfor-
mance of a statistical machine translation system
by training on a corpus that included paraphrased
variations of the English text. We want to do the
same with Japanese text, but Jacy was not able to
produce paraphrases as well (the ERG had 83%
generation coverage, while Jacy had 45%) Im-
proving generation would also greatly benefit X-
to-Japanese machine translation tasks using Jacy.

2.1 Concerning Grammar Performance

There is a difference between the theoretical and
practical power of the grammars. Sometimes the

1Deep Linguistic Processing with HPSG Initiative – see
http://www.delph-in.net for background informa-
tion, including the list of current participants and pointers to
available resources and documentation

109

parser or generator can reach the memory (i.e.
edge) limit, resulting in a valid result not being
returned. Also, we only look at the top-ranked2

parse and the first five generations for each item.
This is usually not a problem, but it could cause
Egad to report false positives.

HPSG grammars are theoretically symmetric
between parsing and generation, but in practice
this is not always true. For example, to improve
performance, semantically empty lexemes are not
inserted into a generation unless a “trigger-rule”
defines a context for them. These trigger-rules
may not cover all cases.

3 Grammar Analysis

When analyzing a grammar,Egad looks at all in-
put sentences, parses, and generations processed
by the grammar and uses the information therein
to determine characteristics of these items. These
characteristics are encoded in a vector that can be
used for labeling and searching items. Some char-
acteristics are useful for error mining, while others
are used for grammar analysis.

3.1 Characteristic Types

Egaddetermines both general characteristics of an
item (parsability and generability), and character-
istics comparing parses with generations.

General characteristics show whether each item
could: be parsed (“parsable”), generate from
parsed semantics (“generable”), generate the orig-
inal parsed sentence (“reproducible”), and gener-
ate other sentences (“paraphrasable”).

For comparative characteristics,Egad com-
pares every generated sentence to the parsed sen-
tence whence its semantics originated, and deter-
mines if the generated sentence uses the same set
of lexemes, derivation tree,3 set of rules, surface
form, and MRS as the original.

3.2 Characteristic Patterns

Having determined all applicable characteristics
for an item or a generated sentence, we encode the
values of those characteristics into a vector. We
call this vector acharacteristic pattern, or CP.
An example CP showing general characteristics is:

0010 -----

2Jacy and the ERG both have parse-ranking models.
3In comparing the derivation trees, we only look at phrasal

nodes. Lexemes and surface forms are not compared.

The first four digits are read as: the item is
parsable, generable, not reproducible, and is para-
phrasable. The five following dashes are for com-
parative characteristics and are inapplicable except
for generations.

3.3 Utility of Characteristics

Not all characteristics are useful for all tasks. We
were interested in improving Jacy’s ability to gen-
erate sentences, so we primarily looked at items
that were parsable but ungenerable. In comparing
generated sentences with the original parsed sen-
tence, those with differing semantics often point to
errors, as do those with a different surface form but
the same derivation tree and lexemes (which usu-
ally means an inflectional rule was misapplied).

4 Problematic Rule Detection

Our method for detecting problematic rules is to
train a maximum entropy-based classifier4 with n-
gram paths of rules from a derivation tree as fea-
tures and characteristic patterns as labels. Once
trained, we do feature-selection to look at what
paths of rules are most predictive of certain labels.

4.1 Rule Paths

We extract n-grams overrule paths, or RPs,
which are downward paths along the derivation
tree. (Toutanova et al., 2005) By creating sepa-
rate RPs for each branch in the derivation tree, we
retain some information about the order of rule ap-
plication without overfitting to specific tree struc-
tures. For example, Figure 1 is the derivation tree
for (1). A couple of RPs extracted from the deriva-
tion tree are shown in Figure 2.

(1) 写真写りが
shashin-utsuri-ga
picture-taking-NOM

いい

ii
good

(X is) good at taking pictures.

4.2 Building a Model

We build a classification model by using a parsed
or generated sentence’s RPs as features and that
sentence’s CP as a label. The set of RPs includes
n-grams over all specified values of N. The labels
are, to be more accurate, regular expressions of

4We would like to look at using different classifiers here,
such as Decision Trees. We initially chose MaxEnt because
it was easy to implement, and have since had little motivation
to change it because it produced useful results.

110

utterance rule-decl-finite

head subj rule

hf-complement-rule

quantify-n-lrule

compounds-rule

shashin
写写写真真真

utsuri 1
写写写りりり

ga
ががが

unary-vstem-vend-rule

adj-i-lexeme-infl-rule

ii-adj
いいいいいい

Figure 1: Derivation tree for (1)

quantify-n-lrule → compounds-rule → shashin
quantify-n-lrule → compounds-rule → utsuri 1

Figure 2: Example RPs extracted from Figure 1

CPs and may be fully specified to a unique CP or
generalize over several.5 The user can weight the
RPs by their N value (e.g. to target unigrams).

4.3 Finding Problematic Rules

After training the model, we have a classifier that
predicts CPs given a set of RPs. What we want,
however, is the RP most strongly associated with
a given CP. The classifier we use provides an easy
method to get the score a given feature has for
some label. We iterate over all RPs, get their score,
then sort them based on the score. To help elim-
inate redundant results, we exclude any RP that
either subsumes or is subsumed by a previous (i.e.
higher ranked) RP.

Given a CP, the RP with the highest score
should indeed be the one most closely associated
to that CP, but it might not lead to the greatest
number of items affected. Fixing the second high-
est ranked RP, for example, may improve more
items than fixing the top ranked one. To help the
grammar developer decide the priority of prob-
lems to fix, we also output the count of items ob-
served with the given CP and RP.

5 Results and Evaluation

We can look at two sets of results: how well
Egad was able to analyze a grammar and detect
errors, and how well a grammar developer could
useEgad to fix a problematic grammar. While the
latter is also influenced by the skill of the gram-
mar developer, we are interested in how wellEgad

5For example, /0010 -----/ is fully specified.
/00.. -----/ marginalizes two general characteristics

points to the most significant errors, and how it can
help reduce development time.

5.1 Error Mining

Table 1 lists the ten highest ranked RPs associated
with items that could parse but could not generate
in Jacy. Some RPs appear several times in differ-
ent contexts. We made an effort to decrease the
redundancy, but clearly this could be improved.

From this list of ten problematic RPs, there
are four unique problems: quantify-n-lrule (noun
quantification), no-nspec (noun specification), to-
comp-quotarg (と to quotative particle), and te-
adjunct (verb conjugation). The extra rules listed
in each RP show the context in which each
problem occurs, and this can be informative as
well. For instance,quantify-n-lrule occurs in
two primary contexts (abovecompounds-rule and
nominal-numcl-rule). The symptoms of the prob-
lem occur in the interation of rules in each context,
but the source of the problem isquantify-n-lrule.

Further, the problems identified are not always
lexically marked. quantify-n-lrule occurs for all
bare noun phrases (ie. without determiners). This
kind of error cannot be accurately identified by us-
ing just word or POS n-grams, we need to use the
actual parse tree.

5.2 Error Correction

Egad greatly facilitated our efforts to find and fix
a wide variety of errors in Jacy. For example, we
restructured semantic predicate hierarchies, fixed
noun quantification, allowed some semantically
empty lexemes to generate in certain contexts,
added pragmatic information to distinguish be-
tween politeness levels in pronouns, allowed im-
peratives to generate, allowed more constructions
for numeral classifiers, and more.

Egadalso identified some issues with the ERG:
both over-generation (an under-constrained inflec-
tional rule) and under-generation (sentences with
the constructiontake {care|charge|. . . } of were
not generating).

5.3 Updated Grammar Statistics

After fixing the most significant problems in Jacy
(outlined in Section 5.2) as reported byEgad,
we obtained new statistics about the grammar’s
coverage and characteristics. Table 2 shows the
original and updated general statistics for Jacy.
We increased generability by 18%, doubled repro-
ducibility, and increased paraphrasability by 17%.

111

Score Count Rule Path N-grams
1.42340952569648 109 hf-complement-rule→ quantify-n-lrule→ compounds-rule
0.960090299833317 54 hf-complement-rule→ quantify-n-lrule→ nominal-numcl-rule→ head-specifier-rule
0.756227560530811 63 head-specifier-rule→ hf-complement-rule→ no-nspec→ ”の”
0.739668926140179 62 hf-complement-rule→ head-specifier-rule→ hf-complement-rule→ no-nspec
0.739090261637851 22 hf-complement-rule→ hf-adj-i-rule→ quantify-n-lrule→ compounds-rule
0.694215264789286 36 hf-complement-rule→ hf-complement-rule→ to-comp-quotarg→ ”と”
0.676244980660372 82 vstem-vend-rule→ te-adjunct→ ”て”
0.617621482523537 26 hf-complement-rule→ hf-complement-rule→ to-comp-varg→ ”と”
0.592260546433334 36 hf-adj-i-rule→ hf-complement-rule→ quantify-n-lrule→ nominal-numcl-rule
0.564790702894285 62 quantify-n-lrule→ compounds-rule→ vn2n-det-lrule

Table 1: Top 10 RPs for ungenerable items

Original Modified
Parsable 82% 83%
Generable 45% 63%
Reproducible 11% 22%
Paraphrasable 44% 61%

Table 2: Jacy’s improved general statistics

As an added bonus, our work focused on improv-
ing generation also improved parsability by 1%.
Work is now continuing on fixing the remainder
of the identified errors.

6 Future Work

In future iterations ofEgad, we would like to ex-
pand our feature set (e.g. information from failed
parses), and make the system more robust, such
as replacing lexical-ids (specific to a lexeme) with
lexical-types, since all lexemes of the same type
should behave identically. A more long-term goal
would allow Egad to analyze the internals of the
grammar and point out specific features within the
grammar rules that are causing problems. Some
of the errors detected byEgad have simple fixes,
and we believe there is room to explore methods
of automatic error correction.

7 Conclusion

We have introduced a system that identifies er-
rors in implemented HPSG grammars, and further
finds and ranks the possible sources of those prob-
lems. This tool can greatly reduce the amount
of time a grammar developer would spend find-
ing bugs, and helps them make informed decisions
about which bugs are best to fix. In effect, we are
substituting cheap CPU time for expensive gram-
mar developer time. Using our system, we were
able to improve Jacy’s absolute generation cover-
age by 18% (45% to 63%) with only four weeks

of grammar development.

8 Acknowledgments

Thanks to NICT for their support, Takayuki Kurib-
ayashi for providing native judgments, and Mar-
cus Dickinson for comments on an early draft.

References
Francis Bond, Eric Nichols, Darren Scott Appling, and

Michael Paul. 2008. Improving statistical machine trans-
lation by paraphrasing the training data. InInternational
Workshop on Spoken Language Translation, pages 150–
157. Honolulu.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A.
Sag. 2005. Minimal Recursion Semantics. An introduc-
tion. Research on Language and Computation, 3(4):281–
332.

Markus Dickinson and Chong Min Lee. 2008. Detecting
errors in semantic annotation. InProceedings of the
Sixth International Language Resources and Evaluation
(LREC’08). Marrakech, Morocco.

Dan Flickinger. 2000. On building a more efficient gram-
mar by exploiting types.Natural Language Engineering,
6(1):15–28. (Special Issue on Efficient Processing with
HPSG).

Dan Flickinger. 2008. The English resource grammar. Tech-
nical Report 2007-7, LOGON,http://www.emmtee.
net/reports/7.pdf. (Draft of 2008-11-30).

Carl Pollard and Ivan A. Sag. 1994. Head Driven
Phrase Structure Grammar. University of Chicago Press,
Chicago.

Melanie Siegel. 2000. HPSG analysis of Japanese. In Wolf-
gang Wahlster, editor,Verbmobil: Foundations of Speech-
to-Speech Translation, pages 265 – 280. Springer, Berlin,
Germany.

Yasuhito Tanaka. 2001. Compilation of a multilingual paral-
lel corpus. InProceedings of PACLING 2001, pages 265–
268. Kyushu. (http://www.colips.org/afnlp/
archives/pacling2001/pdf/tanaka.pdf).

Kristina Toutanova, Christopher D. Manning, Dan Flickinger,
and Stephan Oepen. 2005. Stochastic HPSG parse disam-
biguation using the redwoods corpus.Research on Lan-
guage and Computation, 3(1):83–105.

Gertjan van Noord. 2004. Error mining for wide-coverage
grammar engineering. In42nd Annual Meeting of the
Association for Computational Linguistics: ACL-2004.
Barcelona.

112

