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Abstract

Most approaches to topic modeling as-
sume an independence between docu-
ments that is frequently violated. We
present an topic model that makes use
of one or more user-specified graphs de-
scribing relationships between documents.
These graph are encoded in the form of a
Markov random field over topics and serve
to encourage related documents to have
similar topic structures. Experiments on
show upwards of a 10% improvement in
modeling performance.

1 Introduction
One often wishes to apply topic models to large
document collections. In these large collections,
we usually have meta-information about how one
document relates to another. Perhaps two docu-
ments share an author; perhaps one document cites
another; perhaps two documents are published in
the same journal or conference. We often believe
that documents related in such a way should have
similar topical structures. We encode this in a
probabilistic fashion by imposing an (undirected)
Markov random field (MRF) on top of a standard
topic model (see Section 3). The edge potentials
in the MRF encode the fact that “connected” doc-
uments should share similar topic structures, mea-
sured by some parameterized distance function.
Inference in the resulting model is complicated
by the addition of edge potentials in the MRF.
We demonstrate that a hybrid Gibbs/Metropolis-
Hastings sampler is able to efficiently explore the
posterior distribution (see Section 4).

In experiments (Section 5), we explore several
variations on our basic model. The first is to ex-
plore the importance of being able to tune the
strength of the potentials in the MRF as part of the
inference procedure. This turns out to be of utmost
importance. The second is to study the importance

of the form of the distance metric used to specify
the edge potentials. Again, this has a significant
impact on performance. Finally, we consider the
use of multiple graphs for a single model and find
that the power of combined graphs also leads to
significantly better models.

2 Background
Probabilistic topic models propose that text can
be considered as a mixture of words drawn from
one or more “topics” (Deerwester et al., 1990;
Blei et al., 2003). The model we build on is la-
tent Dirichlet allocation (Blei et al., 2003) (hence-
forth, LDA). LDA stipulates the following gener-
ative model for a document collection:

1. For each document d = 1 . . . D:

(a) Choose a topic mixture θd ∼ Dir(α)
(b) For each word in d, n = 1 . . . Nd:

i. Choose a topic zdn ∼Mult(θd)
ii. Choose a word wdn ∼Mult(βzdn

)

Here, α is a hyperparameter vector of length K,
where K is the desired number of topics. Each
document has a topic distribution θd over these
K topics and each word is associated with pre-
cisely one topic (indicated by zdn). Each topic
k = 1 . . .K is a unigram distribution over words
(aka, a multinomial) parameterized by a vector
βk. The associated graphical model for LDA is
shown in Figure 1. Here, we have added a few
additional hyperparameters: we place a Gam(a, b)
prior independently on each component of α and
a Dir(η, . . . , η) prior on each of the βs.

The joint distribution over all random variables
specified by LDA is:

p(α,θ,z,β,w) =
Y
k

Gam(αk | a, b)Dir(βk | η) (1)Y
d

Dir(θd | α)
Y
n

Mult(zdn | θd)Mult(wdn | βzdn
)

Many inference methods have been developed
for this model; the approach upon which we
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Figure 1: Graphical model for LDA.

build is the collapsed Gibbs sampler (Griffiths and
Steyvers, 2006). Here, the random variables β and
θ are analytically integrated out. The main sam-
pling variables are the zdn indicators (as well as
the hyperparameters: η and a, b). The conditional
distribution for zdn conditioned on all other vari-
ables in the model gives the following Gibbs sam-
pling distribution p(zdn = k):

#−dn
z=k + αkP

k′(#
−dn
z=k′ + αk′)

#−dn
z=k,w=wdn

+ ηP
k′(#

−dn
z=k′,w=wdn

+ η)
(2)

Here, #−dnχ denotes the number of times event
χ occurs in the entire corpus, excluding word n
in document d. Intuitively, the first term is a
(smoothed) relative frequency of topic k occur-
ring; the second term is a (smoothed) relative fre-
quency of topic k giving rise to word wdn.

A Markov random field specifies a joint dis-
tribution over a collection of random variables
x1, . . . , xN . An undirected graph structure stip-
ulates how the joint distribution factorizes over
these variables. Given a graph G = (V,E), where
V = {x1, . . . , xN}, let C denote a subset of all
the cliques of G. Then, the MRF specifies the joint
distribution as: p(x) = 1

Z

∏
c∈C ψc(xc). Here,

Z =
∑

x

∏
c∈C ψc(xc) is the partition function,

xc is the subset of x contained in clique c and ψc
is any non-negative function that measures how
“good” a particular configuration of variables xc
is. The ψs are called potential functions.

3 Markov Random Topic Fields
Suppose that we have access to a collection of
documents, but do not believe that these docu-
ments are all independent. In this case, the gener-
ative story of LDA no longer makes sense: related
documents are more likely to have “similar” topic
structures. For instance, in the scientific commu-
nity, if paper A cites paper B, we would (a priori)
expect the topic distributions for papers A and B
to be related. Similarly, if two papers share an au-
thor, we might expect them to be topically related.

Doc 1 Doc 2

Doc 3

Doc 4Doc 5

Doc 6

wzθ
N

wzθ
N

wzθ
N

wzθ
N

wzθ
N

wzθ
N

Figure 2: Example Markov Random Topic Field (variables
α and β are excluded for clarify).

Of if they are both published at EMNLP. Or if they
are published in the same year, or come out of the
same institution, or many other possibilities.

Regardless of the source of this notion of simi-
larity, we suppose that we can represent the rela-
tionship between documents in the form of a graph
G = (V,E). The vertices in this graph are the doc-
uments and the edges indicate relatedness. Note
that the resulting model will not be fully genera-
tive, but is still probabilistically well defined.

3.1 Single Graph
There are multiple possibilities for augmenting
LDA with such graph structure. We could “link”
the topic distributions θ over related documents;
we could “like” the topic indicators z over related
documents. We consider the former because it
leads to a more natural model. The idea is to “un-
roll” the D-plate in the graphical model for LDA
(Figure 1) and connect (via undirected links) the
θ variables associated with connected documents.
Figure 2 shows an example MRTF over six docu-
ments, with thick edges connecting the θ variables
of “related” documents. Note that each θ still has
α as a parent and each w has β as a parent: these
are left off for figure clarity.

The model is a straightforward “integration” of
LDA and an MRF specified by the document re-
lationships G. We begin with the joint distribution
specified by LDA (see Eq (1)) and add in edge po-
tentials for each edge in the document graph G that
“encourage” the topic distributions of neighboring
documents to be similar. The potentials all have
the form:

ψd,d′(θd,θd′) = exp
[−`d,d′ρ(θd,θd′)] (3)

Here, `d,d′ is a “measure of strength” of the im-
portance of the connection between d and d′ (and
will be inferred as part of the model). ρ is a dis-
tance metric measuring the dissimilarity between
θd and θd′ . For now, this is Euclidean distance
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(i.e., ρ(θd,θd′) = ||θd − θd′ ||); later, we show
that alternative distance metrics are preferable.

Adding the graph structure necessitates the ad-
dition of hyperparameters `e for every edge e ∈ E.
We place an exponential prior on each 1/`e with
parameter λ: p(`e | λ) = λ exp(−λ/`e). Finally,
we place a vague Gam(λa, λb) prior on λ.

3.2 Multiple Graphs
In many applications, there may be multiple
graphs that apply to the same data set, G1, . . . ,GJ .
In this case, we construct a single MRF based on
the union of these graph structures. Each edge now
has L-many parameters (one for each graph j) `je.
Each graph also has its own exponential prior pa-
rameter λj . Together, this yields:

ψd,d′(θd,θd′) = exp
[
−
∑
j

`jd,d′ρ(θd,θd′)
]

(4)

Here, the sum ranges only over those graphs
that have (d, d′) in their edge set.

4 Inference
Inference in MRTFs is somewhat complicated
from inference in LDA, due to the introduction
of the additional potential functions. In partic-
ular, while it is possible to analytically integrate
out θ in LDA (due to multinomial/Dirichlet con-
jugacy), this is no longer possible in MRTFs. This
means that we must explicitly represent (and sam-
ple over) the topic distributions θ in the MRTF.

This means that we must sample over the fol-
lowing set of variables: α, θ, z, ` and λ. Sam-
pling for α remains unchanged from the LDA
case. Sampling for variables except θ is easy:

zdn = k : θdk
#−dnz=k,w=wdn

+ η∑
k′(#

−dn
z=k′,w=wdn

+ η)
(5)

1/`d,d′ ∼ Exp
(
λ+ ρ(θd,θd′)

)
(6)

λ ∼ Gam
(
λa + |E| , λb +

∑
e

`e

)
(7)

The latter two follow from simple conjugacy.
When we use multiple graphs, we assign a sepa-
rate λ for each graph.

For sampling θ, we resort to a Metropolis-
Hastings step. Our proposal distribution is the
Dirichlet posterior over θ, given all the current as-
signments. The acceptance probability then just
depends on the graph distances. In particular,
once θd is drawn from the posterior Dirichlet, the
acceptance probability becomes

∏
d′∈N (d) ψd,d′ ,

where N (d) denotes the neighbors of d. For each
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Figure 3: Held-out perplexity for different graphs.

document, we run 10 Metropolis steps; the accep-
tance rates are roughly 25%.

5 Experiments

Our experiments are on a collection for 7441 doc-
ument abstracts crawled from CiteSeer. The crawl
was seeded with a collection of ten documents
from each of: ACL, EMNLP, SIGIR, ICML,
NIPS, UAI. This yields 650 thousand words of text
after remove stop words. We use the following
graphs (number in parens is the number of edges):

auth: shared author (47k)
book: shared booktitle/journal (227k)
cite: one cites the other (18k)
http: source file from same domain (147k)
time: published within one year (4122k)
year: published in the same year (2101k)

Other graph structures are of course possible, but
these were the most straightforward to cull.

The first thing we look at is convergence of
the samplers for the different graphs. See Fig-
ure 3. Here, we can see that the author graph and
the citation graph provide improved perplexity to
the straightforward LDA model (called “*none*”),
and that convergence occurs in a few hundred iter-
ations. Due to their size, the final two graphs led
to significantly slower inference than the first four,
so results with those graphs are incomplete.

Tuning Graph Parameters. The next item we
investigate is whether it is important to tune the
graph connectivity weights (the ` and λ variables).
It turns out this is incredibly important; see Fig-
ure 4. This is the same set of results as Figure 3,
but without ` and λ tuning. We see that the graph-
based methods do not improve over the baseline.
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Figure 4: Held-out perplexity for difference graph struc-
tures without graph parameter tuning.
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Figure 5: Held-out perplexity for different distance metrics.

Distance Metric. Next, we investigate the use of
different distance metrics. We experiments with
Bhattacharyya, Hellinger, Euclidean and logistic-
Euclidean. See Figure 5 (this is just for the auth
graph). Here, we see that Bhattacharyya and
Hellinger (well motivated distances for probability
distributions) outperform the Euclidean metrics.

Using Multiple Graphs Finally, we compare
results using combinations of graphs. Here, we
run every sampler for 500 iterations and compute
standard deviations based on ten runs (year and
time are excluded). The results are in Table 1.
Here, we can see that adding graphs (almost) al-
ways helps and never hurts. By adding all the
graphs together, we are able to achieve an abso-
lute reduction in perplexity of 9 points (roughly
10%). As discussed, this hinges on the tuning of
the graph parameters to allow different graphs to
have different amounts of influence.

6 Discussion
We have presented a graph-augmented model for
topic models and shown that a simple combined
Gibbs/MH sampler is efficient in these models.

*none* 92.1

http 92.2

book 90.2

cite 88.4

auth 87.9

book+http 89.9

cite+http 88.6

auth+http 88.0

book+cite 86.9

auth+book 85.1

auth+cite 84.3

book+cite+http 87.9

auth+cite+http 85.5

auth+book+http 85.3

auth+book+cite 83.7

all 83.1

Table 1: Comparison of held-out perplexities for vary-
ing graph structures with two standard deviation error bars;
grouped by number of graphs. Grey bars are indistinguish-
able from best model in previous group; blue bars are at least
two stddevs better; red bars are at least four stddevs better.

Using data from the scientific domain, we have
shown that we can achieve significant reductions
in perplexity on held-out data using these mod-
els. Our model resembles recent work on hyper-
text topic models (Gruber et al., 2008; Sun et al.,
2008) and blog influence (Nallapati and Cohen,
2008), but is specifically tailored toward undi-
rected models. Ours is an alternative to the re-
cently proposed Markov Topic Models approach
(Wang et al., 2009). While the goal of these two
models is similar, the approaches differ fairly dra-
matically: we use the graph structure to inform
the per-document topic distributions; they use the
graph structure to inform the unigram models as-
sociated with each topic. It would be worthwhile
to directly compare these two approaches.
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