
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 341–344,
Suntec, Singapore, 4 August 2009. c©2009 ACL and AFNLP

A Succinct N-gram Language Model

Taro Watanabe Hajime Tsukada Hideki Isozaki
NTT Communication Science Laboratories

2-4 Hikaridai Seika-cho Soraku-gun Kyoto 619-0237 Japan
{taro,tsukada,isozaki}@cslab.kecl.ntt.co.jp

Abstract

Efficient processing of tera-scale text data
is an important research topic. This pa-
per proposes lossless compression of N -
gram language models based on LOUDS,
a succinct data structure. LOUDS suc-
cinctly represents a trie with M nodes as a
2M + 1 bit string. We compress it further
for the N -gram language model structure.
We also use ‘variable length coding’ and
‘block-wise compression’ to compress val-
ues associated with nodes. Experimental
results for three large-scale N -gram com-
pression tasks achieved a significant com-
pression rate without any loss.

1 Introduction

There has been an increase in available N -gram
data and a large amount of web-scaled N -gram
data has been successfully deployed in statistical
machine translation. However, we need either a
machine with hundreds of gigabytes of memory
or a large computer cluster to handle them.

Either pruning (Stolcke, 1998; Church et al.,
2007) or lossy randomizing approaches (Talbot
and Brants, 2008) may result in a compact repre-
sentation for the application run-time. However,
the lossy approaches may reduce accuracy, and
tuning is necessary. A lossless approach is obvi-
ously better than a lossy one if other conditions
are the same. In addtion, a lossless approach can
easly combined with pruning. Therefore, lossless
representation of N -gram is a key issue even for
lossy approaches.

Raj and Whittaker (2003) showed a general N -
gram language model structure and introduced a
lossless algorithm that compressed a sorted integer
vector by recursively shifting a certain number of
bits and by emitting index-value inverted vectors.
However, we need more compact representation.

In this work, we propose a succinct way to
represent the N -gram language model structure
based on LOUDS (Jacobson, 1989; Delpratt et
al., 2006). It was first introduced by Jacobson
(1989) and requires only a small space close to
the information-theoretic lower bound. For an M
node ordinal trie, its information-theoretical lower
bound is 2M − O(lg M) bits (lg(x) = log2(x))

1-gram 2-gram 3-gram

probability
back-off

pointer

word id
probability

back-off
pointer

word id
probability

back-off
pointer

Figure 1: Data structure for language model

and LOUDS succinctly represents it by a 2M + 1
bit string. The space is further reduced by consid-
ering the N -gram structure. We also use variable
length coding and block-wise compression to com-
press the values associated with each node, such as
word ids, probabilities or counts.

We experimented with English Web 1T 5-gram
from LDC consisting of 25 GB of gzipped raw
text N -gram counts. By using 8-bit floating point
quantization 1, N -gram language models are com-
pressed into 10 GB, which is comparable to a lossy
representation (Talbot and Brants, 2008).

2 N -gram Language Model

We assume a back-off N -gram language model in
which the conditional probability Pr(wn|wn−1

1 )
for an arbitrary N -gram wn

1 = (w1, ..., wn) is re-
cursively computed as follows.

α(wn
1 ) if wn

1 exists.
β(wn−1

1 )Pr(wn|wn−1
2 ) if wn−1

1 exists.
Pr(wn|wn−1

2 ) otherwise.

α(wn
1 ) and β(wn

1 ) are smoothed probabilities and
back-off coefficients, respectively.

The N -grams are stored in a trie structure as
shown in Figure 1. N -grams of different orders
are stored in different tables and each row corre-
sponds to a particular wn

1 , consisting of a word id
for wn, α(wn

1 ), β(wn
1 ) and a pointer to the first po-

sition of the succeeding (n + 1)-grams that share
the same prefix wn

1 . The succeeding (n+1)-grams
are stored in a contiguous region and sorted by the
word id of wn+1. The boundary of the region is de-
termined by the pointer of the next N -gram in the

1The compact representation of the floating point is out of
the scope of this paper. Therefore, we use the term lossless
even when using floating point quantization.

341



0

1 2 3 4

5 6 7 8 9 10

11 12 13 14 15

(a) Trie structure

node id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
bit position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
LOUDS bit 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0

(b) Corresponding LOUDS bit string

0 1 2 3

4 5 6 7 8 9

10 11 12 13 14

(c) Trie structure for N -gram

node id 0 1 2 3 4 5 6 7 8 9
bit position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
LOUDS bit 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0

(d) Corresponding N -gram optimized LOUDS bit string

Figure 2: Optimization of LOUDS bit string for N -gram data

row. When an N -gram is traversed, binary search
is performed N times. If each word id corresponds
to its node position in the unigram table, we can
remove the word ids for the first order.

Our implementation merges across different or-
ders of N -grams, then separates into multiple ta-
bles such as word ids, smoothed probabilities,
back-off coefficients, and pointers. The starting
positions of different orders are memorized to al-
low access to arbitrary orders. To store N -gram
counts, we use three tables for word ids, counts
and pointers. We share the same tables for word
ids and pointers with additional probability and
back-off coefficient tables.

To support distributed computation (Brants et
al., 2007), we further split the N -gram data into
“shards” by hash values of the first bigram. Uni-
gram data are shared across shards for efficiency.

3 Succinct N -gram Structure

The table of pointers described in the previous
section represents a trie. We use a succinct data
structure LOUDS (Jacobson, 1989; Delpratt et al.,
2006) for compact representation of the trie.

For an M node ordinal trie, there exist
1

2M+1

(
2M+1

M

)
different tries. Therefore,

its information-theoretical lower bound is
lg

⌈
1

2M+1

(
2M+1

M

)⌉ ≈ 2M − O(lg M) bits.

LOUDS represents a trie with M nodes as a
2M + O(M) bit string.

The LOUDS bit string is constructed as follows.
Starting from the root node, we traverse a trie in
level order. For each node with d ≥ 0 children, the
bit string 1d0 is emitted. In addition, 10 is prefixed
to the bit string emitted by an imaginary super-root
node pointing to the root node. Figure 2(a) shows
an example trie structure. The nodes are numbered
in level order, and from left to right. The cor-
responding LOUDS bit string is shown in Figure
2(b). Since the root node 0 has four child nodes,
it emits four 1s followed by 0, which marks the
end of the node. Before the root node, we assume

an imaginary super root node emits 10 for its only
child, i.e., the root node. After the root node, its
first child or node 1 follows. Since (M +1)0s and
M1s are emitted for a trie with M nodes, LOUDS
occupies 2M + 1 bits.

We define a basic operation on the bit string.
sel1(i) returns the position of the i-th 1. We can
also define similar operations over zero bit strings,
sel0(i). Given selb, we define two operations for
a node x. parent(x) gives x’s parent node and
firstch(x) gives x’s first child node:

parent(x) = sel1(x + 1)− x− 1, (1)
firstch(x) = sel0(x + 1)− x. (2)

To test whether a child node exists, we sim-
ply check firstch(x) �= firstch(x + 1). Sim-
ilarly, the child node range is determined by
[firstch(x), firstch(x + 1)).

3.1 Optimizing N -gram Structure for Space

We propose removing redundant bits from the
baseline LOUDS representation assuming N -
gram structures. Since we do not store any infor-
mation in the root node, we can safely remove the
root so that the imaginary super-root node directly
points to unigram nodes. The node ids are renum-
bered and the first unigram is 0. In this way, 2 bits
are saved.

The N -gram data structure has a fixed depth N
and takes a flat structure. Since the highest or-
der N -grams have no child nodes, they emit 0NN

in the tail of the bit stream, where Nn stands for
the number of n-grams. By memorizing the start-
ing position of the highest order N -grams, we can
completely remove NN bits.

The imaginary super-root emits 1N10 at the be-
ginning of the bit stream. By memorizing the bi-
gram starting position, we can remove the N1 + 1
bits.

Finally, parent(x) and firstch(x) are rewritten as

342



integer seq. 52 156 260 364
coding 0x34 0x9c 0x01 0x04 0x01 0x6c
boundary 1 1 0 1 0 1

Figure 3: Example of variable length coding

follows:

parent(x) = sel1(x + 1−N1) +N1 − x, (3)
firstch(x) = sel0(x) +N1 + 1− x. (4)

Figure 2(c) shows the N -gram optimized trie
structure (N = 3) from Figure 2 with N1 = 4
and N3 = 5. The parent of node 8 is found by
sel1(8+1−4) = 5 and 5+4−8 = 1. The first child
is located by sel0(8) = 16 and 16+4+1−8 = 13.

When accessing the N -gram data structure,
selb(i) operations are used extensively. We use an
auxiliary dictionary structure proposed by Kim et
al. (2005) and Jacobson (1989) that supports an
efficient sel1(i) (sel0(i)) with the dictionary. We
omit the details due to lack of space.

3.2 Variable Length Coding

The above method compactly represents pointers,
but not associated values, such as word ids or
counts. Raj and Whittaker (2003) proposed in-
teger compression on each range of the word id
sequence that shared the same N -gram prefix.

Here, we introduce a simple but more effec-
tive variable length coding for integer sequences
of word ids and counts. The basic idea comes from
encoding each integer by the smallest number of
required bytes. Specifically, an integer within the
range of 0 to 255 is coded as a 1-byte integer,
the integers within the range of 256 to 65,535 are
stored as 2-byte integers, and so on. We use an ad-
ditional bit vector to indicate the boundary of the
byte sequences. Figure 3 presents an example in-
teger sequence, 52, 156, 260 and 364 with coded
integers in hex decimals with boundary bits.

In spite of the length variability, the system
can directly access a value at index i as bytes
in [sel1(i) + 1, sel1(i + 1) + 1) by the efficient
sel1 operation assuming that sel1(0) yields −1.
For example, the value 260 at index 2 in Figure
3 is mapped onto the byte range of [sel1(2) +
1, sel1(3) + 1) = [2, 4).

3.3 Block-wise Compression

We further compress every 8K-byte data block of
all tables in N -grams by using a generic com-
pression library, zlib, employed in UNIX gzip.
We treat a sequence of 4-byte floats in the prob-
ability table as a byte stream, and compress ev-
ery 8K-byte block. To facilitate random access to
the compressed block, we keep track of the com-
pressed block’s starting offsets. Since the offsets
are in sorted order, we can apply sorted integer

compression (Raj and Whittaker, 2003). Since N -
gram language model access preserves some local-
ity, N -gram with block compression is still practi-
cal enough to be usable in our system.

4 Experiments

We applied the proposed representation to 5-gram
trained by “English Gigaword 3rd Edition,” “En-
glish Web 1T 5-gram” from LDC, and “Japanese
Web 1T 7-gram” from GSK. Since their tendencies
are the same, we only report in this paper the re-
sults on English Web 1T 5-gram, where the size
of the count data in gzipped raw text format is
25GB, the number of N-grams is 3.8G, the vocab-
ulary size is 13.6M words, and the number of the
highest order N-grams is 1.2G.

We implemented an N -gram indexer/estimator
using MPI inspired by the MapReduce imple-
mentation of N -gram language model index-
ing/estimation pipeline (Brants et al., 2007).

Table 1 summarizes the overall results. We
show the initial indexed counts and the final lan-
guage model size by differentiating compression
strategies for the pointers, namely the 4-byte raw
value (Trie), the sorted integer compression (In-
teger) and our succinct representation (Succinct).
The “block” indicates block compression. For the
sake of implementation simplicity, the sorted in-
teger compression used a fixed 8-bit shift amount,
although the original paper proposed recursively
determined optimum shift amounts (Raj and Whit-
taker, 2003). 8-bit quantization was performed
for probabilities and back-off coefficients using a
simple binning approach (Federico and Cettolo,
2007).

N -gram counts were reduced from 23.59GB
to 10.57GB by our succinct representation with
block compression. N -gram language models of
42.65GB were compressed to 18.37GB. Finally,
the 8-bit quantized N -gram language models are
represented by 9.83GB of space.

Table 2 shows the compression ratio for the
pointer table alone. Block compression employed
on raw 4-byte pointers attained a large reduc-
tion that was almost comparable to sorted inte-
ger compression. Since large pointer value tables
are sorted, even a generic compression algorithm
could achieve better compression. Using our suc-
cinct representation, 2.4 bits are required for each
N -gram. By using the “flat” trie structure, we
approach closer to its information-theoretic lower
bound beyond the LOUDS baseline. With block
compression, we achieved 1.8 bits per N -gram.

Table 3 shows the effect of variable length
coding and block compression for the word ids,
counts, probabilities and back-off coefficients. Af-
ter variable-length coding, the word id is almost
half its original size. We assign a word id for each

343



w/o block w/ block
Counts Trie 23.59 GB 12.21 GB

Integer 14.59 GB 11.18 GB
Succinct 12.62 GB 10.57 GB

Language Trie 42.65 GB 20.01 GB
model Integer 33.65 GB 18.98 GB

Succinct 31.67 GB 18.37 GB
Quantized Trie 24.73 GB 11.47 GB
language Integer 15.73 GB 10.44 GB
model Succinct 13.75 GB 9.83 GB

Table 1: Summary of N -gram compression

total per N -gram
4-byte Pointer 12.04 GB 27.24 bits
+block compression 2.42 GB 5.48 bits
Sorted Integer 3.04 GB 6.87 bits
+block compression 1.39 GB 3.15 bits
Succinct 1.06 GB 2.40 bits
+block compression 0.78 GB 1.76 bits

Table 2: Compression ratio for pointers

word according to its reverse sorted order of fre-
quency. Therefore, highly frequent words are as-
signed smaller values, which in turn occupies less
space in our variable length coding. With block
compression, we achieved further 1 GB reduction
in space. Since the word id sequence preserves
local ordering for a certain range, even a generic
compression algorithm is effective.

The most frequently observed count in N -gram
data is one. Therefore, we can reduce the space
by the variable length coding. Large compression
rates are achieved for both probabilities and back-
off coefficients.

5 Conclusion

We provided a succinct representation of the N -
gram language model without any loss. Our
method approaches closer to the information-
theoretic lower bound beyond the LOUDS base-
line. Experimental results showed our succinct
representation drastically reduces the space for
the pointers compared to the sorted integer com-
pression approach. Furthermore, the space of
N -grams was significantly reduced by variable

total per N -gram
word id size (4 bytes) 14.09 GB 31.89 bits

+variable length 6.72 GB 15.20 bits
+block compression 5.57 GB 12.60 bits

count size (8 bytes) 28.28 GB 64.00 bits
+variable length 4.85 GB 10.96 bits

+block compression 4.22 GB 9.56 bits
probability size (4 bytes) 14.14 GB 32.00 bits

+block compression 9.55 GB 21.61 bits
8-bit quantization 3.54 GB 8.00 bits

+block compression 2.64 GB 5.97 bits
backoff size (4 bytes) 9.76 GB 22.08 bits

+block compression 2.48 GB 5.61 bits
8-bit quantization 2.44 GB 5.52 bits

+block compression 0.85 GB 1.92 bits

Table 3: Effects of block compression

length coding and block compression. A large
amount of N -gram data is reduced from unin-
dexed gzipped 25 GB text counts to 10 GB of
indexed language models. Our representation is
practical enough though we did not experimen-
tally investigate the runtime efficiency in this pa-
per. The proposed representation enables us to
utilize a web-scaled N -gram in our MT compe-
tition system (Watanabe et al., 2008). Our suc-
cinct representation will encourage new research
on web-scaled N -gram data without requiring a
larger computer cluster or hundreds of gigabytes
of memory.

Acknowledgments

We would like to thank Daisuke Okanohara for his
open source implementation and extensive docu-
mentation of LOUDS, which helped our original
coding.

References
T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean.

2007. Large language models in machine transla-
tion. In Proc. of EMNLP-CoNLL 2007.

K. Church, T. Hart, and J. Gao. 2007. Compressing
trigram language models with Golomb coding. In
Proc. of EMNLP-CoNLL 2007.

O. Delpratt, N. Rahman, and R. Raman. 2006. Engi-
neering the LOUDS succinct tree representation. In
Proc. of the 5th International Workshop on Experi-
mental Algorithms.

M. Federico and M. Cettolo. 2007. Efficient handling
of n-gram language models for statistical machine
translation. In Proc. of the 2nd Workshop on Statis-
tical Machine Translation.

G. Jacobson. 1989. Space-efficient static trees and
graphs. In 30th Annual Symposium on Foundations
of Computer Science, Nov.

D. K. Kim, J. C. Na, J. E. Kim, and K. Park. 2005. Ef-
ficient implementation of rank and select functions
for succinct representation. In Proc. of the 5th Inter-
national Workshop on Experimental Algorithms.

B. Raj and E. W. D. Whittaker. 2003. Lossless com-
pression of language model structure and word iden-
tifiers. In Proc. of ICASSP 2003, volume 1.

A. Stolcke. 1998. Entropy-based pruning of backoff
language models. In Proc. of the ARPA Workshop
on Human Language Technology.

D. Talbot and T. Brants. 2008. Randomized language
models via perfect hash functions. In Proc. of ACL-
08: HLT.

T. Watanabe, H. Tsukada, and H. Isozaki. 2008. NTT
SMT system 2008 at NTCIR-7. In Proc. of the 7th
NTCIR Workshop, pages 420–422.

344


