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Abstract 

c-rater is Educational Testing Service’s 
technology for the content scoring of short 
student responses.  A major step in the scor-
ing process is Model Building where vari-
ants of model answers are generated that 
correspond to the rubric for each item or test 
question. Until recently, Model Building 
was knowledge-engineered (KE) and hence 
labor and time intensive. In this paper, we 
describe our approach to automating Model 
Building in c-rater. We show that c-rater 
achieves comparable accuracy on automati-
cally built and KE models. 

1 Introduction 

c-rater (Leacock and Chodorow, 2003) is Edu-
cational Testing Service’s (ETS) technology 
for the automatic content scoring of short free-
text student answers, ranging in length from a 
few words to approximately 100 words. While 
other content scoring systems [e.g., Intelligent. 
Essay Assessor (Foltz, Laham and Landauer, 
2003), SEAR (Christie, 1999), IntelliMetric 
(Vantage Learning Tech, 2000)] take a holis-
tic 1  approach, c-rater takes an analytical ap-
proach to scoring content. The item rubrics 
specify content in terms of main points or con-
cepts required to appear in a student’s correct 
answer. An example of a test question or item 
follows: 

                                                 
1 Holistic means an overall score is given for a student’s 
answer as opposed to scores for individual components of 
a student’s answer. 

 
Item 1 (Full credit: 2 points) 
Stimulus: A Reading passage 
 
Prompt:  
In the space below, write the 
question that Alice was most 
likely trying to answer when 
she performed Step B. 

Concepts or main/key points: 
C :1  How does rain forma-

tion occur in winter? 
C : 2 How is rain formed? 
C : 3 How do temperature 

and altitude contribute 
to the formation of 
rain? 

 
Scoring rules:  
2 points for C1  

1 for C2 (only if C1 is not present) 
1 for C3 (only if C1 and C2 are not present)  

Otherwise 0 

 
We view c-rater's task as a textual entailment 
(TE) problem. We use TE here to mean either 
a paraphrase or an inference (up to the context 
of the item or test question). c-rater's task is 
reduced to a TE problem in the following way:  

 
Given a concept, C, (e.g., “body increases 
its temperature”) and a student answer, A, 
(e.g., either “the body raises temperature,” 
“the body responded. His temperature was 
37◦ and now it is 38◦,” or “Max has a fe-
ver”) and the context of the item, the goal 
is to check whether C is an inference or 
paraphrase of A (in other words, A implies 
C and A is true). 

 
There are four main steps in c-rater. The first 
one is Model Building (MB), where a set of 
model answers are generated (either manually 
or automatically). Second, c-rater automati-
cally processes model answers and students’ 
answers using a set of natural language proc-
essing (NLP) tools and extracts the linguistic 
features. Third, the matching algorithm  
Goldmap uses the linguistic features culmi-
nated from both MB and NLP to automatically 
determine whether a student’s response entails 
the expected concepts. Finally, c-rater applies 
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the scoring rules to produce a score and feed-
back that justifies the score to the student.  

 
Until recently, MB was knowledge-engineered 
(KE). The KE approach for one item required, 
on average, 12 hours of time and labor. This 
paper describes our approach to automatic MB. 
We show that c-rater achieves comparable ac-
curacy on automatically- and manually-built 
models. Section 2 outlines others’ work in this 
domain and emphasizes the contribution of this 
paper. Section 3 outlines c-rater. In Section 4, 
we describe how MB works. Section 5 ex-
plains how we automate the process. Prior to 
the conclusion, we report the evaluation of this 
work.    

 

2 Automatic Content Scoring:  
Others’ Work  

A few systems that deal with both short an-
swers and analytic-based content exist. The 
task, in general, is reduced to comparing a stu-
dent’s answer to a model answer. Recent work 
by Mohler and Mihalcea (2009) at the Univer-
sity of North Texas uses unsupervised methods 
in text-to-text semantic similarity comparing 
unseen students’ answers to one correct an-
swer. Previous work, including c-rater, used 
supervised techniques to compare unseen stu-
dents’ answers to the space of potentially “all 
possible correct answers” specified in the ru-
bric of the item at hand. The techniques varied 
from information extraction with knowledge-
engineered patterns representing the model 
answers [Automark at Intelligent Assessment 
Technologies (Mitchell, 2002), the Oxford-
UCLES system (Sukkarieh, et. al., 2003) at the 
University of Oxford] to data mining tech-
niques using very shallow linguistic features 
[e.g., Sukkarieh and Pulman (2005) and Car-
melTC at Carnegie Mellon University (Rose, 
et al. 2003)]. Data mining techniques proved 
not to be very transparent when digging up 
justifications for scores. 
 
c-rater’s model building process is similar to 
generating patterns but the patterns in c-rater 
are written in English instead of a formal lan-
guage. The aim of the process is to produce a 
non-trivial space of possible correct answers 
guided by a subset of the students’ answers. 
The motivation is that the best place to look for 
variations and refinements for the rubric is the 

students’ answers. This is what test developers 
do before piloting a large-scale exam. From an 
NLP point of view, the idea is that generating 
this space will make scoring an unseen answer 
easier than just having one correct answer. 
However, similar to what other systems re-
ported, generating manually-engineered pat-
terns is very costly. In Sukkarieh et al. (2004) 
there was an attempt to generate patterns 
automatically but the results reported were not 
comparable to those using manually-generated 
patterns. This paper presents improvements on 
previous supervised approaches by automating 
the process of model-answer building using 
well-known NLP methods and resources while 
yielding comparable results to knowledge-
engineered methods.  

3 c-rater, in Brief 

In c-rater, manual MB has its own graphical 
interface, Alchemist. MB uses the NLP tools 
and Goldmap (which reside in the c-rater 
Engine). On the other hand, Goldmap depends 
on the model generated. The c-rater Engine 
performs NLP on input text and concept rec-
ognition or TE between the input text and each 
concept (see Figure 1). First, a student answer 
is processed for spelling corrections in an at-
tempt to decrease the noise for subsequent 
NLP tools. In the next stage, parts-of-speech 
tagging and parsing are performed (the 
OpenNLP parser is used 
http://opennlp.sourceforge.net). In the third 
stage, a parse tree is passed through a feature 
extractor. Manually-generated rules extract 
features from the parse tree. The result is a flat 
structure representing phrases, predicates, and 
relationships between predicates and entities. 
Each phrase is annotated with a label indicat-
ing whether it is independent or dependent. 
Each entity is annotated with a syntactic and 
semantic role. In the pronoun resolution 
stage, pronouns are resolved to either an entity 
in the student’s answer or the question. Finally, 
a morphology analyzer reduces words to their 
lemmas.2 The culmination of the above tools 
results in a set of linguistic features used by the 
matching algorithm, Goldmap. In addition to 
the item-independent linguistic features col-
lected by the NLP tools, Goldmap uses item-
dependent features specified in MB to decide 
whether a student’s answer, A, and a model 
                                                 
2 We do not go into detail, assuming that the reader is 
familiar with the described NLP techniques. 
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answer match, i.e. that concept C represented 
in the model answer, is entailed by A.   
 

 
 
Figure 1. c-rater Engine   

 

4 KE Model Building 

A dataset of student answers for an item is split 
into development (DEV), cross-validation 
(XVAL), and blind (BLIND) datasets. DEV is 
used to build the model, XVAL is used to vali-
date it and BLIND is used to evaluate it. All 
datasets are double-scored holistically by hu-
man raters and the scoring process takes an 
average 3 hours per item for a dataset of 
roughly 200 answers. 

 
For each concept Ci in item X, a model builder 
uses DEV to create a set of Model Sentences 
(MSij) that s/he believes entails concept Ci in 
the context of the item. S/he is required to 
write MSij in complete sentences. For each 
model sentence MSij,, the model builder selects 
the Required Lexicon (RLijk), a set of the most 
essential lexical entities required to appear in a 
student’s answer. Then, for each RLijk, the 
model builder selects a set of Similar Lexicon 
(SLijkt), guided by the list of words automati-
cally extracted from a dependency-based the-
saurus (cs.ualberta.ca/~lindek/downloads.htm).  
 
The process is exemplified in Figure 2. Pre-
sented with the concept, “What causes rain to 
form in winter time?,” a model builder writes 
model sentences like “Why does rain fall in 
the winter?,” highlights or selects lexical items 
that s/he believes are the required tokens  
(e.g., “why,” “rain,” “fall,” “in,” “winter”) 
and writes a list of similar lexical entities for 

each required token if needed (e.g., {descend, 
go~down, …} are similar to words like“fall”).3

 

 
 
Figure 2. KE Model Building 

 
The model for each item X is comprised of the 
scoring rules, the collections of model sen-
tences MSij, associated lexical entities RLijk, 
and corresponding similar lexicon SLijkt. Each 
model answer is written in terms of MSij 
where:  

 
MSij entails Ci for i=1,…, N, and N is the 
number of concepts specified for item X. 
For each concept Ci, Goldmap checks 
whether answer A entails Ci, by check-
ing whether A entails one of the model 
sentences MSij, given the additional fea-
tures RLijk and corresponding SLijkt. 

 
In practice, model building works as follows. 
The model builder, guided by the DEV dataset 
and holistic scores, starts with writing a few 
model sentences and selects corresponding 
required (RLijk) and similar (SLijkt) lexicon. 
S/he then uses the c-rater engine to automati-
cally evaluate the model using the DEV data-
set, i.e., using the model produced up to that 
point. Goldmap is used to detect if any answers 
in the DEV dataset contain any of the model 
sentences and scores are assigned for each an-
swer. If the scoring agreement between c-rater 
and each of the two human raters (in terms of a 
kappa statistic) is much lower than that be-
tween the two human raters, then the model is 
judged unsuitable and the process continues 
iteratively until kappa statistics on the DEV 
dataset are satisfactory, i.e., c-rater’s agree-
ment with human raters is as high as the kappa 
between human raters. Once kappa statistics on 
DEV are satisfactory, the model builder uses  

                                                 
3 We use lexicon, lexical entities, words, terms and to-
kens interchangeably meaning either uni- or bi-grams. 

63



c-rater to evaluate the model on the XVAL 
dataset automatically. Again, until the scoring 
agreement between c-rater and human raters 
on XVAL dataset is satisfactory, the model 
builder iteratively changes the model. Unlike 
the DEV dataset, the XVAL dataset is never 
seen by a model builder. The logic here is that 
over-fitting DEV is a concern, making it hard 
or impossible to generalize beyond this set. 
Hence, the results on XVAL can help prevent 
over-fitting and ideally would predict results 
over unseen data. 
    
Note that a model builder can introduce what 
we call a negative concept Ci

-1 for a concept Ci 
and adjust the scoring rules accordingly. When 
this happens, a model builder writes model 
sentences MSi

-1
j  entailing Ci

-1 , and selects re-
quired words RLi

-1
jk and corresponding similar 

words SLi
-1

jkt  in the same way for any other 
(positive) concept. 
 
On average, MB takes 12 hours of manual 
work per item (plus 2 hours, on average, for an 
optional model review by someone other than 
the model builder). This process is time con-
suming and error-prone despite utilizing a 
user-friendly interface like Alchemist. In addi-
tion, the satisfaction criterion while building a 
model is subjective to the model builder.  

5 Automated Model Building 

The process of writing model sentences de-
scribed above involves: 1) finding the parts of 
students’ answers containing the concept for 
each expected concept, 2) abstracting over 
“similar” parts, and 3) representing the abstrac-
tion in one (or more) model sentence(s). The 
process, as mentioned earlier, is similar to 
writing rules for information extraction, but 
here one writes them in English sentences and 
not in a formal language. In practice, there is 
no mechanism in Alchemist to cluster “simi-
lar” parts and MB, in this aspect, is not per-
formed in any systematic manner. Hence, we 
introduce what we call concept-based scoring 
– used instead of the holistic human scoring. In 
concept-based scoring, human raters annotate 
students’ responses for each concept C, and 
highlight the part of the answer that entails C.  
In Sukkarieh and Blackmore (2009), we de-
scribe concept-based scoring in detail and how 
this helps in the KE-MB approach. In this pa-
per, we extend the approach by showing how 

concept-based scores used in the automated 
approach reduce the time needed for MB sub-
stantially while yielding comparable results. 
Concept-based scoring is done manually. On 
average, it takes around 3.5 hours per item for 
a dataset of roughly 200 answers.  
 
The MB process is reduced to: 

  
1. Concept-based scoring 
2. Automatically selecting required lexicon 
3. Automatically selecting similar lexicon 
 

While holistic scoring takes on average 3 hours 
for a dataset of 200 answers, concept-based 
scoring takes 3.5 hours for the same set. How-
ever, automated MB takes 0 hours of human 
intervention–a substantial reduction over the 
12 hours required for manual MB.    

5.1   Concept-based Scoring 

We have developed a concept-based scoring 
interface (CBS) that can be customized for 
each item [due to lack of space we do not in-
clude an illustration].  The CBS interface dis-
plays a student’s answer to an item and all of 
the concepts corresponding to that item. The 
terms {Absent, Present, Negated} are what we 
call analytic or concept-based scores. Using 
CBS, the human scorer clicks Present when a 
concept is present and Negated when a concept 
is negated or refuted (the default is Absent). 
This is done for each concept. The human 
scorer also highlights the part of a student’s 
answer that entails the concept in the context 
of the item. We call a quote corresponding to 
concept C ‘Positive Evidence’ or ‘Negative 
Evidence’ for Present and Negated, respec-
tively. For example, assume a student answer 
for Item 1 is “Her research tells us a lot about 
rain and hail; in particular, the impact that 
temperature variations have on altitude con-
tribute to the formation of rain.” For  
Concept C3, the human rater highlights the 
Positive Evidence, “the impact that tempera-
ture variations have on altitude contribute to 
the formation of rain.” Parts of answers corre-
sponding to one piece of Evidence (positive or 
negative) do not need to be in the same sen-
tence and could be scattered over a few lines.  
 
Similar to the KE approach, we split the  
double-concept-based scored dataset into DEV 
and XVAL sets. However, the splitting is done 
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according to the presence (or absence) of a 
concept. We use stratified sampling (Tucker, 
1998) trying to uniformly split data such that 
each concept is represented in the DEV as well 
as the XVAL datasets. As mentioned earlier, 
the KE approach can include negative con-
cepts; currently we do not use Negative Evi-
dence automatically. In the remainder of this 
paper, Evidence is taken to mean the collection 
of Positive Evidence.    

5.2 Automatically Selecting Model  
Sentences 

Motivation

During manual MB with Alchemist, a model 
builder is guided by the complete set of stu-
dents’ answers in the DEV dataset, including 
holistic scores. Concept-based scoring allows a 
model builder, if we were to continue the man-
ual MB, to be guided by concept-based scores 
and students’ answers highlighted with the 
Evidence that corresponds to each concept 
when writing model sentences as shown, 
where MSij entails Ci and Eir entails Ci. 
 

Concept Ci Evidence Eir MSij

C1 E11 MS11

 E1s1 MS1t1

C2 E21 MS21

 E2s2 MS2t2

Cn … … 
 
Further, students may misspell, write ungram-
matically, or use incomplete sentences. Hence, 
Evidence may contain spelling and grammati-
cal errors. Evidence may also be in the form of 
incomplete sentences. Although human model 
builders generating sentences with Alchemist 
are asked to write complete MSij,, there is no 
reason why MSij, needs to be in the form of 
complete sentences. The NLP tools in the  
c-rater engine can cope with a reasonable 
amount of misspelled words as well as un-
grammatical and/or incomplete sentences.  
 
We observe the following: 
 
1. Concepts are seen as a set of model sen-

tences that are subsumed by the list of 
model sentences built by humans 

2. Evidence is seen as a list of model 
“sentences” that nearly subsume the set gener-

ated by humans (i.e., the intersection is not 
empty)   

Approach 

In the automatic approach, we select the Evi-
dence highlighted in the DEV dataset as MSijs. 
We either choose the intersection of Evidence 
(i.e., where both human raters agree) or the 
union (i.e., highlighted by either human) as 
entailing a concept.  

5.3 Automatically Selecting Required 
Lexicon 

Motivation 

Required lexicon for an item includes the most 
essential lexicon for this item. In the KE ap-
proach, the required lexicon is selected by the 
model builder, who makes a judgment about it. 
In Alchemist, a model builder is presented 
with a tokenized model sentence and s/he 
clicks on a token to select it as a required lexi-
cal entity. 
  
We have observed that selecting required lexi-
con RLijk involves ignoring or removing noise, 
such as stop-words (e.g., “a,” “the,” “to,” etc.), 
from the presented model sentence. For exam-
ple, a model builder may select the words, 
“how,” “rain,” “formation,” and “winter” in 
the model sentence “How does rain formation 
occur in the winter?” and ignore the rest. In 
addition, there might be words other than stop-
words that can be ignored. For example, if a 
model builder writes, “It may help Alice and 
scientists to know how rain formation occurs 
in the winter” – the tokens “scientists” and 
“Alice” are not stop-words and can be ignored.  
Approach 

We evaluate five methods of automatically 
selecting the required lexicon: 
 
1. Consider all tokens in MSij  
2. Consider all tokens in MSij without stop-

words 
3. Consider all heads of NPs and VPs (nouns 

and verbs) 
4. Consider all heads of all various syntactic 

roles including adjectives and adverbs 
5. Consider the lexicon with the highest mu-

tual information measures, with all lexical 
tokens in model sentences corresponding 
to the same concept   
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The first method does not need any elabora-
tion. In the following, we briefly elaborate on 
each of the other methods. 
 
5.3.1 All Words Without Stop Lexicon 

In addition to the list of stop-words provided in 
Van Rijsbergen’s book (Rijsbergen, 2004) and 
the ones we extracted from WordNet 2.0 
http://wordnet.princeton.edu/
(except for “zero,” “minus,” “plus,” and “op-
posite”), we have developed a list of approxi-
mately 2,000 stop-words based on students’ 
data. This includes various interjections and 
common short message service (SMS) abbre-
viations that are found in students’ data (see 
Table 1 for examples).  

 
1. Umm 2. Aka 3. Coz 
4. Viz. 5. e.g. 6. Hmm 
7. Phew 8. Aha 9. Wow 
10. Ta 11.Yippee 12. NTHING 
13. Dont know 14. Nada 15. Guess 
16. Yoink 17. RUOK 18. SPK 

Table 1. Student-driven stop-words 
 

5.3.2 Head Words of Noun and Verb 
Phrases  

The feature extractor in c-rater, mentioned in 
Section 2, labels the various noun and verb 
phrases with a corresponding syntactic or se-
mantic role using in-house developed rules. 
We extract the heads of these by simply con-
sidering the rightmost lexical entity with an 
expected POS tag, i.e., for noun phrases we 
look for the rightmost nominal lexical entity, 
for verb phrases we look for the rightmost 
verbs.   

 
5.3.3 Head Words of all Phrases 

We consider all phrases or syntactic roles, i.e., 
not only noun and verb phrases but also adjec-
tive and adverb phrases. 
 
5.3.4 Words with Highest Mutual  

Information  

The mutual information (MI) method measures 
the mutual dependence of two variables. MI in 
natural language tasks has been used for in-
formation retrieval (Manning et. al., 2008) and 
for feature selection in classification tasks 
(Stoyanchev and Stent, 2009).  
 

Here, MI selects words that are indicative of 
the correct answer while filtering out the words 
that are also frequent in incorrect answers. Our 
algorithm selects a lexical term if it has high 
mutual dependence with a correct concept or 
Evidence in students’ answers. For each term 
mentioned in a students’ answer we compute 
mutual information measure (I): 

 
where N11 is the number of student answers 
with the term co-occurring with a correct con-
cept or Evidence, N01 is the number of student 
answers with a correct concept but without the 
term, N10 is the number of student answers 
with the term but without a correct concept, 
N00 is the number of student answers with nei-
ther the term nor a correct concept, N1. is the 
total number of student answers with the term, 
N.1 is the total number of utterances with a cor-
rect concept, and N is the total number of ut-
terances. The MI method selects the terms or 
words predictive of both presence and absence 
of a concept.  In this task we are interested in 
finding the terms that indicate presence of a 
correct concept. We ignore the words that are 
more likely to occur without the concept (the 
words for which N11< N10). In this study, after 
looking at the list of words produced, we sim-
ply selected the top 40 words with the highest 
mutual information measure.  

5.4 Automatically Selecting Similar  
Lexicon 

Motivation 

In the KE approach, once a model builder se-
lects a required word, a screen on Alchemist 
lists similar words extracted automatically 
from Dekang Lin’s dependency-based thesau-
rus. The model builder can also use other re-
sources like Roget’s thesaurus 
(http://gutenberg.org/etext/22) and WordNet 
3.0 (http://wordnet.princeton.edu/). The model 
builder can also write her/his own words that 
s/he believes are similar to the required word.  
 
Approach 

Other than choosing no similar lexicon to a 
required word W, automatically selecting simi-
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lar lexicon consists of the following experi-
ments: 
 
1. All words similar to W in Dekang Lin’s 

generated list 
2. Direct synonyms for W or its lemma from 

WordNet 3.0 (excluding compounds). 
Compounds are excluded because we no-
ticed many irrelevant compounds that 
could not replace uni-grams in our data. 

3. All similar words for W or its lemma from 
WordNet 3.0, i.e., direct synonyms, related 
words and hypernyms (excluding com-
pounds). Hypernyms of W are restricted to 
a maximum of 2 levels up from W 

 
To summarize, for each concept in the KE ap-
proach, a model builder writes a set of Model 
Sentences, manually selects Required Lexicon 
and Similar Lexicon for each required word. In 
the automated approach, all of the above is 
selected automatically. Table 2 summarizes the 
methods or experiments. We refer to a method 
or experiment in the order of selection of RLijk 
and SLijkt; e.g., we denote the method where all 
words were required and similar lexicon cho-
sen from WordNet Direct synonyms by AWD. 
HSVocWA denotes the method where heads of 
NPs and VPs with similar words from Word-
Net All, i.e., direct, related, and hypernyms are 
selected.  A method name preceded by I or U 
refers to Evidence Intersection or Union, re-
spectively. For each item, there are 40 experi-
ments/methods performed with Evidence as 
model sentences. 
 

Model 
Sentences Required Lexicon Similar Lexicon 

Concepts  
(C) 
 

All words (A) None chosen (N) 

Evidence 
Intersection 
(I) 
 

All words with no stop-
words (S) 

Lin all (L) 

Evidence 
Union (U) 

Heads of NPs and VPs 
(HSvoc) 

WordNet direct 
synonyms (WD) 

 Heads of all phrases (HA) WordNet all 
similar words 
(WA) 

 Highest Mutual informa-
tion measure (M) 

 

Table 2. Parameters and “Values” of Model  
Building 

Before presenting the evaluation results, we 
make a note about spelling correction. c-rater 
has its own automatic spelling corrector. Here, 
we only outline how spelling correction relates 

to a model. In the KE approach, model sen-
tences are assumed to not having spelling er-
rors. We use the model sentences, the stimulus 
(if it exists), and the prompt of the item for 
additional guidance to select the correctly-
spelled word from a list of potential correctly-
spelled words designated by the spelling cor-
rector. On the other hand, the Evidence can be 
misspelled. Consequently, when the Evidence 
is considered for model sentences, the spelling 
corrector first performs spelling correction on 
the Evidence, using stimulus, concepts, and 
prompts as guides. The students’ answers are 
then corrected, as in the KE approach. 

6 Evaluation 

The study involves 12 test items developed at 
ETS for grades 7 and 8. There are seven Read-
ing Comprehension items, denoted R1-R7 and 
five Mathematics items, denoted M1-M5. 
Score points for the items range from 0 to 3 
and the number of concepts ranges from 2 to 7. 
The answers for these items were collected in 
schools in Maine, USA. The number of an-
swers collected for each item ranges from 190-
264. Answers were concept-based scored by 
two human raters (H1, H2). We split the dou-
ble-scored students’ answers available into 
DEV (90-100 answers), XVAL (40-50) and 
BLIND (60-114). Training data refer to DEV 
together with XVAL datasets.  Results are re-
ported in terms of un-weighted kappa, repre-
senting scoring agreement with humans on the 
BLIND dataset.  H1/2 refers to the agreement 
between the two humans, c-H1/2 denotes the 
average of kappa values between c-rater and 
each human (c-H1 and c-H2). Table 3 reports 
the best kappa over the 40 experiments on 
BLIND (Auto I or U). The baseline (Auto C) 
uses concepts as model sentences.  
 

Item 
#Training 

(Blind) H1/2 Manual 
Auto 

C 
Auto 
I or U 

   c-H1/2 c-H1/2 c-H1/2 
R1 150  (114) 1.0    0.94   0.51 0.97 
R2 150  (113) 0.76    0.69   0.28 0.76 
R3 150  (107) 0.96    0.87   0.18 0.88 
R4 150    (66) 0.77    0.71   0.46 0.75 
R5 130    (60) 0.71    0.58   0.22 0.61 
R6 130    (61) 0.71    0.73   0.23 0.77 
R7 130    (61) 0.87    0.55   0.42 0.42 
M1 130    (67) 0.71      0.6   0.0 0.66 
M2 130    (67) 0.8     0.71   0.54 0.67 
M3 130    (67) 0.86    0.76   0.0 0.79 
M4 130    (67) 0.87    0.82   0.13 0.82 
M5 130    (67) 0.77    0.63   0.29 0.65 

Table 3. Best on BLIND over all experiments 
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The accuracy using the automated approach 
with Evidence as model sentences is compara-
ble to that of the KE approach (noted in the 
column labeled, “Manual”) with a 0.1 maxi-
mum difference in un-weighted kappa statis-
tics. The first methods (in terms of running 
order) yielding the best results for the items (in 
order of appearance in Table 3) are ISWD, 
ISW, ISN, IMN, IHSVocN, UHALA, ISN, 
UHSVocN, SLA, ISN, IHAN and IHS-
VocWA. The methods yielding the best results 
(regardless of running order) for all items us-
ing the Evidence were: 

IHAN U/IHAWD IHAWA 
U/IHALA U/IHSvocN IHSvocWA 
UHSvocLA UHSvocWA UHSvocWD 
U/ISLA U/ISN U/ISWA 
U/ISWD U/IAWA IMN 
IMWD   

This approach was only evaluated on a small 
number of items. We expect that some meth-
ods will outperform others through additional 
evaluation.  
In an operational setting (i.e., not a research 
environment), we must choose a model before 
we score the BLIND data. Hence, a voting 
strategy over all the experiments has to be de-
vised based on the results on DEV and XVAL. 
Following our original logic, i.e., using XVAL 
to avoid over-fitting and predicting the results 
of BLIND, we implemented a simple voting 
strategy. We considered c-H1/2 on XVAL for 
each experiment. We found the maximum over 
all the c-H1/2 for all experiments. The model 
corresponding to the maximum was considered 
the model for the item and used to score the 
BLIND data.  When there was a tie, the first 
method to yield the maximum W chosen.  
Table 4 shows the results on BLIND using the 
voting strategy. The results are comparable to 
those of the manual approach except for R7 
which has 7 concepts, the highest number of 
concepts among all items. The results also 
show that the voting strategy did not select the 
“best” model or experiment. We notice that 
some methods were better in detecting whether 
an answer entailed a concept C than detecting 
whether it entailed another  
concept D, specified for the same item. This 
implies that the voting strategy will have to be 
a function that not only considers the overall 
kappa agreement (i.e., holistic scores), but 
concept-based agreement (i.e., using concept-
based scores).  Next, we noticed that for R7, 
XVAL did not predict the results on BLIND. 
This was mainly due to the inability to apply 

stratified sampling with such a small sample 
size when there are 7 concepts involved. Fur-
ther, we may need to take advantage of the 
training data differently, e.g. an n-fold cross-
validation approach. Finally, when there is a 
tie, factors other than running order should be 
considered. 
 

Item 
#Training 

(Blind) H1/2 Manual 
Auto 
(C) 

Auto 
(I or U) 

   c-H1/2 c-H1/2 c-H1/2 
R1 150  (114) 1.0    0.94   0.51 0.88 
R2 150  (113) 0.76   0.69   0.18 0.61 
R3 150  (107) 0.96   0.87   0.18 0.86 
R4 150    (66) 0.77   0.71   0.38 0.67 
R5 130    (60) 0.71   0.58   0.17 0.51 
R6 130    (61) 0.71   0.73   0.13 0.73 
R7 130    (61) 0.87   0.55   0.39 0.16 
M1 130     67) 0.71    0.6    0.0 0.65 
M2 130     67) 0.8    0.71   0.54 0.58 
M3 130     67) 0.86   0.76   0.0 0.79 
M4 130     67) 0.87   0.82   0.13 0.68 
M5 130     67) 0.77   0.63   0.26 0.49 

Table 4. Voting Strategy results on BLIND 

In all of the above experiments, the Evidence 
was corrected using the c-rater’s automatic 
spelling corrector using the stimulus (in case of 
Reading), the concepts, and the prompts to 
guide the selection of the correctly-spelled 
words. 

7 Conclusion 

Analytic-based content scoring is an applica-
tion of textual entailment. The complexity of 
the problem increases due to the noise in stu-
dent data, the context of an item, and different 
subject areas. In this paper, we have shown 
that building a c-rater scoring model for an 
item can be reduced from 12 to 0 hours of hu-
man intervention with comparable scoring per-
formance. This is a significant improvement on 
research to date using supervised techniques.  
In addition, as far as we know, no one other 
than Calvo et al. (2005) made any comparisons 
between a manually-built “thesaurus” (e.g. 
WordNet) and an automatically-generated 
“thesaurus” (e.g. Dekang Lin’s database) in an 
NLP task or application prior to our work. Our 
next step is to evaluate (and refine) the ap-
proach on a larger set of items. Further im-
provements will include using Negative Evi-
dence, automating concept-based scoring, in-
vestigating a context-sensitive selection of 
similar words using the students’ answers and 
experimenting with various voting strategies. 
Finally, we need to compare the results re-
ported using unsupervised techniques on the 
same items and datasets if possible.   
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