
Proceedings of the 2009 Workshop on Applied Textual Inference, ACL-IJCNLP 2009, pages 61–69,
Suntec, Singapore, 6 August 2009. c©2009 ACL and AFNLP

Automating Model Building in c-rater

Jana Z. Sukkarieh
Educational Testing Service

Rosedale Road, Princeton, NJ 08541
jsukkarieh@ets.org

Svetlana Stoyanchev
Stony Brook University
Stony Brook, NY, 11794

svetastenchikova@gmail.com

Abstract

c-rater is Educational Testing Service’s
technology for the content scoring of short
student responses. A major step in the scor-
ing process is Model Building where vari-
ants of model answers are generated that
correspond to the rubric for each item or test
question. Until recently, Model Building
was knowledge-engineered (KE) and hence
labor and time intensive. In this paper, we
describe our approach to automating Model
Building in c-rater. We show that c-rater
achieves comparable accuracy on automati-
cally built and KE models.

1 Introduction

c-rater (Leacock and Chodorow, 2003) is Edu-
cational Testing Service’s (ETS) technology
for the automatic content scoring of short free-
text student answers, ranging in length from a
few words to approximately 100 words. While
other content scoring systems [e.g., Intelligent.
Essay Assessor (Foltz, Laham and Landauer,
2003), SEAR (Christie, 1999), IntelliMetric
(Vantage Learning Tech, 2000)] take a holis-
tic 1 approach, c-rater takes an analytical ap-
proach to scoring content. The item rubrics
specify content in terms of main points or con-
cepts required to appear in a student’s correct
answer. An example of a test question or item
follows:

1 Holistic means an overall score is given for a student’s
answer as opposed to scores for individual components of
a student’s answer.

Item 1 (Full credit: 2 points)
Stimulus: A Reading passage

Prompt:
In the space below, write the
question that Alice was most
likely trying to answer when
she performed Step B.

Concepts or main/key points:
C :1 How does rain forma-

tion occur in winter?
C : 2 How is rain formed?
C : 3 How do temperature

and altitude contribute
to the formation of
rain?

Scoring rules:
2 points for C1

1 for C2 (only if C1 is not present)
1 for C3 (only if C1 and C2 are not present)

Otherwise 0

We view c-rater's task as a textual entailment
(TE) problem. We use TE here to mean either
a paraphrase or an inference (up to the context
of the item or test question). c-rater's task is
reduced to a TE problem in the following way:

Given a concept, C, (e.g., “body increases
its temperature”) and a student answer, A,
(e.g., either “the body raises temperature,”
“the body responded. His temperature was
37◦ and now it is 38◦,” or “Max has a fe-
ver”) and the context of the item, the goal
is to check whether C is an inference or
paraphrase of A (in other words, A implies
C and A is true).

There are four main steps in c-rater. The first
one is Model Building (MB), where a set of
model answers are generated (either manually
or automatically). Second, c-rater automati-
cally processes model answers and students’
answers using a set of natural language proc-
essing (NLP) tools and extracts the linguistic
features. Third, the matching algorithm
Goldmap uses the linguistic features culmi-
nated from both MB and NLP to automatically
determine whether a student’s response entails
the expected concepts. Finally, c-rater applies

61

the scoring rules to produce a score and feed-
back that justifies the score to the student.

Until recently, MB was knowledge-engineered
(KE). The KE approach for one item required,
on average, 12 hours of time and labor. This
paper describes our approach to automatic MB.
We show that c-rater achieves comparable ac-
curacy on automatically- and manually-built
models. Section 2 outlines others’ work in this
domain and emphasizes the contribution of this
paper. Section 3 outlines c-rater. In Section 4,
we describe how MB works. Section 5 ex-
plains how we automate the process. Prior to
the conclusion, we report the evaluation of this
work.

2 Automatic Content Scoring:
Others’ Work

A few systems that deal with both short an-
swers and analytic-based content exist. The
task, in general, is reduced to comparing a stu-
dent’s answer to a model answer. Recent work
by Mohler and Mihalcea (2009) at the Univer-
sity of North Texas uses unsupervised methods
in text-to-text semantic similarity comparing
unseen students’ answers to one correct an-
swer. Previous work, including c-rater, used
supervised techniques to compare unseen stu-
dents’ answers to the space of potentially “all
possible correct answers” specified in the ru-
bric of the item at hand. The techniques varied
from information extraction with knowledge-
engineered patterns representing the model
answers [Automark at Intelligent Assessment
Technologies (Mitchell, 2002), the Oxford-
UCLES system (Sukkarieh, et. al., 2003) at the
University of Oxford] to data mining tech-
niques using very shallow linguistic features
[e.g., Sukkarieh and Pulman (2005) and Car-
melTC at Carnegie Mellon University (Rose,
et al. 2003)]. Data mining techniques proved
not to be very transparent when digging up
justifications for scores.

c-rater’s model building process is similar to
generating patterns but the patterns in c-rater
are written in English instead of a formal lan-
guage. The aim of the process is to produce a
non-trivial space of possible correct answers
guided by a subset of the students’ answers.
The motivation is that the best place to look for
variations and refinements for the rubric is the

students’ answers. This is what test developers
do before piloting a large-scale exam. From an
NLP point of view, the idea is that generating
this space will make scoring an unseen answer
easier than just having one correct answer.
However, similar to what other systems re-
ported, generating manually-engineered pat-
terns is very costly. In Sukkarieh et al. (2004)
there was an attempt to generate patterns
automatically but the results reported were not
comparable to those using manually-generated
patterns. This paper presents improvements on
previous supervised approaches by automating
the process of model-answer building using
well-known NLP methods and resources while
yielding comparable results to knowledge-
engineered methods.

3 c-rater, in Brief

In c-rater, manual MB has its own graphical
interface, Alchemist. MB uses the NLP tools
and Goldmap (which reside in the c-rater
Engine). On the other hand, Goldmap depends
on the model generated. The c-rater Engine
performs NLP on input text and concept rec-
ognition or TE between the input text and each
concept (see Figure 1). First, a student answer
is processed for spelling corrections in an at-
tempt to decrease the noise for subsequent
NLP tools. In the next stage, parts-of-speech
tagging and parsing are performed (the
OpenNLP parser is used
http://opennlp.sourceforge.net). In the third
stage, a parse tree is passed through a feature
extractor. Manually-generated rules extract
features from the parse tree. The result is a flat
structure representing phrases, predicates, and
relationships between predicates and entities.
Each phrase is annotated with a label indicat-
ing whether it is independent or dependent.
Each entity is annotated with a syntactic and
semantic role. In the pronoun resolution
stage, pronouns are resolved to either an entity
in the student’s answer or the question. Finally,
a morphology analyzer reduces words to their
lemmas.2 The culmination of the above tools
results in a set of linguistic features used by the
matching algorithm, Goldmap. In addition to
the item-independent linguistic features col-
lected by the NLP tools, Goldmap uses item-
dependent features specified in MB to decide
whether a student’s answer, A, and a model

2 We do not go into detail, assuming that the reader is
familiar with the described NLP techniques.

62

answer match, i.e. that concept C represented
in the model answer, is entailed by A.

Figure 1. c-rater Engine

4 KE Model Building

A dataset of student answers for an item is split
into development (DEV), cross-validation
(XVAL), and blind (BLIND) datasets. DEV is
used to build the model, XVAL is used to vali-
date it and BLIND is used to evaluate it. All
datasets are double-scored holistically by hu-
man raters and the scoring process takes an
average 3 hours per item for a dataset of
roughly 200 answers.

For each concept Ci in item X, a model builder
uses DEV to create a set of Model Sentences
(MSij) that s/he believes entails concept Ci in
the context of the item. S/he is required to
write MSij in complete sentences. For each
model sentence MSij,, the model builder selects
the Required Lexicon (RLijk), a set of the most
essential lexical entities required to appear in a
student’s answer. Then, for each RLijk, the
model builder selects a set of Similar Lexicon
(SLijkt), guided by the list of words automati-
cally extracted from a dependency-based the-
saurus (cs.ualberta.ca/~lindek/downloads.htm).

The process is exemplified in Figure 2. Pre-
sented with the concept, “What causes rain to
form in winter time?,” a model builder writes
model sentences like “Why does rain fall in
the winter?,” highlights or selects lexical items
that s/he believes are the required tokens
(e.g., “why,” “rain,” “fall,” “in,” “winter”)
and writes a list of similar lexical entities for

each required token if needed (e.g., {descend,
go~down, …} are similar to words like“fall”).3

Figure 2. KE Model Building

The model for each item X is comprised of the
scoring rules, the collections of model sen-
tences MSij, associated lexical entities RLijk,
and corresponding similar lexicon SLijkt. Each
model answer is written in terms of MSij
where:

MSij entails Ci for i=1,…, N, and N is the
number of concepts specified for item X.
For each concept Ci, Goldmap checks
whether answer A entails Ci, by check-
ing whether A entails one of the model
sentences MSij, given the additional fea-
tures RLijk and corresponding SLijkt.

In practice, model building works as follows.
The model builder, guided by the DEV dataset
and holistic scores, starts with writing a few
model sentences and selects corresponding
required (RLijk) and similar (SLijkt) lexicon.
S/he then uses the c-rater engine to automati-
cally evaluate the model using the DEV data-
set, i.e., using the model produced up to that
point. Goldmap is used to detect if any answers
in the DEV dataset contain any of the model
sentences and scores are assigned for each an-
swer. If the scoring agreement between c-rater
and each of the two human raters (in terms of a
kappa statistic) is much lower than that be-
tween the two human raters, then the model is
judged unsuitable and the process continues
iteratively until kappa statistics on the DEV
dataset are satisfactory, i.e., c-rater’s agree-
ment with human raters is as high as the kappa
between human raters. Once kappa statistics on
DEV are satisfactory, the model builder uses

3 We use lexicon, lexical entities, words, terms and to-
kens interchangeably meaning either uni- or bi-grams.

63

c-rater to evaluate the model on the XVAL
dataset automatically. Again, until the scoring
agreement between c-rater and human raters
on XVAL dataset is satisfactory, the model
builder iteratively changes the model. Unlike
the DEV dataset, the XVAL dataset is never
seen by a model builder. The logic here is that
over-fitting DEV is a concern, making it hard
or impossible to generalize beyond this set.
Hence, the results on XVAL can help prevent
over-fitting and ideally would predict results
over unseen data.

Note that a model builder can introduce what
we call a negative concept Ci

-1 for a concept Ci
and adjust the scoring rules accordingly. When
this happens, a model builder writes model
sentences MSi

-1
j entailing Ci

-1 , and selects re-
quired words RLi

-1
jk and corresponding similar

words SLi
-1

jkt in the same way for any other
(positive) concept.

On average, MB takes 12 hours of manual
work per item (plus 2 hours, on average, for an
optional model review by someone other than
the model builder). This process is time con-
suming and error-prone despite utilizing a
user-friendly interface like Alchemist. In addi-
tion, the satisfaction criterion while building a
model is subjective to the model builder.

5 Automated Model Building

The process of writing model sentences de-
scribed above involves: 1) finding the parts of
students’ answers containing the concept for
each expected concept, 2) abstracting over
“similar” parts, and 3) representing the abstrac-
tion in one (or more) model sentence(s). The
process, as mentioned earlier, is similar to
writing rules for information extraction, but
here one writes them in English sentences and
not in a formal language. In practice, there is
no mechanism in Alchemist to cluster “simi-
lar” parts and MB, in this aspect, is not per-
formed in any systematic manner. Hence, we
introduce what we call concept-based scoring
– used instead of the holistic human scoring. In
concept-based scoring, human raters annotate
students’ responses for each concept C, and
highlight the part of the answer that entails C.
In Sukkarieh and Blackmore (2009), we de-
scribe concept-based scoring in detail and how
this helps in the KE-MB approach. In this pa-
per, we extend the approach by showing how

concept-based scores used in the automated
approach reduce the time needed for MB sub-
stantially while yielding comparable results.
Concept-based scoring is done manually. On
average, it takes around 3.5 hours per item for
a dataset of roughly 200 answers.

The MB process is reduced to:

1. Concept-based scoring
2. Automatically selecting required lexicon
3. Automatically selecting similar lexicon

While holistic scoring takes on average 3 hours
for a dataset of 200 answers, concept-based
scoring takes 3.5 hours for the same set. How-
ever, automated MB takes 0 hours of human
intervention–a substantial reduction over the
12 hours required for manual MB.

5.1 Concept-based Scoring

We have developed a concept-based scoring
interface (CBS) that can be customized for
each item [due to lack of space we do not in-
clude an illustration]. The CBS interface dis-
plays a student’s answer to an item and all of
the concepts corresponding to that item. The
terms {Absent, Present, Negated} are what we
call analytic or concept-based scores. Using
CBS, the human scorer clicks Present when a
concept is present and Negated when a concept
is negated or refuted (the default is Absent).
This is done for each concept. The human
scorer also highlights the part of a student’s
answer that entails the concept in the context
of the item. We call a quote corresponding to
concept C ‘Positive Evidence’ or ‘Negative
Evidence’ for Present and Negated, respec-
tively. For example, assume a student answer
for Item 1 is “Her research tells us a lot about
rain and hail; in particular, the impact that
temperature variations have on altitude con-
tribute to the formation of rain.” For
Concept C3, the human rater highlights the
Positive Evidence, “the impact that tempera-
ture variations have on altitude contribute to
the formation of rain.” Parts of answers corre-
sponding to one piece of Evidence (positive or
negative) do not need to be in the same sen-
tence and could be scattered over a few lines.

Similar to the KE approach, we split the
double-concept-based scored dataset into DEV
and XVAL sets. However, the splitting is done

64

according to the presence (or absence) of a
concept. We use stratified sampling (Tucker,
1998) trying to uniformly split data such that
each concept is represented in the DEV as well
as the XVAL datasets. As mentioned earlier,
the KE approach can include negative con-
cepts; currently we do not use Negative Evi-
dence automatically. In the remainder of this
paper, Evidence is taken to mean the collection
of Positive Evidence.

5.2 Automatically Selecting Model
Sentences

Motivation

During manual MB with Alchemist, a model
builder is guided by the complete set of stu-
dents’ answers in the DEV dataset, including
holistic scores. Concept-based scoring allows a
model builder, if we were to continue the man-
ual MB, to be guided by concept-based scores
and students’ answers highlighted with the
Evidence that corresponds to each concept
when writing model sentences as shown,
where MSij entails Ci and Eir entails Ci.

Concept Ci Evidence Eir MSij

C1 E11 MS11

 E1s1 MS1t1

C2 E21 MS21

 E2s2 MS2t2

Cn … …

Further, students may misspell, write ungram-
matically, or use incomplete sentences. Hence,
Evidence may contain spelling and grammati-
cal errors. Evidence may also be in the form of
incomplete sentences. Although human model
builders generating sentences with Alchemist
are asked to write complete MSij,, there is no
reason why MSij, needs to be in the form of
complete sentences. The NLP tools in the
c-rater engine can cope with a reasonable
amount of misspelled words as well as un-
grammatical and/or incomplete sentences.

We observe the following:

1. Concepts are seen as a set of model sen-

tences that are subsumed by the list of
model sentences built by humans

2. Evidence is seen as a list of model
“sentences” that nearly subsume the set gener-

ated by humans (i.e., the intersection is not
empty)

Approach

In the automatic approach, we select the Evi-
dence highlighted in the DEV dataset as MSijs.
We either choose the intersection of Evidence
(i.e., where both human raters agree) or the
union (i.e., highlighted by either human) as
entailing a concept.

5.3 Automatically Selecting Required
Lexicon

Motivation

Required lexicon for an item includes the most
essential lexicon for this item. In the KE ap-
proach, the required lexicon is selected by the
model builder, who makes a judgment about it.
In Alchemist, a model builder is presented
with a tokenized model sentence and s/he
clicks on a token to select it as a required lexi-
cal entity.

We have observed that selecting required lexi-
con RLijk involves ignoring or removing noise,
such as stop-words (e.g., “a,” “the,” “to,” etc.),
from the presented model sentence. For exam-
ple, a model builder may select the words,
“how,” “rain,” “formation,” and “winter” in
the model sentence “How does rain formation
occur in the winter?” and ignore the rest. In
addition, there might be words other than stop-
words that can be ignored. For example, if a
model builder writes, “It may help Alice and
scientists to know how rain formation occurs
in the winter” – the tokens “scientists” and
“Alice” are not stop-words and can be ignored.
Approach

We evaluate five methods of automatically
selecting the required lexicon:

1. Consider all tokens in MSij
2. Consider all tokens in MSij without stop-

words
3. Consider all heads of NPs and VPs (nouns

and verbs)
4. Consider all heads of all various syntactic

roles including adjectives and adverbs
5. Consider the lexicon with the highest mu-

tual information measures, with all lexical
tokens in model sentences corresponding
to the same concept

65

The first method does not need any elabora-
tion. In the following, we briefly elaborate on
each of the other methods.

5.3.1 All Words Without Stop Lexicon

In addition to the list of stop-words provided in
Van Rijsbergen’s book (Rijsbergen, 2004) and
the ones we extracted from WordNet 2.0
http://wordnet.princeton.edu/
(except for “zero,” “minus,” “plus,” and “op-
posite”), we have developed a list of approxi-
mately 2,000 stop-words based on students’
data. This includes various interjections and
common short message service (SMS) abbre-
viations that are found in students’ data (see
Table 1 for examples).

1. Umm 2. Aka 3. Coz
4. Viz. 5. e.g. 6. Hmm
7. Phew 8. Aha 9. Wow
10. Ta 11.Yippee 12. NTHING
13. Dont know 14. Nada 15. Guess
16. Yoink 17. RUOK 18. SPK

Table 1. Student-driven stop-words

5.3.2 Head Words of Noun and Verb
Phrases

The feature extractor in c-rater, mentioned in
Section 2, labels the various noun and verb
phrases with a corresponding syntactic or se-
mantic role using in-house developed rules.
We extract the heads of these by simply con-
sidering the rightmost lexical entity with an
expected POS tag, i.e., for noun phrases we
look for the rightmost nominal lexical entity,
for verb phrases we look for the rightmost
verbs.

5.3.3 Head Words of all Phrases

We consider all phrases or syntactic roles, i.e.,
not only noun and verb phrases but also adjec-
tive and adverb phrases.

5.3.4 Words with Highest Mutual

Information

The mutual information (MI) method measures
the mutual dependence of two variables. MI in
natural language tasks has been used for in-
formation retrieval (Manning et. al., 2008) and
for feature selection in classification tasks
(Stoyanchev and Stent, 2009).

Here, MI selects words that are indicative of
the correct answer while filtering out the words
that are also frequent in incorrect answers. Our
algorithm selects a lexical term if it has high
mutual dependence with a correct concept or
Evidence in students’ answers. For each term
mentioned in a students’ answer we compute
mutual information measure (I):

where N11 is the number of student answers
with the term co-occurring with a correct con-
cept or Evidence, N01 is the number of student
answers with a correct concept but without the
term, N10 is the number of student answers
with the term but without a correct concept,
N00 is the number of student answers with nei-
ther the term nor a correct concept, N1. is the
total number of student answers with the term,
N.1 is the total number of utterances with a cor-
rect concept, and N is the total number of ut-
terances. The MI method selects the terms or
words predictive of both presence and absence
of a concept. In this task we are interested in
finding the terms that indicate presence of a
correct concept. We ignore the words that are
more likely to occur without the concept (the
words for which N11< N10). In this study, after
looking at the list of words produced, we sim-
ply selected the top 40 words with the highest
mutual information measure.

5.4 Automatically Selecting Similar
Lexicon

Motivation

In the KE approach, once a model builder se-
lects a required word, a screen on Alchemist
lists similar words extracted automatically
from Dekang Lin’s dependency-based thesau-
rus. The model builder can also use other re-
sources like Roget’s thesaurus
(http://gutenberg.org/etext/22) and WordNet
3.0 (http://wordnet.princeton.edu/). The model
builder can also write her/his own words that
s/he believes are similar to the required word.

Approach

Other than choosing no similar lexicon to a
required word W, automatically selecting simi-

66

lar lexicon consists of the following experi-
ments:

1. All words similar to W in Dekang Lin’s

generated list
2. Direct synonyms for W or its lemma from

WordNet 3.0 (excluding compounds).
Compounds are excluded because we no-
ticed many irrelevant compounds that
could not replace uni-grams in our data.

3. All similar words for W or its lemma from
WordNet 3.0, i.e., direct synonyms, related
words and hypernyms (excluding com-
pounds). Hypernyms of W are restricted to
a maximum of 2 levels up from W

To summarize, for each concept in the KE ap-
proach, a model builder writes a set of Model
Sentences, manually selects Required Lexicon
and Similar Lexicon for each required word. In
the automated approach, all of the above is
selected automatically. Table 2 summarizes the
methods or experiments. We refer to a method
or experiment in the order of selection of RLijk
and SLijkt; e.g., we denote the method where all
words were required and similar lexicon cho-
sen from WordNet Direct synonyms by AWD.
HSVocWA denotes the method where heads of
NPs and VPs with similar words from Word-
Net All, i.e., direct, related, and hypernyms are
selected. A method name preceded by I or U
refers to Evidence Intersection or Union, re-
spectively. For each item, there are 40 experi-
ments/methods performed with Evidence as
model sentences.

Model
Sentences Required Lexicon Similar Lexicon

Concepts
(C)

All words (A) None chosen (N)

Evidence
Intersection
(I)

All words with no stop-
words (S)

Lin all (L)

Evidence
Union (U)

Heads of NPs and VPs
(HSvoc)

WordNet direct
synonyms (WD)

 Heads of all phrases (HA) WordNet all
similar words
(WA)

 Highest Mutual informa-
tion measure (M)

Table 2. Parameters and “Values” of Model
Building

Before presenting the evaluation results, we
make a note about spelling correction. c-rater
has its own automatic spelling corrector. Here,
we only outline how spelling correction relates

to a model. In the KE approach, model sen-
tences are assumed to not having spelling er-
rors. We use the model sentences, the stimulus
(if it exists), and the prompt of the item for
additional guidance to select the correctly-
spelled word from a list of potential correctly-
spelled words designated by the spelling cor-
rector. On the other hand, the Evidence can be
misspelled. Consequently, when the Evidence
is considered for model sentences, the spelling
corrector first performs spelling correction on
the Evidence, using stimulus, concepts, and
prompts as guides. The students’ answers are
then corrected, as in the KE approach.

6 Evaluation

The study involves 12 test items developed at
ETS for grades 7 and 8. There are seven Read-
ing Comprehension items, denoted R1-R7 and
five Mathematics items, denoted M1-M5.
Score points for the items range from 0 to 3
and the number of concepts ranges from 2 to 7.
The answers for these items were collected in
schools in Maine, USA. The number of an-
swers collected for each item ranges from 190-
264. Answers were concept-based scored by
two human raters (H1, H2). We split the dou-
ble-scored students’ answers available into
DEV (90-100 answers), XVAL (40-50) and
BLIND (60-114). Training data refer to DEV
together with XVAL datasets. Results are re-
ported in terms of un-weighted kappa, repre-
senting scoring agreement with humans on the
BLIND dataset. H1/2 refers to the agreement
between the two humans, c-H1/2 denotes the
average of kappa values between c-rater and
each human (c-H1 and c-H2). Table 3 reports
the best kappa over the 40 experiments on
BLIND (Auto I or U). The baseline (Auto C)
uses concepts as model sentences.

Item
#Training

(Blind) H1/2 Manual
Auto

C
Auto
I or U

 c-H1/2 c-H1/2 c-H1/2
R1 150 (114) 1.0 0.94 0.51 0.97
R2 150 (113) 0.76 0.69 0.28 0.76
R3 150 (107) 0.96 0.87 0.18 0.88
R4 150 (66) 0.77 0.71 0.46 0.75
R5 130 (60) 0.71 0.58 0.22 0.61
R6 130 (61) 0.71 0.73 0.23 0.77
R7 130 (61) 0.87 0.55 0.42 0.42
M1 130 (67) 0.71 0.6 0.0 0.66
M2 130 (67) 0.8 0.71 0.54 0.67
M3 130 (67) 0.86 0.76 0.0 0.79
M4 130 (67) 0.87 0.82 0.13 0.82
M5 130 (67) 0.77 0.63 0.29 0.65

Table 3. Best on BLIND over all experiments

67

The accuracy using the automated approach
with Evidence as model sentences is compara-
ble to that of the KE approach (noted in the
column labeled, “Manual”) with a 0.1 maxi-
mum difference in un-weighted kappa statis-
tics. The first methods (in terms of running
order) yielding the best results for the items (in
order of appearance in Table 3) are ISWD,
ISW, ISN, IMN, IHSVocN, UHALA, ISN,
UHSVocN, SLA, ISN, IHAN and IHS-
VocWA. The methods yielding the best results
(regardless of running order) for all items us-
ing the Evidence were:

IHAN U/IHAWD IHAWA
U/IHALA U/IHSvocN IHSvocWA
UHSvocLA UHSvocWA UHSvocWD
U/ISLA U/ISN U/ISWA
U/ISWD U/IAWA IMN
IMWD

This approach was only evaluated on a small
number of items. We expect that some meth-
ods will outperform others through additional
evaluation.
In an operational setting (i.e., not a research
environment), we must choose a model before
we score the BLIND data. Hence, a voting
strategy over all the experiments has to be de-
vised based on the results on DEV and XVAL.
Following our original logic, i.e., using XVAL
to avoid over-fitting and predicting the results
of BLIND, we implemented a simple voting
strategy. We considered c-H1/2 on XVAL for
each experiment. We found the maximum over
all the c-H1/2 for all experiments. The model
corresponding to the maximum was considered
the model for the item and used to score the
BLIND data. When there was a tie, the first
method to yield the maximum W chosen.
Table 4 shows the results on BLIND using the
voting strategy. The results are comparable to
those of the manual approach except for R7
which has 7 concepts, the highest number of
concepts among all items. The results also
show that the voting strategy did not select the
“best” model or experiment. We notice that
some methods were better in detecting whether
an answer entailed a concept C than detecting
whether it entailed another
concept D, specified for the same item. This
implies that the voting strategy will have to be
a function that not only considers the overall
kappa agreement (i.e., holistic scores), but
concept-based agreement (i.e., using concept-
based scores). Next, we noticed that for R7,
XVAL did not predict the results on BLIND.
This was mainly due to the inability to apply

stratified sampling with such a small sample
size when there are 7 concepts involved. Fur-
ther, we may need to take advantage of the
training data differently, e.g. an n-fold cross-
validation approach. Finally, when there is a
tie, factors other than running order should be
considered.

Item
#Training

(Blind) H1/2 Manual
Auto
(C)

Auto
(I or U)

 c-H1/2 c-H1/2 c-H1/2
R1 150 (114) 1.0 0.94 0.51 0.88
R2 150 (113) 0.76 0.69 0.18 0.61
R3 150 (107) 0.96 0.87 0.18 0.86
R4 150 (66) 0.77 0.71 0.38 0.67
R5 130 (60) 0.71 0.58 0.17 0.51
R6 130 (61) 0.71 0.73 0.13 0.73
R7 130 (61) 0.87 0.55 0.39 0.16
M1 130 67) 0.71 0.6 0.0 0.65
M2 130 67) 0.8 0.71 0.54 0.58
M3 130 67) 0.86 0.76 0.0 0.79
M4 130 67) 0.87 0.82 0.13 0.68
M5 130 67) 0.77 0.63 0.26 0.49

Table 4. Voting Strategy results on BLIND

In all of the above experiments, the Evidence
was corrected using the c-rater’s automatic
spelling corrector using the stimulus (in case of
Reading), the concepts, and the prompts to
guide the selection of the correctly-spelled
words.

7 Conclusion

Analytic-based content scoring is an applica-
tion of textual entailment. The complexity of
the problem increases due to the noise in stu-
dent data, the context of an item, and different
subject areas. In this paper, we have shown
that building a c-rater scoring model for an
item can be reduced from 12 to 0 hours of hu-
man intervention with comparable scoring per-
formance. This is a significant improvement on
research to date using supervised techniques.
In addition, as far as we know, no one other
than Calvo et al. (2005) made any comparisons
between a manually-built “thesaurus” (e.g.
WordNet) and an automatically-generated
“thesaurus” (e.g. Dekang Lin’s database) in an
NLP task or application prior to our work. Our
next step is to evaluate (and refine) the ap-
proach on a larger set of items. Further im-
provements will include using Negative Evi-
dence, automating concept-based scoring, in-
vestigating a context-sensitive selection of
similar words using the students’ answers and
experimenting with various voting strategies.
Finally, we need to compare the results re-
ported using unsupervised techniques on the
same items and datasets if possible.

68

Acknowledgments

Special thanks to Michael Flor, Rene Lawless,
Sarah Ohls and Waverely VanWinkle.

References

Calvo H., Gelbukh A., and Kilgarriff A. (2005).
Distributional thesaurus vs. WordNet: A com-
parison of backoff techniques for unsupervised
PP attachment. In CICLing.

Christie, J.R. (1999). Automated essay marking for
both content and style. In Proceedings of the 3rd
International Computer Assisted Assessment
Conference. Loughborough University.
Loughborough, Uk.

Foltz, P.W. and Laham, D. and Landauer, T.K.
(2003) Automated essay scoring. Applications to
Educational technology. http://www-
psych.nmsu.edu/%7Epfoltz/reprints/Edmedia99.
html

Leacock, C. and Chodorow, M. (2003) C-rater:
Automated Scoring of Short-Answer Questions.
Computers and Humanities. pp. 389-405

Manning C. D., Raghavan P., and Sch¨utze H.
(2008). Introduction to Information Retrieval.
Cambridge University Press.

Mitchell, T. and Russel, T. and Broomhead, P. and
Aldrige, N. (2002) Towards robust computerised
marking of free-text responses. Proceedings of
the 6th International Computer Assisted As-
sessment Conference.

Mohler M. and Mihalcea R (2009). Text-to-text
Semantic Similarity for Automatic Short Answer
Grading. Proceedings of the European Chapter
of the Association for Computational Linguis-
tics, Athens, Greece, March 2009.

Rosé, C. P. and Roque, A. and Bhembe, D. and
VanLehn, K.. (2003) A hybrid text classification
approach for analysis of student essays. Proceed-
ings of the HLT-NAACL 03 Workshop on Edu-
cational Applications of NLP.

Stoyanchev S. and Stent A. (2009). Predicting Con-
cept Types in User Corrections in Dialog. Pro-
ceedings of EACL Workshop on the Semantic
Representation of Spoken Language. Athens,
Greece.

Sukkarieh, J. Z., and Blackmore, J. (2009). c-rater:
Automatic Content Scoring for Short Con-
structed Responses. Proceedings of the 22nd In-
ternational Conference for the Florida Artificial
Intelligence Research Society, Florida, USA.

Sukkarieh, J.Z. and Stephen G. Pulman (2005).
Information Extraction and Machine Learning:

Auto-marking short free-text responses for Sci-
ence questions. Proceedings of the 12th Interna-
tional conference on Artificial Intelligence in
Education, Amsterdam, The Netherlands.

Sukkarieh, J.Z. Pulman S. G. and Raikes, N.
(2004). Auto-marking 2: An update on the
UCLES-Oxford University research into using
computational linguistics to score short, free text
responses. Proceedings of the AIEA, Philadel-
phia, USA.

Sukkarieh, J. Z. and Pulman, S. G. and Raikes, N.
(2003) Auto-marking: using computational lin-
guistics to score short, free text responses.
Proceedings of international association of
educational assessment. Manchester, UK.

Tucker H. G. (1998) Mathematical Methods in
Sample Surveys. Series on multivariate analysis
Vol. 3. University of California, Irvine.

Van Rijsbergen C. J. (2004) The Geometry of In-
formation Retrieval. Cambridge University
Press. The Edinburgh Building, Cambridge,
CB2 2RU, UK.

Vantage. (2000) A study of expert scoring and In-
telliMetric scoring accuracy for dimensional
scoring of grade 11 student writing responses.
Technical report RB-397, Vantage Learning
Tech.

69

