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Abstract

We propose a methodology for investigat-
ing how well NLP systems handle mean-
ing preserving syntactic variations. We
start by presenting a method for the semi
automated creation of a benchmark where
entailment is mediated solely by meaning
preserving syntactic variations. We then
use this benchmark to compare a seman-
tic role labeller and two grammar based
RTE systems. We argue that the proposed
methodology (i) supports a modular eval-
uation of the ability of NLP systems to
handle the syntax/semantic interface and
(ii) permits focused error mining and er-
ror analysis.

1 Introduction

First launched in 2005, the Recognising Textual
Inference Challenge (RTE)1 aims to assess in how
far computer systems can emulate a human being
in determining whether a short text fragment H
referred to as the hypothesis, follows from or is
contradicted by a text fragment T . In the RTE
benchmarks, the hypothesis is a short constructed
sentence whilst the text fragments are short pas-
sages of naturally occurring texts. As a result, the
RTE challenge permits evaluating the capacity of
NLP systems to handle local textual inference on
real data, an enabling technology for any applica-
tions involving document interpretation.

In this paper, we focus on entailments based on
meaning entailing, syntactic transformations such
as:

(1) The man gives the woman the flowers that
smell nice ⇒ The flowers which are given
to the woman smell nice

1http://www.pascal-network.org/
Challenges/RTE

We start (Section 2) by motivating the ap-
proach. We argue that the proposed evaluation
methodology (i) interestingly complements the
RTE challenge in that it permits a modular, ana-
lytic evaluation of the ability of NLP systems to
handle syntax-based, sentential inference and (ii)
permits focused error mining and analysis .

In Section 3, we go on to describe the bench-
mark construction process. Each item of the con-
structed benchmark associates two sentences with
a truth value (true or false) indicating whether
or not the second sentence can be understood to
follow from the first. The construction of these
benchmark items relies on the use of a gram-
mar based surface realiser and we show how this
permits automatically associating with each infer-
ence item, an entailment value (true or false) and
a detailed syntactic annotation reflecting the syn-
tactic constructs present in the two sentences con-
stituting each benchmark item.

In section 4, we use the benchmark to evaluate
and compare three systems designed to recognise
meaning preserving syntactic variations namely,
a semantic role labeller, Johan Bos’ Nutcracker
RTE system (where the syntax/semantic interface
is handled by a semantic construction module
working on the output of combinatory categorial
grammar parser) and the Afazio system, a hybrid
system combining statistical parsing, symbolic se-
mantic role labelling and sentential entailment de-
tection using first order logic. We give the eval-
uation figures for each system. Additionally, we
show how the detailed syntactic annotations au-
tomatically associated with each benchmark item
by the surface realiser can be used to identify the
most likely source of errors that is, the syntactic
constructs that most frequently co-occur with en
entailment recognition error.
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2 Motivations

Arguably focusing on meaning entailing syntac-
tic transformations is very weak. Indeed, one of
the key conclusions at the second RTE Challenge
Workshop was that entailment modeling requires
vast knowledge resources that correspond to dif-
ferent types of entailment reasoning e.g., ontolog-
ical and lexical relationships, paraphrases and en-
tailment rules, meaning entailing syntactic trans-
formations and last but not least, world knowl-
edge. Further, Manning (2006) has strongly ar-
gued against circumscribing the RTE data to cer-
tain forms of inference such as for instance, infer-
ences based solely on linguistic knowledge. Fi-
nally, it is also often insisted that naturally occur-
ring data should be favored over constructed data.

While we agree that challenges such as the RTE
challenge are useful in testing systems abilities to
cope with real data, we believe there is also room
for more focused evaluation setups.

Focusing on syntax based entailments. As
mentioned above, syntax based entailment is only
one of the many inference types involved in deter-
mining textual entailment. Nevertheless, a manual
analysis of the RTE1 data by (Vanderwende et al.,
2005) indicates that 37% of the examples could
be handled by considering syntax alone. Sim-
ilarly, (Garoufi, 2007) shows that 37.5% of the
RTE2 data does not involve deep reasoning and
more specifically, that 33.8% of the RTE2 data in-
volves syntactic or lexical knowledge only. Hence
although the holistic, blackbox type of evaluation
practiced in the RTE challenge is undeniably use-
ful in assessing the ability of existing systems to
handle local textual inference, a more analytic,
modular kind of evaluation targeting syntax-based
entailment reasoning is arguably also of interest.

Another interesting feature of the SSI (syntax-
based sentential entailment) task we propose is
that it provides an alternative way of evaluating
semantic role labelling (SRL) systems. Typically,
the evaluation of SRL systems relies on a hand an-
notated corpus such as PropBank or the FrameNet
corpus. The systems precision and recall are then
computed w.r.t. this reference corpus. As has been
repeatedly argued (Moll and Hutchinson, 2003;
Galliers and Jones, 1993), intrinsic evaluations

may be of very limited value. For semantically
oriented tools such as SRL systems, it is important
to also assess their results w.r.t. the task which
they are meant support namely reasoning : Do
the semantic representations built by SRL help in
making the correct inferences ? Can they be used,
for instance, to determine whether a given sen-
tence answers a given question ? or whether the
content of one sentence follow from that another ?
As explained in (Giampiccolo et al., 2007), entail-
ment recognition is a first, major step towards an-
swering these questions. Accordingly, instead of
comparing the representations produced by SRL
systems against a gold standard, the evaluation
scheme presented here, permits evaluating them
w.r.t. their ability to capture syntax based senten-
tial inference.

It is worth adding that, although the present pa-
per focuses on entailments strictly based on syn-
tax, the proposed methodology should straight-
forwardly extend to further types of entailment
such as in particular, entailments involving lexi-
cal relations (synonymy, antonymy, etc.) or entail-
ments involving more complex semantic phenom-
ena such as the interplay between different classes
of complement taking verbs, polarity and author
commitment discussed in (Nairn et al., 2006).
This is because as we shall see in section 3, our
approach is based on an extensive, hand written
grammar of English integrating syntax and se-
mantics. By modifying the grammar, the lexicon
and/or the semantics, data of varying linguistic
type and complexity can be produced and used for
evaluation.

Hand constructed vs. naturally occurring data.
Although in the 90s, hand tailored testsuites such
as (Lehmann et al., 1996; Cooper et al., 1995)
were deemed useful for evaluating NLP systems,
it is today generally assumed that, for evaluation
purposes, naturally occurring data is best. We ar-
gue that constructed data can interestingly com-
plement naturally occurring data.

To start with, we agree with (Crouch et al.,
2006; Cohen et al., 2008) that science generally
benefits from combining laboratory and field stud-
ies and more specifically, that computational lin-
guistics can benefit from evaluating systems on
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a combination of naturally occurring and con-
structed data.

Moreover, constructed data need not be hand
constructed. Interestingly, automating the produc-
tion of this data can help provide better data anno-
tation as well as better and better balanced data
coverage than both hand constructed data and nat-
urally occurring data. Indeed, as we shall show
in section 4, the benchmark creation process pre-
sented here supports a detailed and fully auto-
mated annotation of the syntactic properties as-
sociated with each benchmark item. As shown
in section 5, this in turn allows for detailed er-
ror mining making it possible to identify the most
likely causes of system errors. Additionally, the
proposed methodology permits controlling over
such benchmark parameters as the size of the data
set, the balance between true and false entail-
ments, the correlation between word overlap and
entailment value and/or the specific syntactic phe-
nomena involved. This is in contrast with the RTE
data collection process where “the distribution of
examples is arbitrary to a large extent, being de-
termined by manual selection2” (Giampiccolo et
al., 2007). As has been repeatedly pointed out
(Burchardt et al., 2007; Garoufi, 2007), the RTE
datasets are poorly balanced w.r.t., both the fre-
quency and the coverage of the various phenom-
ena interacting with textual inference.

3 Benchmark

We now present the content of an SSI benchmark
and the method for constructing it.

An SSI benchmark item (cf. e.g., Figure 1) con-
sists of two sentences and a truth value (true or
false) indicating whether or not the second sen-
tence can be understood to follow from the first.
In addition, each sentence is associated with a de-
tailed syntactic annotation describing the syntac-
tic constructs present in the sentence.

The benchmark construction process consists
of two main steps. First, a generation bank is
built. Second, this generation bank is drawn upon

2The short texts of the RTE benchmarks are automatically
extracted from real texts using different applications (e.g.,
Q/A, summarisation, information extraction, information re-
trieval systems) but the query used to retrieve these texts is
either constructed manually or post-edited.

T: The man gives the woman the flowers that smell
nice
smell:{n0Va1,active,relSubj,canAdj}
give:{n0Vn2n1,active,canSubj,canObj,canIObj}
H: The flowers are given to the woman
give:{n0Vn1Pn2,shortPassive,canSubj,canIObj}
Entailment: TRUE

Figure 1: An SSI Benchmark item

to construct a balanced data set for SSI evaluation.
We now describe each of these processes in turn.

Constructing a generation bank We use the
term “generation bank” to refer to a dataset whose
items are produced by a surface realiser i.e., a
sentence generator. A surface realiser in turn
is a program which associates with a given se-
mantic representation, the set of sentences ver-
balising the meaning encoded by that representa-
tion. To construct our generation bank, we use the
GenI surface realiser (Gardent and Kow, 2007).
This realiser uses a Feature based Tree Adjoining
Grammar (FTAG) augmented with a unification
sematics as proposed in (Gardent and Kallmeyer,
2003) to produce all the sentences associated by
the grammar with a given semantic representa-
tion. Interestingly, the FTAG used has been com-
piled out of a factorised representation and as a
result, each elementary grammar unit (i.e., ele-
mentary FTAG tree) and further each parse tree, is
associated with a list of items indicating the syn-
tactic construct(s) captured by that unit/tree3. In
short, GenI permits associating with a given se-
mantics, a set of sentences and further for each of
these sentences, a set of items indicating the syn-
tactic construct(s) present in the syntactic tree of
that sentence. For instance, the sentences and the
syntactic constructs associated by GenI with the
semantics given in (2) are those given in (3).

(2) A:give(B C D E) G:the(C) F:man(C)
H:the(D) I:woman(D) J:the(E) K:flower(E)
L:passive(B) L:smell(M E N) O:nice(N)

(3) a. The flower which smells nice is given to
the woman by the man

3Space is lacking to give a detailed explanation of this
process here. We refer the reader to (Gardent and Kow, 2007)
for more details on how GenI associates with a given seman-
tics, a set of sentences and for each sentence a set of items
indicating the syntactic construct(s) present in the syntactic
tree of that sentence.
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give:n0Vn1Pn2-Passive-CanSubj-ToObj-ByAgt,
smell:n0V-active-OvertSubjectRelative

b. The flower which smells nice is given
the woman by the man
give:n0Vn2n1-Passive,
smell:n0V-active-OvertSubjectRelative

c. The flower which is given the woman by
the man smells nice
give:n0Vn2n1-Passive-CovertSubjectRelative,
smell:n0V-active

d. The flower which is given to the woman
by the man smells nice
give:n0Vn1Pn2-Passive-OvertSubjectRelative,
smell:n0V-active

e. The flower that smells nice is given to
the woman by the man
give:n0Vn1Pn2-Passive,
smell:n0V-CovertSubjectRelative

f. The flower that smells nice is given the
woman by the man
give:n0Vn2n1-Passive,
smell:n0V-CovertSubjectRelative

g. The flower that is given the woman by
the man smells nice
give:n0Vn2n1-Passive-CovertSubjectRelative,
smell:n0V-active

h. The flower that is given to the woman by
the man smells nice
give:n0Vn1Pn2-Passive-CovertSubjectRelative,
smell:n0V-active

The tagset of syntactic annotation covers the sub-
categorisation type of the verb, a specification of
the verb mood and a description of how arguments
are realised.

The semantic representation language used is
a simplified version of the flat semantics used
in e.g., (Copestake et al., 2005) which is suf-
ficient for the cases handled in the present pa-
per. The grammar and therefore the generator,
can however easily be modified to integrate the
more sophisticated version proposed in (Gardent
and Kallmeyer, 2003) and thereby provide an ad-
equate treatment of scope.

Constructing an SSI benchmark. Given a
generation bank, false and true sentential entail-
ment pairs can be automatically produced by tak-
ing pairs of sentences 〈S1, S2〉 and comparing
their semantics: if the semantics of S2 is entailed
by the semantics of S1, the pair is marked as TRUE

else as FALSE. The syntactic annotations asso-
ciated in the generation bank with each sentence
are carried over to the SSI benchmark thereby en-
suring that the overall information contained in
each SSI benchmark is as illustrated in Figure 1
namely, two pairs of syntactically annotated sen-
tences and a truth value indicating (non) entail-
ment.

To determine whether a sentence textually en-
tails another we translate their flat semantic rep-
resentation into first order logic and check for
logical entailment. Differences in semantic rep-
resentations which are linked to functional sur-
face differences such as active/passive or the
presence/absence of a complementizer (John sees
Mary leaving/John sees that Mary leaves) are
dealt with by (automatically) removing the corre-
sponding semantic literals from the semantic rep-
resentation before translating it to first order logic.
In other words, active/passive variants of the same
sentence are deemed semantically equivalent.

Note that contrary to what is assumed in the
RTE challenge, entailment is here logical rather
than textual (i.e., determined by a human) entail-
ment. By using logical, rather than textual (i.e.,
human based) entailment, it is possible that some
cases of syntax mediated textual entailments are
not taken into account. However, intuitively, it
seems reasonable to assume that for most of the
entailments mediated by syntax alone, logical and
textual entailments coincide.

3.1 The SSI benchmark

Using the methodology just described, we first
produced a generation bank of 226 items using 81
input formula distributed over 4 verb types. From
this generation bank, a total of 6 396 SSI-pairs
were built with a ratio of 42.6% true and 57.4%
false entailments.

For our experiment, we extracted from this SSI-
suite, 1000 pairs with an equal proportion of true
and false entailments and a 7/23/30/40 distribu-
tion of four subcategorisation types namely, ad-
jectival predicative (n0Va1 e.g., The cake tastes
good), intransitive (n0V), transitive (n0Vn1) and
ditransitive (n0Vn2n1)4. We furthermore con-

4The subcategorisation type of an SSI item is determined
manually and refers either to the main verb if the sentence is
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strained the suite to respect a neutral correlation
between word overlap and entailment. Following
(Garoufi, 2007), we define this correlation as fol-
lows. The word overlap wo(T,H) between two
sentences T and H is the ratio of common lem-
mas between T and H on the number of lemmas
in H (non content words are ignored). If entail-
ment holds, the word overlap/entailment correla-
tion value of the sentence pair is wo(T,H). Oth-
erwise it is 1 − wo(T,H). The 1000 items of the
SSI suite used in our experiment were chosen in
such a way that the word overlap/entailment cor-
relation value of the SSI suite is 0.49.

In sum, the SSI suite used for testing exhibits
the following features. First, it is balanced w.r.t.
entailment. Second, it displays good syntactic
variability based both on the constrained distribu-
tion of the four subcategorisation types and on the
use of the XTAG grammar to construct sentences
from abstract representations (cf. the paraphrases
in (3) generated by GenI from the representation
given in (2)). Third, it contains 1000 items and
could easily be extended to cover more and more
varied data. Fourth, it is specifically tailored to
check systems on their ability to deal with syntax
based sentential entailment: word overlap is high,
syntactic variability is provided and the correla-
tion between word overlap and entailment is not
biased.

4 System evaluation and comparison

SRL and grammar based systems equipped with
a compositional semantics are primary targets for
an SSI evaluation. Indeed these systems aim to
abstract away from syntactic differences by pro-
ducing semantic representations of a text which
capture predicate/argument relations independent
of their syntactic realisation.

We evaluated three such systems on the SSI
benchmark namely, NutCracker, (Johansson and
Nugues, 2008)’s Semantic Role Labeller and the
Afazio RTE system.

4.1 Systems
Nutcracker Nutcracker is a system for recog-
nising textual entailment which uses deep seman-

a clause or to the embedded verb if the sentence is a complex
sentence.

tic processing and automated reasoning. Deep se-
mantic processing associates each sentence with a
Discourse Representation Structure (DRS (Kamp
and Reyle, 1993)) by first, using a statistical
parser to build the syntactic parse of the sentence
and second, using a symbolic semantic construc-
tion module to associate a DRS with the syn-
tactic parse. Entailment between two DRSs is
then checked by translating this DRS into a first-
order logical (FOL) formula and first trying to
find a proof. If a proof is found then the en-
tailment is set to true. Otherwise, Nutcracker
backs off with a word overlap module computed
over an abstract representation of the input sen-
tences and taking into account WordNet related
information. Nutcracker was entered in the first
RTE challenge and scored an accuraccy (percent-
age of correct judgments) of 0.562 when used as
is and 0.612 when combined with machine learn-
ing techniques. For our experiment, we use the
online version of Nutcracker and the given default
parameters.

Afazio Like Nutcracker, the Afazio system
combines a statistical parser (the Stanford parser)
with a symbolic semantic component. This com-
ponent pipelines several rewrite modules which
translate the parser output into a first order logic
formula intended to abstract away from sur-
face differences and assign syntactic paraphrases
the same representation (Bedaride and Gardent,
2009). Special emphasis is placed on captur-
ing syntax based equivalences such as syntac-
tic (e.g., active/passive) variations, redistributions
and noun/verb variants. Once the parser out-
put has been normalised into predicate/argument
representations capturing these equivalences, the
resulting structures are rewritten into first order
logic formulae. Like Nutcracker, Afazio checks
entailment using first order automated reasoners
namely, Equinox and Paradox 5.

SRL (Johansson and Nugues, 2008)’s seman-
tic role labeller achieved the top score in the
closed CoNLL 2008 challenge reaching a labeled
semantic F1 of 81.65. To allow for compari-
son with Nutcracker and Afazio, we adapted the

5http://www.cs.chalmers.se/˜koen/
folkung/
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rewrite module used in Afazio to rewrite Pred-
icate/Argument structures into FOL formula in
such a way as to fit (Johansson and Nugues,
2008)’s SRL output. We then use FOL automated
reasoner to check entailment.

4.2 Evaluation scheme and results

The results obtained by the three systems are
summarised in Table 1. TP (true positives) is
the number of entailments recognised as such by
the system and TN (true negatives) of non entail-
ments. Conversely, FN and FP indicate how often
the systems get it wrong: FP is the number of non
entailments labelled as entailments by the system
and FN, the number of entailments labelled as non
entailments. ’ERROR’ refers to cases where the
CCG parser used by Nutcracker fails to find a
parse. The last three columns indicate the over-
all ability of the systems to recognise false entail-
ments (TN/N with N the number of false entail-
ment in the benchmark), true entailments (TP/P)
and all true and false entailment (Precision).

Overall, Afazio outperforms both Nutcracker
and the SRL system. This is unsurprising since
contrary to these other two systems, Afazio was
specifically designed to handle syntax based sen-
tential entailment. Its strength is that it combines
a full SRL system with a semantic construction
module designed for entailment detection. More
surprisingly, the CCG parser used by Nutcracker
often fails to find a parse.

The SRL system has a high rate of false nega-
tives. Using the error mining technique presented
in the next section, we found that the most sus-
picious syntactic constructs all included a rela-
tivised argument. A closer look at the analyses
showed that this was due to the fact that SRL sys-
tems fail to identify the antecedent of a relative
pronoun, an identification that is necessary for en-
tailment checking. Another important difference
with Afazio is that the SRL system produces a
single output. In contrast, Afazio checks entail-
ment for any of the pairs of semantic representa-
tions derived from the first 9 parses of the Stan-
ford parser. The number 9 was determined em-
pirically and proved to yield the best results over-
all although as we shall see in the error mining
section, taking such a high number of parses into

account often leads to incorrect results when the
hypothesis (H) is short.

Nutcracker, on the other hand, produces many
false positives. This is in part due to cases where
the time bound is reached and the word overlap
backoff triggered. Since the overall word overlap
of the SSI suite is high, the backoff often predicts
an entailment where in fact there is none (for in-
stance, the pair ’John gave flowers to Mary/Mary
gave flowers to John has a perfect word overlap
but entailment does not hold). When removing
the backoff results i.e., when assigning all backoff
cases a negative entailment value, overall preci-
sion approximates 60%. In other words, on cases
such as those present in the SSI benchmark where
word overlap is generally high but the correla-
tion between word overlap and entailment value is
neutral, Nutcracker should be used without back-
off.

5 Finding the source of errors

The annotations contained in the automatically
constructed testsuite can help identify the most
likely sources of failures. We use (Sagot and de
La Clergerie, 2006)’s suspicion rate to compute
the probability that a given pair of sets of syntac-
tic tags is responsible for an RTE detection failure.
The tag set pairs with highest suspicion rate in-
dicate which syntactic phenomena often cooccurs
with failure.

More specifically, we store for each testsuite
item (T,H), all tag pairs (tj , hk) such that the syn-
tactic tags tj and hk are associated with the same
predicate Pi but tj occurs in T and hk in H. That is,
we collect the tag pairs formed by taking the tags
that label the occurrence of the same predicate on
both sides of the implication. If a predicate occurs
only in H then for each syntactic tag hk labelling
this predicate, the pair (nil, hk) is created. Con-
versely, if a predicate occurs only in T, the pair
(tj , nil) is added. Furthermore, the tags describ-
ing the subcategorisation type and the form of the
verb are grouped into a single tag so as to reduce
the tagset and limit data sparseness. For instance,
given the pair of sentences in Figure (1), the fol-
lowing tag pairs are produced:
(n0Va1:active:relSubj, nil)
(n0Va1:active:canAdj, nil)
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system ERROR TN FN TP FP TN/N TP/P Prec
afazio 0 360 147 353 140 0.7200 0.7060 71.3%

nutcracker 155 22 62 312 449 0.0467 0.8342 39.5% (60% w/o B.O.)
srl 0 487 437 63 13 0.9740 0.1260 55.0%

Table 1: Results of the three systems on the SSI-testsuite ( TN = true negatives, FN = false negatives,
TP = true positives, FP = false positives, N = TN + FP, P = TP + FN, Prec = Precision, ERROR: no
parse tree found)

(n0Vn2n1:active:canSubj,n0Vn1Pn2:shortPassive:canSubj)
(n0Vn2n1:active:canSubj,n0Vn1Pn2:shortPassive:canIObj)
(n0Vn2n1:active:canObj,n0Vn1Pn2:shortPassive:canSubj)
(n0Vn2n1:active:canObj,n0Vn1Pn2:shortPassive:canIObj)
(n0Vn2n1:active:canIObj,n0Vn1Pn2:shortPassive:canSubj)
(n0Vn2n1:active:canIObj,n0Vn1Pn2:shortPassive:canIObj)

For each tag pair, we then compute the suspi-
cion rate of that pair using (Sagot and de La Clerg-
erie, 2006)’s fix point algorithm. To also take into
account pairs of sets of tags (rather than just pairs
of single tags), we furthermore preprocess the data
according to (de Kok et al., 2009)’s proposal for
handling n-grams.

Computing the suspicion rate of a tag pair.
The error mining’s suspicion rate algorithm of
(Sagot and de La Clergerie, 2006) is a fix point al-
gorithm used to detect the possible cause of pars-
ing failures. We apply this algorithm to the pair
of annotated sentences resulting from running the
three systems on the automatically created test-
suite as follows. Each such pair consists of a pair
of sentences, a set of tag pairs, an entailment value
(true or false) and a result value namely FP (false
positive), FN (false negative), TP (true positive) or
TN (true negative). To search for the most likely
causes of failure, we consider separately entail-
ments from non entailments. If entailment holds,
the suspicion rate of a sentence pair is 0 for true
positive and 1 for false positives. Conversely, if
entailment does not hold, the suspicion rate of the
sentence pair is 0 for true negatives and 1 for false
negatives.

The aim is to detect the tag pair most likely to
make entailment detection fail6. The algorithm it-
erates between tag pair occurrences and tag pair
forms, redistributing probabilities with each itera-
tion as follows. Initially, all tag pair occurrences

6We make the simplifying hypothesis that for each entail-
ment not recognised, a single tag pair or tag pair n-gram is
the cause of the failure.

in a given sentence have the same suspicion rate
namely, the suspicion rate of the sentence (1 if the
entailment could not be recognised, 0 otherwise)
divided by the number of tag pair occurrences in
that sentence. Next, the suspicion rate of a tag
pair form is defined as the average suspicion rate
of all occurrences of that tag pair. The suspicion
rate of a tag pair occurrence within each particular
sentence is then recalculated as the suspicion rate
of that tag pair form normalised by the suspicion
rates of the other tag pair forms occurring within
the same sentence. The iteration stops when the
process reaches a fixed point where the suspicion
rates have stabilised.

Extending the approach to pairs of tag sets.
To account for entailment recognition due to more
than one tag pair, we follow (de Kok et al., 2009)
and introduce a preprocessing step which first, ex-
pands tag pair unigrams to tag pair n-grams when
there is evidence that it is useful that is, when
an n-gram has a higher suspicion rate than each
of its sub n-grams. For this preprocessing, the
suspicion of a tag pair t is defined as the ratio
of t occurrences in unrecognised entailments and
the total number of t occurrences in the corpus.
To compensate for data sparseness, an additional
expansion factor is used which depends on the
frequency of an n-gram and approaches one for
higher frequency. In this way, long n-grams that
have low frequency are not favoured. The longer
the n-gram is, the more frequent or the more sus-
picious it needs to be in order to be selected by the
preprocessing step.

We apply this extension to the SSI setting. We
first extend the set of available tag pairs with tag
set pairs such that the suspicion rate of these pairs
is higher that the suspicion rate of each of the
smaller tagset pairs that can be constructed from
these sets. We then apply (Sagot and de La Clerg-
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n0Vs1:act:CanSubj nil 0.85
n0Vn1:act:CanObj nil 0.46

n0V:betaVn nil 0.28

Table 2: The first 3 suspects for false positives

n0V:act n0V:act:RelCSubj 0.73
n0Vs1:act:CanSubj n0Vs1:act:CanSubj 0.69
n0V:act:RelOSubj n0V:betaVn
n0Vs1:act:CanSub n0Vs1:act:CanSubj 0.69
n0V:act:CanSubj n0V:betaVn

Table 3: The first 3 suspects for false negatives

erie, 2006)’s fix point algorithm to compute the
suspicion rate of the resulting tag pairs and tag sets
pairs.

Results and discussion. We now show how er-
ror mining can help shed some light on the most
probable sources of error when using Afazio.

For false positives (non entailment labelled
as entailment by Afazio), the 3 most suspect
tag pairs are given in Table 2. The first pair
(n0Vs1:act:CanSubj,nil) points out to cases such
as Bill sees the woman give the flower to the man
/ The man gives the flower to the woman. where
T contains a verb with a sentential argument not
present in H. In such cases, we found that the sen-
tential argument in T is usually incorrectly anal-
ysed, the analyses produced are fragmented and
entailment goes through. Similarly, the second
suspect (n0Vn1:act:CanObj,nil) points to cases
such as a man sees Lisa dancing / a man dances,
where the transitive verb in T has no counterpart in
H. Here the high number of analyses relied on by
Afazio together with the small size of H leads to
entailment detection: because we consider many
possible analyses for T and H and because H is
very short, one pair of analyses is found to match.
Finally, the third suspect (n0V:betaVn,nil) points
to cases such as Bill insists for the singing man to
dance / Bill dances where the gerund is wrongly
analysed and a relation is incorrectly established
by the parser between Bill and dance (in H).

For false negatives, the first suspect indicates
incorrect analyses for cases where an intransitive
with canonical subject in H is matched by an in-
transitive with covert relative subject (e.g., Bill
sees the woman give the flower to the man / the
man gives the flower to the woman.). The sec-
ond suspect points to cases such as Bill insists for

the man who sings to dance / Bill insists that the
singing man dances. where an embedded verb
with relative overt subject in T (sings) is matched
in H by an embedded gerund. Similarly, the third
suspect points to embedded verbs with canonical
subject matched by gerund verbs as in the man
who Bill insists that dances sings / Bill insists that
the singing man dances.

6 Conclusion

The development of a linguistically principled
treatment of the RTE task requires a clear under-
standing of the strength and weaknesses of RTE
systems w.r.t. to the various types of reasoning in-
volved. The main contribution of this paper is the
specification of an evaluation methodology which
permits a focused evaluation of syntax based rea-
soning on arbitrarily many inputs. As the results
show, there is room for improvment even on that
most basic level. In future work, we plan to extend
the approach to other types of inferences required
for textual entailment recognition. A more so-
phisticated compositional semantics in the gram-
mar used by the sentence generator would allow
for entailments involving more complex semantic
phenomena such as the interplay between implica-
tive verbs, polarity and downward/upward mono-
tonicity discussed in (Nairn et al., 2006). For in-
stance, it would allow for sentence pairs such as
Ed did not forget to force Dave to leave / Dave
left to be assigned the correct entailment value.
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