
Coling 2008: Poster Volume, pages 108–116,
Beijing, August 2010

Benchmarking of Statistical Dependency Parsers for French

Marie Candito!, Joakim Nivre!, Pascal Denis! and Enrique Henestroza Anguiano!

! Alpage (Université Paris 7/INRIA)
! Uppsala University, Department of Linguistics and Philology

marie.candito@linguist.jussieu.fr {pascal.denis, henestro}@inria.fr joakim.nivre@lingl.uu.se

Abstract

We compare the performance of three
statistical parsing architectures on the
problem of deriving typed dependency
structures for French. The architectures
are based on PCFGs with latent vari-
ables, graph-based dependency parsing
and transition-based dependency parsing,
respectively. We also study the inu-
ence of three types of lexical informa-
tion: lemmas, morphological features,
and word clusters. The results show that
all three systems achieve competitive per-
formance, with a best labeled attachment
score over 88%. All three parsers benet
from the use of automatically derived lem-
mas, while morphological features seem
to be less important. Word clusters have a
positive effect primarily on the latent vari-
able parser.

1 Introduction

In this paper, we compare three statistical parsers
that produce typed dependencies for French. A
syntactic analysis in terms of typed grammatical
relations, whether encoded as functional annota-
tions in syntagmatic trees or in labeled depen-
dency trees, appears to be useful for many NLP
tasks including question answering, information
extraction, and lexical acquisition tasks like collo-
cation extraction.
This usefulness holds particularly for French,

a language for which bare syntagmatic trees
are often syntactically underspecied because
of a rather free order of post-verbal comple-
ments/adjuncts and the possibility of subject in-
version. Thus, the annotation scheme of the
French Treebank (Abeillé and Barrier, 2004)
makes use of at syntagmatic trees without VP

nodes, with no structural distinction between
complements, adjuncts or post-verbal subjects,
but with additional functional annotations on de-
pendents of verbs.
Parsing is commonly enhanced by using more

abstract lexical information, in the form of mor-
phological features (Tsarfaty, 2006), lemmas
(Seddah et al., 2010), or various forms of clusters
(see (Candito and Seddah, 2010) for references).
In this paper, we explore the integration of mor-
phological features, lemmas, and linear context
clusters.
Typed dependencies can be derived using many

different parsing architectures. As far as statistical
approaches are concerned, the dominant paradigm
for English has been to use constituency-based
parsers, the output of which can be converted
to typed dependencies using well-proven conver-
sion procedures, as in the Stanford parser (Klein
and Manning, 2003). In recent years, it has
also become popular to use statistical dependency
parsers, which are trained directly on labeled de-
pendency trees and output such trees directly, such
as MSTParser (McDonald, 2006) and MaltParser
(Nivre et al., 2006). Dependency parsing has been
applied to a fairly broad range of languages, espe-
cially in the CoNLL shared tasks in 2006 and 2007
(Buchholz and Marsi, 2006; Nivre et al., 2007).
We present a comparison of three statistical

parsing architectures that output typed dependen-
cies for French: one constituency-based architec-
ture featuring the Berkeley parser (Petrov et al.,
2006), and two dependency-based systems using
radically different parsing methods, MSTParser
(McDonald et al., 2006) and MaltParser (Nivre et
al., 2006). These three systems are compared both
in terms of parsing accuracy and parsing times, in
realistic settings that only use predicted informa-
tion. By using freely available software packages
that implement language-independent approaches

108



and applying them to a language different from
English, we also hope to shed some light on the
capacity of different methods to cope with the
challenges posed by different languages.
Comparative evaluation of constituency-based

and dependency-based parsers with respect to la-
beled accuracy is rare, despite the fact that parser
evaluation on typed dependencies has been ad-
vocated for a long time (Lin, 1995; Carroll et
al., 1998). Early work on statistical dependency
parsing often compared constituency-based and
dependency-based methods with respect to their
unlabeled accuracy (Yamada and Matsumoto,
2003), but comparison of different approaches
with respect to labeled accuracy is more recent.
Cer et al. (2010) present a thorough analysis of

the best trade-off between speed and accuracy in
deriving Stanford typed dependencies for English
(de Marneffe et al., 2006), comparing a number of
constituency-based and dependency-based parsers
on data from the Wall Street Journal. They con-
clude that the highest accuracy is obtained using
constituency-based parsers, although some of the
dependency-based parsers are more efcient.
For German, the 2008 ACL workshop on pars-

ing German (Kübler, 2008) featured a shared task
with two different tracks, one for constituency-
based parsing and one for dependency-based pars-
ing. Both tracks had their own evaluation metrics,
but the accuracy with which parsers identied
subjects, direct objects and indirect objects was
compared across the two tracks, and the results
in this case showed an advantage for dependency-
based parsing.
In this paper, we contribute results for a

third language, French, by benchmarking both
constituency-based and dependency-based meth-
ods for deriving typed dependencies. In addi-
tion, we investigate the usefulness of morphologi-
cal features, lemmas and word clusters for each of
the different parsing architectures. The rest of the
paper is structured as follows. Section 2 describes
the French Treebank, and Section 3 describes the
three parsing systems. Section 4 presents the ex-
perimental evaluation, and Section 5 contains a
comparative error analysis of the three systems.
Section 6 concludes with suggestions for future
research.

2 Treebanks

For training and testing the statistical parsers, we
use treebanks that are automatically converted
from the French Treebank (Abeillé and Barrier,
2004) (hereafter FTB), a constituency-based tree-
bank made up of 12, 531 sentences from the Le
Monde newspaper. Each sentence is annotated
with a constituent structure and words bear the
following features: gender, number, mood, tense,
person, deniteness, wh-feature, and clitic case.
Nodes representing dependents of a verb are la-
beled with one of 8 grammatical functions.1
We use two treebanks automatically obtained

from FTB, both described in Candito et al.
(2010). FTB-UC is a modied version of the
original constituency-based treebank, where the
rich morphological annotation has been mapped
to a simple tagset of 28 part-of-speech tags, and
where compounds with regular syntax are bro-
ken down into phrases containing several simple
words while remaining sequences annotated as
compounds in FTB are merged into a single token.
Function labels are appended to syntactic category
symbols and are either used or ignored, depending
on the task.
FTB-UC-DEP is a dependency treebank de-

rived from FTB-UC using the classic technique of
head propagation rules, rst proposed for English
by Magerman (1995). Function labels that are
present in the original treebank serve to label the
corresponding dependencies. The remaining un-
labeled dependencies are labeled using heuristics
(for dependents of non-verbal heads). With this
conversion technique, output dependency trees are
necessarily projective, and extracted dependen-
cies are necessarily local to a phrase, which means
that the automatically converted trees can be re-
garded as pseudo-projective approximations to the
correct dependency trees (Kahane et al., 1998).
Candito et al. (2010) evaluated the converted trees
for 120 sentences, and report a 98% labeled at-
tachment score when comparing the automatically
converted dependency trees to the manually cor-
rected ones.

1These are SUJ (subject), OBJ (object), A-OBJ/DE-OBJ
(indirect object with preposition à / de), P-OBJ (indirect
object with another preposition / locatives), MOD (modier),
ATS/ATO (subject/object predicative complement).

109



S
NP-SUJ
DET
une

NC
lettre

VN
V

avait
VPP
été

VPP
envoyée

NP-MOD
DET
la

NC
semaine

ADJ
dernière

PP-A_OBJ
P+D
aux

NP
NC

salariés
une lettre avait été envoyée la semaine dernière aux salariés

det

suj

aux
-tps

au
x-p
as
s mod

det
mod

a_obj

obj

Figure 1: An example of constituency tree of the FTB-UC (left), and the corresponding dependency tree
(right) for A letter had been sent the week before to the employees.

Figure 1 shows two parallel trees from FTB-UC
and FTB-UC-DEP. In all reported experiments in
this paper, we use the usual split of FTB-UC: rst
10% as test set, next 10% as dev set, and the re-
maining sentences as training set.

3 Parsers

Although all three parsers compared are statis-
tical, they are based on fairly different parsing
methodologies. The Berkeley parser (Petrov et
al., 2006) is a latent-variable PCFG parser, MST-
Parser (McDonald et al., 2006) is a graph-based
dependency parser, and MaltParser (Nivre et al.,
2006) is a transition-based dependency parser.
The choice to include two different dependency

parsers but only one constituency-based parser is
motivated by the study of Seddah et al. (2009),
where a number of constituency-based statisti-
cal parsers were evaluated on French, including
Dan Bikel’s implementation of the Collins parser
(Bikel, 2002) and the Charniak parser (Charniak,
2000). The evaluation showed that the Berke-
ley parser had signicantly better performance for
French than the other parsers, whether measured
using a parseval-style labeled bracketing F-score
or a CoNLL-style unlabeled attachment score.
Contrary to most of the other parsers in that study,
the Berkeley parser has the advantage of a strict
separation of parsing model and linguistic con-
straints: linguistic information is encoded in the
treebank only, except for a language-dependent
sufx list used for handling unknown words.
In this study, we compare the Berkeley parser

to MSTParser and MaltParser, which have the
same separation of parsing model and linguistic
representation, but which are trained directly on
labeled dependency trees. The two dependency
parsers use radically different parsing approaches

but have achieved very similar performance for a
wide range of languages (McDonald and Nivre,
2007). We describe below the three architectures
in more detail.2

3.1 The Berkeley Parser
The Berkeley parser is a freely available imple-
mentation of the statistical training and parsing
algorithms described in (Petrov et al., 2006) and
(Petrov and Klein, 2007). It exploits the fact that
PCFG learning can be improved by splitting sym-
bols according to structural and/or lexical proper-
ties (Klein and Manning, 2003). Following Mat-
suzaki et al. (2005), the Berkeley learning algo-
rithm uses EM to estimate probabilities on sym-
bols that are automatically augmented with la-
tent annotations, a process that can be viewed
as symbol splitting. Petrov et al. (2006) pro-
posed to score the splits in order to retain only the
most benecial ones, and keep the grammar size
manageable: the splits that induce the smallest
losses in the likelihood of the treebank are merged
back. The algorithm starts with a very general
treebank-induced binarized PCFG, with order h
horizontal markovisation. created, where at each
level a symbol appears without track of its orig-
inal siblings. Then the Berkeley algorithm per-
forms split/merge/smooth cycles that iteratively
rene the binarized grammar: it adds two latent
annotations on each symbol, learns probabilities
for the rened grammar, merges back 50% of the
splits, and smoothes the nal probabilities to pre-
vent overtting. All our experiments are run us-
ing BerkeleyParser 1.0,3 modied for handling

2For replicability, models, preprocessing tools and ex-
perimental settings are available at http://alpage.
inria.fr/statgram/frdep.html.

3http://www.eecs.berkeley.edu/
\~petrov/berkeleyParser

110



French unknown words by Crabbé and Candito
(2008), with otherwise default settings (order 0
horizontal markovisation, order 1 vertical marko-
visation, 5 split/merge cycles).
The Berkeley parser could in principle be

trained on functionally annotated phrase-structure
trees (as shown in the left half of gure 1), but
Crabbé and Candito (2008) have shown that this
leads to very low performance, because the split-
ting of symbols according to grammatical func-
tions renders the data too sparse. Therefore, the
Berkeley parser was trained on FTB-UC without
functional annotation. Labeled dependency trees
were then derived from the phrase-structure trees
output by the parser in two steps: (1) function la-
bels are assigned to phrase structure nodes that
have functional annotation in the FTB scheme;
and (2) dependency trees are produced using the
same procedure used to produce the pseudo-gold
dependency treebank from the FTB (cf. Section 2).
The functional labeling relies on the Maximum

Entropy labeler described in Candito et al. (2010),
which encodes the problem of functional label-
ing as a multiclass classication problem. Specif-
ically, each class is of the eight grammatical func-
tions used in FTB, and each head-dependent pair
is treated as an independent event. The feature
set used in the labeler attempt to capture bilexi-
cal dependencies between the head and the depen-
dent (using stemmed word forms, parts of speech,
etc.) as well as more global sentence properties
like mood, voice and inversion.

3.2 MSTParser

MSTParser is a freely available implementation
of the parsing models described in McDonald
(2006). These models are often described as
graph-based because they reduce the problem
of parsing a sentence to the problem of nding
a directed maximum spanning tree in a dense
graph representation of the sentence. Graph-based
parsers typically use global training algorithms,
where the goal is to learn to score correct trees
higher than incorrect trees. At parsing time a
global search is run to nd the highest scoring
dependency tree. However, unrestricted global
inference for graph-based dependency parsing
is NP-hard, and graph-based parsers like MST-

Parser therefore limit the scope of their features
to a small number of adjacent arcs (usually two)
and/or resort to approximate inference (McDon-
ald and Pereira, 2006). For our experiments, we
use MSTParser 0.4.3b4 with 1-best projective de-
coding, using the algorithm of Eisner (1996), and
second order features. The labeling of dependen-
cies is performed as a separate sequence classi-
cation step, following McDonald et al. (2006).
To provide part-of-speech tags to MSTParser,

we use the MElt tagger (Denis and Sagot, 2009),
a Maximum Entropy Markov Model tagger en-
riched with information from a large-scale dictio-
nary.5 The tagger was trained on the training set
to provide POS tags for the dev and test sets, and
we used 10-way jackkning to generate tags for
the training set.

3.3 MaltParser

MaltParser6 is a freely available implementation
of the parsing models described in (Nivre, 2006)
and (Nivre, 2008). These models are often char-
acterized as transition-based, because they reduce
the problem of parsing a sentence to the prob-
lem of nding an optimal path through an abstract
transition system, or state machine. This is some-
times equated with shift-reduce parsing, but in
fact includes a much broader range of transition
systems (Nivre, 2008). Transition-based parsers
learn models that predict the next state given the
current state of the system, including features over
the history of parsing decisions and the input sen-
tence. At parsing time, the parser starts in an ini-
tial state and greedily moves to subsequent states
– based on the predictions of the model – until a
terminal state is reached. The greedy, determinis-
tic parsing strategy results in highly efcient pars-
ing, with run-times often linear in sentence length,
and also facilitates the use of arbitrary non-local
features, since the partially built dependency tree
is xed in any given state. However, greedy in-
ference can also lead to error propagation if early
predictions place the parser in incorrect states. For
the experiments in this paper, we use MaltParser

4http://mstparser.sourceforge.net
5Denis and Sagot (2009) report a tagging accuracy of

97.7% (90.1% on unknown words) on the FTB-UC test set.
6http://www.maltparser.org

111



1.3.1 with the arc-eager algorithm (Nivre, 2008)
and use linear classiers from the LIBLINEAR
package (Fan et al., 2008) to predict the next state
transitions. As for MST, we used the MElt tagger
to provide input part-of-speech tags to the parser.

4 Experiments

This section presents the parsing experiments that
were carried out in order to assess the state of the
art in labeled dependency parsing for French and
at the same time investigate the impact of different
types of lexical information on parsing accuracy.
We present the features given to the parsers, dis-
cuss how they were extracted/computed and inte-
grated within each parsing architecture, and then
summarize the performance scores for the differ-
ent parsers and feature congurations.

4.1 Experimental Space
Our experiments focus on three types of lexical
features that are used either in addition to or as
substitutes for word forms: morphological fea-
tures, lemmas, and word clusters. In the case
of MaltParser and MSTParser, these features are
used in conjunction with POS tags. Motivations
for these features are rooted in the fact that French
has a rather rich inectional morphology.
The intuition behind using morphological fea-

tures like tense, mood, gender, number, and per-
son is that some of these are likely to provide ad-
ditional cues for syntactic attachment or function
type. This is especially true given that the 29 tags
used by the MElt tagger are rather coarse-grained.
The use of lemmas and word clusters, on the

other hand, is motivated by data sparseness con-
siderations: these provide various degrees of gen-
eralization over word forms. As suggested by Koo
et al. (2008), the use of word clusters may also re-
duce the need for annotated data.
All our features are automatically produced:

no features except word forms originate from the
treebank. Our aim was to assess the performance
currently available for French in a realistic setting.

Lemmas Lemmatized forms are extracted us-
ing Lefff (Sagot, 2010), a large-coverage morpho-
syntactic lexicon for French, and a set of heuristics
for unknown words. More specically, Lefff is

queried for each (word, pos), where pos is the
tag predicted by the MElt tagger. If the pair is
found, we use the longest lemma associated with
it in Lefff. Otherwise, we rely on a set of simple
stemming heuristics using the form and the pre-
dicted tag to produce the lemma. We use the form
itself for all other remaining cases.7

Morphological Features Morphological fea-
tures were extracted in a way similar to lemmas,
again by querying Lefff and relying on heuristics
for out-of-dictionary words. Here are the main
morphological attributes that were extracted from
the lexicon: mood and tense for verbs; person
for verbs and pronouns; number and gender for
nouns, past participles, adjectives and pronouns;
whether an adverb is negative; whether an adjec-
tive, pronoun or determiner is cardinal, ordinal,
denite, possessive or relative. Our goal was to
predict all attributes found in FTB that are recov-
erable from the word form alone.

Word Form Clusters Koo et al. (2008) have
proposed to use unsupervised word clusters as
features in MSTParser, for parsing English and
Czech. Candito and Crabbé (2009) showed that,
for parsing French with the Berkeley parser, us-
ing the same kind of clusters as substitutes for
word forms improves performance. We now ex-
tend their work by comparing the impact of such
clusters on two additional parsers.
We use the word clusters computed by Can-

dito and Crabbé (2009) using Percy Liang’s im-
plementation8 of the Brown unsupervised cluster-
ing algorithm (Brown et al., 1992). It is a bottom-
up hierarchical clustering algorithm that uses a bi-
gram language model over clusters. The result-
ing cluster ids are bit-strings, and various lev-
els of granularity can be obtained by retaining
only the rst x bits. Candito and Crabbé (2009)
used the L’Est Républicain corpus, a 125 mil-
lion word journalistic corpus.9 To reduce lexi-

7Candito and Seddah (2010) report the following cover-
age for the Lefff : around 96% of the tokens, and 80.1% of
the token types are present in the Lefff (leaving out punctua-
tion and numeric tokens, and ignoring case differences).

8http://www.eecs.berkeley.edu/~pliang/
software

9http://www.cnrtl.fr/corpus/
estrepublicain

112



cal data sparseness caused by inection, they ran
a lexicon-based stemming process on the corpus
that removes inection marks without adding or
removing lexical ambiguity. The Brown algo-
rithm was then used to compute 1000 clusters of
stemmed forms, limited to forms that appeared at
least 20 times.
We tested the use of clusters with different val-

ues for two parameters: nbbits = the cluster pre-
x length in bits, to test varying granularities, and
minocc = the minimum number of occurrences in
the L’Est Républicain corpus for a form to be re-
placed by a cluster or for a cluster feature to be
used for that form.

4.2 Parser-Specific Configurations
Since the three parsers are based on different ma-
chine learning algorithms and parsing algorithms
(with different memory requirements and parsing
times), we cannot integrate the different features
described above in exactly the same way. For the
Berkeley parser we use the setup of Candito and
Seddah (2010), where additional information is
encoded within symbols that are used as substi-
tutes for word forms. For MaltParser and MST-
Parser, which are based on discriminative models
that permit the inclusion of interdependent fea-
tures, additional information may be used either
in addition to or as substitutes for word forms.
Below we summarize the congurations that have
been explored for each parser:

• Berkeley:
1. Morphological features: N/A.
2. Lemmas: Concatenated with POS tags
and substituted for word forms.

3. Clusters: Concatenated with morpho-
logical sufxes and substituted for word
forms; grid search for optimal values of
nbbits and minocc.

• MaltParser andMSTParser:
1. Morphological features: Added as
features.

2. Lemmas: Substituted for word forms
or added as features.

3. Clusters: Substituted for word forms or
added as features; grid search for opti-
mal values of nbbits andminocc.

4.3 Results
Table 1 summarizes the experimental results. For
each parser we give results on the development
set for the baseline (no additional features), the
best conguration for each individual feature type,
and the best conguration for any allowed combi-
nation of the three features types. For the nal
test set, we only evaluate the baseline and the best
combination of features. Scores on the test set
were compared using a χ2-test to assess statisti-
cal signicance: unless specied, all differences
therein were signicant at p ≤ 0.01.
The MSTParser system achieves the best la-

beled accuracy on both the development set and
the test set. When adding lemmas, the best con-
guration is to use them as substitutes for word
forms, which slightly improves the UAS results.
For the clusters, their use as substitutes for word
forms tends to degrade results, whereas using
them as features alone has almost no impact. This
means that we could not replicate the positive ef-
fect10 reported by Koo et al. (2008) for English
and Czech. However, the best combined con-
guration is obtained using lemmas instead of
words, a reduced set of morphological features,11
and clusters as features, with minocc=50, 000 and
nbbits=10.
MaltParser has the second best labeled accu-

racy on both the development set and the test set,
although the difference with Berkeley is not sig-
nicant on the latter. MaltParser has the lowest
unlabeled accuracy of all three parsers on both
datasets. As opposed to MSTParser, all three fea-
ture types work best for MaltParser when used in
addition to word forms, although the improvement
is statistically signicant only for lemmas and
clusters. Again, the best model uses all three types
of features, with cluster features minocc=600 and
nbbits=7. MaltParser shows the smallest discrep-
ancy from unlabeled to labeled scores. This might
be because it is the only architecture where label-
ing is directly done as part of parsing.

10Note that the two experiments cannot be directly com-
pared. Koo et al. (2008) use their own implementation of an
MST parser, which includes extra second-order features (e.g.
grand-parent features on top of sibling features).

11As MSTParser training is memory-intensive, we re-
moved the features containing information already encoded
part-of-speech tags.

113



Development Set Test Set
Baseline Morpho Lemma Cluster Best Baseline Best

Parser LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS
Berkeley 85.1 89.3 – – 85.9 90.0 86.5 90.8 86.5 90.8 85.6 89.6 86.8 91.0
MSTParser 87.2 90.0 87.2 90.2 87.2 90.1 87.2 90.1 87.5 90.3 87.6 90.3 88.2 90.9
MaltParser 86.2 89.0 86.3 89.0 86.6 89.2 86.5 89.2 86.9 89.4 86.7 89.3 87.3 89.7

Table 1: Experimental results for the three parsing systems. LAS=labeled accuracy, UAS=unlabeled accuracy, for sentences
of any length, ignoring punctuation tokens. Morpho/Lemma/Cluster=best conguration when using morphological features
only (resp. lemmas only, clusters only), Best=best conguration using any combination of these.

For Berkeley, the lemmas improve the results
over the baseline, and its performance reaches that
of MSTParser for unlabeled accuracy (although
the difference between the two parsers is not sig-
nicant on the test set). The best setting is ob-
tained with clusters instead of word forms, using
the full bit strings. It also gives the best unlabeled
accuracy of all three systems on both the devel-
opment set and the test set. For the more impor-
tant labeled accuracy, the point-wise labeler used
is not effective enough.
Overall, MSTParser has the highest labeled ac-

curacy and Berkeley the highest unlabeled ac-
curacy. However, results for all three systems
on the test set are roughly within one percent-
age point for both labeled and unlabeled ac-
curacy, which means that we do not nd the
same discrepancy between constituency-based
and dependency-based parser that was reported
for English by Cer et al. (2010).
Table 2 gives parsing times for the best cong-

uration of each parsing architecture. MaltParser
runs approximately 9 times faster than the Berke-
ley system, and 10 times faster than MSTParser.
The difference in efciency is mainly due to the
fact that MaltParser uses a linear-time parsing al-
gorithm, while the other two parsers have cubic
time complexity. Given the rather small differ-
ence in labeled accuracy, MaltParser seems to be
a good choice for processing very large corpora.

5 Error Analysis

We provide a brief analysis of the errors made by
the best performing models for Berkeley, MST-
Parser and MaltParser on the development set, fo-
cusing on labeled and unlabeled attachment for
nouns, prepositions and verbs. For nouns, Berke-

Bky Malt MST
Tagging _ 0:27 0:27
Parsing 12:19 0:58 (0:18) 14:12 (12:44)
Func. Lab. 0:23 _ _
Dep. Conv. 0:4 _ _
Total 12:46 1:25 14:39

Table 2: Parsing times (min:sec) for the dev set, for the
three architectures, on an imac 2.66GHz. The gures within
brackets show the pure parsing time without the model load-
ing time, when available.

ley has the best unlabeled attachment, followed by
MSTParser and then MaltParser, while for labeled
attachment Berkeley and MSTParser are on a par
with MaltParser a bit behind. For prepositions,
MSTParser is by far the best for both labeled and
unlabeled attachment, with Berkeley and Malt-
Parser performing equally well on unlabeled at-
tachment and MaltParser performing better than
Berkeley on labeled attachment.12 For verbs,
Berkeley has the best performance on both labeled
and unlabeled attachment, with MSTParser and
MaltParser performing about equally well. Al-
though Berkeley has the best unlabeled attach-
ment overall, it also has the worst labeled attach-
ment, and we found that this is largely due to the
functional role labeler having trouble assigning
the correct label when the dependent is a prepo-
sition or a clitic.
For errors in attachment as a function of word

distance, we nd that precision and recall on de-
pendencies of length > 2 tend to degrade faster
for MaltParser than for MSTParser and Berkeley,

12In the dev set, for MSTParser, 29% of the tokens that
do not receive the correct governor are prepositions (883 out
of 3051 errors), while these represent 34% for Berkeley (992
out of 2914), and 30% for MaltParser (1016 out of 3340).

114



with Berkeley being the most robust for depen-
dencies of length > 6. In addition, Berkeley is
best at nding the correct root of sentences, while
MaltParser often predicts more than one root for a
given sentence. The behavior of MSTParser and
MaltParser in this respect is consistent with the re-
sults of McDonald and Nivre (2007).

6 Conclusion

We have evaluated three statistical parsing ar-
chitectures for deriving typed dependencies for
French. The best result obtained is a labeled at-
tachment score of 88.2%, which is roughly on a
par with the best performance reported by Cer et
al. (2010) for parsing English to Stanford depen-
dencies. Note two important differences between
their results and ours: First, the Stanford depen-
dencies are in a way deeper than the surface de-
pendencies tested in our work. Secondly, we nd
that for French there is no consistent trend fa-
voring either constituency-based or dependency-
based methods, since they achieve comparable re-
sults both for labeled and unlabeled dependencies.
Indeed, the differences between parsing archi-

tectures are generally small. The best perfor-
mance is achieved using MSTParser, enhanced
with predicted part-of-speech tags, lemmas, mor-
phological features, and unsupervised clusters of
word forms. MaltParser achieves slightly lower
labeled accuracy, but is probably the best option
if speed is crucial. The Berkeley parser has high
accuracy for unlabeled dependencies, but the cur-
rent labeling method does not achieve a compara-
bly high labeled accuracy.
Examining the use of lexical features, we nd

that predicted lemmas are useful in all three ar-
chitectures, while morphological features have a
marginal effect on the two dependency parsers
(they are not used by the Berkeley parser). Unsu-
pervised word clusters, nally, give a signicant
improvement for the Berkeley parser, but have a
rather small effect for the dependency parsers.
Other results for statistical dependency pars-

ing of French include the pilot study of Candito
et al. (2010), and the work ofSchluter and van
Genabith (2009), which resulted in an LFG sta-
tistical French parser. However, the latter’s re-
sults are obtained on a modied subset of the FTB,

and are expressed in terms of F-score on LFG f-
structure features, which are not comparable to
our attachment scores. There also exist a num-
ber of grammar-based parsers, evaluated on gold
test sets annotated with chunks and dependen-
cies (Paroubek et al., 2005; de la Clergerie et al.,
2008). Their annotation scheme is different from
that of the FTB, but we plan to evaluate the statis-
tical parsers on the same data in order to compare
the performance of grammar-based and statistical
approaches.

Acknowledgments

The rst, third and fourth authors’ work was sup-
ported by ANR Sequoia (ANR-08-EMER-013).
We are grateful to our anonymous reviewers for
their comments.

References
Abeillé, A. and N. Barrier. 2004. Enriching a french
treebank. In LREC’04.

Bikel, D. M. 2002. Design of a multi-lingual, parallel-
processing statistical parsing engine. In HLT-02.

Brown, P., V. Della Pietra, P. Desouza, J. Lai, and
R. Mercer. 1992. Class-based n-gram models of
natural language. Computational linguistics, 18(4).

Buchholz, S. and E. Marsi. 2006. CoNLL-X shared
task on multilingual dependency parsing. In CoNLL
2006.

Candito, M. and B. Crabbé. 2009. Improving gener-
ative statistical parsing with semi-supervised word
clustering. In IWPT’09.

Candito, M. and D. Seddah. 2010. Parsing word clus-
ters. In NAACL/HLT Workshop SPMRL 2010.

Candito, M., B. Crabbé, and P. Denis. 2010. Statis-
tical french dependency parsing : treebank conver-
sion and rst results. In LREC 2010.

Carroll, J., E. Briscoe, and A. Sanlippo. 1998. Parser
evaluation: A survey and a new proposal. In LREC
1998.

Cer, D., M.-C. de Marneffe, D. Jurafsky, and C. Man-
ning. 2010. Parsing to stanford dependencies:
Trade-offs between speed and accuracy. In LREC
2010.

Charniak, E. 2000. A maximum entropy inspired
parser. In NAACL 2000.

115



Crabbé, B. and M. Candito. 2008. Expériences
d’analyse syntaxique statistique du français. In
TALN 2008.

de la Clergerie, E. V., C. Ayache, G. de Chalendar,
G. Francopoulo, C. Gardent, and P. Paroubek. 2008.
Large scale production of syntactic annotations for
french. In First International Workshop on Auto-
mated Syntactic Annotations for Interoperable Lan-
guage Resources.

de Marneffe, M.-C., B. MacCartney, and C. D. Man-
ning. 2006. Generating typed dependency parses
from phrase structure parses. In LREC 2006.

Denis, P. and B. Sagot. 2009. Coupling an an-
notated corpus and a morphosyntactic lexicon for
state-of-the-art pos tagging with less human effort.
In PACLIC 2009.

Eisner, J. 1996. Three new probabilistic models for
dependency parsing: An exploration. In COLING
1996.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. 2008. LIBLINEAR: A library for large
linear classication. Journal of Machine Learning
Research, 9.

Kahane, S., A. Nasr, and O. Rambow. 1998.
Pseudo-projectivity: A polynomially parsable non-
projective dependency grammar. In ACL/COLING
1998.

Klein, D. and C. D. Manning. 2003. Accurate unlexi-
calized parsing. In ACL 2003.

Koo, T., X. Carreras, and M. Collins. 2008. Sim-
ple semi-supervised dependency parsing. In ACL-
08:HLT.

Kübler, S. 2008. The PaGe 2008 shared task on pars-
ing german. In ACL-08 Workshop on Parsing Ger-
man.

Lin, D. 1995. A dependency-based method for evalu-
ating broad-coverage parsers. In IJCAI-95.

Magerman, D. M. 1995. Statistical decision-tree mod-
els for parsing. In ACL 1995.

Matsuzaki, T., Y. Miyao, and J. Tsujii. 2005. Proba-
bilistic cfg with latent annotations. In ACL 2005.

McDonald, R. and J. Nivre. 2007. Characterizing
the errors of data-driven dependency parsing mod-
els. In EMNLP-CoNLL 2007.

McDonald, R. and F. Pereira. 2006. Online learning
of approximate dependency parsing algorithms. In
EACL 2006.

McDonald, R., K. Lerman, and F. Pereira. 2006. Mul-
tilingual dependency analysis with a two-stage dis-
criminative parser. In CoNLL 2006.

McDonald, R. 2006. Discriminative Learning and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

Nivre, J., Johan Hall, and Jens Nilsson. 2006. Malt-
parser: A data-driven parser-generator for depen-
dency parsing. In LREC 2006.

Nivre, J., J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel, and D. Yuret. 2007. The CoNLL
2007 shared task on dependency parsing. In CoNLL
Shared Task of EMNLP-CoNLL 2007.

Nivre, J. 2006. Inductive Dependency Parsing.
Springer.

Nivre, J. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Lin-
guistics, 34.

Paroubek, P., L.-G. Pouillot, I. Robba, and A. Vilnat.
2005. Easy : Campagne d’évaluation des analy-
seurs syntaxiques. In TALN 2005, EASy workshop :
campagne d’évaluation des analyseurs syntaxiques.

Petrov, S. and D. Klein. 2007. Improved inference for
unlexicalized parsing. In NAACL-07: HLT.

Petrov, S., L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree
annotation. In ACL 2006.

Sagot, B. 2010. The Lefff, a freely available and large-
coverage morphological and syntactic lexicon for
french. In LREC 2010.

Schluter, N. and J. van Genabith. 2009. Dependency
parsing resources for french: Converting acquired
lfg f-structure. In NODALIDA 2009.

Seddah, D., M. Candito, and B. Crabbé. 2009. Cross
parser evaluation and tagset variation: a french tree-
bank study. In IWPT 2009.

Seddah, D., G. Chrupa!a, O. Cetinoglu, J. van Gen-
abith, and M. Candito. 2010. Lemmatization and
statistical lexicalized parsing of morphologically-
rich languages. In NAACL/HLT Workshop SPMRL
2010.

Tsarfaty, R. 2006. Integrated morphological and syn-
tactic disambiguation for modern hebrew. In COL-
ING/ACL 2006 Student Research Workshop.

Yamada, H. and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
IWPT 2003.

116


