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Abstract

We present a transformation scheme that me-
diates between description logics (DL) or
RDF-encoded ontologies and type hierar-
chies in feature logics (FL). The DL-to-FL
direction is illustrated by an implemented
offline procedure that maps ontologies with
large, dynamically maintained instance data
to named entity (NE) and information ex-
traction (IE) resources encoded in typed fea-
ture structures. The FL-to-DL translation is
exemplified by a (currently manual) trans-
lation of so-called MRS (Minimal Recur-
sion Semantics) representations into OWL
instances that are based on OWL classes,
generated from the the type hierarchy of a
deep linguistic grammar. The paper will
identify parts of knowledge which can be
translated from one formalism into the other
without loosing information and parts which
can only be approximated. The work de-
scribed here is important for the Seman-
tic Web to become a reality, since semantic
annotations of natural language documents
(DL) can be automatically generated by shal-
low and deep natural language parsing sys-
tems (FL).

1 Introduction and motivation
Ontologies on the one hand and resources for natu-
ral language processing (lingware) on the other hand,
though closely related, are often maintained indepen-
dently, thus constituting a duplication of work.

In the first part of this paper, we describe an im-
plemented offline procedure that can be used to map
concepts and instance information from ontologies to
lingware resources for named entity recognition and
information extraction systems. The approach (i) im-
proves NE/IE precision and recall in closed domains,

∗The work described in this paper has been carried out
in the TAKE project (Technologies for Advanced Knowl-
edge Extraction), funded by the German Federal Min-
istry of Education and Research under contract number
01IW08003.

(ii) exploits linguistic knowledge for identifying on-
tology instances in texts more robustly, (iii) gives full
access to ontology instances and concepts in natu-
ral language processing results, and (iv) avoids du-
plication of work in development and maintenance of
ontologies and lingware. The advantages of this ap-
proach for Semantic Web and natural language (NL)
processing-based applications come from a cross-
fertilization effect. While ontology instance data can
improve precision and recall of, e.g., named entity
recognition (NER) and information extraction (IE)
in closed domains, linguistic knowledge contained in
NER and IE components can help to recognize ontol-
ogy instances (or concepts) occurring in text, e.g., by
taking into account inflection, anaphora, and context.
Furthermore, (Haghighi and Klein, 2009) and others
have shown that incorporating finer-grained seman-
tic information on entities occurring in text (e.g., for
antecedent filtering) helps to improve performance of
coreference resolution systems.

If both resources would be managed jointly at a
single place (in the ontology), they could be eas-
ily kept up-to-date and in sync, and their mainte-
nance would be less time-consuming. When ontol-
ogy concepts and instances are recognized in text,
their name or ID can be used by applications to
support subsequent queries, navigation, or inference
in the ontology using an ontology query language
(e.g., SPARQL). The procedure we describe here,
preserves hierarchical concept information and links
to ontology concepts and instances. Applications are,
e.g., hybrid deep-shallow question answering (Frank
et al., 2007), automatic typed hyperlinking (Buse-
mann et al., 2003) of instances and concepts occur-
ring in documents, or other innovative applications
that combine Semantic Web and NL processing tech-
nologies, e.g., for semantic search (Schäfer et al.,
2008).

The second part of this paper outlines the inverse
transformation from feature logics (FL) into descrip-
tion logics (DL). Walking along this direction has
the big advantage of potentially applying subsequent
description logic reasoners to the lexical semantics
of natural language input text in order to infer new
knowledge, e.g., in interactive natural language ques-
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tion answering. As an example, we will carefully de-
velop the (approximate) translation of so-called ro-
bust minimal recursion semantic (RMRS) structures
(Copestake, 2003) into OWL descriptions (McGuin-
ness and van Harmelen, 2004). RMRS structures
are the semantic output of various NL processing
engines, encoded in typed feature structures (TFS).
Since NL processors (e.g., taggers, chunkers, deep
parsers) only build up structure, subsequent process-
ing steps are either not realized or implemented in ad
hoc way,

• dealing with merging & normalization of
RMRS,

• infering new knowledge (e.g., w.r.t. the forego-
ing dialog),

• taking into account extralinguistic knowledge
for reasoning.

Now, by moving from a specialized “designer lan-
guage” (RMRS) to OWL, we can take advantage of
years of solid theoretical and practical work in logic,
especially in description logics. Since OWL is an
instance of the description logics family and the de-
facto language for the Semantic Web, we can utilize
the built-in reasoning capabilities of OWL and (rule-
based) description logic reasoners.

The structure of this paper is as follows. In the
next section, we outline the relationship between de-
scription logics and feature logics, trying to make
clear what they have in common, but at the same
time explaining their differences. Section 3 describes
the syntactic mapping process from the ontology
to feature structure descriptions. In Section 4, we
present an example where recognized named entities
enriched with ontology information are used in hy-
brid NL processing and subsequent applications. Af-
ter that, Section 5 explains the mapping of RMRS
structures into OWL descriptions. Finally, Section 6
shows that a subsequent description logic reasoner
can utilize these descriptions to infer new knowledge.

2 The relationship between description
and feature logics

Description logics (DL) (Baader et al., 2003) and fea-
ture logics (FL) (Carpenter, 1992) have been pursued
independently for quite a while. Their close relation-
ship was recognized by (Nebel and Smolka, 1990).
Instances of both families of knowledge representa-
tion formalisms are usually decidable two-variable
fragments of first-order predicate logic. Even though
DL dialects usually have an intractable worst-case
complexity, average-case reasoning is usually fast,

due to the availability of highly-optimized tableaux
reasoners. When adding seemingly easy constructs
such as “role-value maps” (the analog to reentran-
cies), the underlying logical calculus becomes unde-
cidable.

From an abstract viewpoint, both DL and FL em-
ploy unary and binary predicates for which the two
communities invented different names (we only list
some of them):

arity description logic feature logic
unary concept, class type, category
binary role, property feature, attribute

Though these names are different, both represen-
tation families (usually) vary in further, not so subtle
details:

description logic feature logic
open world assumption closed world assumption

full Boolean concept logic only conjunctions
relational properties functional properties

role-value maps forbidden reentrancies allowed

Let us be more verbose here to see the descrip-
tional consequences of both approaches in terms of
a mutual translation. We note here that we take
OWL (McGuinness and van Harmelen, 2004) as an
instance of DL and TDL (type description language)
(Krieger and Schäfer, 1994) as an example of FL.
OWL, the outcome of the DAML+OIL standard-
ization, is regarded to be the de-facto language for
the Semantic Web. OWL still makes use of con-
structs from RDF and RDFS, but restricts the ex-
pressive power of RDFS, thereby ensuring decidabil-
ity of the standard inference problems. Compared to
RDF(S), OWL provides more fine-grained modelling
constructs, such as intersectionOf or unionOf.

Within the Head-Driven Phrase Structure Gram-
mar (HPSG) (Pollard and Sag, 1994) paradigm in
modern computational linguistics (CL), TDL is a
language that has been employed in various imple-
mented systems, such as PAGE, LKB, PET, or
SProUT .

Before going into the details of our approximate
transformation schema, let us quickly explain how
to atomize a typed feature structure (TFS) in terms
of description logic primitives, using OWL. Consider
the following TFS which is a gross simplification of
the Head-Feature Principle in HPSG. In terms of
the “one-dimensional” line-based TDL notation, we
write

phrase1 := phrase &
[HEAD #h1, HEAD-DTR|HEAD #h1],

or as a two-dimensional AVM (attribute-value ma-
trix) notation, we have
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phrase1 ≡
[

phrase
HEAD h1
HEAD-DTR|HEAD h1

]

Assuming that this is an individual of class phrase,
we can obtain a meaning-preserving OWL represen-
tation (we assume that HEAD and HEAD-DTR are
functional OWL object properties):

<owl:Thing rdf:ID="h1"/>

<rdf:Description rdf:about="hdtr1">
<rdf:type rdf:resource="owl:Thing"/>
<HEAD rdf:resource="h1"/>

</rdf:Description>

<rdf:Description rdf:about="phr1">
<rdf:type rdf:resource="phrase"/>
<HEAD rdf:resource="h1"/>
<HEAD-DTR rdf:resource="hdtr1"/>

</rdf:Description>

Note that only the top-level structure is explic-
itly typed (phrase); every other substructure thus
is assigned the most general type, which trans-
lates into the OWL class owl:Thing. Note also
the sharing of information under paths HEAD and
HEAD-DTR|HEAD—this is realized by refering to the
the name h1 in the above RDF/OWL description for
phr1 and hdtr1.

Given a set of OWL descriptions, obtaining the in-
verse direction from DL to FL should now be clear. It
is important here to group statements that are related
to a specific class, viz., inheritance information (e.g.,
intersectionOf) together with property informa-
tion about roles that are “introduced” on a given class
(as given by the value of rdfs:domain ). In Sec-
tion 3, we focus on this inverse direction (DL-to-FL),
whereas Section 5 exemplifies the FL-to-DL direc-
tion.

Let us finally elaborate fundamental differences
between the DL and FL families that can only be ap-
proximated in terms of “less expressive” constructs.

Open vs. closed world assumption. Typed feature
logics usually “live” in a closed world, meaning that
if two types t1 and t2 do not share a common sub-
type (having a greatest lower bound), the unifica-
tion (conjuntion) is assumed to be the bottom type
(OWL: owl:Nothing), meaning that no individual
exists which is of both t1 and t2 at the same time.
This is totally different to the DL point of view: what
can not proven to be true (whether the conjunction
of t1 and t2 denotes the empty set) is not believed
to be false. Thus we either have to introduce a new
type t on the FL side, abbreviating the conjunction of

t1 and t2 (TDL: t := t1 & t2.), or to close the sub-
class hierarchy on the DL side: ⊥ ≡ t1 u t2 (OWL:
disjointWith). This decision clearly depends on
the direction of the transformation.

Boolean vs. conjunctive description logic. Typed
feature logics rarely provide more than conjunc-
tions of feature-value constraints. This is due to the
fact that disjunctive descriptions render almost linear
(conjunctive) unification exponential. A full Boolean
calculus, such as OWL DL, even has an NEXPTIME
complexity. Thus it is clear that the direction from
DL to FL can only be approximated. The inverse di-
rection is clearly trivial with the notable exception of
reentrancies (see below).

To flesh out our point, consider the DL axiom
human ≡ man t woman that fully determines (≡)
human in terms of the union of the concepts man
and woman. Given the syntax of TDL, we can ap-
proximate parts of the intended meaning of the de-
scription by man :< human and woman :< human,
since the above DL axiom entails that man v human
and woman v human is the case. This is ex-
actly specified by the above two TDL type defini-
tions. Further, not so trivial approximations can be
found in (Flickinger, 2002). The idea here is that
foreseeable disjunctions of DL concepts can be emu-
lated by introducing additional FL types (in the worst
case, exponentially-many new types, however). Even
negated concepts can be simulated this way, since FL
lives in a closed world (see above).

Relational vs. functional properties. By default,
roles in DL are relational properties, meaning that
for a fixed individual in the domain of a given role,
the number of individuals in the range needs not to
be 0 or 1. DL further allows to impose cardinality
(or number) restrictions on roles, so that we might
write ≥ 0 livingParents u ≤ 2 livingParents which
says that one can have at least 0 and at most 2 liv-
ing parents. This is in sharp contrast to FL which
usually assume functional roles (so-called features),
making such roles essentially partial functions. A
partial workaround has been proposed in CL systems
by using (ordered) difference lists to collect informa-
tion. Other systems, such as SProUT (Krieger et al.,
2004), come up with bags (or multisets) that even vi-
olate the foundational axiom (a set must not contain
itself) in order to achieve runtime efficiency.

Summarizing, the FL-to-DL direction of translat-
ing features into roles is easy, since features in FL
can be easily defined as functional roles in DL (OWL
even provides the owl:FunctionalProperty char-
acteristics). The inverse direction is only a gross ap-
proximation in that cardinality constraints can not be
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stated on the FL side.

Role-value maps & reentrancies. The above Head-
Feature Principle example seems to indicate that role-
value maps can be easily represented in DL, simply
by using the name of an individual to specify iden-
tity. In fact, this is true, but only for the ABox of
a knowledge base, i.e., only for the set of individu-
als (or instances). However, the notion of role-value
maps in DL or reentrencies in FL refers to the TBox
and the set of concept definitions, resp. Thus, one
can not intensionally specify identity of information
for a potentially infinite number of individuals via a
class axiom in DL, but needs to extensionally spec-
ify identity of information for each individual in the
ABox.

3 OntoNERdIE: from OWL to TDL
In this section, we describe an instantiation of the DL-
to-FL mapping. OntoNERdIE is an offline procedure
that maps ontology concept and instance information
to lingware resources (Schäfer, 2006). The approach
has been implemented for the language technology
ontology that backs up the LT World web portal
(http://www.lt-world.org), but can be easily adapted
to other domains and ontologies, since it is fully au-
tomated, except for the choice of relevant main con-
cepts and properties that are going to be mapped
which is a matter of configuration.

The target named entity recognition and infor-
mation extraction tool we employ here is SProUT
(Drożdżyński et al., 2004), a shallow multilingual,
multi-purpose NL processor. The advantage of
SProUT in the described approach for named en-
tity recognition and information extraction is that
it comes with (1) a type system and typed feature
structures as the basic data type, (2) a powerful,
declarative rule mechanism with regular expressions
over typed feature structures, and (3) a highly effi-
cient gazetteer module with fine-grained, customiz-
able classification of recognized entities.

SProUT provides additional modules such as mor-
phology or a reference resolver that can be exploited
in the rule system, e.g., to use context or morpholog-
ical variation for improved NER. Through automat-
ically generated mappings, SProUT output enriched
with ontology information can be used for robust, hy-
brid deep-shallow parsing, and semantic analysis.

In this section, we describe the offline process-
ing steps of the OntoNERdIE approach. The on-
line part in applications is described in Section 4.
The approach heavily relies on XSLT transformations
(Clark, 1999) of the XML representation formats,
both in the offline mapping and in the online appli-

cation.

3.1 RDF preprocessing

Input to the mapping procedure is an OWL on-
tology file, containing both concept and instance
descriptions. The RDF file is pre-processed with
a generic XSLT stylesheet sorting and merging
rdf:Descriptions that are distributed over the file
but which belong together. We use XSLT’s key and
generate-id functions. Depending on the appli-
cation, the next two processing stages take a list of
concepts as filter because it will typically not be de-
sirable to extract all concepts or instances available
in the ontology. In both cases, resource files are gen-
erated as output that can be used to extend existing
named entity recognition resources. E.g., while gen-
eral rules can recognize domain-independent named
entities (e.g., any person name), the extended re-
source contains specific, and potentially more de-
tailed information for domain-specific entities.

3.2 Extracting inheritance

The second stylesheet converts RDFS subClassOf

statements from output step 1 (Section 3.1) into a
set of TDL type definitions that can be immediately
imported by the SProUT named entity recognition
grammar. Currently 1,260 type definitions for the
same number of subClassOf statements in the LT
World ontology are generated, e.g.,

NL_Parsing := Written_Language &
Language_Analysis.

This is of course a lossy conversion because not
all relations supported in an OWL ontology (such as
unionOf, disjointWith, intersectionOf) are
mapped. However, we think that for NE classifi-
cations, the subClassOf taxonomy mappings will
be sufficient. Other relations could be formulated
as direct (though slower) ontology queries using the
OBJID mechanism described in the next step. If
the target of OntoNERdIE is a NER system differ-
ent from SProUT and without a type hierarchy, this
step can be omitted. The subClassOf information
can always be gained by querying the ontology ap-
propriately on the basis of the concept name.

3.3 Generating gazetteer entries

The next stylesheet selects statements about instances
of relevant concepts via the rdf:type information
and converts them to structured gazetteer source files
for the SProUT gazetteer compiler (or into a differ-
ent format in case of another NER system). In the
following example, one of the approximately 20,000
converted entries for LT World is shown.
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Bernd Kiefer | GTYPE: lt_person |
SNAME: "Kiefer" | GNAME: "Bernd" |
CONCEPT: Active_Person |
OBJID: "obj_62893"

The attribute CONCEPT contains a TDL type gener-
ated in step 2 (described in Section 3.2). For con-
venience, several ontology concepts are mapped (de-
fined manually as part of the configuration of the
stylesheet) to only a few named entity classes (under
attribute GTYPE). For the LT World ontology, these
classes are person, organization, event, project, prod-
uct, and technology. The advantage of this simplifica-
tion is that NER context rules from existing SProUT
named entity grammars can be re-used for improved
robustness and disambiguation.

The rules, e.g., recognize name variants with title
like Prof. Kiefer, Dr. Kiefer, or Mr. Kiefer with or
without a first name. Moreover, context (e.g., prepo-
sitions with location names, verbs), morphology and
reference resolution information can be exploited in
these rules.

The following SProUT rule lt-event (extended
TDL syntax) simply copies the slots of a matched
gazetteer entry for events (e.g., a conference) to the
output as a recognized named entity.

lt-event :> gazetteer &
[GTYPE lt_event, SURFACE #name,
CONCEPT #concept, OBJID #objid,
GABBID #abbrev]

->
ne-event & [EVENTNAME #name,

CONCEPT #concept, OBJID #objid,
GABBID #abbrev].

OBJID contains the object identifier of the instance
in the ontology. It can be used as a link back to the
full knowledge stored in the ontology, e.g., for sub-
sequent queries, like Who else participated in project
[with OBJID obj 4789]?.

In case multiple instances with same names but dif-
ferent object IDs occur in the ontology (which actu-
ally happens to be the case in LT World), multiple al-
ternatives are generated as output which is probably
the expected and desired behavior (e.g., for frequent
names such as John Smith). On the other hand, if
product or event names with an abbreviated variant
exist in the ontology, they both point to the same ob-
ject ID (provided they are stored appropriately in the
ontology).

4 Application to hybrid deep-shallow
parsing

We now describe and exemplify how the named en-
tities enriched with ontology information are em-
ployed in a robust, hybrid deep-shallow architec-

ture, combining domain-specific shallow named en-
tity recognition with deep, broad-coverage, domain-
independent, unification-based parsing for generating
a semantic representation of the meaning of parsed
sentences. An application of this scenario is deep
question analysis for question answering of struc-
tured knowledge sources, encoded as an OWL ontol-
ogy (Frank et al., 2007).

The output of SProUT for a recognized named en-
tity is a typed feature structure in XML containing
the instantiated RHS of the recognition rule as shown
in step 3 (Section 3.3) with the copied structured
gazetteer data, plus some additional information like
character span, named entity type, etc. The mapping
of recognized named entities to generic lexicon en-
tries of the deep grammar, in this case the English Re-
source Grammar (Flickinger, 2002), for hybrid pro-
cessing are performed through an XSLT stylesheet,
automatically generated from the SProUT type hi-
erarchy. Analogous mappings are supported for
other grammars available in the DELPH-IN reposi-
tory (see http://www.delph-in.net). The mapping ba-
sically transports the surface string, a character span,
and a generic lexicon type of the deep grammar for a
chart item to be generated in an XML format, read-
able by the deep parser. A sample output of the se-
mantic representation generated by the deep parser is
shown in Figure 1. The semantic representation for-
mat, called RMRS, is described in (Copestake, 2003)
and in Section 5.3 below.

In addition to the basic named entity type mapping
for default lexicon entries, the recognized concepts
are also useful for constraining the semantic sort in
the deep grammar in a more fine-grained way (e.g.,
for disambiguation). The deep parser’s XML input
chart format foresees “injection” of such types into
deep structures. Here, OBJID and other structured in-
formation, like given name and surname, can be pre-
served in the representation. The advantage of the
RMRS format is that it can also be combined ex post
with analyses from other deep or shallow NLP com-
ponents, e.g., with partial analyses when a full parse
fails.

5 (R)MRS2OWL: from TDL to OWL

This section is devoted to the translation of MRSs
which are encoded as TFSs into a set of OWL expres-
sions. An example of a variant of MRS, a so-called
robust MRS (RMRS) has already been depicted in
Figure 1. RMRS will be explained in more detail in
Section 5.3.
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TEXT ”Did Bernd Kiefer present a paper at IJCAI 2005?”
TOP h1

RELS








int m rel
LBL h1
ARG0 e2
MARG h1







prpstn m rel
LBL h1001
ARG0 e2
MARG h5







proper q rel
LBL h6
ARG0 x8
RSTR h7
BODY h9







named rel
LBL h10
ARG0 x8

CARG
Bernd
Kiefer







present v
LBL h11
ARG0 e2 tense=past

ARG1 x8 num=sg
pers=3

ARG2 x12 num=sg
pers=3

ARG3 u13







a q
LBL h14
ARG0 x12
RSTR h15
BODY h16







paper n
LBL h17
ARG0 x12







at p
LBL h1002
ARG0 e19 tense=u

ARG1 e2

ARG2 x18 num=sg
pers=3







proper q rel
LBL h20
ARG0 x18
RSTR h21
BODY h22







named rel
LBL h23
ARG0 x18
CARG IJCAI 2005








HCONS {h5 qeq h11, h7 qeq h10, h15 qeq h17, h21 qeq h23}
ING {h1 ing h1001, h11 ing h1002}




Figure 1: RMRS generated through hybrid parsing.

5.1 Some words on MRSs
There exist good linguistic reasons for assuming
that the semantics of a sentence like Kim ate a
cookie is not past(eat(kim′, cookie′), but instead
something like ∃e . eating(e) ∧ subject(e, kim′) ∧
object(e, cookie′)∧before(e,now). This approach to
NL semantics is often called Event or Davidsonian
semantics (named after the American philosopher
Donald Davidson). HPSG has incorporated ideas
from event semantics by defining so-called Minimal
Recursion Semantics (MRS) structures (Copestake et
al., 2005) that are constructed in parallel with the syn-
tactic structure. MRS as such provides a flat com-
positional semantics and maximizes splitting using
equality constraints. Structural ambiguities, as can
be found in the famous sentence Every farmer who
owns a donkey beats it, are not spelled out, but in-
stead quantifier scope is underspecified. By impos-
ing constraints on the scope, specific analysis trees
can be reconstructed. Robust MRS (RMRS) (Copes-
take, 2003), derived from MRS, was designed as an
abstract language that supports the integration of par-
tial and total analysis results from deep and shallow
processors and provides a good tradeoff between ro-
bustness and accuracy (see (Frank et al., 2004) for an
example).

5.2 Why the translation is useful
NL processors (e.g., tokenizer, POS tagger, shallow
chunk parser, deep parser, etc.) that are geared to-
wards (R)MRSs (or another common language) have
the potential of combining their output on the level
of semantics. However, these engines do not provide
any form of reasoning, i.e., they only build up struc-

ture.
Consider, for instance, a deep unification-based

parser that might return analyses represented as typed
feature structures, where both syntax and semantics
(the MRS) has been constructed with the help of uni-
fication. Now, to bring structures together and to
perform deductive and abductive forms of reason-
ing, subsequent computational steps are necessary,
but these steps strictly go beyond the power of or-
dinary parsing.

In order to perform these subsequent steps, we
need a concrete implemented (and hopefully stan-
dardized) representation language for which editing,
displaying, and reasoning tools are available. Ex-
actly OWL accomplishes these requirements. Hence
we think that the described below translation process
from (R)MRSs into OWL is worthwhile, especially
when one is interested in interfacing linguistic knowl-
edge (the (R)MRSs) with extralinguistic ontologies
for specific domains.

5.3 The translation process

In order to explain the translation process, we will
analyze the RMRS depicted in Figure 1. The RMRS
was derived from the MRS of the deep unification-
based parser. We see that an RMRS contains four dis-
tinguished attributes (the TEXT attribute is only added
for illustration):

1. TOP: a handle (pointer) to the top-level structure.

2. RELS (relations): a set of so-called elementary
predications (EP), encoded as TFSs, each ex-
pressing an atomic semantic unit that can not be
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further decomposed; due to the lack of sets, TFS
grammars use a list here.

3. HCONS (handle constraints): a set of so-called
qeq constraints (equality modulo quantifiers);
the left side of a qeq constraints (a handle h in
an argument position) is always related to a label
l of an EP, (i) either directly (h = l) or (ii) indi-
rectly, in case h dominates a quantifier q, such
that BODY(q) = l or again another quantifier,
where condition (ii) is recursively applied again.

4. ING (in group): a set of relations used to express
a conjunction of EPs from the set RELS.

Giving this information, it should now be clear that
the TFS from Figure 1 must be realized as an instance
of the OWL class RMRS and that the features TOP and
RELS must be implemented as roles in OWL, all de-
fined on RMRS through the use of rdfs:domain:

<owl:Class rdf:ID="RMRS"/>
<owl:ObjectProperty rdf:ID="TOP">
<rdf:type rdf:resource=

"&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#RMRS"/>
<rdfs:range rdf:resource=

"#HandleVar"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="RELS">
<rdfs:domain rdf:resource="#RMRS"/>
<rdfs:range rdf:resource="#EP"/>

</owl:ObjectProperty>

TOP takes exactly one argument, hence we use OWL’s
FunctionalProperty characteristics mechanism
here. Since RELS (as well as HCONS and ING, see
below) might take more than one argument, we do
not impose a property restriction here, so they are re-
lational by default. TOP maps to a special variable
class (see below), and RELS to EPs.
TOP. The TOP property always takes a handle vari-

able; other variable classes, such as label vars are
used for restricting properties:

<owl:Class rdf:ID="Var"/>
<owl:Class rdf:ID="HandleVar">
<rdfs:subClassOf rdf:resource=

"#Var"/>
</owl:Class>
<owl:Class rdf:ID="LabelVar">
<rdfs:subClassOf rdf:resource=

"#Var"/>
</owl:Class>

Actually, this modelling is mere window-dressing
and clearly verbose, since an OWL instance of
class RMRS is always assigned a name (<RMRS
rdf:ID="...">), and in fact, this name can be
taken to be the TOP handle. This means that we can
in principle forbear from the TOP property. However,

if we want to utilize morpho-syntactical information
in subsequent inference steps, we have to enrich the
above variable classes with further properties/roles,
such as tense, pers, or num (see, e.g., the “struc-
tured” variables in the structure for present v in
Figure 1).

RELS. Elements of RELS, i.e., concrete EPs are
essentially “slimed” instances of feature structure
types. Overall, this means that we have to represent
the relevant types of the linguistic type hierarchy and
their subsumption relationship as OWL classes. As
shown in Section 3, this process can be automated
and only some guidance from a knowledge engineer
is necessary to mark the features that should not be
taken over to the DL side.

HCONS and ING. HCONS essentially specifies a
ternary relation, but since OWL (and DL in general)
are restricted to unary and binary relations, one way
to model a qeq constraint is to define a binary prop-
erty, consisting of a left-hand and a right-hand side.
From what has been said above, the left-hand side is a
handle and the right-hand side a label, hence we have
the following declaration for qeq:

<owl:ObjectProperty rdf:ID="qeq">
<rdfs:domain rdf:resource=

"#HandleVar"/>
<rdfs:range rdf:resource=

"#LabelVar"/>
</owl:ObjectProperty>

Given this way of modelling, it is now impossible to
define a property HCONS (as well as ING) on class
RMRS, since properties can only take instances of
classes, but not instances of other properties. How-
ever, since we assume that our variables (instances
of class Var) are always unique at runtime, it is in
principle not necessary to group the qeq constraint
inside an (R)MRS—note that there is still a connec-
tion between EPs and qeq constraints through the use
of variables. However, if we want to talk about/want
to access the qeq constraints of a specific (R)MRS
instance directly, this kind of modelling is somewhat
unhandy.

To overcome this seemingly wrong representation
(we are neutral about this), we have to “reify” or
“wrap” qeq property instances. This would mean that
qeq would no longer be a property, but instead be-
comes a class, say QEQ, consisting of a right-hand
and a left-hand side. With this in mind, we can eas-
ily model, e.g., the first qeq constraint qeq1 from the
above figure:

<RMRS rdf:ID="rmrs1">
<TOP rdf:resource="#h1"/>
<RELS rdf:resource="#ep1"/>
<HCONS rdf:resource="#qeq1"/>
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...
</RMRS>
<QEQ rdf:ID="qeq1">
<LHS rdf:resource="#h5"/>
<RHS rdf:resource="#h11"/>

</QEQ>
<HandleVar rdf:ID="h1"/>
<HandleVar rdf:ID="h5"/>
<LabelVar rdf:ID="h11"/>
<int_m_rel rdf:ID="ep1">
<LBL rdf:resource="#h1"/>
<ARG0 rdf:resource="#e2"/>
<MARG rdf:resource="#h1"/>

</int_m_rel>

What we have said about qeq constraints so far do
hold for in-group constraints as well.

6 DL reasoning: a small example
We have already said that the OWL representation of
RMRS structures are a good starting point to imple-
ment some useful forms of reasoning. Consider the
sentence Did Bernd Kiefer present a paper at IJCAI
2005? from Figure 1. From the resulting EPs and
with the help of an in-group constraint, we can infer
the fact that Bernd Kiefer was (physically) at IJCAI
2005, assuming he has presented a paper (which he
did). The inference rule achieving this can be stated
informally as presenting a paper at a conference en-
tails being at the conference. A more formal rep-
resentation in terms of feature structures is given in
Figure 2.

Clearly this rule can be rewritten to operatate on
OWL expressions (as is proposed in SWRL (Hor-
rocks et al., 2004)) or on the underlying RDF triple
notation (which, for instance, OWLIM (Kiryakov,
2006) assumes). Note the use of logical variables
in the above rule in order to formulate the transport
of information from the LHS to the RHS. The above
rule abstract away from concrete persons and loca-
tions through the use of logic variables ?p and ?l.
Note further that the resulting RHS output structure
is no longer a RMRS but a domain-specific represen-
tation (somewhat simplified in this example) that can
be queried for or can be employed in subsequent rea-
soning tasks.

In (Frank et al., 2007), an implemented approach is
described that utilizes an additional frame represen-
tation layer (Ruppenhofer et al., 2006) in which rules
of the above kind are applied, using the term rewrit-
ing system of (Crouch, 2005).

7 Summary
Our paper returned to mind that there exists a close
relationship between feature logics as used in compu-
tational linguistics and description logics employed

in the Semantic Web community. This relation-
ship can be utilized to obtain more and better se-
mantic annotations through information extraction
and deep parsing of text documents. We have in-
dicated that specific language constructs in FL and
DL can be mutally transformed without losing any
meaning, whereas others can only be approximated
(esp., role-value maps/reentrencies and functional
features/relational roles).

We have described an implemented procedure that
maps ontology instances and concepts to named en-
tity recognition and information extraction resources.
As argued in the paper, the benefits for minimized
domain-specific and linguistic knowledge engineer-
ing are manifold. An application using hybrid shal-
low and deep NL processing on the basis of the
mapped ontology data has been successfully imple-
mented for question answering. This application
(Frank et al., 2007) employs an additional frame se-
mantics layer (cf. Section 6) on which light forms
of reasoning take place. In order to make this addi-
tional layer superflous, we have described a transfor-
mation scheme that maps (R)MRS into OWL descrip-
tions. Given these descriptions, rules of the above
kind (Section 6) can directly operate on OWL, and
no additional translation is necessary to query the in-
stance data, encoded in RDF/OWL.
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