
Coling 2008: Poster Volume, pages 748–756,
Beijing, August 2010

Head-modifier Relation based Non-lexical Reordering Model

for Phrase-Based Translation

Shui Liu1, Sheng Li1, Tiejun Zhao1, Min Zhang2, Pengyuan Liu3
1School of Computer Science and Technology, Habin Institute of Technology

{liushui,lisheng,tjzhao}@mtlab.hit.edu.cn
2Institute for Infocomm Research

mzhang@i2r.a-star.edu.sg
3Institute of Computational Linguistics, Peking University

liupengyuan@pku.edu.cn

Abstract

Phrase-based statistical MT (SMT) is a
milestone in MT. However, the transla-
tion model in the phrase based SMT is
structure free which greatly limits its
reordering capacity. To address this is-
sue, we propose a non-lexical head-
modifier based reordering model on
word level by utilizing constituent based
parse tree in source side. Our experi-
mental results on the NIST Chinese-
English benchmarking data show that,
with a very small size model, our me-
thod significantly outperforms the base-
line by 1.48% bleu score.

1 Introduction

Syntax has been successfully applied to SMT to
improve translation performance. Research in
applying syntax information to SMT has been
carried out in two aspects. On the one hand, the
syntax knowledge is employed by directly inte-
grating the syntactic structure into the transla-
tion rules i.e. syntactic translation rules. On this
perspective, the word order of the target transla-
tion is modeled by the syntax structure explicit-
ly. Chiang (2005), Wu (1997) and Xiong (2006)
learn the syntax rules using the formal gram-
mars. While more research is conducted to learn
syntax rules with the help of linguistic analysis
(Yamada and Knight, 2001; Graehl and Knight,
2004). However, there are some challenges to
these models. Firstly, the linguistic analysis is
far from perfect. Most of these methods require
an off-the-shelf parser to generate syntactic
structure, which makes the translation results
sensitive to the parsing errors to some extent.

To tackle this problem, n-best parse trees and
parsing forest (Mi and Huang, 2008; Zhang,
2009) are proposed to relieve the error propaga-
tion brought by linguistic analysis. Secondly,
some phrases which violate the boundary of
linguistic analysis are also useful in these mod-
els (DeNeefe et al., 2007; Cowan et al. 2006).
Thus, a tradeoff needs to be found between lin-
guistic sense and formal sense.

On the other hand, instead of using syntactic
translation rules, some previous work attempts
to learn the syntax knowledge separately and
then integrated those knowledge to the original
constraint. Marton and Resnik (2008) utilize the
language linguistic analysis that is derived from
parse tree to constrain the translation in a soft
way. By doing so, this approach addresses the
challenges brought by linguistic analysis
through the log-linear model in a soft way.

Starting from the state-of-the-art phrase based
model Moses (Koehn e.t. al, 2007), we propose
a head-modifier relation based reordering model
and use the proposed model as a soft syntax
constraint in the phrase-based translation
framework. Compared with most of previous
soft constraint models, we study the way to util-
ize the constituent based parse tree structure by
mapping the parse tree to sets of head-modifier
for phrase reordering. In this way, we build a
word level reordering model instead of phras-
al/constituent level model. In our model, with
the help of the alignment and the head-modifier
dependency based relationship in the source
side, the reordering type of each target word
with alignment in source side is identified as
one of pre-defined reordering types. With these
reordering types, the reordering of phrase in
translation is estimated on word level.

748

Fig 1. An Constituent based Parse Tree

2 Baseline

Moses, a state-of-the-art phrase based SMT sys-
tem is used as our baseline system. In Moses,
given the source language f and target language
e, the decoder is to find:

ebest = argmaxe p (e | f) pLM (e) ω
length(e)

 (1)

where p(e|f) can be computed using phrase
translation model, distortion model and lexical
reordering model. pLM(e) can be computed us-
ing the language model. ω

length(e)
 is word penalty

model.
Among the above models, there are three

reordering-related components: language model,
lexical reordering model and distortion model.
The language model can reorder the local target
words within a fixed window in an implied way.
The lexical reordering model and distortion
reordering model tackle the reordering problem
between adjacent phrase on lexical level and
alignment level. Besides these reordering model,
the decoder induces distortion pruning con-
straints to encourage the decoder translate the
leftmost uncovered word in the source side
firstly and to limit the reordering within a cer-
tain range.

3 Model

In this paper, we utilize the constituent parse
tree of source language to enhance the reorder-

ing capacity of the translation model. Instead of
directly employing the parse tree fragments
(Bod, 1992; Johnson, 1998) in reordering rules
(Huang and Knight, 2006; Liu 2006; Zhang and
Jiang 2008), we make a mapping from trees to
sets of head-modifier dependency relations
(Collins 1996) which can be obtained from the
constituent based parse tree with the help of
head rules (Bikel, 2004).

3.1 Head-modifier Relation

According to Klein and Manning (2003) and
Collins (1999), there are two shortcomings in n-
ary Treebank grammar. Firstly, the grammar is
too coarse for parsing. The rules in different
context always have different distributions. Se-
condly, the rules learned from training corpus
cannot cover the rules in testing set.

Currently, the state-of-the-art parsing algo-
rithms (Klein and Manning, 2003; Collins 1999)
decompose the n-ary Treebank grammar into
sets of head-modifier relationships. The parsing
rules in these algorithms are constructed in the
form of finer-grained binary head-modifier de-
pendency relationships. Fig.2 presents an exam-
ple of head-modifier based dependency tree
mapped from the constituent parse tree in Fig.1.

749

Fig. 2. Head-modifier Relationships with Aligned Translation

Moreover, there are several reasons for which

we adopt the head-modifier structured tree as
the main frame of our reordering model. Firstly,
the dependency relationships can reflect some
underlying binary long distance dependency
relations in the source side. Thus, binary depen-
dency structure will suffer less from the long
distance reordering constraint. Secondly, in
head-modifier relation, we not only can utilize
the context of dependency relation in reordering
model, but also can utilize some well-known
and proved helpful context (Johnson, 1998) of
constituent base parse tree in reordering model.
Finally, head-modifier relationship is mature
and widely adopted method in full parsing.

3.2 Head-modifier Relation Based Reor-
dering Model

Before elaborating the model, we define some
notions further easy understanding. S=<f1, f

2…fn> is the source sentence; T=<e1,e2,…,em> is
the target sentence; AS={as(i) | 1≤ as(i) ≤ n }
where as(i) represents that the ith word in source
sentence aligned to the as(i)th word in target
sentence; AT={aT(i) | 1≤ aT (i) ≤ n } where aT(i)
represents that the ith word in target sentence

aligned to the aT(i)th word in source sentence;
D= {(d(i), r(i))| 0≤ d(i) ≤n} is the head-
modifier relation set of the words in S where
d(i) represents that the ith word in source sen-
tence is the modifier of d(i)th word in source
sentence under relationship r(i); O= < o1, o2,…,
om > is the sequence of the reordering type of
every word in target language. The reordering
model probability is P(O| S, T, D, A).

Relationship: in this paper, we not only use the
label of the constituent label as Collins (1996),
but also use some well-known context in pars-
ing to define the head-modifier relationship r(.),
including the POS of the modifier m, the POS
of the head h, the dependency direction d, the
parent label of the dependency label l, the
grandfather label of the dependency relation p,
the POS of adjacent siblings of the modifier s.
Thus, the head-modifier relationship can be
represented as a 6-tuple <m, h, d, l, p, s>.

r(.) relationship
r(1) <VV, - , -, -, -, - >

r(2) <NN, NN, right, NP, IP, - >
r(3) <NN,VV, right, IP, CP, - >

r(4) <VV, DEC, right, CP, NP, - >
r(5) <NN,VV, left, VP, CP, - >

r(6) <DEC, NP, right, NP, VP, - >
r(7) <NN, VV, left, VP, TOP, - >

Table 1. Relations Extracted from Fig 2.

In Table 1, there are 7 relationships extracted
from the source head-modifier based dependen-
cy tree as shown in Fig.2. Please notice that, in
this paper, each source word has a correspond-
ing relation.
Reordering type: there are 4 reordering types
for target words with linked word in the source
side in our model: R= {rm1, rm2, rm3 , rm4}. The
reordering type of target word as(i) is defined as
follows:

 rm1: if the position number of the ith
word’s head is less than i (d(i) < i) in
source language, while the position num-
ber of the word aligned to i is less than

750

as(d(i)) (as(i) < as(d(i))) in target lan-
guage;

 rm2: if the position number of the ith
word’s head is less than i (d(i) < i) in
source language, while the position num-
ber of the word aligned to i is larger than
as(d(i)) (as(i) > as(d(i))) in target lan-
guage.

 rm3: if the position number of the ith
word’s head is larger than i (d(i) > i) in
source language, while the position num-
ber of the word aligned to i is larger than
as(d(i)) (as(i) > as(d(i))) in target language.

 rm4: if the position number of the ith
word’s head is larger than i (d(i) > i) in
source language, while the position num-
ber of the word aligned to i is less than
as(d(i)) (as(i) < as(d(i))) in target lan-
guage.

Fig. 3. An example of the reordering types in
Fig. 2.

Fig. 3 shows examples of all the reordering
types. In Fig. 3, the reordering type is labeled at
the target word aligned to the modifier: for ex-
ample, the reordering type of rm1 belongs to the
target word “scale”. Please note that, in general,
these four types of reordering can be divided
into 2 categories: the target words order of rm2
and rm4 is identical with source word order,
while rm1 and rm3 is the swapped order of
source. In practice, there are some special cases
that can’t be classified into any of the defined
reordering types: the head and modifier in
source link to the same word in target. In such
cases, rather than define new reordering types,
we classify these special cases into these four
defined reordering types: if the head is right to
the modifier in source, we classify the reorder-

ing type into rm2; otherwise, we classify the
reordering type into rm4.
Probability estimation: we adopt maximum
likelihood (ML) based estimation in this paper.
In ML estimation, in order to avoid the data
sparse problem brought by lexicalization, we
discard the lexical information in source and
target language:

m

1i

Ti (i)))r(a-,-, |P(o

A) D, T, S, |P(O

 (2)

where oi∈{rm1,rm2,rm3,rm4} is the reorder-
ing type of ith word in target language.
To get a non-zero probability, additive smooth

ing(Chen and Goodman, 1998) is used:

||),,,,,(

),,,,,,(

||)))(((

)))((,(

))))(((-,-,|P(o

)()()()()()(

)()()()()()(

i

OspldhmF

spldhmoF

OiarF

iaroF

iarF

iaiaiaiaiaia

Ro

iaiaiaiaiaiai

t

Ro

Ti

t

TTTTTT

i

TTTTTT

i

(3)

where F(.) is the frequency of the statistic event
in training corpus. For a given set of dependen-
cy relationships mapping from constituent tree,
the reordering type of ith word is confined to
two types: it is whether one of rm1 and rm2 or
rm3 and rm4. Therefore, |O|=2 instead of |O|=4
in (2). The parameter α is an additive factor to
prevent zero probability. It is computed as:

),,,,,(

1

)()()()()()(iaiaiaiaiaia

Ro
TTTTTT

i

spldhmFC

(4)
where c is a constant parameter(c=5 in this pa-
per).
 In above, the additive parameter α is an adap-
tive parameter decreasing with the size of the
statistic space. By doing this, the data sparse
problem can be relieved.

4 Apply the Model to Decoder

Our decoding algorithm is exactly the same as
(Kohn, 2004). In the translation procedure, the
decoder keeps on extending new phrases with-
out overlapping, until all source words are trans-
lated. In the procedure, the order of the target

751

words in decoding procedure is fixed. That is,
once a hypothesis is generated, the order of tar-
get words cannot be changed in the future. Tak-
ing advantage of this feature, instead of compu-
ting a totally new reordering score for a newly
generated hypothesis, we merely calculate the
reordering score of newly extended part of the
hypothesis in decoding. Thus, in decoding, to
compute the reordering score, the reordering
types of each target word in the newly extended
phrase need to be identified.

The method to identify the reordering types
in decoding is proposed in Fig.4. According to
the definition of reordering, the reordering type
of the target word is identified by the direction
of head-modifier dependency on the source side,
the alignment between the source side and tar-
get side, and the relative translated order of
word pair under the head-modifier relationship.
The direction of dependency and the alignment
can be obtained in input sentence and phrase
table. While the relative translation order needs
to record during decoding. A word index is em-
ployed to record the order. The index is con-
structed in the form of true/false array: the index
of the source word is set with true when the
word has been translated. With the help of this
index, reordering type of every word in the
phrase can be identified.

1: Input: alignment array AT; the Start is the
start position of the phrase in the source side;
head-modifier relation d(.); source word in-
dex C, where C[i]=true indicates that the
ith word in source has been translated.

2: Output: reordering type array O which re-
serves the reordering types of each word in
the target phrase

3: for i = 1, |AT| do
4: P ← aT(i) + Start
5: if (d (P)<P) then
6: if C [d(p)] = false then

7: O[i] ← rm1
8: else

9: O[i] ← rm2

10: end if

11: else
12: if C[d(p)] = true then

13: O[i] ← rm3

14: else

15: O[i] ← rm4

16: end if
17: end if
18: C[p] ←true //update word index
19: end for

Fig. 4. Identify the Reordering Types of Newly
Extended Phrase

After all the reordering types in the newly ex-
tended phrase are identified, the reordering
scores of the phrase can be computed by using
equation (3).

5 Preprocess the Alignment

In Fig. 4, the word index is to identify the reor-
dering type of the target translated words. Ac-
tually, in order to use the word index without
ambiguity, the alignment in the proposed algo-
rithm needs to satisfy some constraints.

Firstly, every word in the source must have
alignment word in the target side. Because, in
the decoding procedure, if the head word is not
covered by the word index, the algorithm cannot
distinguish between the head word will not be
translated in the future and the head word is not
translated yet. Furthermore, in decoding, as
shown in Fig.4, the index of source would be set
with true only when there is word in target
linked to it. Thus, the index of the source word
without alignment in target is never set with true.

Fig. 5. A complicated Example of Alignment in

Head-modifier based Reordering Model

Secondly, if the head word has more than one
alignment words in target, different alignment
possibly result in different reordering type. For
example, in Fig. 5, the reordering type of e2 is
different when f2 select to link word e1 and e3
in the source side.

To solve this problem, we modify the align-
ment to satisfy following conditions: a) each
word in source just has only one alignment
word in target, and b) each word in target has at
most one word aligned in source as its anchor
word which decides the reordering type of the
target word.

To make the alignment satisfy above con-
straints, we modify the alignment in corpus. In

752

order to explain the alignment preprocessing,
the following notions are defined: if there is a
link between the source word f j and target word
ei, let l(ei ,fj) = 1 , otherwise l(ei ,fj) = 0; the

source word fj∈F1-to-N , iff ∑i l(ei,fj) >1, such
as the source word f2 in Fig. 5; the source word

fj∈FNULL, iff ∑i l(ei,fj) = 0, such as the source

word f4 in Fig. 5; the target word ei∈E1-to-N , iff

∑j l(ei,fj) > 1, such as the target word e1 in Fig.
5.

In preprocessing, there are 3 types of opera-
tion, including DiscardLink(fj) , BorrowLink(f j)
and FindAnchor(ei) :
DiscardLink(fj) : if the word fj in source with

more than one words aligned in target, i.e. fj∈
F1-to-N ; We set the target word en with l(en, fj) =
1, where en= argmaxi p(ei | fj) and p(ei | fj) is
estimated by (Koehn e.t. al, 2003), while set
rest of words linked to fj with l (en, fj) = 0.
BorrowLink(fj): if the word fj in source with-

out a alignment word in target, i.e. fj∈FNULL ;
let l(ei,fj)=1 where ei aligned to the word fj ,
which is the nearest word to fj in the source
side; when there are two words nearest to fj with
alignment words in the target side at the same
time, we select the alignment of the left word
firstly .

FindAnchor(): for the word ei in target with
more than one words aligned in source , i.e. ei

∈E1-to-N ; we select the word fm aligned to ei as
its anchor word to decide the reordering type of
ei , where fm= argmaxj p(ei | fj) and p(fj | ei) is
estimated by (Koehn et al, 2003); For the rest
of words aligned to ei , we would set their word
indexes with true in the update procedure of
decoding in the 18

th
 line of Fig.4.

With these operations, the required alignment
can be obtained by preprocessing the origin
alignment as shown in Fig. 6.
1: Input: set of alignment A between target lan-

guage e and source language f
2: Output: the 1-to-1 alignment required by the

model

3: foreach fi∈F1-to-N do
4: DiscardLink(fi)
5: end for

6: foreach fi ∈FNULL do
7: BorrowLink(fi)
8: end for

9: foreach ei∈E1-to-N do

10: FindAnchor(ei)
11:endfor

Fig. 6. Alignment Pre-Processing algorithm

Fig. 7. An Example of Alignment Preprocessing.

 An example of the preprocess the alignment
in Fig. 5 is shown in Fig. 7 : firstly, Discar-
dLink(f2) operation discards the link between f2
and e1 in (a); then the link between f4 and e3 is
established by operation BorrowLink(f4) in (b);
at last, FindAnchor(e3) select f2 as the anchor
word of e3 in source in (c). After the prepro-
cessing, the reordering type of e3 can be identi-
fied. Furthermore, in decoding, when the de-
coder scans over e2, the word index sets the
word index of f3 and f4 with true. In this way,
the never-true word indexes in decoding are
avoided.

6 Training the Reordering Model

Before training, we get the required alignment
by alignment preprocessing as indicated above.
Then we train the reordering model with this
alignment: from the first word to the last word
in the target side, the reordering type of each
word is identified. In this procedure, we skip the
words without alignment in source. Finally, all
the statistic events required in equation (3) are
added to the model.

In our model, there are 20,338 kinds of rela-
tions with reordering probabilities which are
much smaller than most phrase level reordering
models on the training corpus FBIS.

Table 1 is the distribution of different reor-
dering types in training model.

753

Type of Reordering Percentage %

rm1
rm2
rm3

3.69
27.61
20.94

rm4 47.75

Table 1: Percentage of different reordering
types in model

From Table 1, we can conclude that the reor-
dering type rm2 and rm4 are preferable in reor-
dering which take over nearly 3/4 of total num-
ber of reordering type and are identical with
word order of the source. The statistic data indi-
cate that most of the words order doesn’t change
in our head-modifier reordering view. This
maybe can explain why the models (Wu, 1997;
Xiong, 2006; Koehn, et., 2003) with limited
capacity of reordering can reach certain perfor-
mance.

7 Experiment and Discussion

7.1 Experiment Settings

We perform Chinese-to-English translation task
on NIST MT-05 test set, and use NIST MT-02
as our tuning set. FBIS corpus is selected as our
training corpus, which contains 7.06M Chinese
words and 9.15M English words. We use GI-
ZA++(Och and Ney, 2000) to make the corpus
aligned. A 4-gram language model is trained
using Xinhua portion of the English Gigaword
corpus (181M words). All models are tuned on
BLEU, and evaluated on both BLEU and NIST
score.

To map from the constituent trees to sets of
head-modifier relationships, firstly we use the
Stanford parser (Klein, 2003) to parse the
source of corpus FBIS, then we use the head-
finding rules in (Bikel, 2004) to get the head-
modifier dependency sets.

In our system, there are 7 groups of features.
They are:

1. Language model score (1 feature)
2. word penalty score (1 feature)
3. phrase model scores (5 features)
4. distortion score (1 feature)
5. lexical RM scores (6 features)
6. Number of each reordering type (4 fea-

tures)
7. Scores of each reordering type (4 fea-

tures, computed by equation (3))

In these feature groups, the top 5 groups of
features are the baseline model, the left two
group scores are related with our model.

In decoding, we drop all the OOV words and
use default setting in Moses: set the distortion
limitation with 6, beam-width with 1/100000,
stack size with 200 and max number of phrases
for each span with 50.

7.2 Results and Discussion

We take the replicated Moses system as our
baseline. Table 2 shows the results of our model.
In the table, Baseline model is the model includ-
ing feature group 1, 2, 3 and 4. Baselinerm mod-
el is the Baseline model with feature group 5. H-

M model is the Baseline model with feature
group 6 and 7. H-Mrm model is the Baselinerm

model with feature group 6 and 7.

Model BLEU% NIST
Baseline 27.06 7.7898
Baselinerm 27.58 7.8477
H-M 28.47 8.1491
H-Mrm 29.06 8.0875

Table 2: Performance of the Systems on NIST-
05(bleu4 case-insensitive).

From table 2, we can conclude that our reor-
dering model is very effective. After adding
feature group 6 and 7, the performance is im-
proved by 1.41% and 1.48% in bleu score sepa-
rately. Our reordering model is more effective
than the lexical reordering model in Moses:
1.41% in bleu score is improved by adding our
reordering model to Baseline model, while 0.48
is improved by adding the lexical reordering to
Baseline model.

threshold KOR BLEU NIST

≥1 20,338 29.06 8.0875

≥2 13,447 28.83 8.3658

≥3 10,885 28.64 8.0350

≥4 9,518 28.94 8.1002

≥5 8,577 29.18 8.1213

Table 3: Performance on NIST-05 with Differ-
ent Relation Frequency Threshold (bleu4 case-

insensitive).

Although our model is lexical free, the data
sparse problem affects the performance of the
model. In the reordering model, nearly half
numbers of the relations in our model occur less
than three times. To investigate this, we statistic

754

the frequency of the relationships in our model,
and expertise our H-M full model with different
frequency threshold.

In Table 3, when the frequency of relation is
not less than the threshold, the relation is added
into the reordering model; KOR is the number
of relation type in the reordering model.

Table 3 shows that, in our model, many rela-
tions occur only once. However, these low-
frequency relations can improve the perfor-
mance of the model according to the experimen-
tal results. Although low frequency statistic
events always do harm to the parameter estima-
tion in ML, the model can estimate more events
in the test corpus with the help of low frequency
event. These two factors affect the experiment
results on opposite directions: we consider that
is the reason the result don’t increase or de-
crease with the increasing of frequency thre-
shold in the model. According to the results, the
model without frequency threshold achieves the
highest bleu score. Then, the performance drops
quickly, when the frequency threshold is set
with 2. It is because there are many events can’t
be estimated by the smaller model. Although, in
the model without frequency threshold, there
are some probabilities overestimated by these
events which occur only once, the size of the
model affects the performance to a larger extent.
When the frequency threshold increases above 3,
the size of model reduces slowly which makes
the overestimating problem become the impor-
tant factor affecting performance. From these
results, we can see the potential ability of our
model: if our model suffer less from data spars
problem, the performance should be further im-
proved, which is to be verified in the future.

8 Related Work and Motivation

There are several researches on adding linguis-
tic analysis to MT in a “soft constraint” way.
Most of them are based on constituents in parse
tree. Chiang(2005), Marton and Resnik(2008)
explored the constituent match/violation in hie-
ro; Xiong (2009 a) added constituent parse tree
based linguistic analysis into BTG model;
Xiong (2009 b) added source dependency struc-
ture to BTG; Zhang(2009) added tree-kernel to
BTG model. All these studies show promising
results. Making soft constrain is an easy and

efficient way in adding linguistic analysis into
formal sense SMT model.

In modeling the reordering, most of previous
studies are on phrase level. In Moses, the lexical
reordering is modeled on adjacent phrases. In
(Wu, 1996; Xiong, 2006), the reordering is also
modeled on adjacent translated phrases. In hiero,
the reordering is modeled on the segments of
the unmotivated translation rules. The tree-to-
string models (Yamada et al. 2001; Liu et
al.2006) are model on phrases with syntax re-
presentations. All these studies show excellent
performance, while there are few studies on
word level model in recent years. It is because,
we consider, the alignment in word level model
is complex which limits the reordering capacity
of word level models.

However, our work exploits a new direction
in reordering that, by utilizing the decomposed
dependency relations mapped from parse tree as
a soft constraint, we proposed a novel head-
modifier relation based word level reordering
model. The word level reordering model is
based on a phrase based SMT framework. Thus,
the task to find the proper position of translated
words converts to score the reordering of the
translated words, which relax the tension be-
tween complex alignment and word level reor-
dering in MT.

9 Conclusion and Future Work

Experimental results show our head-modifier
relationship base model is effective to the base-
line (enhance by 1.48% bleu score), even with
limited size of model and simple parameter es-
timation. In the future, we will try more compli-
cated smooth methods or use maximum entropy
based reordering model. We will study the per-
formance with larger distortion constraint, such
as the performances of the distortion constraint
over 15, or even the performance without distor-
tion model.

10 Acknowledgement

The work of this paper is funded by National
Natural Science Foundation of China (grant no.
60736014), National High Technology Re-
search and Development Program of China (863
Program) (grant no. 2006AA010108), and Mi-
crosoft Research Asia IFP (grant no. FY09-
RES-THEME-158).

755

References

Dekai Wu. 1997. Stochastic inversion transduction

grammars and bilingual parsing of parallel corpo-

ra. Computational Lingustics,23(3):377-403.

David Chiang. 2005. A hierarchical phrase-based

model for SMT. ACL-05.263-270.

David Chiang. 2007. Hierarchical phrase-based

translation. Computational Linguistics, 33(2):201-

228.

Kenji Yamada and K. Knight. 2001. A syntax-based

statistical translation model. ACL-01.523-530.

Yuval Marton and Philip Resnik. 2008. Soft syntac-

tic Constraints for Hierarchical Phrased-based

Translation. ACL-08. 1003-1011.

Libin shen, Jinxi Xu and Ralph Weischedel. 2008. A

New String-to-Dependency Machine Translation

Algorithm with a Target Dependency Language

Model. ACL-08. 577-585.

J. Graehl and K. Knight.2004.Train ing Tree trans-

ducers. In proceedings of the 2004 Human Lan-

guage Technology Conference of the North Amer-

ican Chapter of the Association for Computation-

al Linguistics.

Dekai Wu. 1996. A Polynomial-Time Algorithm for

Statistical Machine Translation. In proceedings of

ACL-1996

Deyi Xiong, Qun Liu, and Shouxun Lin. 2006. Ma x-

imum Entropy Based Phrase Reordering Model

for Statistical Machine Translation. In proceed-

ings of COLING-ACL 2006

Deyi Xiong, Min Zhang, Aiti AW and Haizhou Li.

2009a. A Syntax-Driven Bracket Model for

Phrase-Based Translation. ACL-09.315-323.

Deyi Xiong, Min Zhang, Aiti AW and Haizhou Li.

2009b. A Source Dependency Model for Statistic

Machine translation. MT-Summit 2009.

Och, F.J. and Ney, H. 2000. Improved statistical

alignment models. In Proceedings of ACL 38.

Philipp Koehn, et al. Moses: Open Source Toolkit

for Statistical Machine Translation, ACL 2007.

Philipp Koehn, Franz Joseph Och, and Daniel Mar-

cu.2003. Statistical Phrase-based Translation. In

Proceedings of HLT-NAACL.

Philipp Koehn. 2004. A Beam Search Decoder for

Phrase-Based Translation model. In : Proceeding

of AMTA-2004,Washington

Rens Bod. 1992. Data oriented Parsing(DOP). In

Proceedings of COLING-92.

Mark Johnson. 1998. PCFG models of linguistic tree

representations. Computational Linguistics,

24:613-632.

Liang Huang, Kevin Knight, and Aravind Joshi. Sta-

tistical Syntax-Directed Translation with Ex-

tended Domain of Locality. 2006. In Proceedings

of the 7
th

 AMTA.

Yang Liu, Qun Liu, and Shouxun Lin. Tree-to-String

Alignment Template for Statistical Machine

Translation. 2006.In Proceedings of the ACL 2006.

Min Zhang, Hongfei Jiang, Ai Ti Aw, Haizhou Li,

Chew Lim Tan and Sheng Li. 2008. A Tree Se-

quence Alignment-based Tree-to-Tree Translation

Model. ACL-HLT-08. 559-567.

Dan Klein, Christopher D. Manning. Accurate Un-

lexicalized Parsing. 2003. In Proceedings of

ACL-03. 423-430.

M. Collins. 1996. A new statistical parser based on

bigram lexical dependencies. In Proceedings of

ACL-96. 184-191.

M. Collins. 1999. Head-Driven Statistical Models for

Natural Language Parsing. Ph.D. thesis, Univ. of

Pennsylvania.

Andreas Zollmann. 2005. A Consistent and Efficient

Estimator for the Data-Oriented Parsing Model.

Journal of Automata, Languages and Combinator-

ics. 2005(10):367-388

Mark Johnson. 2002. The DOP estimation method is

biased and inconsistent. Computational Linguis-

tics 28, 71-76.

Daniel M. Bikel. 2004. On the Parameter Space of

Generative Lexicalized Statistical Parsing Models.

Ph.D. thesis. Univ. of Pennsylvania.

S. F. Chen, J. Goodman. An Empirical Study of

Smoothing Techniques for Language Modeling.

In Proceedings of the 34th annual meeting on As-

sociation for Computational Linguistics,

1996.310-318.

Haitao Mi and Liang Huang. 2008. Forest-based

translation Rule Extract ion. ENMLP-08. 2006-214.

Hui Zhang, Min Zhang , Haizhou Li, A iti Aw and

Chew Lim Tan. Forest-based Tree Sequence to

String Translation Model. ACL-09: 172-180

S DeNeefe, K. Knight, W. Wang, and D. Marcu.

2007. What can syntax-based MT learn from

phrase-based MT ? In Proc. EMNLP-CoNULL.

Brooke Cowan, Ivona Kucerova, and Michael

Collins.2006. A discriminative model for tree-to-

tree translation. In Proc. EMNLP.

756

