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Abstract

Text documents are complex high dimen-
sional objects. To effectively visualize
such data it is important to reduce its di-
mensionality and visualize the low dimen-
sional embedding as a 2-D or 3-D scatter
plot. In this paper we explore dimension-
ality reduction methods that draw upon
domain knowledge in order to achieve a
better low dimensional embedding and vi-
sualization of documents. We consider
the use of geometries specified manually
by an expert, geometries derived automat-
ically from corpus statistics, and geome-
tries computed from linguistic resources.

1 Introduction

Visual document analysis systems such as IN-
SPIRE have demonstrated their applicability in
managing large text corpora, identifying topics
within a document and quickly identifying a set
of relevant documents by visual exploration. The
success of such systems depends on several fac-
tors with the most important one being the qual-
ity of the dimensionality reduction. This is ob-
vious as visual exploration can be made possible
only when the dimensionality reduction preserves
the structure of the original space, i.e., documents
that convey similar topics are mapped to nearby
regions in the low dimensional 2D or 3D space.

Standard dimensionality reduction methods
such as principal component analysis (PCA), lo-
cally linear embedding (LLE) (Roweis and Saul,
2000), or t-distributed stochastic neighbor embed-
ding (t-SNE) (van der Maaten and Hinton, 2008)
take as input a set of feature vectors such as bag
of words. An obvious drawback is that such meth-
ods ignore the textual nature of documents and in-
stead consider the vocabulary words v1, . . . , vn as
abstract orthogonal dimensions.

In this paper we introduce a framework for in-
corporating domain knowledge into dimensional-
ity reduction for text documents. Our technique
does not require any labeled data, therefore is
completely unsupervised. In addition, it applies
to a wide variety of domain knowledge.

We focus on the following type of non-
Euclidean geometry where the distance between
document x and y is defined as

dT (x, y) =
√
(x− y)�T (x− y). (1)

Here T ∈ Rn×n is a symmetric positive semidef-
inite matrix, and we assume that documents x, y
are represented as term-frequency (tf) column
vectors. Since T can always be written as H�H
for some matrix H ∈ Rn×n, an equivalent but
sometimes more intuitive interpretation of (1) is
to compose the mapping x �→ Hx with the Eu-
clidean geometry

dT (x, y) = dI(Hx,Hy) = ‖Hx−Hy‖2. (2)

We can view T as encoding the semantic similar-
ity between pairs of words and H as smoothing
the tf vector by mapping observed words to re-
lated but unobserved words. Therefore, the geom-
etry realized by (1) or (2) may be used to derive
novel dimensionality reduction methods that are
customized to text in general and to specific text
domains in particular. The main challenge is to
obtain the matrices H or T that describe the rela-
tionship among vocabulary words appropriately.

We consider three general ways of obtaining
H or T using domain knowledge. The first cor-
responds to manually specifying H or T based
on the semantic relationship among words (de-
termined by domain expert). The second corre-
sponds to constructing H or T by analyzing re-
lationships between different words using corpus
statistics. The third is based on knowledge ob-
tained from linguistic resources. Whether to spec-
ify H directly or indirectly by specifying T =
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H�H depends on the knowledge type and is dis-
cussed in detail in Section 4.

We investigate the performance of the proposed
dimensionality reduction methods for three text
domains: sentiment visualization for movie re-
views, topic visualization for newsgroup discus-
sion articles, and visual exploration of ACL pa-
pers. In each of these domains we evaluate the
dimensionality reduction using several different
quantitative measures. All the techniques men-
tioned in this paper are unsupervised, making use
of labels only for evaluation purposes.

Our take home message is that all three ap-
proaches mentioned above improves dimension-
ality reduction for text upon standard embedding
(H = I). Furthermore, geometries obtained
from corpus statistics are superior to manually
constructed geometries and to geometries derived
from standard linguistic resources such as Word-
Net. Combining heterogenous types of knowl-
edge provides the best results.

2 Related Work

Despite having a long history, dimensionality re-
duction is still an active research area. Broadly
speaking, dimensionality reduction methods may
be classified as projective or manifold based
(Burges, 2009). The first projects data onto a
linear subspace (e.g., PCA and canonical corre-
lation analysis) while the second traces a low di-
mensional nonlinear manifold on which data lies
(e.g., multidimensional scaling, isomap, Lapla-
cian eigenmaps, LLE and t-SNE). The use of di-
mensionality reduction for text documents is sur-
veyed by Thomas and Cook (2005) who also de-
scribe current homeland security applications.

Dimensionality reduction is closely related to
metric learning. Xing et al. (2003) is one of the
earliest papers that focus on learning metrics of
the form (1). In particular they try to learn ma-
trix T in an supervised way by expressing rela-
tionships between pairs of samples. A representa-
tive paper on unsupervised metric learning for text
documents is Lebanon (2006) which learns a met-
ric on the simplex based on the geometric volume
of the data.

We focus in this paper on visualizing a cor-
pus of text documents using a 2-D scatter plot.
While this is perhaps the most popular and prac-

tical text visualization technique, other methods
such as Spoerri (1993), Hearst (1997), Havre et
al. (2002), Paley (2002), Blei et al. (2003), Mao
et al. (2007) exist. Techniques developed in this
paper may be ported to enhance these alternative
visualization methods as well.

3 Non-Euclidean Geometries

Dimensionality reduction methods often assume,
either explicitly or implicitly, Euclidean geome-
try. For example, PCA minimizes the reconstruc-
tion error for a family of Euclidean projections.
LLE uses the Euclidean geometry as a local met-
ric. t-SNE is based on a neighborhood structure,
determined again by the Euclidean geometry. The
generic nature of the Euclidean geometry makes
it somewhat unsuitable for visualizing text docu-
ments as the relationship between words conflicts
with Euclidean orthogonality. We consider in this
paper several alternative geometries of the form
(1) or (2) which are more suited for text and com-
pare their effectiveness in visualizing documents.

As mentioned in Section 1, H smooths the tf
vector x by mapping the observed words into ob-
served and non-observed (but related) words. In
case H is nonnegative, it can be further decom-
posed into a product of a non-negative column
normalized matrix R ∈ Rn×n and a non-negative
diagonal matrix D ∈ Rn×n. The decomposition
H = RD shows that H has two key roles. It
smooths related vocabulary words (realized by R)
and it emphasizes some words over others (real-
ized by D). Setting Rij to a high value if wi, wj

are similar and 0 if they are unrelated maps an
observed word to a probability vector over re-
lated words in the vocabulary. The value Dii cap-
tures the importance of vi and therefore should be
higher for important content words than for less
important words or stop-words1.

It is instructive to examine the matrices R and
D in the case where the vocabulary words clus-
ter in some meaningful way. Figure 1 gives
an example where vocabulary words form two
clusters. The matrix R may become block-
diagonal with non-zero elements occupying di-
agonal blocks representing within-cluster word

1The nonnegativity assumption of H is useful when con-
structing H by domain experts such as the method A in Sec-
tion 4. In general, H needs not to be nonnegative for dimen-
sionality reduction as in (2).
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Figure 1: An example of a decomposition H = RD in
the case of two word clusters {v1, v2, v3}, {v4, v5}. The
block diagonal elements in R represent the fact that words
are mostly mapped to themselves, but sometimes are mapped
to other words in the same cluster. The diagonal matrix indi-
cates that the first cluster is more important than the second
cluster for the purposes of dimensionality reduction.

blending, i.e., words within each cluster are in-
terchangeable to some degree. The diagonal ma-
trix D represents the importance of different clus-
ters. The word clusters are formed with respect
to the visualization task at hand. For example,
in the case of visualizing the sentiment content
of reviews we may have word clusters labeled as
“positive sentiment words”, “negative sentiment
words” and “objective words”.

In general, the matrices R,D may be defined
based on the language or may be specific to docu-
ment domain and visualization purpose. It is rea-
sonable to expect that the words emphasized for
visualizing topics in news stories might be dif-
ferent than the words emphasized for visualizing
writing styles or sentiment content.

Applying the geometry (1) or (2) to dimen-
sionality reduction is easily accomplished by first
mapping document tf vectors x �→ Hx and pro-
ceeding with standard dimensionality reduction
techniques such as PCA or t-SNE. The resulting
dimensionality reduction is Euclidean in the trans-
formed space but non-Euclidean in the original
space. In many cases, the vocabulary contains
tens of thousands of words or more making the
specification of T or H a complicated and error
prone task. We describe in the next section several
techniques for specifying these matrices in prac-
tice.

4 Domain Knowledge

Method A: Manual Specification

In this method, a domain expert manually spec-
ifies H = RD by specifying (R,D) based on
the perceived relationship among the vocabulary

words. More specifically, the user first constructs
a hierarchical word clustering that may depend on
the current text domain, and then specifies the ma-
trices (R,D) based on the clustering.

Denoting the clusters by C1, . . . , Cr (a partition
of {v1, . . . , vn}), R is set to

Rij ∝
{
ρa, i = j, vi ∈ Ca

ρab, i �= j, vi ∈ Ca, vj ∈ Cb

.

The values ρab, a �= b capture the semantic simi-
larity between two clusters and the value ρaa cap-
tures the similarity of two different words within
the cluster a. These values may be set manu-
ally by domain expert or automatically computed
based on the clustering hierarchy (for example ρab
can be the inverse of the minimal number of tree
edges traversed in moving from a to b). To main-
tain a probabilistic interpretation, the matrix R
should be normalized so that its columns sum to
1. The diagonal matrix D is specified by setting
the values

Dii = da, vi ∈ Ca

according to the importance of word cluster Ca to
the current visualization task.

We emphasize that as with the rest of the meth-
ods in this paper, the manual specification is done
without access to labeled data. Since manual clus-
tering assumes some form of human intervention,
it is reasonable to also consider cases where the
user specifiesH or T in an interactive manner. For
example, the expert specifies an initial clustering
of words and values for (R,D), views the result-
ing embeddings and adjusts the selection interac-
tively until reaching a satisfactory embedding.

Method B: Contextual Diffusion

An alternative to manually specifying T =
DR�RD is to construct it based on similarity be-
tween the contextual distributions of the vocabu-
lary words. The contextual distribution of word v
is defined as

qv(w) = p(w appears in x|v appears in x) (3)

where x is a randomly drawn document. In other
words qv is the distribution governing the words
appearing in the context of word v.
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A natural similarity measure between distribu-
tions is the Fisher diffusion kernel proposed by
Lafferty and Lebanon (2005). Applied to contex-
tual distributions as in Dillon et al. (2007) we ar-
rive at the following similarity matrix

T (u, v) = exp

(
−c arccos2

(∑

w

√
qu(w)qv(w)

))
.

where c > 0. Intuitively, the word u will be dif-
fused into v depending on the geometric diffusion
between the distributions of likely contexts.

We use the following formula to estimate the
contextual distribution from a corpus

qv(w) =
∑

x′
p(w, x′|v) =

∑

x′
p(w|x′, v)p(x′|v)

=
∑

x′
tf(w, x′)

tf(v, x′)∑
x′′ tf(v, x′′)

(4)

=

(
1∑

x′ tf(v, x′)

)(∑

x′
tf(w, x′)tf(v, x′)

)

where tf(w, x) is the number of times word w ap-
pears in document x divided by the length of the
document x. The contextual distribution qv or dif-
fusion matrix T above may be computed in an un-
supervised manner without labels.

Method C: Web n-Grams

In method B the contextual distribution is com-
puted using a large external corpus that is similar
to the text being analyzed. An alternative that is
especially useful when such a corpus is not eas-
ily available is to use generic resources to esti-
mate the contextual distribution (3)-(4). One op-
tion is to use the publicly available Google n-gram
dataset (Brants and Franz, 2006) to estimate T .
More specifically, we compute the contextual dis-
tribution by considering the proportion of times
two words appear together within the n-grams
e.g., for n = 2 we have

qv(w) =
# of bigrams containing both w and v

# of bigrams containing v
.

Method D: Word-Net

In the last method, we consider using Word-Net,
a standard linguistic resource, to specify T . This

Vocabulary

Sports

Others

Canoeing
catch
boxing
innings
soccer

Team
Name

Places

EU Asia

Mid east

US

Arizona
francisco
carolina
atlanta
austin

Others

Figure 2: Manually specified hierarchical word clustering
for the 20 newsgroup domain. The words in the frames are
examples of words belonging to several bottom level clusters.

is similar to manual specification (method A) in
that it builds upon experts’ knowledge rather than
corpus statistics. In contrast to method A, how-
ever, Word-Net is a carefully built resource con-
taining more accurate and comprehensive linguis-
tic information such as synonyms, hyponyms and
holonyms. On the other hand, its generality puts
it at a disadvantage as method A may be adapted
to a specific text domain.

We follow Budanitsky and Hirst (2001) who
compared five similarity measures between words
based on Word-Net. In our experiments we use
the measure of Jiang and Conrath (1997) (see also
Jurafsky and Martin (2008))

T (u, v) = log
p(u)p(v)

2p(lcs(u, v))

as it was shown to outperform the others. Above,
lcs stands for the lowest common subsumer, i.e.,
the lowest node in the hierarchy that subsumes (is
a hypernym of) both u and v. The quantity p(u)
is the probability that a randomly selected word
in a corpus is an instance of the synonym set that
contains word u.

Combination of Methods

In addition to individual methods we also consider
their convex combinations

H∗ =
∑

i

αiHi s.t. αi ≥ 0,
∑

i

αi = 1 (5)

where Hi are matrices from methods A-D (ob-
tained implicitly by specifying R and D for
method A and T for methods B-D). Doing so al-
lows us to combine heterogeneous types of do-
main knowledge including experts’ knowledge
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and corpus statistics, leverage their diverse nature
and potentially achieve better performance than
any of the methods on its own.

5 Experiments

We evaluate the proposed methods by experiment-
ing on two text datasets where domain knowledge
is relatively easy to obtain (especially for method
A and B). Preprocessing includes lower-casing,
stop words removal, stemming, and selecting the
most frequent 2000 words for both datasets.

The first is the Cornell sentiment scale dataset
of movie reviews from 4 critics (Pang and Lee,
2004). The visualization in this case focuses on
the sentiment quantity of either 1 (very bad) or 4
(very good) (Pang et al., 2002). For method A,
we use the General Inquirer resource2 to partition
the vocabulary into three clusters conveying pos-
itive, negative or neutral sentiment. While visu-
alizing documents from one particular author, the
rest of the reviews from other three authors can be
used as an estimate of contextual distribution for
method B.

The second text dataset is the 20 newsgroups.
It consists of newsgroup articles from 20 distinct
newsgroups and is meant to demonstrate topic vi-
sualization. In this case one of the authors de-
signed a hierarchical clustering of the vocabulary
words based on general knowledge of English lan-
guage (see Figure 2 for a partial clustering hier-
archy) without access to labels. The contextual
distribution for method B is estimated from the
Reuters RCV1 dataset (Lewis et al., 2004) which
consists of news articles from Reuters.com in the
year 1996 and 1997.

Method C uses Google n-gram which provides
a massive scale resource for estimating the con-
textual distribution. In the case of Word-Net
(method D) we used Pedersen’s implementation
of Jiang and Conrath’s similarity measure3. Note,
for these two methods, the obtained information
is not domain specific but rather represents gen-
eral semantic relationships between words.

In our experiments below we focused on two di-
mensionality reduction methods: PCA and t-SNE.
PCA is a well known classical method while t-
SNE (van der Maaten and Hinton, 2008) is a re-

2http://www.wjh.harvard.edu/∼inquirer/
3http://wn-similarity.sourceforge.net/

cent dimensionality reduction technique for visu-
alization purposes. The use of t-SNE is motivated
by the fact that it was shown to outperform LLE,
CCA, MVU, Isomap, and Laplacian eigenmaps
when the dimensionality of the data is reduced to
two or three.

To measure the dimensionality reduction qual-
ity, we visualize the data as a scatter plot with dif-
ferent data groups (topics, sentiments) displayed
with different markers and colors. Our quantita-
tive evaluation of the visualization is based on the
fact that documents belonging to different groups
(topics, sentiments) should be spatially separated
in the 2-D space. Specifically, we used the follow-
ing indices:
(i) The weighted intra-inter criteria is a standard

clustering quality index that is invariant to
non-singular linear transformations of the
embedded data. It equals tr(S−1

T SW ) where
SW is the within-cluster scatter matrix, ST =
SW + SB is the total scatter matrix, and SB

is the between-cluster scatter matrix (Duda et
al., 2001).

(ii) The Davies Bouldin index is an alternative
to (i) that is similarly based on the ratio
of within-cluster scatter to between-cluster
scatter (Davies and Bouldin, 2000).

(iii) Classification error rate of a k-NN classifier
that applies to data groups in the 2-D em-
bedded space. Despite the fact that we are
not interested in classification per se (other-
wise we would classify in the original high
dimensional space), it is an intuitive and in-
terpretable measure of cluster separation.

(iv) An alternative to (iii) is to project the em-
bedded data onto a line which is the direc-
tion returned by applying Fisher’s linear dis-
criminant analysis to the embedded data. The
projected data from each group is fitted to a
Gaussian whose separation is used as a proxy
for visualization quality. In particular, we
summarize the separation of the two Gaus-
sians by measuring the overlap area. While
(iii) corresponds to the performance of a k-
NN classifier, method (iv) corresponds to the
performance of Fisher’s LDA classifier.

Labeled data is not used during the dimensionality
reduction stage but it is used in each of the above
measures for evaluation purposes.
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Figure 3 displays both qualitative and quanti-
tative evaluation of PCA and t-SNE for the senti-
ment and newsgroup domains for H = I (left col-
umn), manual specification (middle column) and
contextual distribution (right column). In general
for both domains, methods A and B perform bet-
ter both qualitatively and quantitatively (indicat-
ing by the numbers in the top two rows) than the
original dimensionality reduction with method B
outperforming method A.

Tables 1-2 compare evaluation measures (i)
and (iii) for different types of domain knowl-
edge. Table 1 corresponds to the sentiment do-
main where we conducted separate experiments
for four movie critics. Table 2 corresponds to
the newsgroup domain where two tasks were
considered. The first involves three newsgroups
(comp.sys.mac.hardware vs. rec.sports.hockey
vs. talk.politics.mideast) and the second involves
four newsgroups (rec.autos vs. rec.motorcycles
vs. rec.sports.baseball vs. rec.sports.hockey). It is
clear from these two tables that the contextual dif-
fusion, Google n-gram, and Word-Net generally
outperform the original H = I matrix. The best
method varies from task to task but the contextual
diffusion and Google n-gram in general result in
good performance.

PCA (1) PCA (2) t-SNE (1) t-SNE (2)
H = I 1.5391 1.4085 1.1649 1.1206

B 1.2570 1.3036 1.2182 1.2331
C 1.2023 1.3407 0.7844 1.0723
D 1.4475 1.3352 1.1762 1.1362

PCA (1) PCA (2) t-SNE (1) t-SNE (2)
H = I 0.8461 0.5630 0.9056 0.7281

B 0.7381 0.6815 0.9110 0.6724
C 0.8420 0.5898 0.9323 0.7359
D 0.8532 0.5868 0.9013 0.7728

Table 2: Quantitative evaluation of dimensionality reduc-
tion for visualization for two tasks in the news article domain.
The numbers in the top five rows correspond to measure (i)
(lower is better), and the numbers in the bottom five rows
correspond to measure (iii) (k = 5) (higher is better). We
conclude that contextual diffusion (B), Google n-gram (C),
and Word-Net (D) tend to outperform the original H = I .

We also examined convex combinations

α1HA + α2HB + α3HC + α4HD (6)

with
∑

αi = 1 and αi ≥ 0. Table 3 displays
quantitative results using evaluation measures (i),
(ii) and (iii) where k is chosen to be 5 for (iii).
The first four rows correspond to method A, B, C

(α1, α2, α3, α4) (i) (ii) (iii) (k=5)
(1,0,0,0) 0.5756 -3.9334 0.7666
(0,1,0,0) 0.5645 -4.6966 0.7765
(0,0,1,0) 0.5155 -5.0154 0.8146
(0,0,0,1) 0.6035 -3.1154 0.8245

(0.3,0.4,0.1,0.2) 0.4735 -5.1154 0.8976

Table 3: Three evaluation measures (i), (ii), and (iii) (see
the beginning of the section for description) for convex com-
binations (6) using different values of α. The first four rows
represent methods A, B, C, and D. The bottom row repre-
sents a convex combination whose coefficients were obtained
by searching for the minimizer of measure (ii). Interestingly
the minimizer also performs well on measure (i) and more
impressively on the labeled measure (iii).

and D and the bottom row corresponds to a convex
combination found which minimizes the unsuper-
vised evaluation measure (ii) (i.e. the search for
the optimal combination is based on (ii) that does
not require labeled data). Note that the convex
combination also outperforms method A, B, C,
and D for measure (i) and more impressively for
measure (iii) which is a supervised measure that
uses labeled data. In general, by combining het-
erogeneous types of domain knowledge, we may
further improve the quality of dimensionality re-
duction for visualization, and the search for such
a combination may be accomplished without the
use of labeled data.

Finally, we demonstrate the effect of domain
knowledge on a new dataset that consists of all
oral papers appearing in ACL 2001 – 2009. For
the purpose of manual specification, we obtain
1545 unique words from paper titles, and as-
sign for each word relatedness scores for the
following clusters: morphology/phonology, syn-
tax/parsing, semantics, discourse/dialogue, gen-
eration/summarization, machine translation, re-
trieval/categorization and machine learning. The
score takes value from 0 to 2, where 2 represents
the most relevant. The score information is then
used to generate the transformation matrix R. We
also assign for each word an importance value
ranging from 0 to 3 (larger the value, more impor-
tant the word). This information is used to gener-
ate the diagonal matrix D.

Figure 4 shows the projection of all 2009 pa-
pers using t-SNE (papers from 2001 to 2008 are
used to estimate contextual diffusion). Using Eu-
clidean geometry H = I (Figure 4 left) results in
a Gaussian like distribution which does not pro-
vide much insight into the data. Using a manually
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(a) 0.3284 (b) 0.1794 (c) 0.1385

(d) 0.3008 (e) 0.2295 (f) 0.1093

Figure 3: Qualitative evaluation of dimensionality reduction for the sentiment domain (top two rows) and the newsgroup
domain (bottom two rows). The first and the third rows display PCA reduction while the second and the fourth display t-SNE.
The left column correspond to no domain knowledge (H = I) reverting PCA and t-SNE to their original form. The middle
column corresponds to manual specification (method A). The right column corresponds to contextual diffusion (method B).
Different groups (sentiment labels or newsgroup labels) are marked with different colors and marks.
In the sentiment case (top two rows) the graphs were rotated such that the direction returned by applying Fisher linear
discriminant onto the projected 2D coordinates aligns with the positive x-axis. The bell curves are Gaussian distributions
fitted from the x-coordinates of the projected data points (after rotation). The numbers displayed in each sub-figure are
computed from measure (iv).
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Dennis Schwartz James Berardinelli Scott Renshaw Steve Rhodes
PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE

H = I 1.8625 1.8781 1.4704 1.5909 1.8047 1.9453 1.8013 1.8415
A 1.8474 1.7909 1.3292 1.4406 1.6520 1.8166 1.4844 1.6610
B 1.4254 1.5809 1.3140 1.3276 1.5133 1.6097 1.5053 1.6145
C 1.6868 1.7766 1.3813 1.4371 1.7200 1.8605 1.7750 1.7979

H = I 0.6404 0.7465 0.8481 0.8496 0.6559 0.6821 0.6680 0.7410
A 0.6011 0.7779 0.9224 0.8966 0.7424 0.7411 0.8350 0.8513
B 0.8831 0.8554 0.9188 0.9377 0.8215 0.8332 0.8124 0.8324
C 0.7238 0.7981 0.8871 0.9093 0.6897 0.7151 0.6724 0.7726

Table 1: Quantitative evaluation of dimensionality reduction for visualization in the sentiment domain. Each of the four
columns corresponds to a different movie critic from the Cornell dataset (see text). The top five rows correspond to measure
(i) (lower is better) and the bottom five rows correspond to measure (iii) (k = 5, higher is better). Results were averaged over
40 cross validation iterations. We conclude that all methods outperform the original H = I with the contextual diffusion and
manual specification generally outperforming the others.
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Figure 4: Qualitative evaluation of dimensionality reduction for the ACL dataset using t-SNE. Left: no domain knowledge
(H = I); Middle: manual specification (method A); Right: contextual diffusion (method B). Each document is labeled by its
assigned id from ACL anthology. See text for more details.

specified H (Figure 4 left) we get two clear clus-
ters, the smaller containing papers dealing with
machine translation and multilingual tasks. Inter-
estingly, the contextual diffusion results in a one-
dimensional manifold. Investigating the papers
along the curve (from bottom to top) we find that
it starts with papers discussing semantics and dis-
course (south), continues to structured prediction
and segmentation (east), continues to parsing and
machine learning (north), and then moves to senti-
ment prediction, summarization and IR (west) be-
fore returning to the center. Another interesting
insight that we can derive is the relative disconti-
nuity between the bottom part (semantics and dis-
course) and the rest of the curve. It seems spatial
separability is higher in that area than in the other
areas where the curve nicely traverses different re-
gions continuously.

6 Discussion

In this paper we introduce several ways of incor-
porating domain knowledge into dimensionality
reduction for visualizing text documents. The pro-

posed methods all outperform in general the base-
line H = I , which is the one currently used in
most text visualization systems.

The answer to the question of which method is
best depends on both the domain and the task at
hand. For small tasks with limited vocabulary,
manual specification could achieve best results.
A large vocabulary size makes manual specifica-
tion less accurate and effective. In cases where
we have access to a large external corpus that is
similar to the one we are interested in visualizing,
contextual diffusion is an excellent choice. Lack-
ing such a domain specific dataset estimating the
contextual distribution using the generic Google
n-gram is a good substitute. Word-Net captures
relationships (such as synonyms and hyponyms)
other than occurrence statistics between vocabu-
lary words, and could be useful for certain tasks.
Finally, the effectiveness of dimensionality reduc-
tion methods can be increased further by carefully
combining different types of domain knowledge
ranging from semantic similarity to occurrence
statistics.
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