
Coling 2008: Poster Volume, pages 997–1005,
Beijing, August 2010

An Evaluation Framework for Plagiarism Detection

Martin Potthast Benno Stein
Web Technology & Information Systems

Bauhaus-Universität Weimar
{martin.potthast, benno.stein}@uni-weimar.de

Alberto Barrón-Cedeño Paolo Rosso
Natural Language Engineering Lab—ELiRF

Universidad Politécnica de Valencia
{lbarron, prosso}@dsic.upv.es

Abstract

We present an evaluation framework for
plagiarism detection.1 The framework
provides performance measures that ad-
dress the specifics of plagiarism detec-
tion, and the PAN-PC-10 corpus, which
contains 64 558 artificial and 4 000 sim-
ulated plagiarism cases, the latter gener-
ated via Amazon’s Mechanical Turk. We
discuss the construction principles behind
the measures and the corpus, and we com-
pare the quality of our corpus to exist-
ing corpora. Our analysis gives empirical
evidence that the construction of tailored
training corpora for plagiarism detection
can be automated, and hence be done on a
large scale.

1 Introduction

The lack of an evaluation framework is a seri-
ous problem for every empirical research field.
In the case of plagiarism detection this short-
coming has recently been addressed for the first
time in the context of our benchmarking work-
shop PAN [15, 16]. This paper presents the eval-
uation framework developed in the course of the
workshop. But before going into details, we sur-
vey the state of the art in evaluating plagiarism de-
tection, which has not been studied systematically
until now.

1.1 A Survey of Evaluation Methods

We have queried academic databases and search
engines to get an overview of all kinds of con-
tributions to automatic plagiarism detection. Al-
together 275 papers were retrieved, from which
139 deal with plagiarism detection in text,

1The framework is available free of charge at
http://www.webis.de/research/corpora.

Table 1: Summary of the plagiarism detection
evaluations in 205 papers, from which 104 deal
with text and 101 deal with code.

Evaluation Aspect Text Code

Experiment Task
local collection 80% 95%
Web retrieval 15% 0%
other 5% 5%

Performance Measure
precision, recall 43% 18%
manual, similarity 35% 69%
runtime only 15% 1%
other 7% 12%

Comparison
none 46% 51%
parameter settings 19% 9%
other algorithms 35% 40%

Evaluation Aspect Text Code

Corpus Acquisition
existing corpus 20% 18%
homemade corpus 80% 82%

Corpus Size [# documents]
[1, 10) 11% 10%
[10, 102) 19% 30%
[102, 103) 38% 33%
[103, 104) 8% 11%
[104, 105) 16% 4%
[105, 106) 8% 0%

123 deal with plagiarism detection in code, and
13 deal with other media types. From the pa-
pers related to text and code we analyzed the
205 which present evaluations. Our analysis
covers the following aspects: experiment tasks,
performance measures, underlying corpora, and,
whether comparisons to other plagiarism detec-
tion approaches were conducted. Table 1 summa-
rizes our findings.

With respect to the experiment tasks the ma-
jority of the approaches perform overlap detec-
tion by exhaustive comparison against some lo-
cally stored document collection—albeit a Web
retrieval scenario is more realistic. We explain
this shortcoming by the facts that the Web can-
not be utilized easily as a corpus, and, that in the
case of code plagiarism the focus is on collusion
detection in student courseworks. With respect to
performance measures the picture is less clear: a
manual result evaluation based on similarity mea-
sures is used about the same number of times for
text (35%), and even more often for code (69%),
as an automatic computation of precision and re-
call. 21% and 13% of the evaluations on text and
code use custom measures or examine only the de-

997

tection runtime. This indicates that precision and
recall may not be well-defined in the context of
plagiarism detection. Moreover, comparisons to
existing research are conducted in less than half
of the papers, a fact that underlines the lack of an
evaluation framework.

The right-hand side of Table 1 overviews two
corpus-related aspects: the use of existing cor-
pora versus the use of handmade corpora, and the
size distribution of the used corpora. In particu-
lar, we found that researchers follow two strate-
gies to compile a corpus. Small corpora (<1 000
documents) are built from student courseworks or
from arbitrary documents into which plagiarism-
alike overlap is manually inserted. Large corpora
(>1 000 documents) are collected from sources
where overlap occurs more frequently, such as
rewritten versions of news wire articles, or from
consecutive versions of open source software. Al-
together, we see a need for an open, commonly
used plagiarism detection corpus.

1.2 Related Work

There are a few surveys about automatic plagia-
rism detection in text [7, 8, 14] and in code [12,
17, 19, 20]. These papers, as well as nearly all
papers of our survey, omit a discussion of evalua-
tion methodologies; the following 4 papers are an
exception.

In [21] the authors introduce graph-based per-
formance measures for code plagiarism detection
that are intended for unsupervised evaluations.
We argue that evaluations in this field should be
done in a supervised manner. An aside: the pro-
posed measures have not been adopted since their
first publication. In [15] we introduce preliminary
parts of our framework. However, the focus of
that paper is less on methodology but on the com-
parison of the detection approaches that were sub-
mitted to the first PAN benchmarking workshop.
In [9, 10] the authors report on an unnamed cor-
pus that comprises 57 cases of simulated plagia-
rism. We refer to this corpus as the Clough09 cor-
pus; a comparison to our approach is given later
on. Finally, a kind of related corpus is the ME-
TER corpus, which has been the only alternative
for the text domain up to now [11]. It comprises
445 cases of text reuse among 1 716 news articles.

Although the corpus can be used to evaluate pla-
giarism detection its design does not support this
task. This is maybe the reason why it has not been
used more often. Furthermore, it is an open ques-
tion whether or not cases of news reuse differ from
plagiarism cases where the plagiarists strive to re-
main undetected.

1.3 Contributions

Besides the above survey, the contributions of our
paper are threefold: Section 2 presents formal
foundations for the evaluation of plagiarism detec-
tion and introduces three performance measures.
Section 3 introduces methods to create artificial
and simulated plagiarism cases on a large scale,
and the PAN-PC-10 corpus in which these meth-
ods have been operationalized. Section 4 then
compares our corpus with the Clough09 corpus
and the METER corpus. The comparison reveals
important insights for the different kinds of text
reuse in these corpora.

2 Plagiarism Detection Performance

This section introduces measures to quantify the
precision and recall performance of a plagiarism
detection algorithm; we present a micro-averaged
and a macro-averaged variant. Moreover, the so-
called detection granularity is introduced, which
quantifies whether the contiguity between plagia-
rized text passages is properly recognized. This
concept is important: a low granularity simpli-
fies both the human inspection of algorithmically
detected passages as well as an algorithmic style
analysis within a potential post-process. The three
measures can be applied in isolation but also
be combined into a single, overall performance
score. A reference implementation of the perfor-
mance measures is distributed with our corpus.

2.1 Precision, Recall, and Granularity

Let dplg denote a document that contains pla-
giarism. A plagiarism case in dplg is a 4-tuple
s = 〈splg, dplg, ssrc, dsrc〉, where splg is a plagia-
rized passage in dplg, and ssrc is its original coun-
terpart in some source document dsrc. Likewise,
a plagiarism detection for document dplg is de-
noted as r = 〈rplg, dplg, rsrc, d′src〉; r associates
an allegedly plagiarized passage rplg in dplg with

998

a passage rsrc in d′src. We say that r detects s iff
rplg ∩ splg �= ∅, rsrc ∩ ssrc �= ∅, and d′src = dsrc.
With regard to a plagiarized document dplg it is as-
sumed that different plagiarized passages of dplg
do not intersect; with regard to detections for dplg
no such restriction applies. Finally, S and R de-
note sets of plagiarism cases and detections.

While the above 4-tuples resemble an intu-
itive view of plagiarism detection we resort to
an equivalent, more concise view to simplify the
subsequent notations: a document d is repre-
sented as a set of references to its characters d =
{(1, d), . . . , (|d|, d)}, where (i, d) refers to the
i-th character in d. A plagiarism case s can then be
represented as s = splg ∪ ssrc, where splg ⊆ dplg

and ssrc ⊆ dsrc. The characters referred to in splg
and ssrc form the passages splg and ssrc. Likewise,
a detection r can be represented as r = rplg∪rsrc.
It follows that r detects s iff rplg ∩ splg �= ∅ and
rsrc∩ssrc �= ∅. Based on these representations, the
micro-averaged precision and recall of R under S
are defined as follows:

precmicro(S,R) =
|⋃

(s,r)∈(S×R)
(s 	 r)|

|⋃
r∈R

r| , (1)

recmicro(S,R) =
|⋃

(s,r)∈(S×R)
(s 	 r)|

|⋃
s∈S

s| , (2)

where s 	 r =

{
s ∩ r if r detects s,
∅ otherwise.

The macro-averaged precision and recall are
unaffected by the length of a plagiarism case; they
are defined as follows:

precmacro(S,R) =
1

|R|
∑

r∈R

|⋃
s∈S

(s 	 r)|
|r| , (3)

recmacro(S,R) =
1

|S|
∑

s∈S

|⋃
r∈R

(s 	 r)|
|s| , (4)

Besides precision and recall there is another
concept that characterizes the power of a detec-
tion algorithm, namely, whether a plagiarism case
s ∈ S is detected as a whole or in several pieces.
The latter can be observed in today’s commercial
plagiarism detectors, and the user is left to com-
bine these pieces to a consistent approximation
of s. Ideally, an algorithm should report detec-
tions R in a one-to-one manner to the true cases S.

To capture this characteristic we define the detec-
tion granularity of R under S:

gran(S,R) =
1

|SR|
∑

s∈SR

|Rs|, (5)

where SR ⊆ S are cases detected by detections
in R, and Rs ⊆ R are the detections of a given s:

SR = {s | s ∈ S ∧ ∃r ∈ R : r detects s},
Rs = {r | r ∈ R ∧ r detects s}.

The domain of gran(S,R) is [1, |R|], with 1
indicating the desired one-to-one correspondence
and |R| indicating the worst case, where a single
s ∈ S is detected over and over again.

Precision, recall, and granularity allow for a
partial ordering among plagiarism detection algo-
rithms. To obtain an absolute order they must be
combined to an overall score:

plagdet(S,R) =
Fα

log2(1 + gran(S,R))
, (6)

where Fα denotes the Fα-Measure, i.e., the
weighted harmonic mean of precision and recall.
We suggest using α = 1 (precision and recall
equally weighted) since there is currently no indi-
cation that either of the two is more important. We
take the logarithm of the granularity to decrease
its impact on the overall score.

2.2 Discussion

Plagiarism detection is both a retrieval task and
an extraction task. In light of this fact not only
retrieval performance but also extraction accuracy
becomes important, the latter of which being ne-
glected in the literature. Our measures incorpo-
rate both. Another design objective of our mea-
sures is the minimization of restrictions imposed
on plagiarism detectors. The overlap restriction
for plagiarism cases within a document assumes
that a certain plagiarized passage is unlikely to
have more than one source. Imprecision or lack
of evidence, however, may cause humans or algo-
rithms to report overlapping detections, e.g., when
being unsure about the true source of a plagia-
rized passage. The measures (1)-(4) provide for a
sensible treatment of this fact since the set-based

999

passage representations eliminate duplicate detec-
tions of characters. The macro-averaged vari-
ants allot equal weight to each plagiarism case,
regardless of its length. Conversely, the micro-
averaged variants favor the detection of long pla-
giarism passages, which are generally easier to be
detected. Which of both is to be preferred, how-
ever, is still an open question.

3 Plagiarism Corpus Construction

This section organizes and analyzes the practices
that are employed—most of the time implicitly—
for the construction of plagiarism corpora. We
introduce three levels of plagiarism authentic-
ity, namely, real plagiarism, simulated plagiarism,
and artificial plagiarism. It turns out that simu-
lated plagiarism and artificial plagiarism are the
only viable alternatives for corpus construction.
We propose a new approach to scale up the gen-
eration of simulated plagiarism based on crowd-
sourcing, and heuristics to generate artificial pla-
giarism. Moreover, based on these methods, we
compile the PAN plagiarism corpus 2010 (PAN-
PC-10) which is the first corpus of its kind that
contains both a large number and a high diversity
of artificial and simulated plagiarism cases.

3.1 Real, Simulated, and Artificial Plagiarism

Syntactically, a plagiarism case is the result of
copying a passage ssrc from a source document
into another document dplg. Since verbatim
copies can be detected easily, plagiarists often
rewrite ssrc to obfuscate their illegitimate act.
This behavior must be modeled when constructing
a training corpus for plagiarism detection, which
can be done at three levels of authenticity. Ide-
ally, one would secretly observe a large number
of plagiarists and use their real plagiarism cases;
at least, one could resort to plagiarism cases which
have been detected in the past. The following as-
pects object against this approach:

• The distribution of detected real plagiarism
is skewed towards ease of detectability.

• The acquisition of real plagiarism is expen-
sive since it is often concealed.

• Publishing real cases requires the consents
from the plagiarist and the original author.

• A public corpus with real cases is question-
able from an ethical and legal viewpoint.

• The anonymization of real plagiarism is dif-
ficult due to Web search engines and author-
ship attribution technology.

It is hence more practical to let people create
plagiarism cases by “purposeful” modifications,
or to tap resources that contain similar kinds of
text reuse. We subsume these strategies under the
term simulated plagiarism. The first strategy has
often been applied in the past, though on a small
scale and without a public release of the corpora;
the second strategy comes in the form of the ME-
TER corpus [11]. Note that, from a psycholog-
ical viewpoint, people who simulate plagiarism
act under a different mental attitude than plagia-
rists. From a linguistic viewpoint, however, it is
unclear whether real plagiarism differs from sim-
ulated plagiarism.

A third possibility is to generate plagiarism al-
gorithmically [6, 15, 18], which we call artificial
plagiarism. Generating artificial plagiarism cases
is a non-trivial task if one requires semantic equiv-
alence between a source passage ssrc and the pas-
sage splg that is obtained by an automatic obfus-
cation of ssrc. Such semantics-preserving algo-
rithms are still in their infancy; however, the sim-
ilarity computation between texts is usually done
on the basis of document models like the bag of
words model and not on the basis of the original
text, which makes obfuscation amenable to sim-
pler approaches.

3.2 Creating Simulated Plagiarism

Our approach to scale up the creation of simu-
lated plagiarism is based on Amazon’s Mechani-
cal Turk, AMT, a commercial crowdsourcing ser-
vice [3]. This service has gathered considerable
interest, among others to recreate TREC assess-
ments [1], but also to write and translate texts [2].

We offered the following task on the Mechani-
cal Turk platform: Rewrite the original text found
below [on the task Web page] so that the rewritten
version has the same meaning as the original, but
with a different wording and phrasing. Imagine a
scholar copying a friend’s homework just before
class, or imagine a plagiarist willing to use the

1000

Table 2: Summary of 4 000 Mechanical Turk tasks
completed by 907 workers.

Worker Demographics

Age Education
18, 19 10% HS 11%
20–29 37% College 30%
30–39 16% BSc. 17%
40–49 7% MSc. 11%
50–59 4% Dr. 2%
60–69 1%
n/a 25% n/a 29%

Native Speaker Gender
yes 62% male 37%
no 14% female 39%
n/a 23% n/a 24%

Prof. Writer Plagiarized
yes 10% yes 16%
no 66% no 60%
n/a 24% n/a 25%

Task Statistics

Tasks per Worker
average 15
std. deviation 20
minimum 1
maximum 103

Work Time (minutes)
average 14
std. deviation 21
minimum 1
maximum 180

Compensation
pay per task 0.5 US$
rejected results 25%

original text without proper citation.
Workers were required to be fluent in English

reading and writing, and they were informed that
every result was to be reviewed. A questionnaire
displayed alongside the task description asked
about the worker’s age, education, gender, and na-
tive speaking ability. Further we asked whether
the worker is a professional writer, and whether
he or she has ever plagiarized. Completing the
questionnaire was optional in order to minimize
false answers, but still, these numbers have to
be taken with a grain of salt: the Mechanical
Turk is not the best environment for such sur-
veys. Table 2 overviews the worker demographics
and task statistics. The average worker appears
to be a well-educated male or female in the twen-
ties, whose mother tongue is English. 16% of the

workers claim to have plagiarized at least once,
and if at least the order of magnitude of the lat-
ter number can be taken seriously this shows that
plagiarism is a prevalent problem.

A number of pilot experiments were conducted
to determine the pay per task, depending on the
text length and the task completion time: for
50 US-cents about 500 words get rewritten in
about half an hour. We observed that decreasing
or increasing the pay per task has proportional ef-
fect on the task completion time, but not on the
result quality. This observation is in concordance
with earlier research [13]. Table 3 contrasts a
source passage ssrc and its rewritten, plagiarized
passage splg obtained via the Mechanical Turk.

3.3 Creating Artificial Plagiarism

To create artificial plagiarism, we propose three
obfuscation strategies. Given a source passage
ssrc a plagiarized passage splg can be created as
follows (see Table 4):

• Random Text Operations. splg is created
from ssrc by shuffling, removing, inserting,
or replacing words or short phrases at ran-
dom. Insertions and replacements are taken
from the document dplg where splg is to be
inserted.

• Semantic Word Variation. splg is created
from ssrc by replacing words by one of their
synonyms, antonyms, hyponyms, or hyper-
nyms, chosen at random. A word is kept if
none of them is available.

Table 3: Example of a simulated plagiarism case s, generated with Mechanical Turk.

Source Passage ssrc Plagiarized Passage splg

The emigrants who sailed with Gilbert were better fitted for a
crusade than a colony, and, disappointed at not at once find-
ing mines of gold and silver, many deserted; and soon there
were not enough sailors to man all the four ships. Accord-
ingly, the Swallow was sent back to England with the sick;
and with the remainder of the fleet, well supplied at St. John’s
with fish and other necessaries, Gilbert (August 20) sailed
south as far as forty-four degrees north latitude. Off Sable
Island a storm assailed them, and the largest of the ves-
sels, called the Delight, carrying most of the provisions, was
driven on a rock and went to pieces.

[Excerpt from “Abraham Lincoln: A History” by John Nicolay and John Hay.]

The people who left their countries and sailed with Gilbert
were more suited for fighting the crusades than for leading a
settled life in the colonies. They were bitterly disappointed as
it was not the America that they had expected. Since they did
not immediately find gold and silver mines, many deserted.
At one stage, there were not even enough man to help sail
the four ships. So the Swallow was sent back to England
carrying the sick. The other fleet was supplied with fish and
the other necessities from St. John. On August 20, Gilbert
had sailed as far as forty-four degrees to the north latitude.
His ship known as the Delight, which bore all the required
supplies, was attacked by a violent storm near Sable Island.
The storm had driven it into a rock shattering it into pieces.

1001

Table 4: Examples of the obfuscation strategies.

Obfuscation Examples

Original Text
The quick brown fox jumps over the lazy dog.

Manual Obfuscation (by a human)
Over the dog which is lazy jumps quickly the fox which is brown.
Dogs are lazy which is why brown foxes quickly jump over them.
A fast auburn vulpine hops over an idle canine.

Random Text Operations
over The. the quick lazy dog <context word> jumps brown fox
over jumps quick brown fox The lazy. the
brown jumps the. quick dog The lazy fox over

Semantic Word Variation
The quick brown dodger leaps over the lazy canine.
The quick brown canine jumps over the lazy canine.
The quick brown vixen leaps over the lazy puppy.

POS-preserving Word Shuffling
The brown lazy fox jumps over the quick dog.
The lazy quick dog jumps over the brown fox.
The brown lazy dog jumps over the quick fox.

• POS-preserving Word Shuffling. The se-
quence of parts of speech in ssrc is deter-
mined and splg is created by shuffling words
at random while retaining the original POS
sequence.

To generate different degrees of obfuscation the
strategies can be adjusted by varying the number
of operations made on ssrc, and by limiting the
range of affected phrases within ssrc. For our cor-
pus, the strategies were combined and adjusted to
match an intuitive understanding of a “low” and
a “high” obfuscation. Of course other obfusca-
tion strategies are conceivable, e.g., based on au-
tomatic paraphrasing methods [4], but for perfor-
mance reasons simple strategies are preferred at
the expense of readability of the obfuscated text.

3.4 Overview of the PAN-PC-10

To compile the PAN plagiarism corpus 2010, sev-
eral other parameters besides the above plagiarism
obfuscation methods have been varied. Table 5
gives an overview.

The documents used in the corpus are derived
from books from the Project Gutenberg.2 Every
document in the corpus serves one of two pur-
poses: it is either used as a source for plagiarism
or as a document suspicious of plagiarism. The
latter documents divide into documents that actu-
ally contain plagiarism and documents that don’t.

2http://www.gutenberg.org

Table 5: Corpus statistics of the PAN-PC-10 for
its 27 073 documents and 68 558 plagiarism cases.

Document Statistics

Document Purpose
source documents 50%
suspicious documents
– with plagiarism 25%
– w/o plagiarism 25%

Intended Algorithms
external detection 70%
intrinsic detection 30%

Plagiarism per Document
hardly (5%-20%) 45%
medium (20%-50%) 15%
much (50%-80%) 25%
entirely (>80%) 15%

Document Length
short (1-10 pp.) 50%
medium (10-100 pp.) 35%
long (100-1000 pp.) 15%

Plagiarism Case Statistics

Topic Match
intra-topic cases 50%
inter-topic cases 50%

Obfuscation
none 40%
artificial

– low obfuscation 20%
– high obfuscation 20%

simulated (AMT) 6%
translated ({de,es} to en) 14%

Case Length
short (50-150 words) 34%
medium (300-500 words) 33%
long (3000-5000 words) 33%

The documents without plagiarism allow to deter-
mine whether or not a detector can distinguish pla-
giarism cases from overlaps that occur naturally
between random documents.

The corpus is split into two parts, correspond-
ing to the two paradigms of plagiarism detection,
namely external plagiarism detection and intrinsic
plagiarism detection. Note that in the case of in-
trinsic plagiarism detection the source documents
used to generate the plagiarism cases are omitted:
intrinsic detection algorithms are expected to de-
tect plagiarism in a suspicious document by an-
alyzing the document in isolation. Moreover, the
intrinsic plagiarism cases are not obfuscated in or-
der to preserve the writing style of the original au-
thor; the 40% of unobfuscated plagiarism cases in
the corpus include the 30% of the cases belonging
to the intrinsic part.

The fraction of plagiarism per document, the
lengths of the documents and plagiarism cases,
and the degree of obfuscation per case deter-
mine the difficulty of the cases: the corpus con-
tains short documents with a short, unobfuscated
plagiarism case, resulting in a 5% fraction of
plagiarism, but it also contains large documents
with several obfuscated plagiarism cases of vary-
ing lengths, drawn from different source docu-
ments and resulting in fractions of plagiarism up
to 100%. Since the true distributions of these pa-
rameters in real plagiarism are unknown, sensible

1002

estimations were made for the corpus. E.g., there
are more simple plagiarism cases than complex
ones, where “simple” refers to short cases, hardly
plagiarism per document, and less obfuscation.

Finally, plagiarism cases were generated be-
tween topically related documents and between
unrelated documents. To this end, the source doc-
uments and the suspicious documents were clus-
tered into k = 30 clusters using bisecting k-
means [22]. Then an equal share of plagiarism
cases were generated for pairs of source docu-
ments and suspicious documents within as well
as between clusters. Presuming the clusters cor-
respond to (broad) topics, we thus obtained intra-
topic plagiarism and inter-topic plagiarism.

4 Corpus Validation

This section reports on validation results about
the “quality” of the plagiarism cases created for
our corpus. We compare both artificial plagia-
rism cases and simulated plagiarism cases to cases
of the two corpora Clough09 and METER. Pre-
suming that the authors of these corpora put their
best efforts into case construction and annotation,
the comparison gives insights whether our scale-
up strategies are reasonable in terms of case qual-
ity. To foreclose the results, we observe that sim-
ulated plagiarism and, in particular, artificial pla-

giarism behave similar to the two handmade cor-
pora. In the light of the employed strategies to
construct plagiarism this result may or may not
be surprising—however, we argue that it is neces-
sary to run such a comparison in order to provide
a broadly accepted evaluation framework in this
sensitive area.

The experimental setup is as follows: given a
plagiarism case s = 〈splg, dplg, ssrc, dsrc〉, the pla-
giarized passage splg is compared to the source
passage ssrc using 10 different retrieval models.
Each model is an n-gram vector space model
(VSM) where n ranges from 1 to 10 words,
employing stemming, stop word removal, tf -
weighting, and the cosine similarity. Similarity
values are computed for all cases found in each
corpus, but since the corpora are of different sizes,
100 similarities are sampled from each corpus to
ensure comparability.

The rationale of this setup is as follows: a well-
known fact from near-duplicate detection is that
if two documents share only a few 8-grams—so-
called shingles—it is highly probable that they are
duplicates [5]. Another well-known fact is that
two documents which are longer than a few sen-
tences and which are exactly about the same topic
will, with a high probability, share a considerable
portion of their vocabulary. I.e., they have a high

1

0.8

0.6

0.4

0.2

0
n = 1 2 3 4 5 6 7 8 9 10

S
im

ila
ri

ty

n-gram VSM

Clough09

Artificial

Median

25% Quartile

75% Quartile

Simulated (AMT)

METER

Left to right:

Figure 1: Comparison of four corpora of text reuse and plagiarism: each box plot shows the middle
range of the measured similarities when comparing source passages to their rewritten versions. Basis is
an n-gram VSM, where n ∈ {1, 2, . . . , 10} words.

1003

similarity under a 1-gram VSM. It follows for pla-
giarism detection that a common shingle between
splg and ssrc pinpoints very accurately an unob-
fuscated portion of splg, while it is inevitable that
even a highly obfuscated splg will share a portion
of its vocabulary with ssrc. The same holds for all
other kinds of text reuse.

Figure 1 shows the obtained similarities, con-
trasting each n-gram VSM and each corpus. The
box plots show the middle 50% of the respective
similarity distributions as well as median similar-
ities. The corpora divide into groups with compa-
rable behavior: in terms of the similarity ranges
covered, the artificial plagiarism compares to the
METER corpus, except for n ∈ {2, 3}, while the
simulated plagiarism from the Clough09 corpus
behaves like that from our corpus, but with a dif-
ferent amplitude. In terms of median similarity,
METER, Clough09, and our simulated plagiarism
behave almost identical, while the artificial plagia-
rism differs. Also note that our simulated plagia-
rism as well as the Clough09 corpus contain some
cases which are hardly obfuscated.

We interpret these results as follows: (1) Dif-
ferent kinds of plagiarism and text reuse do not
differ very much under n-gram models. (2) Ar-
tificial plagiarism, if carefully generated, is a vi-
able alternative to simulated plagiarism cases and
real text reuse cases. (3) Our strategies to scale-up
the construction of plagiarism corpora works well
compared to existing, handmade corpora.

5 Summary

Current evaluation methodologies in the field
of plagiarism detection research have conceptual
shortcomings and allow only for a limited compa-
rability. Our research contributes right here: we
present tailored performance measures for plagia-
rism detection and the large-scale corpus PAN-
PC-10 for the controlled evaluation of detection
algorithms. The corpus features various kinds
of plagiarism cases, including obfuscated cases
that have been generated automatically and man-
ually. An evaluation of the corpus in relation to
previous corpora reveals a high degree of matu-
rity. Until now, 31 plagiarism detectors have been
compared using our evaluation framework. This
high number of systems has been achieved based

on two benchmarking workshops in which the
framework was employed and developed, namely
PAN’09 [15] and PAN’10 [16]. We hope that our
framework will be beneficial as a challenging and
yet realistic test bed for researchers in order to pin-
point the room for the development of better pla-
giarism detection systems.

Acknowledgements

We thank Andreas Eiselt for his devoted work
on the corpus over the past two years. This
work is partially funded by CONACYT-Mexico
and the MICINN project TEXT-ENTERPRISE
2.0 TIN2009-13391-C04-03 (Plan I+D+i).

Bibliography

[1] Omar Alonso and Stefano Mizzaro. Can
We Get Rid of TREC Assessors? Using
Mechanical Turk for Relevance
Assessment. In SIGIR’09: Proceedings of
the Workshop on The Future of IR
Evaluation, 2009.

[2] Vamshi Ambati, Stephan Vogel, and Jaime
Carbonell. Active learning and
crowd-sourcing for machine translation. In
Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike
Rosner, and Daniel Tapias, editors,
Proceedings of the Seventh conference on
International Language Resources and
Evaluation (LREC’10), Valletta, Malta, may
2010. European Language Resources
Association (ELRA). ISBN 2-9517408-6-7.

[3] Jeff Barr and Luis Felipe Cabrera. AI Gets
a Brain. Queue, 4(4):24–29, 2006. ISSN
1542-7730. doi:
10.1145/1142055.1142067.

[4] Regina Barzilay and Lillian Lee. Learning
to Paraphrase: An Unsupervised Approach
Using Multiple-Sequence Alignment. In
NAACL’03: Proceedings of the 2003
Conference of the North American Chapter
of the Association for Computational
Linguistics on Human Language
Technology, pages 16–23, Morristown, NJ,
USA, 2003. Association for Computational
Linguistics. doi:
10.3115/1073445.1073448.

[5] Andrei Z. Broder. Identifying and Filtering
Near-Duplicate Documents. In COM’00:
Proceedings of the 11th Annual Symposium
on Combinatorial Pattern Matching, pages

1004

1–10, London, UK, 2000. Springer-Verlag.
ISBN 3-540-67633-3.

[6] Manuel Cebrian, Manuel Alfonseca, and
Alfonso Ortega. Towards the Validation of
Plagiarism Detection Tools by Means of
Grammar Evolution. IEEE Transactions on
Evolutionary Computation, 13(3):477–485,
June 2009. ISSN 1089-778X.

[7] Paul Clough. Plagiarism in Natural and
Programming Languages: An Overview of
Current Tools and Technologies. Internal
Report CS-00-05, University of Sheffield,
2000.

[8] Paul Clough. Old and New Challenges in
Automatic Plagiarism Detection. National
UK Plagiarism Advisory Service,
http://ir.shef.ac.uk/cloughie/papers/pas_plagiarism.pdf,
2003.

[9] Paul Clough and Mark Stevenson. Creating
a Corpus of Plagiarised Academic Texts. In
Proceedings of Corpus Linguistics
Conference, CL’09 (to appear), 2009.

[10] Paul Clough and Mark Stevenson.
Developing A Corpus of Plagiarised Short
Answers. Language Resources and
Evaluation: Special Issue on Plagiarism
and Authorship Analysis (in press), 2010.

[11] Paul Clough, Robert Gaizauskas, and S. L.
Piao. Building and Annotating a Corpus for
the Study of Journalistic Text Reuse. In
Proceedings of the 3rd International
Conference on Language Resources and
Evaluation (LREC-02), pages 1678–1691,
2002.

[12] Wiebe Hordijk, María L. Ponisio, and Roel
Wieringa. Structured Review of Code
Clone Literature. Technical Report
TR-CTIT-08-33, Centre for Telematics and
Information Technology, University of
Twente, Enschede, 2008.

[13] Winter Mason and Duncan J. Watts.
Financial Incentives and the "Performance
of Crowds". In HCOMP’09: Proceedings
of the ACM SIGKDD Workshop on Human
Computation, pages 77–85, New York, NY,
USA, 2009. ACM. ISBN
978-1-60558-672-4. doi:
10.1145/1600150.1600175.

[14] Hermann Maurer, Frank Kappe, and Bilal
Zaka. Plagiarism - A Survey. Journal of
Universal Computer Science, 12(8):
1050–1084, 2006.

[15] Martin Potthast, Benno Stein, Andreas
Eiselt, Alberto Barrón-Cedeño, and Paolo

Rosso. Overview of the 1st International
Competition on Plagiarism Detection. In
Benno Stein, Paolo Rosso, Efstathios
Stamatatos, Moshe Koppel, and Eneko
Agirre, editors, SEPLN 2009 Workshop on
Uncovering Plagiarism, Authorship, and
Social Software Misuse (PAN 09), pages
1–9. CEUR-WS.org, September 2009. URL
http://ceur-ws.org/Vol-502.

[16] Martin Potthast, Benno Stein, Andreas
Eiselt, Alberto Barrón-Cedeño, and Paolo
Rosso. Overview of the 2nd International
Benchmarking Workshop on Plagiarism
Detection. In Benno Stein, Paolo Rosso,
Efstathios Stamatatos, and Moshe Koppel,
editors, Proceedings of PAN at CLEF 2010:
Uncovering Plagiarism, Authorship, and
Social Software Misuse, September 2010.

[17] Chanchal K. Roy and James R. Cordy.
Scenario-Based Comparison of Clone
Detection Techniques. In ICPC ’08:
Proceedings of the 2008 The 16th IEEE
International Conference on Program
Comprehension, pages 153–162,
Washington, DC, USA, 2008. IEEE
Computer Society. ISBN
978-0-7695-3176-2.

[18] Chanchal K. Roy and James R. Cordy.
Towards a Mutation-based Automatic
Framework for Evaluating Code Clone
Detection Tools. In C3S2E ’08:
Proceedings of the 2008 C3S2E conference,
pages 137–140, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-101-9.

[19] Chanchal K. Roy, James R. Cordy, and
Rainer Koschke. Comparison and
Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative
Approach. Sci. Comput. Program., 74(7):
470–495, 2009. ISSN 0167-6423.

[20] Chanchal K. Roy and James R. Cordy. A
survey on software clone detection
research. Technical Report 2007-541,
School of Computing, Queen’s University
at Kingston, Ontario, Canada, 2007.

[21] Geoffrey R. Whale. Identification of
Program Similarity in Large Populations.
The Computer Journal, 33(2):140–146,
1990. doi: 10.1093/comjnl/33.2.140.

[22] Ying Zhao, George Karypis, and Usama
Fayyad. Hierarchical Clustering Algorithms
for Document Datasets. Data Min. Knowl.
Discov., 10(2):141–168, 2005. ISSN
1384-5810. doi:
10.1007/s10618-005-0361-3.

1005

