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Abstract

We go beyond simple propositional mean-
ing extraction and present experiments in
determining which propositions in text the
author believes. We show that deep syn-
tactic parsing helps for this task. Our
best feature combination achieves an F-
measure of 64%, a relative reduction in F-
measure error of 21% over not using syn-
tactic features.

1 Introduction

Recently, interest has grown in relating text to
more abstract representations of its propositional
meaning, as witnessed by work on semantic role
labeling, word sense disambiguation, and textual
entailment. However, there is more to “meaning”
than just propositional content. Consider the fol-
lowing examples, and suppose we find these sen-
tences in the New York Times:

(1) a. GM will lay off workers.

b. A spokesman for GM said GM will lay off
workers.

c. GM may lay off workers.

d. The politician claimed that GM will lay
off workers.

e. Some wish GM would lay of workers.

f. Will GM lay off workers?

g. Many wonder if GM will lay off workers.

If we are searching text to find out whether
GM will lay off workers, all of the sen-
tences above contain the proposition LAY-
OFF(GM,WORKERS). However, they allow us

very different inferences about whether GM will
lay off workers or not. Supposing we consider
the Times a trustworthy news source, we would
be fairly certain if we read (1a) and (1b). (1c)
suggests the Times is not certain about the layoffs,
but considers them possible. When reading (1d),
we know that someone else thinks that GM will
lay off workers, but that the Times does not nec-
essarily share this belief. (1e), (1f), and (1g) do
not tell us anything about whether anyone believes
whether GM will lay off workers.

In order to tease apart what is happening, we
need to abandon a simple view of text as a repos-
itory of propositions about the world. We use two
assumptions to aid us. The first assumption is that
discourse participants model each other’s cogni-
tive state during discourse (we take the term to in-
clude the reading of monologic written text), and
that language provides cues for the discourse par-
ticipants to do the modeling. This assumption is
commonly made, for example by Grice (1975) in
his Maxim of Quantity. Following the literature
in Artificial Intelligence (Bratman, 1999; Cohen
and Levesque, 1990), we model cognitive state as
beliefs, desires, and intentions. Crucially, these
three dimensions are orthogonal; for example, we
can desire something but not believe it.

(2) I know John won’t be here, but I wouldn’t
mind if he were

However, we cannot both believe something
and not believe it:

(3) #John won’t be here, but nevertheless I think
he may be here

Note that (2) requires but in order to be felic-
itous, but sentence (3) cannot be “saved” by any
discourse markers – it is not interpretable. In this
paper, we are interested in beliefs (and in distin-
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guishing them from desires and intentions).
The second assumption is that communication

is intention-driven, and understanding text actu-
ally means understanding the communicative in-
tention of the writer. Furthermore, communica-
tive intentions are intentions to affect the reader’s
cognitive state – his or her beliefs, desires, and/or
intentions. This view has been adopted in the text
generation and dialog community more than in
the information extraction and text understanding
communities (Mann and Thompson, 1987; Hovy,
1993; Moore, 1994; Bunt, 2000; Stone, 2004). In
this paper we explore the following: we would
like to recognize what the writer of the text intends
the reader to believe about various people’s beliefs
about the world (including the writer’s own). In
this view, the result of text processing is not a list
of facts about the world, but a list of facts about
different people’s cognitive states. In this paper,
we limit ourselves to the writer’s beliefs, but we
specifically want to determine which propositions
he or she intends us to believe he or she holds as
beliefs, and with what strength. The result of such
processing will be a much more fine-grained rep-
resentation of the information contained in written
text than has been available so far.

2 Belief Annotation and Data

We use a corpus of 10,000 words annotated for
speaker belief of stated propositions (Diab et al.,
2009). The corpus is very diverse in terms of
genre, and it includes newswire text, email, in-
structions, and solicitations. The corpus annotates
each verbal proposition (clause or small clause),
by attaching one of the following tags to the head
of the proposition (verbs and heads of nominal,
adjectival, and prepositional predications).
• Committed belief (CB): the writer indicates

in this utterance that he or she believes the propo-
sition. For example, GM has laid off workers, or,
even stronger, We know that GM has laid off work-
ers. Committed belief can also include proposi-
tions about the future: people can have equally
strong beliefs about the future as about the past,
though in practice probably we have stronger be-
liefs about the past than about the future.

• Non-committed belief (NCB): the writer
identifies the proposition as something which he

or she could believe, but he or she happens not
to have a strong belief in. There are two sub-
cases. First, the writer makes clear that the be-
lief is not strong, for example by using a modal
auxiliary epistemically: GM may lay off workers.
Second, in reported speech, the writer is not sig-
naling to the reader what he or she believes about
the reported speech: The politician claimed that
GM will lay off workers. Again, the issue of tense
is orthogonal.
• Not applicable (NA): for the writer, the propo-

sition is not of the type in which he or she is ex-
pressing a belief, or could express a belief. Usu-
ally, this is because the proposition does not have a
truth value in this world (be it in the past or in the
future). This covers expressions of desire (Some
wish GM would lay of workers), questions (Will
GM lay off workers?), and expressions of require-
ments (GM is required to lay off workers or Lay
off workers!).

All propositional heads are classified as one of
the classes CB, NCB, or NA, and all other tokens
are classified as O. Note that in this corpus, event
nominals (such as the lay-offs by GM were unex-
pected) are, unfortunately, not annotated for be-
lief and are always marked “O”. Note also that
the syntactic form does not determine the annota-
tion, but the perceived writer’s intention – a ques-
tion will usually be an NA, but sometimes a ques-
tion can be used to convey a belief (for example,
a rhetorical question), in which case it would be
labeled CB.

3 Automatic Belief Tagging

3.1 Approach

We applied a supervised learning framework to
the problem of identifying committed belief in
context. Our task consists of two conceptual sub-
tasks: identifying the propositions, and classify-
ing each proposition as CB, NCB, or NA. For the
first subtask, we could use a system that cuts a
sentence into propositions, but we are not aware
of such a system that performs at an adequate
level. Instead, we tag the heads of the proposi-
tion, which amounts to the same in the sense that
there is a bijection between propositions and their
heads. Practically, we have the choice between
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No Feature Type Description

Features that performed well

1 isNumeric L Word is Alphabet or Numeric?
2 POS L Word’s POS tag
3 verbType L Modal/Aux/Reg ( = ’nil’ if the word is not a verb)
4 whichModalAmI L If I am a modal, what am I? ( = ’nil’ if I am not a modal)
3 amVBwithDaughterTo S Am I a VB with a daughter to?
4 haveDaughterPerfect S Do I have a daughter which is one of has, have, had?
5 haveDaughterShould S Do I have a daughter should?
6 haveDaughterWh S Do I have a daughter who is one of where, when, while, who, why?
7 haveReportingAncestor S Am I a verb/predicate with an ancestor whose lemma is one of tell, accuse,

insist, seem, believe, say, find, conclude, claim, trust, think, suspect, doubt,
suppose?

8 parentPOS S What is my parent’s POS tag?
9 whichAuxIsMyDaughter S If I have a daughter which is an auxiliary, what is it? ( = ’nil’ if I do not have

an auxiliary daughter)
10 whichModalIsMyDaughter S If I have a daughter which is a modal, what is it? ( = ’nil’ if I do not have a

modal daughter)

Features that were not useful

1 Lemma L Word’s Lemma
2 Stem L Word stem (Using Porter Stemmer)
3 Drole S Deep role (drole in MICA features)
4 isRoot S Is the word the root of the MICA Parse tree?
5 parentLemma S Parent word’s Lemma
6 parentStem S Parent word stem (Using Porter Stemmer)
7 parentSupertag S Parent word’s super tag (from Penn Treebank)
8 Pred S Is the word a predicate? (pred in MICA features)
9 wordSupertag S Word’s Super Tag (from Penn Treebank)

Table 1: All Features Used

a joint model, in which the heads are chosen and
classified simultaneously, and a pipeline model, in
which heads are chosen first and then classified.
In this paper, we consider the joint model in de-
tail and in Section 3.5.3, we present results of the
pipeline model; they support our choice.

In the joint model, we define a four-way clas-
sification task where each token is tagged as one
of four classes – CB, NCB, NA, or O (nothing)
– as defined in Section 2. For tagging, we ex-
perimented with Support Vector Machines (SVM)
and Conditional Random Fields (CRF). For SVM,
we used the YAMCHA(Kudo and Matsumoto,
2000) sequence labeling system,1 which uses the
TinySVM package for classification.2 For CRF,
we used the linear chain CRF implementation of

1http://chasen.org/ taku/software/YAMCHA/
2http://chasen.org/ taku/software/TinySVM/

the MALLET(McCallum, 2002) toolkit.3

3.2 Features

We divided our features into two types - Lexi-
cal and Syntactic. Lexical features are at the to-
ken level and can be extracted without any pars-
ing with relatively high accuracy. We expect these
features to be useful for our task. For example,
isNumeric, which denotes whether the word is a
number or alphabetic, is a lexical feature. Syn-
tactic features of a token access its syntactic con-
text in the dependency tree. For example, par-
entPOS, the POS tag of the parent word in the
dependency parse tree, is a syntactic feature. We
used the MICA deep dependency parser (Banga-
lore et al., 2009) for parsing in order to derive
the syntactic features. We use MICA because
we assume that the relevant information is the

3http://MALLET.cs.umass.edu/
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predicate-argument structure of the verbs, which
is explicit in the MICA output. While it is clear
that having a perfect parse would yield useful fea-
tures, current parsers perform at levels of accuracy
lower than that of part-of-speech taggers, so that it
is not a foregone conclusion that using automatic
parser output helps in our task.

The list of features we used in our experiments
are summarized in Table 1. The column ’Type’
denotes the type of the feature. ’L’ stands for lex-
ical features and ’S’ stands for syntactic features.

The tree below shows the dependency parse
tree output by MICA for the sentence Republican
leader Bill Frist said the Senate was hijacked.

said

Frist

Republican leader Bill

hijacked

Senate

the

was

In the above sentence, said and hijacked are
the propositions that should be tagged. Let’s look
at hijacked in detail. The feature haveReportin-
gAncestor of hijacked is ‘Y’ because it is a verb
with a parent verb said. Similarly, the feature
haveDaughterAux would also be ’Y’ because of
daughter was, whereas whichAuxIsMyDaughter
would get the value was.

We also considered several other features which
did not yield good results. For example, the to-
ken’s supertag (Bangalore and Joshi, 1999), the
parent token’s supertag, a binary feature isRoot
(Is the word the root of the parse tree?) were
deemed not useful. We list the features we exper-
imented with and decided to discard in Table 1.

For finding the best performing features, we did
an exhaustive search on the feature space, incre-
mentally pruning away features that are not use-
ful.

3.3 Experiments

This section describes different experiments we
conducted in detail. It explains the experimen-
tal setup for both learning frameworks we used
- YAMCHA and MALLET. We also explain the
pipeline model in detail.

Class Description

LC Lexical features with Context
LNSN Lexical and Syntactic features with No-

context
LCSN Lexical features with Context and Syntactic

features with No-context
LCSC Lexical and Syntactic features with Context

Table 2: YAMCHA Experiment Sets

3.3.1 YAMCHA Experiments
We categorized our YAMCHA experiments

into different experimental conditions as shown in
Table 2. For each class, we did experiments with
different feature sets and (linear) context widths.
Here, context width denotes the window of tokens
whose features are considered. For example, a
context width of 2 means that the feature vector
of any given token includes, in addition to its own
features, those of 2 tokens before and after it as
well as the tag prediction for 2 tokens before it.
For LNSN , the context width of all features was
set to 0. For LCSN , the context width of syntactic
features alone was set to 0. A context width of 0
for a feature means that the feature vector includes
that feature of the current token only. When con-
text width was non-zero, we varied it from 1 to 5,
and we report the results for the optimal context
width.

We tuned the SVM parameters, and the best
results were obtained using the One versus All
method for multiclass classification on a quadratic
kernel with a c value of 0.5. All results presented
for YAMCHA here use this setting.

3.3.2 MALLET Experiments

Class Description

L Lexical features only
LS Lexical and Syntactic features

Table 3: MALLET Experiment Sets

We categorized our MALLET experiments into
two classes as shown in Table 3. We computed
the features described in Section 3.2 at the to-
ken level and converted them to binary in order to
use them for CRF. We experimented with varying
orders and the best results were obtained for or-
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Class Feature Set Parm P R F

YAMCHA - Joint Model

LC POS, whichModalAmI, verbType, isNumeric CW=3 61.9 52.7 56.9
LNSN POS, whichModalAmI, parentPOS, haveReportingAncestor, whichModal-

IsMyDaughter, haveDaughterPerfect, whichAuxIsMyDaughter, amVBwith-
DaughterTo, haveDaughterWh, haveDaughterShould

CW=0 62.5 57.5 59.9

LCSN POS, whichModalAmI, parentPOS, haveReportingAncestor, whichModalIs-
MyDaughter, whichAuxIsMyDaughter, haveDaughterShould

CW=2 67.4 58.1 62.4

LCSC POS, whichModalAmI, parentPOS, haveReportingAncestor, whichModal-
IsMyDaughter, haveDaughterPerfect, whichAuxIsMyDaughter, haveDaugh-
terWh, haveDaughterShould

CW=2 68.5 60.0 64.0

MALLET - Joint Model

L POS, whichModalAmI, verbType GV=1 55.1 45.0 49.6
LS POS, whichModalAmI, parentPOS, haveReportingAncestor, whichModal-

IsMyDaughter, haveDaughterPerfect, whichAuxIsMyDaughter, haveDaugh-
terWh, haveDaughterShould

GV=1 64.5 54.4 59.0

Pipeline Model

LCSC POS, whichModalAmI, parentPOS, haveReportingAncestor, whichModal-
IsMyDaughter, haveDaughterPerfect, whichAuxIsMyDaughter, haveDaugh-
terWh, haveDaughterShould

CW=2 49.8 42.9 46.1

Table 4: Overall Results. CW = Context Width, GV = Gaussian Variance, P = Precision, R = Recall, F
= F-Measure

der= “0,1”, which makes the CRF similar to Hid-
den Markov Model. All results reported here use
the order= “0,1”. We also conducted experiments
varying the Gaussian variance parameter from 1.0
to 10.0 using the same experimental setup (i.e.
we did not have a distinct tuning corpus) and ob-
served that best results were obtained with a low
value of 1 to 3, instead of MALLET’s default
value of 10.0.

3.3.3 Pipeline Model

We also did experiments to support our choice
of the joint model over the pipeline model. We
chose the best performing feature configuration
of the LCSC class (which is the overall best
performer as we present in Section 3.5), and
set up the pipeline model. We trained a se-
quence classifier using YAMCHA to identify the
head tokens, where tokens are tagged as just
propositional heads without distinguishing be-
tween CB/NA/NCB. The predicted head tokens
were then classified using a 3-Way SVM classi-
fier trained on gold data.

3.4 Evaluation

For evaluation, we used 4-fold cross validation on
the training data. The data was divided into 4 folds
of which 3 folds were used to train a model which
was tested on the 4th fold. We did this with all
four configurations and all the reported results in
this paper are averaged results across 4 folds. We
report Recall and Precision on word tokens in our
corpus for each of the three tags. It is worth noting
that the majority of the words in our data will not
be tagged with any of the three classes. (Recall
that most words have neither of the three tags).
We also report Fβ=1 (F)-measure as the harmonic
mean between (P)recision and (R)ecall.

3.5 Results

This section summarizes the results of various
experiments we conducted. The best perform-
ing feature configuration and corresponding Pre-
cision, Recall and F-measure for each experimen-
tal setup discussed in previous section is presented
in Table 4. The best F-measure for each category
under various experimental setups is presented in
Table 5.

We obtained the best performance using YAM-
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Setup Class CB NCB NA

Joint-YAMCHA LC 61.5 15.2 63.2
Joint-YAMCHA LNSN 67.0 28.3 59.9
Joint-YAMCHA LCSN 67.6 33.2 64.5
Joint-YAMCHA LCSC 69.6 34.1 64.5
Joint-MALLET L 53.9 7.5 54.1
Joint-MALLET LS 65.8 40.6 59.1
Pipeline LCSC 55.2 16.5 51.3

Table 5: Results per Category (F-Measure)

CHA in a joint model. So, we first analyze this
configuration in great detail in Section 3.5.1. We
discuss results obtained using MALLET in Sec-
tion 3.5.2 and the pipeline model in Section-3.5.3.

3.5.1 YAMCHA - Results

As described in Section 3.3.1, we divide our
experiments into 4 classes - LC , LNSN , LCSN
and LCSC . Table 4 presents the best perform-
ing feature sets and context width configuration
for each class. For all experiments with context,
the best result was obtained with a context width
of 2, except for LC , where a context width of 3
gave the best results. The results show that syn-
tactic features improve the classifier performance
considerably. The best model obtained for LC
has an F-measure of 56.9%. In LNSN it im-
proves marginally to 59.9%. Adding back context
to lexical features improves it to 62.4% in LCSN
whereas addition of context to syntactic features
further improves this to 64.0%. We observed that
the feature parentPOS has the most impact on in-
creased context widths, among syntactic features.

The improvement pattern of Precision and Re-
call across the classes is also interesting. Syntac-
tic features with no context improve Recall by 4.8
percentage points over only lexical features with
context, whereas Precision improves only by 0.6
points. However, adding back context to lexical
features further improves Precision by 4.9 points
while Recall just improves by 0.6 points. Finally,
adding context of syntactic features improves both
Precision and Recall moderately. We infer that
syntactic features (without context) help identify
more annotatable patterns thereby improving Re-
call, whereas linear context helps removing the
wrong ones, thereby improving Precision.

The per-category F-measure results presented
in Table 5 are also interesting. The CB F-measure
improves by 8.1 points and NCB improves 18.9
points from LC to LCSC . But, the improvement
in NA F-measure is only a marginal 1.3 points
between LC and LCSC . Furthermore, the F-
measure decreases by 3.3 points when syntactic
and lexical features with no context are used. On
analysis, we found that NAs often occur in syn-
tactic structures like want to find or should go (de-
ontic should), in which the relevant words occur
in a small linear window. In contrast, NCBs are
often signaled by deeper syntactic structures. For
example, in He said that his visit to the US will
mainly focus on the humanitarian issues, a simpli-
fied sentence from our training set, the verb focus
is an NCB because it is in the scope of the report-
ing verb said (specifically, it is its daughter). This
could not be captured using the context because
said and focus are far apart in the sentence. But
a correct parse tree gives focus as the daughter of
said. So, a feature like haveReportingAncestor
could easily capture this. It is also the case that the
root of a dependency parse tree would mostly be
a CB. This is captured by the feature parentPOS
having value ‘nil’. This property also cannot be
captured by lexical features alone.

However, NCB performs much worse than the
other two categories. NCB is a class which occurs
rarely compared to CB and NA in our corpus. Out
of the 1, 357 propositions tagged, only 176 were
NCB. We assume that this could be a main factor
of its poor performance.

We analyzed the performance across the folds.
Fold-2 contains only 0.03% NCBs compared to
1.89% on the rest of the folds. Similarly, it con-
tains 6.43% NAs compared to 3.82% across other
folds. However, our best performing model gives
a Recall of 59.1% with a Precision of 69.7% (F-
measure 64.0%) for Fold-2, which is as good as
other folds. Hence, we observe that our learned
model is robust under distributional variations.

3.5.2 MALLET Results

As explained in Section 3.3.2, we explored
MALLET-CRF using two experimental condi-
tions L and LS. Table 4 presents the best per-
forming feature sets for both classes. These re-
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sults again show that syntactic features improve
the classifier performance considerably. The best
model obtained for L class has an F-measure of
49.6%, whereas addition of syntactic features im-
proves this to 59.0%. Both Precision and Recall
are improved by 9.4 percentage points as well.

However, MALLET-CRF’s performance was
comparatively worse than YAMCHA’s SVM. The
best model for MALLET (LS) obtained an F-
measure of 59.0% which is 5.0 percentage points
less than that of the best model for YAMCHA
(LCSC).

It is interesting to note that MALLET per-
formed well on predicting NCB. The highest NCB
F-measure of MALLET - 40.6% is 6.5 percent-
age points higher than the highest NCB F-measure
for YAMCHA. However, corresponding CB and
NA F-measures were 61.2% and 56.1% which
are much lower than YAMCHA’s performance for
these categories.

Also, MALLET was more time efficient than
YAMCHA. On an average, for our corpus size
and feature sets, MALLET ran 3 times as fast as
YAMCHA in a cross validation setup (i.e. training
and testing together).

3.5.3 Joint Model vs Pipeline Model

As discussed in Section 3.3.3, we set up a
pipeline model for the best performing configu-
ration of LCSC class of YAMCHA experiments.
The head prediction step of the pipeline obtained
an F-measure of 83.9% with Precision and Re-
call of 86.7% and 81.2%, respectively, across all
4 folds. The 3-way classification step to classify
the belief of the identified head obtained an ac-
curacy of 72.7% across all folds. In the pipeline
model, false positives and false negatives adds up
from step 1 and step 2, where as only the true
positives of step 2 is considered as the true pos-
itives overall. In this way, the overall Precision
was only 49.8% and Recall was 42.9% with an F-
measure of 46.1% as shown in Table 4. The results
for CB/NCB/NA separately are given in Table 5.
The per-category best F-measure was decreased
by 14.4, 17.6 and 13.2 percentage points from the
YAMCHA joint model for CB, NCB and NA, re-
spectively. The performance gap is big enough to
conclude that our choice of joint model was right.

4 Related Work

Our work falls in the rich tradition of modeling
agents in terms of their cognitive states (for ex-
ample, (Rao and Georgeff, 1991)) and relating
this modeling to language use through extensions
to speech act theory (for example, (Perrault and
Allen, 1980; Clark, 1996; Bunt, 2000)). These no-
tions have been particularly fruitful in the dialog
community, where dialog act tagging is a major
topic of research; to cite just one prominent ex-
ample: (Stolcke et al., 2000). A dialog act repre-
sents the communicative intention of the speaker,
and its recognition is crucial for the building of
dialog systems. The specific contribution of this
paper is to investigate exactly how discourse par-
ticipants signal their beliefs using language, and
the strength of their beliefs; this latter point is not
usually included in dialog act tagging.

This paper is not concerned with issues relating
to logics for belief representation or inferencing
that can be done on beliefs (for an overview, see
(McArthur, 1988)), nor theories of automatic be-
lief ascription (Wilks and Ballim, 1987). For ex-
ample, this paper is not concerned with determin-
ing whether a belief in the requirement of p entails
the belief in p; instead, we are only interested in
whether the writer wants the reader to understand
whether the writer holds a belief in the require-
ment that p or in p directly. This paper is also not
concerned with subjectivity (Wiebe et al., 2004),
the nature of the proposition p (statement about
interior world or external world) is not of interest,
only whether the writer wants the reader to believe
the writer believes p. This paper is also not con-
cerned with opinion and determining the polarity
(or strength) of opinion (for example: (Somasun-
daran et al., 2008)), which corresponds to the de-
sire dimension. Thus, this work is orthogonal to
the extensive literature on opinion classification.

The work of (Saurı́ and Pustejovsky, 2007;
Saurı́ and Pustejovsky, 2008) is, in many re-
spects, very similar to ours. They propose Fact-
bank, which represents the factual interpretation
as modality-polarity pairs, extracted from the ba-
sic structural elements denoting factuality en-
coded by Timebank. Also, they attribute the factu-
ality to specific sources within the text. Our work
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is more limited in several ways: we currently only
model the writer’s beliefs; we do not express po-
larity (we believe we can derive it from the syn-
tax and lexicon); Saurı́ and Pustejovsky (2008)
ask their annotators to perform extensive linguis-
tic transformations on the text to obtain a “nor-
malized” representation of propositional content
(we simply ask the annotators to make a judg-
ment about the writer’s strength of belief with
respect to a given proposition, and expect to be
able to extract representations of pure proposi-
tional meaning independently); and finally, Saurı́
and Pustejovsky (2008) have a more fine-grained
representation of non-committed belief. While it
is plausible to distinguish between more or less
firm non-committed belief, we believe the crucial
distinction is between committed belief and non-
committed belief. Furthermore, Saurı́ and Puste-
jovsky (2008) group reported speech with non-
belief statements (our NA), while we group them
with weak belief (our NCB). The reason for our
decision is that we wanted to keep NA as a cat-
egory which contains no-one’s beliefs, as we as-
sumed this is semantically more coherent. The
category NCB thus covers beliefs which the writer
does not hold firmly or has expressed no opinion
on — which is different from propositions which
the writer has clearly attributed to other cognitive
states (such as desire). In principle, we believe
a 4-way distinction is the right approach, but our
NCB category is already the least frequent, and
splitting it would have resulted in two very rare
classes. Another difference include the use of the
word “fact” in the FactBank manual, which we
avoid because we are interested in cognitive mod-
eling; however, this is merely a terminological is-
sue.

Other related works explored belief systems in
an inference scenario as opposed to an intentional-
ity scenario. In work by (Krestel et al., 2008), the
authors explore belief in the context of reported
speech in news media: they track newspaper text
looking for elements indicating evidentiality. This
is different from our work, since we seek to make
explicit the intention of the author or the speaker.

5 Future Work

We are exploring ways to utilize the FactBank an-
notated corpus for our purpose, with the goal of
automatically converting it to our annotation for-
mat. With the added data from FactBank, we
hope to be able to split the NCB category into
WB (weak belief) and RS (reported speech). We
will also explore learning embedded belief attri-
butions, as annotated in FactBank.

We found that the per-sentence F-measure
has a small positive correlation with the length-
normalized probability of the MICA derivation (a
measure of parse confidence). In case of a bad
parse, syntax features add noise which in turn re-
duces classifier performance. We are planning
to exploit this correlation in order to choose sen-
tences for selective self-training. Another direc-
tion we are looking to extend this work is to em-
ploy active learning to overcome the shortcom-
ings of a small training set. Also, we found fre-
quent use of epistemic and deontic modals in our
data. Both types of modals have identical syntac-
tic structure, but they receive very different anno-
tations. This is not easily captured in our system.
We are exploring ways to handle this.

We will release our Committed Belief Tagging
tool as a standalone black-box tool. We also in-
tend to release the annotated corpus.
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