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Universitat Politècnica de Catalunya
{esapena, padro, turmo}@lsi.upc.edu

Abstract

This paper presents a constraint-based
graph partitioning approach to corefer-
ence resolution solved by relaxation label-
ing. The approach combines the strengths
of groupwise classifiers and chain forma-
tion methods in one global method. Ex-
periments show that our approach signifi-
cantly outperforms systems based on sep-
arate classification and chain formation
steps, and that it achieves the best results
in the state of the art for the same dataset
and metrics.

1 Introduction

Coreference resolution is a natural language pro-
cessing task which consists of determining the
mentions that refer to the same entity in a text
or discourse. A mention is a noun phrase refer-
ring to an entity and includes named entities, def-
inite noun phrases, and pronouns. For instance,
“Michael Jackson” and “the youngest of Jackson
5” are two mentions referring to the same entity.

A typical machine learning-based coreference
resolution system usually consists of two steps:
(i) classification, where the system evaluates the
coreferentiality of each pair or group of mentions,
and (ii) formation of chains, where given the con-
fidence values of the previous classifications the
system forms the coreference chains.

∗Research supported by the Spanish Science and In-
novation Ministry, via the KNOW2 project (TIN2009-
14715-C04-04) and from the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under Grant
Agreement number 247762 (FAUST)

Regarding the classification step, pioneer sys-
tems developed were based on pairwise classi-
fiers. Given a pair of mentions, the process gen-
erates a feature vector and feeds it to a classi-
fier. The resolution is done by considering each
mention of the document as anaphor1 and look-
ing backward until the antecedent is found or
the beginning of the document is reached (Aone
and Bennett, 1995; McCarthy and Lehnert, 1995;
Soon et al., 2001).

A first approach towards groupwise classifiers
is the twin-candidate model (Yang et al., 2003).
The model faces the problem as a competition be-
tween two candidates to be the antecedent of the
anaphor into account. Each candidate mention is
compared with all the others in a round robin con-
test. Following the groupwise approach, rankers
consider all the possible antecedent mentions at
once (Denis and Baldridge, 2008). Rankers can
obtain more accurate results due to a more in-
formed context where all candidate mentions are
considered at the same time.

Coreference chains are formed after classifi-
cation. Many systems form the chains by join-
ing each positively-classified pair (i.e. single-
link) or with simple improvements such as linking
an anaphor only to its antecedent with maximum
confidence value (Ng and Cardie, 2002).

Some works propose more elaborated methods
than single-link for chain formation. The ap-
proaches used are Integer Linear Programming

1Typically a pair of coreferential mentions mi and mj

(i < j) are called antecedent and anaphor respectively,
though mj may not be anaphoric.
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(ILP) (Denis and Baldridge, 2007; Klenner and
Ailloud, 2009; Finkel and Manning, 2008), graph
partitioning (Nicolae and Nicolae, 2006), and
clustering (Klenner and Ailloud, 2008). The main
advantage of these types of post-processes is the
enforcement of transitivity sorting out the con-
tradictions that the previous classification process
may introduce.

Although chain formation processes search for
global consistency, the lack of contextual infor-
mation in the classification step is propagated for-
ward. Few works try to overcome the limita-
tions of keeping classification and chain formation
apart. Luo et al. (2004) search the most proba-
ble path comparing each mention with the partial-
entities formed so far using a Bell tree struc-
ture. McCallum and Wellner (2005) propose a
graph partitioning cutting by distances, with the
peculiarity that distances are learned considering
coreferential chains of the labeled data instead of
pairs. Culotta et al. (2007) combine a groupwise
classifier with a clustering process in a First-Order
probabilistic model.

The approach presented in this paper follows
the same research line of joining group classifi-
cation and chain formation in the same step. Con-
cretely, we propose a graph representation of the
problem solved by a relaxation labeling process,
reducing coreference resolution to a graph par-
titioning problem given a set of constraints. In
this manner, decisions are taken considering the
whole set of mentions, ensuring consistency and
avoiding that classification decisions are indepen-
dently taken. Our experimental results on the
ACE dataset show that our approach outperforms
systems based on separate classification and chain
formation steps, and that it achieves the best re-
sults in the state of the art for the same dataset and
metrics.

The paper is organized as follows. Section 2 de-
scribes the graph representation of the task. Sec-
tion 3 explains the use of relaxation labeling algo-
rithm and the machine learning process. Finally,
experiments and results are explained in Section 4
before paper is concluded.

2 Graph Representation

Let G = G(V,E) be an undirected graph where
V is a set of vertices and E a set of edges. Let
m = (m1, ...,mn) be the set of mentions of a
document with n mentions to resolve. Each men-
tion mi in the document is represented as a vertex
vi ∈ V . An edge eij ∈ E is added to the graph for
pairs of vertices (vi, vj) representing the possibil-
ity that both mentions corefer. The list of adjacent
vertices of a vertex vi is A(vi).

Let C be our set of constraints. Given a pair of
mentions (mi, mj), a subset of constraints Cij ⊆
C restrict the compatibility of both mentions. Cij

is used to compute the weight value of the edge
connecting vi and vj . Let wij ∈ W be the weight
of the edge eij :

wij =
∑

k∈Cij

λkfk(mi,mj) (1)

where fk(·) is a function that evaluates the con-
straint k. And λk is the weight associated to the
constraint k (λk and wij can be negative).

In our approach, each vertex (vi) in the graph
is a variable (vi) for the algorithm. Let Li be the
number of different values (labels) that are pos-
sible for vi. The possible labels of each variable
are the partitions that the vertex can be assigned.
Note that the number of partitions (entities) in a
document is unknown, but it is at most the num-
ber of vertices (mentions), because in a extreme
case, each mention in a document could be refer-
ring to a different entity. A vertex with index i can
be in the first i partitions (i.e. Li = i).

Each combination of labelings for the graph
vertices is a partitioning (Ω). The resolution pro-
cess searches the partitioning Ω∗ which optimizes
the goodness function F (Ω,W ), which depends
on the edge weights W. In this manner, Ω∗ is opti-
mal if:

F (Ω∗,W ) ≥ F (Ω,W ),∀Ω (2)

The next section describes the algorithm used
in the resolution process.

3 Relaxation Labeling

Relaxation labeling (Relax) is a generic name for
a family of iterative algorithms which perform
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function optimization, based on local information.
The algorithm has been widely used to solve NLP
problems such as PoS-tagging (Màrquez et al.,
2000), chunking, knowledge integration, and Se-
mantic Parsing (Atserias, 2006).

Relaxation labeling solves our weighted con-
straint satisfaction problem dealing with the edge
weights. In this manner, each vertex is assigned to
a partition satisfying as many constraints as pos-
sible. To do that, the algorithm assigns a pro-
bability for each possible label of each variable.
Let H = (h1,h2, . . . ,hn) be the weighted label-
ing to optimize, where each hi is a vector con-
taining the probability distribution of vi, that is:
hi = (hi1, h

i
2, . . . , h

i
Li

). Given that the resolution
process is iterative, the probability for label l of
variable vi at time step t is hil(t), or simply hil
when the time step is not relevant.

The support for a pair variable-label (Sil) ex-
presses how compatible is the assignment of label
l to variable vi considering the labels of adjacent
variables and the edge weights. Although several
support functions may be used (Torras, 1989), we
chose the following one, which defines the sup-
port as the sum of the edge weights that relate
variable vi with each adjacent variable vj multi-
plied by the weight for the same label l of vj :

Sil =
∑

j∈A(vi)

wij × hjl (3)

where wij is the edge weight obtained in Equa-
tion 1. In our version of the algorithm, A(vi) is
the list of adjacent vertices of vi but only includ-
ing the ones with an index k < i. Consequently,
the weights only have influence in one direction
which is equivalent to using a directed graph. Al-
though the proposed representation is based on
a general undirected graph, preliminary experi-
ments showed that using directed edges yields
higher perfomance in this particular problem.

The aim of the algorithm is to find a weighted
labeling such that global consistency is maxi-
mized. Maximizing global consistency is defined
as maximizing the average support for each vari-
able. Formally, H∗ is a consistent labeling if:

Initialize:
H := H0,

Main loop:
repeat
For each variable vi

For each possible label l for vi
Sil =

∑
j∈A(vi)

wij × hj
l

End for
For each possible label l for vi

hi
l(t+ 1) =

hi
l
(t)×(1+Sil)∑Li

k=1
hi
k
(t)×(1+Sik)

End for
End for
Until no more significant changes

Figure 1: Relaxation labeling algorithm

Li∑

l=1

h∗il × Sil ≥
Li∑

l=1

hil × Sil ∀h,∀i (4)

A partitioning Ω is directly obtained from the
weighted labeling H assigning to each variable
the label with maximum probability. The sup-
ports and the weighted labeling depend on the
edge weights (Equation 3). To satisfy Equation
4 is equivalent to satisfy Equation 2. Many stud-
ies have been done towards the demonstration of
the consistency, convergence and cost reduction
advantages of the relaxation algorithm (Rosenfeld
et al., 1976; Hummel and Zucker, 1987; Pelillo,
1997). Although some of the conditions required
by the formal demonstrations are not fulfilled in
our case, the presented algorithm –that forces a
stop after a number of iterations– has proven use-
ful for practical purposes.

Figure 1 shows the pseudo-code of the relax-
ation algorithm. The process updates the weights
of the labels in each step until convergence. The
convergence is met when no more significant
changes are done in an iteration. Specifically,
when the maximum change in an update step
(maxi,l(|hil(t+1)−hil(t)|)) is lower than a param-
eter ε, a small value (0.001 in our experiments),
or a fixed number of iterations is reached (2000 in
our experiments). Finally, the assigned label for a
variable is the one with the highest weight. Figure
2 shows a representation.
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Figure 2: Representation of Relax. The vertices represent-
ing mentions are connected by weighted edges eij . Each ver-
tex has a vector hi of probabilities to belong to different par-
titions. The figure shows h2, h3 and h4.

3.1 Constraints

The performance of the resolution process de-
pends on the edge weights obtained by a set of
weighted constraints (Equation 1). Any method
or combination of methods to generate constraints
can be used. For example, a set of constraints
handwritten by linguist experts can be added to
another automatically obtained set.

This section explains the automatic constraint
generation process carried out in this work, using
a set of feature functions and a training corpus.
Màrquez et al. (2000) have successfully used sim-
ilar processes to acquire constraints for constraint
satisfaction algorithms.

Each pair of mentions (mi, mj) in a training
document is evaluated by a set of feature functions
(Figure 3). The values returned by these functions
form a positive example when the pair of men-
tions corefer, and a negative one otherwise. Three
specialized models are constructed depending on
the type of anaphor mention (mj) of the pair: pro-
noun, named entity or nominal.

For each specialized model, a decision tree
(DT) is generated and a set of rules is ex-
tracted with C4.5 rule-learning algorithm (Quin-
lan, 1993). These rules are our set of constraints.
The C4.5rules algorithm generates a set of rules
for each path from the learnt tree. It then general-
izes the rules by dropping conditions.

The weight assigned to a constraint (λk) is its

DIST: Distance between mi and mj in sentences: number
DIST MEN: Distance between mi and mj in mentions: number
APPOSITIVE: One mention is in apposition with the other: y,n
I/J IN QUOTES: mi/j is in quotes or inside a NP or a sentence
in quotes: y,n
I/J FIRST: mi/j is the first mention in the sentence: y,n
I/J DEF NP: mi/j is a definitive NP: y,n
I/J DEM NP: mi/j is a demonstrative NP: y,n
I/J INDEF NP: mi/j is an indefinite NP: y,n
STR MATCH: String matching of mi and mj : y,n
PRO STR: Both are pronouns and their strings match: y,n
PN STR: Both are proper names and their strings match: y,n
NONPRO STR: String matching like in Soon et al. (2001)
and mentions are not pronouns: y,n
HEAD MATCH: String matching of NP heads: y,n
NUMBER: The number of both mentions match: y,n,u
GENDER: The gender of both mentions match: y,n,u
AGREEMENT: Gender and number of both
mentions match: y,n,u
I/J THIRD PERSON: mi/j is 3rd person: y,n
PROPER NAME: Both mentions are proper names: y,n,u
I/J PERSON: mi/j is a person (pronoun or
proper name in a list): y,n
ANIMACY: Animacy of both mentions match
(persons, objects): y,n
I/J REFLEXIVE: mi/j is a reflexive pronoun: y,n
I/J TYPE: mi/j is a pronoun (p), entity (e) or nominal (n)
NESTED: One mention is included in the other: y,n
MAXIMALNP: Both mentions have the same NP parent
or they are nested: y,n
I/J MAXIMALNP: mi/j is not included in any
other mention: y,n
I/J EMBEDDED: mi/j is a noun and is not a maximal NP: y,n
BINDING: Conditions B and C of binding theory: y,n
SEMCLASS: Semantic class of both mentions match: y,n,u
(the same as Soon et al. (2001))
ALIAS: One mention is an alias of the other: y,n,u
(only entities, else unknown)

Figure 3: Feature functions used

precision over the training data (Pk), but shifted
to be zero-centered: λk = Pk − 0.5.

3.2 Pruning

Analyzing the errors of development experiments,
we have found two main error patterns that can be
solved by a pruning process. First, the contribu-
tion of the edge weights for the resolution depends
on the size of the document. And second, many
weak edge weights may sum up to produce a bias
in the wrong direction.

The weight of an edge depends on the weights
assigned for the constraints which apply to a pair
of mentions according to Equation 1. Each ver-
tex is adjacent to all the other vertices. This pro-
duces that the larger the number of adjacencies,
the smaller the influence of a constraint is. A con-
sequence is that resolution for large and short do-
cuments has different results.

Many works have to deal with similar prob-
lems, specially the ones looking backward for an-
tecedents. The larger the document, the more pos-
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sible antecedents the system has to classify. This
problem is usually solved looking for antecedents
in a window of few sentences, which entails an
evident limitation of recall.

Regarding the weak edge weights, it is notable
that some kind of mention pairs are very weakly
informative. For example, the pairs (pronoun,
pronoun). Many stories have a few main charac-
ters which monopolize the pronouns of the doc-
ument. This produces many positive training ex-
amples for pairs of pronouns matching in gender
and person, which may lead the algorithm to pro-
duce large coreferential chains joining all these
mentions even for stories where there are many
different characters. For example, we have found
in the results of some documents a huge corefer-
ence chain including every pronoun “he”. This
is because a pair of mentions (“he”, “he”) is usu-
ally linked with a small positive weight. Although
the highest adjacent edge weight of a “he” men-
tion may link with the correct antecedent, the sum
of several edge weights linking the mention with
other “he” causes the problem.

A pruning process is perfomed solving both
problems and reducing computational costs from
O(n3) to O(n2). For each vertex’s adjacency list
A(vi), only a maximum of N edges remain and the
others are pruned. Concretely, the N/2 edges with
largest positive weight and the N/2 with largest
negative weight. The value of N is empirically
chosen by maximizing performances over training
data. On the one hand, the pruning forces the max-
imum adjacency to be constant and the contribu-
tion of the edge weights does not depend on the
size of the document. On the other hand, most
edges of the less informative pairs are discarded
avoiding further confusion. There are no limita-
tions in distance or other restrictions which may
cause a loss of recall.

3.3 Initial State

The initial state of the vertices define the a pri-
ori probabilities for each vertex to be in each par-
tition. There are several possible initial states.
In the case where no prior information is avail-
able, a random or uniformly distributed state is
commonly used. However, a well-informed initial
state should drive faster the relaxation process to

a better solution. This section describes the well-
informed initial state chosen in our approach and
the random one. Both are compared in the exper-
iments (Section 4.2).

The well-informed initial state favors the cre-
ation of new chains. Variable vi has Li = i pos-
sible values while variable vi+1 has Li + 1. The
probability distribution of vi+1 is equiprobable for
values from 1 to Li but it is the double for the pro-
bability to start a new chain Li + 1.

hil = 1
Li+1 , ∀l = 1..Li − 1

hiLi
= 2

Li+1

Pronouns do not follow this distribution but a
totally equiprobable one, given that they are usu-
ally anaphoric.

hil = 1
Li
, ∀l = 1..Li

This configuration enables the resolution pro-
cess to determine as singletons the mentions for
which little evidence is available. This small dif-
ference between initial probability weights is also
introduced in order to avoid exceptional cases
where all support values contribute with the same
value.

The random initial state is also used in our
experiments to test that our proposed configura-
tion is better-informed than random. Given the
equiprobability state, we add a random value to
each probability to be in a partition:

hil = 1
Li

+ εil, ∀l = 0..Li

where εil is a random value −12Li
≤ εil ≤ 1

2Li
.

These little random differences may help the algo-
rithm to avoid local minima.

3.4 Reordering
The vertices of the graph would usually be placed
in the same order as the mentions are found in the
document (chronological). In this manner, vi cor-
responds to mi. However, as suggested by Luo
(2007), there is no need to generate the model
following that order. In our approach, the first
variables have a lower number of possible labels.
Moreover, an error in the first variables has more
influence on the performance than an error in the
later ones. Placing named entities at the beginning
is reasonably to expect that is helpful for the al-
gorithm, given that named entities are usually the
most informative mentions.
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Tokens Mentions Entities
bnews train 66627 9937 4408
bnews test 17463 2579 1040
npaper train 68970 11283 4163
npaper test 17404 2483 942
nwire train 70832 10693 4297
nwire test 16772 2608 1137

Figure 4: Statistics about ACE-phase02

Suppose we have three mentions appearing in
this order somewhere in a document: “A. Smith”,
“he”, “Alice Smith”. For proximity, mention “he”
may tend to link with “A. Smith”. Then, the third
mention “Alice Smith” clearly is the whole name
of “A. Smith” but the gender with “he” does not
agree. Given that our implementation acts like a
directed graph only looking backward (see Sec-
tion 3), mention “he” won’t change its tendency
and it may cause a split in the “Alice Smith” coref-
erence chain. However, having named entities in
first place and pronouns at the end, enables the
mention “he” to determine that “A. Smith” and
“Alice Smith” having the same label are not good
antecedents.

Reordering only affects on the number of pos-
sible labels of the variables and the list of adjacen-
cies A(vi). The chronological order of the docu-
ment is taken into account by the constraints re-
gardless of the graph representation. Our experi-
ments confirm (Section 4) that placing first named
entity mentions, then nominal mentions and fi-
nally the pronouns, the precision increases consid-
erably. Inside of each of these groups, the order is
the same order of the document.

4 Experiments and Results

We evaluate our approach to coreference res-
olution using ACE-phase02 corpus, which is
composed of three sections: Broadcast News
(BNEWS), Newswire (NWIRE) and Newspaper
(NPAPER). Each section is in turn composed of a
training set and a test set. Figure 4 shows some
statistics about this corpus.

In our experiments, we consider the true men-
tions of ACE. This is because our focus is on
evaluating pairwise approach versus the graph
partitioning approach and also comparing them
to some state-of-the-art approaches which also

use true mentions. Moreover, details on men-
tion identifier systems and their performances are
rarely published by the systems based on auto-
matic identification of mentions and it difficults
the comparison.

To evaluate our system we use CEAF (Luo,
2005) and B3 (Bagga and Baldwin, 1998). CEAF
is computed based on the best one-to-one map be-
tween key coreference chains and response ones.
We use the mention-based similarity metric which
counts the number of common mentions shared
by key coreference chains and response ones. As
we are using true mentions for the experiments,
precision, recall and F1 are the same value and
only F1 is shown. B3 scorer is used for com-
parison reasons. B3 algorithm looks at the pres-
ence/absence of mentions for each entity in the
system output. Precision and recall numbers are
computed for each mention, and the average gives
the final precision and recall numbers.

MUC scorer (Vilain et al., 1995) is not used
in our experiments. Although it has been widely
used in the state of the art, we consider the newer
metrics have overcome some MUC limitations
(Bagga and Baldwin, 1998; Luo, 2005; Klenner
and Ailloud, 2008; Denis and Baldridge, 2008).

Our preprocessing pipeline consists of
FreeLing (Atserias et al., 2006) for sentence
splitting and tokenization, SVMTool (Gimenez
and Marquez, 2004) for part of speech tagging
and BIO (Surdeanu et al., 2005) for named entity
recognition and classification. No lemmatization
neither syntactic analysis are used.

4.1 Baselines

4.1.1 DT with automatic feature selection
The baseline developed in our work is based on

Soon et al. (2001) with the improvements of Ng
and Cardie (2002), which uses a Decision Tree
(DT). Many research works use the same refe-
rences in order to evaluate possible improvements
done by their new models or by the incorporation
of new features.

The features used in the baseline are the same
than those used in our proposed system (Figure
3). However, some features are noisy and many
others have redundancy which causes low perfor-
mances using DTs. In order to select the best set
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bnews npaper nwire Global
Metric: CEAF CEAF B3

Model F1 F1 F1 F1 P R F1

DT 60.6 57.8 60.5 59.7 61.0 74.1 66.9
DT Hill 67.8 61.6 65.0 64.8 74.7 69.8 72.2

Table 1: Results ACE-phase02. Comparing baselines based on Decision Trees.

bnews npaper nwire Global
Metric: CEAF CEAF B3

Model F1 F1 F1 F1 P R F1

DT 60.6 59.5 64.7 61.7 63.3 74.7 68.5
DT + ILP 62.8 60.3 63.7 62.5 72.4 69.2 70.7
DT Hill 67.8 63.2 67.2 66.5 76.8 71.0 73.8
DT Hill + ILP 67.6 63.5 66.7 66.3 80.0 68.3 73.7
Relax 69.5 68.3 73.0 70.4 86.5 67.9 76.1

Table 2: Results on documents shorter than 200 mentions of ACE-phase02

of features a Hill Climbing process has been per-
formed doing a five-fold cross-validation over the
training corpus. A similar feature selection pro-
cess has been done by Hoste (2005).

The Hill Climbing process starts using the
whole set of features. A cross-validation is done
(un)masking each feature. The (un)masked fea-
ture with more improvement is (added to) re-
moved from the set. The process is repeated until
an iteration without improvements is reached.

Note that this optimization process is biased by
the metric used to evaluate each feature combi-
nation. We use CEAF in our experiments, which
encourages precision and consistency.

4.1.2 Integer Linear Programming
The second baseline developed forms the coref-

erence chains given the output of the pair classi-
fication of the first baseline. A set of binary vari-
ables (xij) symbolize whether pairs of mentions
(mi,mj) corefer (xij = 1) or not (xij = 0). An
objective function is defined as follows:

min
∑

i<j
−log(Pcij)xij − log(1− Pcij)(1− xij)

where Pcij is the confidence value of mentions
mi and mj to corefer obtained by the pair clas-
sifier. The minimization of the objective func-
tion is done by Integer Linear Programming (ILP)
in a similar way to (Klenner, 2007; Denis and
Baldridge, 2007; Finkel and Manning, 2008). In
order to keep consistency in the results, which is
the goal of this post-process, a set of triangular

constraints is required. For each three mentions
with indexes i < j < k the corresponding vari-
ables have to satisfy three constraints:

• xik ≥ xij + xjk − 1
• xij ≥ xik + xjk − 1

• xjk ≥ xij + xik − 1

This implies that this model needs, for a doc-
ument with n mentions, 1

2n(n − 1) variables and
1
2n(n − 1)(n − 2) constraints to assure consis-
tency2. This is an important limitation with a view
to scalability. In our experiments only documents
shorter than 200 mentions can be solved by this
baseline due to its computational cost.

4.2 Experiments
Four experiments have been done in order to eval-
uate our proposed approach. This section de-
scribes and analyzes the results of each experi-
ment. Finally, our performances are compared
with the state of the art.

The first experiment compares the perfor-
mances of our baselines (Table 1). “DT” is the
system based on Decision Tree using all the fea-
tures of Figure 3 and “DT+Hill” is a DT using
the features selected by the Hill Climbing process
(Section 4.1.1). There is a significant improve-
ment in the performances (5.1 points with CEAF,
5.3 with B3) after the automatic feature selection
process is done.

2 1
6
n(n − 1)(n − 2) for each one of the three triangular

constraints
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bnews npaper nwire Global
Metric: CEAF CEAF B3

Model F1 F1 F1 F1 P R F1
Relax 67.3 64.4 69.5 67.2 88.4 62.7 73.3
Relax pruning 68.6 65.2 70.1 68.0 82.3 66.9 73.8
Relax pruning & reorder 69.5 67.3 72.1 69.7 85.3 66.8 74.9
Relax random IS 68.2 66.1 71.0 68.5 83.5 66.7 74.2
MaxEnt+ILP (Denis, 2007) - - - 66.2 81.4 65.6 72.7
Rankers (Denis, 2007) 65.7 65.3 68.1 67.0 79.8 66.8 72.7

Table 3: Results ACE-phase02.

In the second experiment the ILP chain forma-
tion process is applied using the output of both
DTs. Results are shown in Table 2. Note that ILP
only applies to documents shorter than 200 men-
tions due to its excessive computational cost (Sec-
tion 4.1.2). Results for Relax applied to the same
documents are also included for comparison. ILP
forces consistency of the results producing an in-
crease in precision score with B3 metric in both
cases. However, “DT+Hill” has been optimized
for CEAF metric which encourages precision and
consistency. For this, a post-process forcing con-
sistency seems unnecessary for a classifier already
optimized. Relax significantly outperforms all the
baselines.

The third experiment shows the improvements
achieved by the use of pruning and reordering
techniques (Sections 3.2 and 3.4). Table 3 shows
the results. Pruning improves performances with
both metrics. B3 precision is decreased but the
global F1 is increased due to a considerably im-
provement of recall. Reordering recovers the pre-
cision lost by the pruning without loosing recall,
which achieves the best performances of 69.7 with
CEAF and 74.9 with B3.

The fourth experiment evaluates the influence
of the initial state. A comparison is done with
the proposed initial state (Section 3.3) and the
random one. The results shown in Table 3
for random initial state are the average of 3
executions. The system called “Relax random
IS” is using the same values for pruning and
reordering techniques than the best result of
previous experiment: “Relax pruning & reorder”.
As expected, results with a well-informed initial
state outperform the random ones.

Finally, Relax performances are compared with
the best scores we have found using the same cor-
pora and metrics. We compare our approach with
specialized Rankers –groupwise classifier–, and
a system using ILP not only forcing consistency
but also using information about anaphoricity and
named entities. Relax outperforms both systems
with both metrics (Table 3).

5 Conclusion

The approach for coreference resolution presented
in this paper is a constraint-based graph partition-
ing solved by relaxation labeling.

The decision to join or not a set of mentions
in the same entity is taken considering always the
whole set of previous mentions like in groupwise
classifiers. Contrarily to the approaches where
variables are the linkage of each pair of mentions,
in this model consistency is implicitly forced.
Moreover, the influence of the partial results of
the other mentions at the same time avoids that
decisions are independently taken.

The capacity to easily incorporate constraints
from different sources and using different know-
ledge is also remarkable. This flexibility gives
a great potencial to the approach. Anaphoricity
filtering is not needed given that the necessary
knowledge can be also introduced by constraints.

In addition, three tecniques to improve results
have been presented: reordering, pruning and fea-
ture selection by Hill Climbing. The experiments
confirm their utility.

The experimental results clearly outperform the
baselines with separate classification and chain
formaiton. The approach also outperforms oth-
ers in the state of the art using same corpora and
metrics.

1093



References
Aone, C. and S.W. Bennett. 1995. Evaluating automated

and manual acquisition of anaphora resolution strategies.
In Proceedings of the 33rd annual meeting on ACL, pages
122–129.

Atserias, J., B. Casas, E. Comelles, M. González, L. Padró,
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