
Coling 2008: Poster Volume, pages 1113–1121,
Beijing, August 2010

Controlled Natural Languages for Knowledge Representation

Rolf Schwitter
Centre for Language Technology

Macquarie University
Rolf.Schwitter@mq.edu.au

Abstract

This paper presents a survey of research
in controlled natural languages that can be
used as high-level knowledge representa-
tion languages. Over the past 10 years
or so, a number of machine-oriented con-
trolled natural languages have emerged
that can be used as high-level interface
languages to various kinds of knowledge
systems. These languages are relevant to
the area of computational linguistics since
they have two very interesting properties:
firstly, they look informal like natural lan-
guages and are therefore easier to write
and understand by humans than formal
languages; secondly, they are precisely
defined subsets of natural languages and
can be translated automatically (and often
deterministically) into a formal target lan-
guage and then be used for automated rea-
soning. We present and compare the most
mature of these novel languages, show
how they can balance the disadvantages
of natural languages and formal languages
for knowledge representation, and discuss
how domain specialists can be supported
writing specifications in controlled natural
language.

1 Introduction

Natural languages are probably the most expres-
sive knowledge representation languages that ex-
ist; they are easy for humans to use and under-
stand, and they are so powerful that they can
even serve as their own metalanguages. Ironi-
cally, it is just this expressive quality that makes

natural languages notoriously difficult for a com-
puter to process and understand because a lot of
relevant information is usually not stated explic-
itly in an utterance but only implied by the hu-
man author or speaker. There exist – of course –
many useful resources and automated techniques
that partly compensate for the lack of this back-
ground knowledge, and there are many useful ap-
plications that require only shallow processing
of natural languages. But there exist – without
doubt – many potential application scenarios that
would benefit from deeper (axiom-based) knowl-
edge that can be created and modified in a human-
friendly way.

Formal languages (Monin, 2003) have been
suggested and used as knowledge representation
languages since they have a well-defined syntax,
an unambiguous semantics and support automated
reasoning. But these languages are often rather
difficult for domain specialists to understand and
cause a cognitive distance to the application do-
main that is not inherent in natural language.

One way to bridge the gap between a natural
language and a formal language is the use of a
controlled natural language (CNL) that can me-
diate between these languages. CNLs are engi-
neered subsets of natural languages whose gram-
mar and vocabulary have been restricted in a sys-
tematic way in order to reduce both ambiguity and
complexity of full natural languages.

Traditionally, CNLs have been grouped into
two broad categories: human-oriented CNLs and
machine-oriented CNLs (Huijsen, 1998). The
main objective of human-oriented CNLs is to im-
prove the readability and comprehensibility of
technical documentation (e.g. maintenance doc-

1113

umentation (ASD Simplified Technical English1)
and to simplify and standardise human-human
communication for specific purposes (e.g. for
trade or for air traffic control (see (Pool, 2006)
for an overview)). The primary goal of machine-
oriented CNLs is to improve the translatability
of technical documents (e.g. machine translation
(Nyberg and Mitamura, 2000)) and the acquisi-
tion, representation, and processing of knowledge
(e.g. for knowledge systems (Fuchs et al., 2008)
and in particular for the Semantic Web (Schwitter
et al., 2008)).

Human- and machine-oriented CNLs have been
designed with different goals in mind, and it is not
surprising that their coverage can be quite differ-
ent. O’Brien (2003) shows that there is not much
overlap between the rule sets of CNLs in these two
categories nor among the rule sets within a cate-
gory. But since the structure of these CNLs is usu-
ally simpler and more predictable than the struc-
ture of full natural language, CNLs are in general
easier for humans to understand and easier for a
computer to process. An ideal CNL for knowl-
edge representation should also be effortless to
write and expressive enough to describe the prob-
lem at hand.

In this paper, we will survey machine-oriented
CNLs that can be used for knowledge represen-
tation and can serve as high-level interface lan-
guages to knowledge systems. The rest of this pa-
per is structured as follows: In Section 2, we intro-
duce the most mature general-purpose CNLs and
discuss the motivation for their design and inves-
tigate their characteristics. In Section 3, we dis-
cuss some theoretical issues regarding the expres-
sivity and complexity of CNLs. Building on these
theoretical considerations, we look in Section 4
at a number of machine-oriented CNLs that have
been developed specifically as interface languages
to the Semantic Web. In Section 5, we discuss the
importance of supporting the writing process of
CNLs in an suitable way and compare three dif-
ferent techniques. In Section 6, we discuss differ-
ent approaches that have been used to evaluate the
writability and understandability of CNLs, and fi-
nally in Section 7, we present our conclusions.

1http://www.asd-ste100.org/

2 General-Purpose CNLs

In this section we focus on a number of machine-
oriented CNLs that have been designed to serve
as knowledge representation languages. These
CNLs are general-purpose languages in the sense
that they have not been developed for a spe-
cific scenario or a particular application domain.
These languages can be used where traditional
formal languages are used otherwise. The aim
of these languages is to equip domain specialists
with an expressive knowledge representation lan-
guage that is on the one hand easy to learn, use
and understand and on the other hand fully pro-
cessable by a computer.

2.1 Attempto Controlled English (ACE)
ACE (Fuchs et al., 2008) is a CNL that cov-
ers a well-defined subset of English that can be
translated unambiguously into first-order logic
via discourse representation structures (Kamp and
Reyle, 1993) and then be used for automated rea-
soning. ACE is defined by a small set of con-
struction rules that describe its syntax and a small
set of interpretation rules that disambiguate con-
structs that might appear ambiguous in full En-
glish. The vocabulary of ACE consists of pre-
defined function words (e.g. determiners, con-
junctions, and pronouns), some predefined fixed
phrases (e.g. there is, it is false that), and con-
tent words (nouns, proper names, verbs, adjec-
tives, and adverbs). ACE supports language con-
structs such as:

• active and passive verbs (and modal verbs);

• strong negation (e.g. no, does not) and weak
negation (e.g. is is not provable that);

• subject and object relative clauses;

• declarative, interrogative, imperative and
conditional sentences;

• various forms of anaphoric references to
noun phrases (e.g. he, himself, the man, X).

It is important to note that the meaning of words
in ACE is not predefined; the user is expected to
define their meaning by ACE sentences or import
these definitions from an existing formal ontology.

1114

Here is a simple example of an ACE text together
with a question:

Every company that buys at least three
machines gets a discount. Six Swiss
companies each buy one machine. A
German company buys four machines.
Who gets a discount?

Note that ACE uses disambiguation markers
(e.g. each) on the surface level and mathematical
background knowledge about natural numbers in
order to answer the question above. This mathe-
matical knowledge is implemented as a set of Pro-
log predicates which are executed during the proof
(question answering process).

ACE is supported by various tools2, among
them a text editor that helps users to construct cor-
rect ACE sentences with the help of hints and er-
ror messages, a parser that translates ACE texts
into discourse representation structures, a para-
phraser that reflects the interpretation of the ma-
chine in CNL, and a Satchmo-style reasoning en-
gine that can be used for consistency and redun-
dancy checking as well as for question answering.
Applications of ACE include software and hard-
ware specifications, agent control, legal and med-
ical regulations, and ontology construction.

2.2 Processable English (PENG)
PENG (White and Schwitter, 2009) is a CNL that
is similar to ACE but adopts a more light-weight
approach in the sense that it covers a smaller but
fully tractable subset of English. The language
processors of ACE and PENG are both based
on grammars that are written in a definite clause
grammar (DCG) notation. These DCGs are en-
hanced with feature structures and specifically de-
signed to translate declarative and interrogative
sentences into a first-order logic notation via dis-
course representation structures. In contrast to the
original version of ACE that uses the DCG di-
rectly and resolves anaphoric references only after
a discourse representation structure has been con-
structed, PENG transforms the DCG into a for-
mat that can be processed by a top-down chart
parser and resolves anaphoric references during

2http://attempto.ifi.uzh.ch/site/
tools/

the parsing process while a discourse representa-
tion structure is built up. PENG has been designed
for an incremental parsing approach and was the
first CNL that was supported by a predictive editor
(Schwitter et al., 2003). The PENG system pro-
vides text- and menu-based writing support that
removes some of the burden of learning and re-
membering the constraints of the CNL from the
user and generates a paraphrase that clarifies the
interpretation for each sentence that the user en-
ters. PENG’s text editor dynamically enforces
the grammatical restrictions of the CNL via look-
ahead information while a text is written. For each
word form that the user enters into the editor, a list
of options is generated incrementally by the chart
parser to inform the user about how the structure
of the current sentence can be continued. The syn-
tactic restrictions ensure that the text follows the
rules of the CNL so that it can be translated un-
ambiguously into the formal target language (first-
order logic) and be processed by a theorem prover.

In order to illustrate how PENG can be used
to reconstruct a problem in controlled natural lan-
guage, we use an example from the TPTP problem
library3. The problems in this library are usually
used to test the capacity of automated reasoning
tools and are translated manually by a human into
the formal target language. For reasons of space,
we use here one of the simpler problems of the li-
brary; the puzzle PUZ012-1 below is also known
as “The Mislabeled Boxes”:

There are three boxes a, b, and c on a
table. Each box contains apples or ba-
nanas or oranges. No two boxes con-
tain the same thing. Each box has a la-
bel that says it contains apples or says
it contains bananas or says it contains
oranges. No box contains what it says
on its label. The label on box a says
“apples”. The label on box b says “or-
anges”. The label on box c says “ba-
nanas”. You pick up box b and it con-
tains apples. What do the other two
boxes contain?

In order to solve this puzzle by a computer,
we have to reconstruct it and augment it with the

3http://www.cs.miami.edu/˜tptp/

1115

relevant background knowledge. The main prob-
lems that we face here for machine-processing are
the following ones: some of the constructions in
the problem description are ambiguous (e.g. the
antecedent for the personal pronoun it is open
to two interpretations); the semantic relation be-
tween some content words is not explicit (e.g. the
relation between the actual things in the box and
the names on the labels that describe these things);
and some of the constructions are not relevant at
all for the solution of the problem (e.g. that the
three boxes are on the table). Here is a possible
reconstruction of this puzzle in PENG:

The label of the box a says APPLES.
The label of the box b says ORANGES.
The label of the box c says BANANAS.
APPLES stands for apples. ORANGES
stands for oranges. BANANAS stands
for bananas. All apples are fruits. All
bananas are fruits. All oranges are
fruits. Each box contains the apples
or contains the bananas or contains the
oranges. It is not the case that a box
contains fruits and that the label of the
box says something that stands for those
fruits. It is not the case that a box X
contains fruits and that a box Y con-
tains those fruits. The box b contains
the apples. What does the box a con-
tain? What does the box c contain?

Note that this reconstruction makes information
that is implicit or only assumed in the original
problem description explicit in PENG.

PENG has recently been used for the construc-
tion of an interface to a situation awareness system
(Baader et al., 2009) but the language can be used
for similar applications to ACE.

2.3 Computer Processable Language (CPL)
CPL (Clark et al., 2010) is a controlled language
that has been developed at Boeing Research and
Technology. In contrast to ACE which applies a
small set of strict interpretation rules, and in con-
trast to PENG, which relies on a predictive editor,
the CPL interpreter directly resolves various types
of ambiguities using heuristic rules for preposi-
tional phrase attachment, word sense disambigua-

tion, semantic role labeling, compound noun in-
terpretation, metonymy resolution, and other lan-
guage processing activities.

CPL accepts three types of sentences: ground
facts, questions, and rules. In the case of ground
facts, a basic CPL sentence takes one of the fol-
lowing three forms:

• There is|are NP

• NP verb [NP] [PP]*

• NP is|are passive-verb [by NP] [PP]*

Verbs can include auxiliaries and particles, and
nouns in noun phrases can be modified by other
nouns, prepositional phrases, and adjectives. In
the case of questions, CPL accepts five forms; the
two main forms are:

• What is NP?

• Is it true that Sentence?

In the case of rules, CPL accepts sentence pat-
terns of the form:

• IF Sentence [AND Sentence]* THEN Sen-
tence [AND Sentence]*

Parsing of CPL is performed bottom-up with
the help of a broad coverage chart parser that uses
preference for common word attachment patterns
stored in a manually constructed database. Dur-
ing parsing, a simplified logical form is generated
for basic sentences by rules that run in parallel to
the grammar rules. There is no explicit quanti-
fier scoping for these basic sentences and some
disambiguation decisions (e.g., word sense and
semantic relationships) are deferred and handled
by the inference engine that makes a “best guess”
of word sense assignments using WordNet4. The
logical form is used to generate ground Knowl-
edge Machine (KM) assertions. KM5 is a frame-
based language with first-order semantics. The
KM interpreter employs a sophisticated machin-
ery for reasoning, including reasoning about ac-
tions using a situation calculus mechanism. Rules

4http://wordnet.princeton.edu/
5http://userweb.cs.utexas.edu/users/

mfkb/km.html

1116

are entered by the user who writes CPL sentences
with the help of rule templates. There exist seven
templates for this purpose: three of them create
standard logical implications and the rest describe
preconditions and effects of actions. Each CPL
sentence is interpreted interactively. The system
paraphrases its interpretation back to the user, al-
lowing the user to spot and fix misinterpretations.
Sentences that express states add facts to a sit-
uation, and sentences that express actions trig-
ger rules that update the situation, reflecting the
changes that the action has on the situation. The
user can ask questions about an emerging situation
directly in CPL.

While CPL relies on heuristics, CPL-Lite is a
slimmed down version of CPL that can be in-
terpreted deterministically in a similar fashion to
PENG. Each CPL-Lite sentence corresponds to a
single binary relation between two entities. CPL-
Lite distinguishes three types of relations: noun-
like relations (e.g. the age of <x> is <y>), verb-
like relations (e.g. <x> causes <y>), and pre-
position-like relations (e.g. <x> is during <y>).

Interestingly, CPL-Lite has the same expressiv-
ity as CPL, but CPL-Lite is more verbose and
grammatically more restricted. For example, the
following two CPL sentences:

1. A man drives a car along a road for 1 hour.

2. The speed of the car is 30 km/h.

can be expressed (or better reconstructed) in an
unambiguous way in CPL-Lite:

3. A person drives a vehicle.

4. The path of the driving is a road.

5. The duration of the driving is 1 hour.

6. The speed of the driving is 30 km/h.

Note that the user used here the noun person in-
stead of man and vehicle instead of car during this
reconstruction process because only these words
were available in the system’s ontology.

CPL and CPL-Lite have been mainly used to
encode general and domain specific common-
sense knowledge and to allow knowledge engi-
neers to pose queries in a comprehensible way.

2.4 Other General-Purpose CNLs

Common Logic Controlled English (CLCE)6 is a
proposal for a CNL – similar to ACE and PENG
– that has been designed as a human interface lan-
guage for the ISO standard Common Logic (CL)7.
However, CLCE itself is not part of this stan-
dard but uses Common Logic semantics. CLCE
supports full first-order logic with equality sup-
plemented with an ontology for sets, sequences,
and integers. The primary syntactic restrictions
are the use of present tense verbs, singular nouns,
and variables instead of pronouns. Despite these
limitations, CLCE can express the kind of English
used in software specifications, mathematics text-
books, and definitions and axioms found in formal
ontologies.

Formalized-English (Martin, 2002) is another
proposal for a CNL that can be used as a gen-
eral knowledge representation language. This lan-
guage has a relatively simple structure and is de-
rived from a conventional knowledge represen-
tation language. Formalized-English contains a
number of formal-looking language elements and
is therefore not a strict subset of standard English.

3 Theoretical Considerations

During the design of a CNL one has to pay atten-
tion to two important theoretical issues: the ex-
pressive power of the envisaged language and its
computational complexity. E2V (Pratt-Hartmann,
2003) is a CNL that mainly grew out of theoret-
ical studies about the expressivity and complex-
ity of natural language fragments. E2V corre-
sponds to the decidable two-variable fragment of
first-order logic (L2). This fragment is interest-
ing since it has the so-called finite model property.
That means if a formula of L2 is satisfiable, then it
is satisfiable in a finite model. E2V includes deter-
miners (every, no, a), nouns, transitive verbs, verb
phrase negation, relative, reflexive, and personal
pronouns. Without any writing support it is diffi-
cult to decide if a sentence is in E2V or not. For
example, one reading of sentence (7) is in E2V,
the other one is not:

6http://www.jfsowa.com/clce/specs.htm
7ISO/IEC24707:2007

1117

7. Every artist who employs a carpenter de-
spises every beekeeper who admires him.

On the syntactic level, E2V is a subset of ACE
with the exception that pronouns (e.g. him) al-
ways refer to the closest (acceptable) noun in the
syntax tree (e.g. artist) and not to the closest (ac-
ceptable) noun that occurs in the surface structure
(e.g. carpenter). This is because the E2V inter-
pretation relies on the two-variable fragment of
first-order logic. Note that sentence (7) has the
following two possible representations (8 and 9)
in first-order logic:

8. ∀x1 (artist(x1) & ∃x2

(carpenter(x2) & employ(x1,x2)) ->

∀x3 (beekeeper(x3) &

admire(x3,x1) -> despise(x1,x3)))

9. ∀x1 ∀x2 (artist(x1) &

(carpenter(x2) & employ(x1,x2) ->

∀x3 (beekeeper(x3) &

admire(x3,x2) -> despise(x1,x3)))

Although there are three variables in the for-
mula (8) that correspond to the three nouns in
sentence (7), the variables x2 and x3 never oc-
cur free in the same sub-formula. Therefore, the
number of variables can be reduced by replacing
x3 through x2. This technique can not be applied
to the variables in formula (9).

E2V has been extended in various ways (Pratt-
Hartmann and Third, 2006) and one extension in-
cludes counting determiners (e.g. at least three,
at most five, exactly four). These determiners will
not in general translate into the two-variable frag-
ment of first-order logic, but into the fragment
C2, which adds counting quantifiers to the two-
variable fragment. The satisfiability problem of
this fragment is still decidable and its expressivity
and computational complexity is similar to those
description logic languages that build the founda-
tion of the Semantic Web.

4 CNLs for the Semantic Web

Recently, a number of CNLs have been developed
that can serve as front-end to those formal lan-
guages that are used in the context of the Semantic

Web8. These CNLs can be used by domain spe-
cialists who prefer familiar natural language-like
notations over formal ones for authoring and ver-
balising formal ontologies.

ACE View (Kaljurand, 2007) is a CNL editor
that supports a defined subset of ACE that can be
used as an alternative syntax for the Semantic Web
languages OWL and SWRL. ACE View integrates
two mappings: one from ACE to OWL/SWRL
and one from OWL to ACE. These mappings are
not bidirectional in a strict sense since the OWL
to ACE mapping also covers OWL axioms and
expression types that the ACE to OWL mapping
does not generate.

Sydney OWL Syntax (SOS) (Cregan et al.,
2007) is a proposal for a CNL that builds upon
PENG and provides a syntactically bidirectional
mapping to OWL-DL. SOS is strictly bidirec-
tional: each statement can be translated into OWL
functional-style syntax and vice versa. The bidi-
rectional translation is achieved with the help of a
definite clause grammar that generates the target
notation during the parsing process. In contrast to
ACE, syntactic constructs of OWL are always car-
ried over one-to-one to SOS. Thus, semantically
equivalent OWL statements that use different syn-
tactical constructs are always mapped to different
SOS statements.

Rabbit (Hart et al., 2008) is a CNL designed for
a scenario where a domain expert and an ontology
engineer work together to build an ontology. The
construction process is supported by a text-based
ontology editor. The editor accepts Rabbit sen-
tences, helps to resolve possible syntax errors, and
translates well-formed sentences into OWL. The
semantics of some Rabbit constructs is controver-
sial (e.g. exclusive interpretation of disjunction)
and hard to align with the semantics of OWL.

Lite Natural Language (Bernardi et al., 2007)
is a CNL based on Categorial Grammar; it has
the same expressivity as the description logic DL-
Lite. DL-Lite is a tractable fragment of OWL
and has polynomial time complexity for the main
reasoning tasks. DL-Lite is expressive enough
to capture relational databases and UML (Unified
Modeling Language) diagrams.

8http://www.w3.org/TR/owl2-overview/

1118

CLOnE (Funk et al., 2007) is a CNL that is
built on top of the natural language processing
framework GATE9. CLOnE is a simple ontol-
ogy authoring language that consists of eleven
sentence patterns which roughly correspond to
eleven OWL axiom patterns. It is unclear whether
CLOnE can be extended in a systematic way to
cover larger fragments of OWL.

The three controlled languages ACE, SOS, and
Rabbit are compared in more detail in Schwitter et
al. (2008). There exist three other CNL research
streams that are closely related to the Semantic
Web: CNLs for querying Semantic Web content
(Bernstein and Kaufmann, 2006); CNLs for main-
taining semantic wikis (Kuhn, 2009; Kuhn, 2010);
and CNLs for describing rules and policies (De
Coi et al., 2009).

5 Writing Support for CNLs

Writing a specification in CNL is not an easy task
since the author has to stick to the rules of the con-
trolled language. Writing in CNL is in essence
a normative process that prescribes how humans
should use language to communicate effectively
with a computer in order to achieve a particu-
lar goal. The challenge here is to develop in-
terface techniques that make the writing process
as unobtrusive and effortless as possible. Three
main techniques have been suggested to support
the writing process of CNLs: the use of error mes-
sages, conceptual authoring, and predictive feed-
back.

Error messages seem to be the most obvious
way to support the writing of a text in CNL, and
many CNLs (among them (Clark et al., 2010;
Fuchs et al., 2008)) use this technique. The user
is supposed to learn and remember the restrictions
of the CNL and then to write the text following
the memorised rules. If the parsing process fails,
then the CNL system tries to identify the cause
of the error and provides one or more suggestions
for how to fix the error. The problem with this
technique is that the input might be an unrestricted
sentence and a useful error message would require
in the worst case knowledge of the sort that is
needed for processing full natural language.

9http://gate.ac.uk/

Conceptual authoring (Power et al., 2009) is
a technique that allows authors to edit a knowl-
edge base on the semantic level by refining spe-
cific categories and properties that occur in CNL
sentences via a hierarchy of menu options. The
selection of an option by the author results in an
update of the underlying model and triggers the
generation of a new sentence that can then be fur-
ther refined. This method relies on natural lan-
guage generation techniques and makes the anal-
ysis of CNL sentences unnecessary. The problem
with this technique is that it does not allow the au-
thor to specify new knowledge that is not already
encoded in the knowledge base; it is basically a
technique for knowledge authoring and visualiza-
tion and does not provide an independent knowl-
edge representation language.

Predictive feedback (Schwitter et al., 2003;
Kuhn and Schwitter, 2008) is a technique that in-
forms the authors during the writing process about
the approved structures of the CNL. This tech-
nique relies on interfaces that are aware of the
grammar and can look-ahead within this grammar.
Using this technique the author receives immedi-
ate feedback while a text is written and cannot
enter sentences that are not in the scope of the
grammar. The grammar of the language PENG
has been designed from the beginning to be used
in a predictive editor and is processed by a chart
parser that is able to generate the look-ahead in-
formation. The following example illustrates how
a predictive editor works:

• A [adjective | common noun]

• A man [verb | who | ‘does not’]

• A man works [‘.’ | preposition | adverb]

In this example the look-ahead information
consists of syntactic categories, word forms and
punctuation marks; all these elements are imple-
mented as hypertext links. Selecting a hypertext
link for a syntactic category displays approved
word forms and selecting a word form or a punc-
tuation mark directly adds this element to the text.
Kuhn (2010) shows in an number of experiments
that predictive editors are easy for untrained users
to use and argues that predictive feedback is the
best way to support the writing process of CNLs.

1119

6 Evaluating CNLs

Over the past years, a number of different user
experiments have been designed to measure var-
ious usability aspects of CNLs (see (Kuhn, 2010)
for an introduction). These experiments can be
grouped into three different categories: task-based
experiments, paraphrase-based experiments, and
graph-based experiments.

In task-based experiments (for example, (Kauf-
mann and Bernstein, 2007)), human subjects re-
ceive a certain task that requires them to use a
CNL as an interface language to a knowledge base
together with a tool that potentially supports the
writing process. These experiments test how easy
or difficult it is to write in these controlled lan-
guages using the given tool, but they do not test
the understandability of these languages.

Paraphrase-based experiments (for example,
(Hart et al., 2008)) aim to evaluate the understand-
ability of a CNL in a tool-independent way. Hu-
man subjects receive a statement in CNL and a
choice of paraphrases in full natural language, and
then have to select the correct paraphrase. These
experiments scale well with the expressivity of the
CNL but it is difficult to guarantee that the para-
phrases are understood in the intended way.

Graph-based experiments (for example,
(Kuhn, 2010)) try to overcome the problems of
paraphrase-based experiments. In order to test the
understandability of CNLs and formal languages,
a graph-based notation is used to describe a
situation accompanied with statements in the
language to be tested. The human subjects have
to decide which of these statements are true and
which ones are false with respect to the situation
illustrated by the graph notation.

The reported results of these experiments in the
literature provide strong evidence that CNLs are
easier to write and easier to understand for domain
specialists than formal languages.

7 Conclusions

It is an exciting time to work on controlled natural
languages. In this paper, we surveyed a number
of machine-oriented controlled natural languages
that can be used instead of formal languages for
representing knowledge. These controlled nat-

ural languages look like English but correspond
to a formal target language. Anyone who can
read English has already the basic skills to under-
stand these controlled natural languages. Writing
a specification in controlled natural language is a
bit harder: it requires that the author either learns
the language in order to be able to stay within
its syntactic and semantic restrictions or that he
uses an intelligent authoring tool that supports the
writing process and enforces the restrictions of the
language.

Machine-oriented controlled natural languages
can be translated automatically (and often deter-
ministically) into a formal target language (e.g.
into full first-order logic or into a version of de-
scription logics). These languages can be used
to express the kind of information that occurs in
software specifications, formal ontologies, busi-
ness rules, and legal and medical regulations.

In summary, an ideal machine-oriented con-
trolled natural language should fulfill at least the
following requirements: (a) it should have a well-
defined syntax and a precise semantics that is de-
fined by an unambiguous mapping into a logic-
based representation; (b) it should look as natural
as possible and be based on a subset of a certain
natural language; (c) it should be easy for humans
to write and understand and easy for a machine to
process; and (d) it should have the necessary ex-
pressivity that is required to describe a problem in
the respective application domain.

Of course these requirements can be in con-
flict with each other and therefore careful com-
promises need to be made when a new controlled
natural language is designed. This design process
offers many interesting research challenges for re-
searchers in the area of computational linguistics
and artificial intelligence. This research is driven
by the overall goal to close the gap between natu-
ral and formal languages and to allow for true col-
laboration between humans and machines in the
near future.

Acknowledgments

I would like to thank to three anonymous review-
ers of Coling 2010 for their valuable feedback and
to Robert Dale for comments and suggestions on
previous versions of this paper.

1120

References
Baader, Franz, Andreas Bauer, Peter Baumgartner,

Anne Cregan, Alfredo Gabaldon, Krystian Ji, Kevin
Lee, Dave Rajaratnam and R. Schwitter. 2009. A
Novel Architecture for Situation Awareness Sys-
tems, In: Proceedings of TABLEAUX 2009, LNAI
5607, pp. 77–92.

Bernardi, Raffaella, Diego Calvanese, and Camilo
Thorne. 2007. Lite Natural Language. In: Pro-
ceedings of IWCS-7.

Bernstein, Abraham and Esther Kaufmann. 2006.
GINO – a guided input natural language ontology
editor. In: Proceedings of ISWC 2006, LNCS 4273,
pp. 144–157.

Clark, Peter, Phil Harrison, William R. Murray, and
John Thompson. 2010 Naturalness vs. Predictabil-
ity: A Key Debate in Controlled Languages. In:
Proceedings 2009 Workshop on Controlled Natural
Languages (CNL’09).

Cregan, Anne, Rolf Schwitter, and Thomas Meyer.
2007. Sydney OWL Syntax – towards a Controlled
Natural Language Syntax for OWL 1.1. In: Pro-
ceedings of OWLED 2007, CEUR, vol. 258.

De Coi, Juri L., Norbert E. Fuchs, Kaarel Kaljurand,
Tobias Kuhn. 2009. Controlled English for Rea-
soning on the Semantic Web. In: LNCS, vol. 5500,
pp. 276–308.

Fuchs, Norbert E., Kaarel Kaljurand, and Tobias Kuhn.
2008. Attempto Controlled English for Knowledge
Representation. In: Reasoning Web, LNCS, vol.
5224, pp. 104–124.

Funk, Adam, Valentin Tablan, Kalina Bontcheva,
Hamish Cunningham, Brian Davis, and Siegfried
Handschuh. 2007. CLOnE: Controlled Language
for Ontology Editing. In: Proceedings of ISWC
2007.

Hart, Glen, Martina Johnson, and Catherine Dolbear.
2008. Rabbit: Developing a controlled natural lan-
guage for authoring ontologies. In: Proceedings of
ESWC 2008, LNCS, vol. 5021, pp. 348–360.

Huijsen, Willem-Olaf. 1998. Controlled Language –
An Introduction. In: Proceedings of CLAW 98, pp.
1–15.

Kaljurand, Kaarel. 2007. Attempto Controlled En-
glish as a Semantic Web Language. PhD The-
sis. Faculty of Mathematics and Computer Science,
University of Tartu.

Kamp, Hans and Uwe Reyle. 1993. From Discourse
to Logic. Kluwer, Dordrecht.

Kaufmann, Esther and Abraham Bernstein. 2007.
How Useful Are Natural Language Interfaces to the
Semantic Web for Casual End-Users? In: Proceed-
ings of ISWC/ASWC 2007, NLCS, vol. 4825, pp.
281–294.

Kuhn, Tobias and Rolf Schwitter. 2008. Writing Sup-
port for Controlled Natural Languages. In: Pro-
ceedings of ALTA 2008, pp. 46–54.

Kuhn, Tobias. 2009. How controlled English can im-
prove semantic wikis. In: Proceedings of SemWiki
2009, CEUR, vol. 464.

Kuhn, Tobias. 2010. Controlled English for Knowl-
edge Representation. Doctoral Thesis. Faculty of
Economics, Business Administration and Informa-
tion Technology of the University of Zurich.

Martin, Philippe. 2002. Knowledge representation
in CGLF, CGIF, KIF, Frame-CG and Formalized-
English. In: Proceedings of ICCS 2002, LNAI, vol.
2393, pp. 77–91.

Monin, Jean-François. 2003. Understanding Formal
Methods. Springer-Verlag, London.

Nyberg, Eric H. and Teruko Mitamura. 2000. The
KANTOO Machine Translation Environment. In:
Proceedings of AMTA 2000, LNCS, vol. 1934, pp.
192–195.

O’Brien, Sharon. 2003. Controlling controlled english
– an analysis of several controlled language rule
sets. In: Proceedings of EAMT-CLAW 03, Dublin
City University, Ireland, pp. 105–114.

Pool, Jonathan. 2006. Can Controlled Languages
Scale to the Web? In: Proceedings of the 5th Int.
Workshop on Controlled Language Applications.

Power, Richard, Robert Stevens, Donia Scott, and Alan
Rector. 2009. Editing OWL through generated
CNL. In: Pre-Proceedings of the Workshop on CNL
2009, CEUR, vol. 448.

Pratt-Hartmann, Ian. 2003. A two-variable fragment
of English. In: Journal of Logic, Language and In-
formation, 12(1), pp. 13–45.

Pratt-Hartmann, Ian and Allan Third. 2006. More
fragments of language: the case of ditransitive
verbs. In: Notre Dame Journal of Formal Logic,
47(2), pp. 151–177.

Schwitter, Rolf, Anna Ljungberg, and David Hood.
2003. ECOLE – A Look-ahead Editor for a Con-
trolled Language. In: Proceedings of EAMT-
CLAW03, pp. 141–150.

Schwitter, Rolf, Kaarel Kaljurand, Anne Cregan,
Catherine Dolbear, and Glen Hart. 2008. A
comparison of three controlled natural languages
for OWL 1.1. In: Proceedings of OWLED 2008,
CEUR, vol. 496.

White, Colin and Rolf Schwitter. 2009. An Update on
PENG Light. In: Proceedings of ALTA 2009, pp.
80–88.

1121

