
Coling 2008: Poster Volume, pages 1292–1300,
Beijing, August 2010

Phrase Structure Parsing with Dependency Structure

Zhiguo Wang and Chengqing Zong
National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences
{zgwang, cqzong}@nlpr.ia.ac.cn

Abstract

In this paper we present a novel phrase
structure parsing approach with the help
of dependency structure. Different with
existing phrase parsers, in our approach
the inference procedure is guided by
dependency structure, which makes the
parsing procedure flexibly. The
experimental results show our approach is
much more accurate. With the help of
golden dependency trees, F1 score of our
parser achieves 96.08% on Penn English
Treebank and 90.61% on Penn Chinese
Treebank. With the help of N-best
dependency trees generated by modified
MSTParser, F1 score achieves 90.54%
for English and 83.93% for Chinese.

1 Introduction

Over the past few years, several high-precision
phrase parsers have been presented, and most of
them are employing probabilistic context-free
grammar (PCFG). As we all know, the basic
PCFG has the problems that the independence
assumption is too strong and lacks of lexical
conditioning (Jurafsky and Martin, 2007).
Although researchers have proposed various
models and inference algorithms aiming to solve
these problems, the performance of existing
phrase parsers is still remained to further
improve. Most of the existing approaches can be
classified into two categories: unlexicalized
PCFG based (Johnson, 1998; Klein and
Manning, 2003; Levy and Manning, 2003;
Matsuzaki et al., 2005; Petrov et al., 2006) and
lexicalized PCFG based (Collins, 1999a;
Charniak, 1997; Bikel, 2004; Charniak and
Johnson, 2005).

Unlexicalized PCFG based approach attempts
to weaken the independence assumption by
annotating non-terminal symbols with labels of

ancestor, siblings and even the latent annotations
encoded by local information. In lexicalized
PCFG based approach, researchers believe that
the forms of a constituent and its sub-
constituents are determined more by the
constituent’s head than any other of its lexical
items (Charniak, 1997), so they annotate non-
terminal symbols with the head words
information.

Both of the two PCFG based approaches have
improved the basic PCFG based parsers
significantly. However, neither of them has been
guided by enough linguistic priori knowledge.
Their parsing procedures are too mechanical.
Because of this, the efficiency is always worse,
and much more artificial ambiguities, which are
different from linguistic ambiguities (Krotov et
al., 1998; Johnson, 1998), are generated. We
believe parsing procedure guided by more
linguistic priori knowledge will help to
overcome the drawbacks in some extent. From
our intuition, dependency structure, another type
of syntactic structure with much linguistic
knowledge, will be a good candidate to guide
phrase parsing procedure.

In this paper we present a novel approach to
using dependency structure to guide phrase
parsing. This novel approach has its virtues from
multiple angles. First, dependency structure
offers a good compromise between the
conflicting demands of analysis depth, which
makes it much easier to get through hand
annotating than phrase structure (Nivre, 2004).
So, when we want to build a phrase structure
corpus, we can build a dependency structure
corpus first, and get the corresponding phrase
structure automatically with the help of
dependency structure. Second, many parsing
algorithms with linear-time complexity used in
dependency parsers can still achieve the state-
of-the-art results (Johansson, 2007), but almost
all phrase parsers with high-precision have no
efficient algorithms superior to cubic-time
complexity. So, in order to get an efficient

1292

parser, we can first get a dependency structure
through linear-time algorithm, and then obtain
the phrase structure with the help of dependency
structure more efficiently. Third, the lexicalized
PCFG based parsers which just bring the head
words into account have got a highly improved
performance. It gives us reasons to believe
dependency structure which takes the
relationship of all the words will bring phrase
parser a great help.

Remainder of this paper is organized as
follows: Section 2 introduces the related work.
Section 3 gives a consistency between
dependency structure and phrase structure, and
presents an approach to parsing phrase structure
with dependency structure. In Section 4, we
discuss the experiments and analysis. Finally,
we conclude this paper and point out some
future work in Section 5.

2 Related work

Unlexicalized PCFG based parsers (Johnson,
1998; Klein and Manning, 2003; Levy and
Manning, 2003; Matsuzaki et al., 2005; Petrov
et al., 2006) are the most successful parsing
tools. They regard parsing as a pure machine
learning question. However, they haven’t taken
any extra linguistic priori knowledge directly
into account. Lexicalized PCFG based parsers
(Collins, 1999a; Charniak, 1997; Bikel, 2004;
Charniak and Johnson, 2005) just bring a little
linguistic priori knowledge (head word
information) into learning phase. In inference
phase, both of the unlexicalized PCFG based
approach and lexicalized PCFG based approach
are using the pure searching algorithms, which
try to parse a sentence monotonously, either
from left to right or from right to left. From
these states, we can find that manners of current
parsers are too mechanical. Because of this, the
efficiency of phrase parsers is always worse, and
much more artificial ambiguities are generated.

There have been some work (Collins et al.,
1999b; Xia and Palmer, 2001) about converting
dependency structures to phrase structures.
Collins et al. (1999b) proposed an algorithm to
convert the Czech dependency Treebank into a
phrase structure Treebank and do dependency
parsing through Collins (1999a)’s model.
Results showed the accuracy of dependency
parsing for Czech was improved largely. Xia

and Palmer (2001) proposed a more generalized
algorithm according to X-bar theory and Collins
et al. (1999b), and they did some experiments on
Penn Treebank. The results showed their
algorithm produced phrase structures that were
very close to the ones in Penn Treebank.
However, we have to point out that they only
computed the unlabeled performance but lost all
the exact syntactic symbols. Different from tree-
transformed PCFG based approach and
lexicalized PCFG based approach, both of
Collins et al. (1999b) and Xia and Palmer (2001)
attempted to build some heuristic rules through
linguistic theory, but didn’t try to learn anything
from Treebank.

Li and Zong (2005) presented a hierarchical
parsing algorithm for long complex Chinese
sentences with the help of punctuations. They
first divided a long sentence into short ones
according to punctuation marks, then parsed the
short ones into sub-trees individually, and at last
combined all the sub-trees into a whole tree.
Experimental results showed the parsing time
was reduced largely, and performance was
improved too. Although the procedure of their
parser is more close to human beings’ manner, it
appears a little shallow just using the
punctuation marks.

In this paper our motivations are to bring
more linguistic priori knowledge into phrase
parsing procedure with the help of dependency
structure, and make the parsing procedure
flexibly.

Matsuzaki et al. (2005) defined a generative
model called PCFG with latent annotations
(PCFG-LA). Using EM-algorithm each non-
terminal symbols was annotated with a latent
variable, and a fine-grained model can be got.
In order to get a more compact PCFG-LA model,
Petrov et al. (2006) presented a split-and-merge
method which can get PCFG-LA model
hierarchically, and their final result
outperformed state-of-the-art phrase parsers. To
make the parsing process of hierarchical PCFG-
LA model more efficient, Petrov and Klein
(2007) presented a coarse-to-fine inference
algorithm. In Section 4 of this paper, we try to
combine the hierarchical PCFG-LA model in
learning phase and coarse-to-fine method in
inference phase into our parser in order to get an
accurate and efficient parser.

1293

3 Our framework

In this section, we first compare phrase structure
with dependency structure of the same sentence,
and get a consistent relationship among them.
Then, based on this relationship, we present an
inference framework to make the parsing
procedure flexible and more efficient.

3.1 Analysis on consistency between phrase
structure and dependency structure

Phrase structure and dependency structure are
two different ways to represent syntactic
structures of sentences. Phrase structure
represents sentences by nesting of multi-word
constituents, while dependency structure
represents sentences as trees, whose nodes are
words and edges represent the relations among
words.

As we know, there are two kinds of
dependency structures, projective structure and
non-projective structure. For free-word order
languages, non-projectivity is a common
phenomenon, e.g. Czech. For languages like
English and Chinese, the dependency structures
are often projective trees. In this paper, we only
consider English parsing based on Penn
Treebank (PTB) and Chinese parsing based on
Penn Chinese Treebank (PCTB), so we just
research the consistency between phrase
structure and projective dependency structure
through PTB/PCTB.

Information carried by the two structures isn’t
equal. Phrase structure is more flexible, carries
more information, and even contains all the
information of dependency structure. So the task
to convert a phrase structure to dependency
structure is more straight, e.g. Nivre and Scholz
(2004), Johansson and Nugues (2007). However,
the reverse procedure is much more difficult,
because dependency structure lacks the syntactic
symbols, which are indispensable in phrase
structure.

join

Vinken will board as 29

the director Nov

a nonexecutive

(a) Dependency structure

(1)

(2)

(3)

S

NP VP

NNP

Vinken

MD VP

will VB NP PP NP

join
DT NN

the board

IN

as

NP NNP CD

Nov 29
DT JJ NN

a
nonexecutive

director

(b) Phrase structure

(1)

(2)

(3)

Figure 1. The consistency between phrase
structure and dependency structure

Although the two structures are completely
different, they have consistency in some deep
level. In this paper we analyze the consistency
from a practical perspective in order to do
phrase parsing with the help of dependency
structure. Having investigated the two kinds of
trees with dependency structure and phrase
structure, we find a consistency1 that each sub-
tree in dependency structure must correspond to
a sub-tree in phrase structure who dominates all
the words appearing in dependency sub-tree.
Figure 1 shows this relationship more intuitively.
The dependency sub-tree surrounded by circle
(1) in Figure 1(a) is a one-layer sub-tree, and has
a corresponding phrase sub-tree surrounded by
circle (1) in Figure 1(b). Both of the two sub-
trees dominate the same word “Vinken”. This
consistency is also satisfied in other cases, e.g.
two-layer sub-tree surrounded by circle (3) and
three-layer sub-tree surrounded by circle (2) in
Figure 1(a). These dependency sub-trees
respectively have their corresponding phrase
sub-trees dominating the same words in Figure
1(b).

This consistency brings us inspiration to make
use of dependency structure for phrase parsing.
In other words, in our method when a phrase
sub-tree is generated from a dependency sub-
tree, it must dominate all the same words with
ones in the corresponding dependency sub-tree.

3.2 Inference framework

1 Be aware that the consistency is irreversible and not every
phrase sub-tree has its corresponding dependency sub-tree.

1294

As we mentioned in Section 2, most of current
inference algorithms are monotonous, which
generate much more artificial ambiguities. For
example, in Figure 1, if a sub-tree only
dominating “board” and “as” is built (actually it
is not occurred in golden tree) an artificial
ambiguity is generated, and it thus will further
bring a worse effect to other parts. The final

precision will certainly descend. However, if we
are given a corresponding dependency structure,
those errors will be avoided. The consistency
analyzed above tells us that there isn’t a sub-tree
dominating only “board” and “as” in
dependency tree, so the two words can’t build a
sub-tree independently in phrase parsing.
According to this strategy, we design an
inference framework for phrase parsing.

NP

NNP

Vinken

MD

will

VB

join

DT NN

the board

IN

as

NNP CD

Nov 29

DT JJ NN

a nonexecutive director

NP

NNP

Vinken

MD

will

VB

NP
NP

join

DT NN

the board

IN

as

NP

NNP CD

Nov 29

DT JJ NN

a
nonexecutive

director

join

Vinken will board as 29

the director Nov

a nonexecutive

NP

NNP

Vinken

MD

will

VB

NP

PP

NP

join

DT NN

the board

IN

as

NP

NNP CD

Nov 29

DT JJ NN

a
nonexecutive

director

join

Vinken will board as 29

the director Nov

a nonexecutive

S

NP VP

NNP

Vinken

MD VP

will VB NP PP NP

join
DT NN

the board

IN

as

NP NNP CD

Nov 29
DT JJ NN

a

nonexecutive

director

join

Vinken will board as 29

the director Nov

a nonexecutive

(a) fill cell[i,i] for each word

(b) fill spans guided by two-layer dependency sub-trees

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

d[3,4]

d[6,8]

d[9,10]

d[5,8]

d[0,10]

cell[3,4]
cell[6,8]

cell[9,10]

cell[5,8]

cell[0,10]

(c) fill spans guided by three-layer dependency sub-trees

(d) fill spans guided by four-layer dependency sub-trees

Figure 2. Parsing procedure of our
inference framework guided by
dependency structure

Our inference framework parses a sentence
flexibly with a traditional inference algorithm.
The following terms will help to explain our
work. A key data structure is cell[i,j], which is
used to store phrase sub-trees spanning words
from positions i to j of the input sentence. d[i,j]
is a dependency sub-tree spanning words from
positions i to j. cells[i,j] is an array to store all
the cells which can be combined to build
cell[i,j]. The pseudo-code of our inference
framework is shown in Algorithm1. The line
indicated by (1) and (2) gives us freedom to
select any kinds of inference algorithms and
matching parsing models.

Algorithm 1
InferenceFramework(sentence S, dependency tree D)

initialize a List for the input sentence
for each word wi in S do

fill cell[i, i] and add it to a list L

parse the cells[] hierarchically
for each d[s, t] of D in topological order do

fill cells[s, t] with spans in L
fill cell[s, t] with cells[s, t] through

traditional inference algorithm (1)
add cell[s, t] to L

extract the best tree
estimate all trees in cell[0, n]

through parsing model (2)
return the best phrase tree

Now, let’s illustrate the flexible parsing
procedure step by step through an example.
Please see Figure 2. For simplicity, we just
draw sub-trees of the final best tree, and ignore
all the others. Figure 2(a) shows the procedure
of filling cell[i,i] for each word. In Figure 2(b),
there are three two-layer dependency sub-trees
d[3,4], d[6,8] and d[9,10]. So we try to generate
phrase sub-trees for cell[3,4], cell[6,8] and
cell[9,10], which have been annotated with bold
edges. For example, we use sub-trees contained
in cell[6,6], cell[7,7] and cell[8,8] to

1295

build new sub-trees for cell[6,8]. Figure 2(c)
and Figure 2(d) show the same procedure for
parsing with the help of three-layer dependency
sub-trees and four-layer dependency sub-trees
individually. The generated phrase sub-trees are
all annotated with bold edges in the figure.
Obviously, the biggest dependency sub-tree is
the whole dependency tree of sentence. In this
example, when the four-layer dependency sub-
tree is processed, the whole phrase trees are built.
Usually, more than one phrase trees with the
similar skeletons are generated. So we use a
model to evaluate candidate results, and get out
the one with the highest score as the final result.

Benefiting from the dependency structure, we

can parse a sentence flexibly. Comparing with
previous work on converting dependency
structure to phrase structure (Collins et al.,
1999b; Xia and Palmer, 2001), we make use of
Treebank knowledge more sufficient with the
help of traditional parsing technology. The
search space has been pruned tremendously. As
we know, the traditional parsing approach often
tries to search all the n*(n+1)/2 cells for input
sentence which has n words, but our parsing
framework search cells intelligently with the
help of corresponding dependency structure.
Let’s get a view of this through the sentence
shown in Figure 2. From the whole parsing
procedure shown in Figure 2, our framework
just tries to fill 16 cells, which are cell[i,i] for
each word, cell[3,4], cell[6,8], cell[9,10],
cell[5,8] and cell[0,10] hierarchically, but
traditional parsing approach would try to fill all
66 cells. So 75.76% searching space has been
pruned.

4 Experiments and results

In order to evaluate the effectiveness of our
approach, we have done some experiments both
for English parsing and Chinese parsing.

4.1 Preparation

To make comparison with previous work fairly,
our experiments are based on general Treebank
according to standard settings. We choose Penn
English Treebank for English parsing
experiments and Penn Chinese Treebank for
Chinese. Table 1 shows the standard settings we
take.

PU NP NP NP PU

VP PUVP

IP

PUIPPU PUIP

IP

(b) Golden phrase tree

(c) Parsing result of PCFG model and CYK algorithm

PU NP NP NP PU

VP PUVP

IP

(d) Parsing result after pruning strategy added

NP

PU NP NP NP PU

VP PUVP

IP

(e) Parsing result of PCFG-LA model

(a) Golden dependency tree

/hold

/ceremony /today /in

/Shanghai/collaborate /project /signing

/America

/China /high

/technology

Figure 4. An example showing
experimental results

English Chinese
Train Set Sections 2-21 Art. 1-270, 400-1151
Dev Set Section 22 Articles 301-325
Test Set Section 23 Articles 271-300

Table 1. Experimental settings

Because the two Treebanks are in type of
phrase structure, we should get dependency
structures corresponding with them. There are
two ways to accomplish this work. First, use
converting tools to get dependency trees directly
through converting the original Treebanks, and
the generated trees are always considered as
golden trees during dependency parsing. Second,
use a dependency parser with state-of-the-art

1296

performance to parse all the sentences
automatically. In this paper, we design two
groups of experiments, as following:
(1) Phrase parsing with the help of golden

dependency trees.
(2) Phrase parsing with the help of N-best

dependency trees generated automatically.

4.2 Phrase parsing with golden dependency
trees

In order to verify how much dependency
structure can help phrase parsing and get an
upper bound of our approach, we do phrase
parsing with the help of golden dependency
trees in this subsection.

Based on the parsing framework shown in
Figure 3, we only use the basic PCFG in
learning phase and our inference framework
with basic CYK algorithm in inference phase.
The parsing results are shown with the mark (1)
in Table 2 for English and Table 3 for Chinese
respectively.

Having investigated the generated trees with
golden trees, we find the consistency of
dependency structure and phrase structure is
broken by some trees. Let’s get a view of this
through an example from Penn Chinese
Treebank. In Figure 4(a), the dependency sub-
tree surrounded by circle tells us that there must
be a phrase sub-tree which dominate the word
sequence of

(the signing ceremony of
collaborating in high technology between
America and China), and the golden phrase tree
shown in Figure 4(b) has a corresponding sub-
tree surrounded by circle indeed. However, the
parsing tree generated by our approach shown in
Figure 4(c) doesn’t conform. There are three
sub-trees dominating the word sequence
mutually, but they don’t construct a whole one.
In our opinion, the contradiction derived from
binarizing process of CYK 2 . The binary trees
generated by our algorithm have consisted with
the consistency originally, but after debinarizing
process the consistency is broken.

Trying to check our opinion, we add a
pruning strategy to the original inference

2 The premise of using CYK is that all the rules must have
CNF form. So we usually bring some medial nodes to
binarize rules gathered from Treebank.

algorithm to prune all the medial nodes which
may break the consistency during parsing
procedure. With the help of pruning strategy, the
performances of English and Chinese are all
improved further. Corresponding figures are
shown in Table 2 and Table 3 with the mark (2).
The parsing result of above example is shown in
Figure 4(d) and the error appearing in Figure 4(c)
is corrected naturally after the pruning strategy
added.

Comparing with previous work which have
done much work in learning phase, our
algorithm achieves such amazing results only
using basic PCFG model. From this aspect, our
inference framework is much more effective.
However, there are still some errors our
approach can’t deal with. For example, in Figure
4(d) the sub-tree rooted at NP and dominating
word sequence of “ ” (hold
in Shanghai today) is separated by two sub-trees.
The reason is that the model (basic PCFG) we
use in learning phase is too coarse to
disambiguate sufficiently. So we don’t pin all
hopes in inference phase. We also modify the
model in learning phase. PCFG-LA is one of the
most successful models in phrase parsing, so we
choose PCFG-LA as the model in learning phase.
After this modification, performance of our
approach has been improved delightedly. F1
score is 96.08% for English and 90.06% for
Chinese. The line marked with (3) in Table 2
and Table 3 shows more details.

4.3 Phrase parsing with N-best dependency
trees generated automatically

The experimental results shown in subsection
4.2 bring us confidence that do phrase parsing
with the help of dependency structure is a highly
effective approach. However, we don’t usually
have golden dependency structures, and a more
acceptable way is using a dependency parser to
generate dependency trees automatically. In this
subsection we explore feasibility and
effectiveness of phrase parsing with the help of
dependency trees generated automatically. As
we all know, even state-of-the-art dependency
parser cannot generate totally correct result. So in
order to make our system more robust we use N-
best dependency structures to guide phrase
parsing procedure.

1297

length<=40 all sentences
Precision Recall F1 Precision Recall F1

(1) Using PCFG and CYK 90.28 88.41 89.34 90.11 88.32 89.21
(2) Using pruning strategy 90.69 89.53 90.11 90.51 89.45 89.97
(3) Using PCFG-LA 96.28 95.97 96.13 96.25 95.91 96.08

Table 2. Parsing performance (%) for English with the help of golden dependency tree.

length<=40 all sentences
Precision Recall F1 Precision Recall F1

(1) Using PCFG and CYK 86.89 78.25 82.34 85.56 77.43 81.29
(2) Using pruning strategy 87.65 82.33 84.91 86.39 81.45 83.85
(3) Using PCFG-LA 91.51 91.26 91.38 90.43 90.79 90.61

Table 3. Parsing performance (%) for Chinese with the help of golden dependency tree.

We choose MSTParser 3 which is the most
famous dependency parser and modify it to
generate N-best dependency trees. The oracle
unlabeled accuracy of N-best dependency trees
generated from 1-order model is shown in
Table 4. To show the effectiveness of our
approach, we choose Berkeleyparser 4 as the
baseline parser, take the same configuration and
combine it into our general parsing framework
shown in Figure 3.

The experiment of parsing with golden
dependency structure gets an amazing
performance. It brings us a new way to build
PTB/PCTB style phrase structure corpus.
Because dependency structure is much easier to
get through hand annotating than phrase
structure, we can build a dependency structure
corpus first, and then get phrase structure
corpus through our approach guided by the
dependency structure corpus.

The experiment of parsing with N-best
dependency structures generated automatically
uplifts the parsing performance to a new height.
It brings us a more applied parsing tool for
other NLP applications.

Considering the number of dependency
structures (N-best) will affect the final result,
we make use of the development set shown in
Table1 to turning parameters. We parse the
development set many times with different
number of dependency structures. The F1
scores are shown in Figure 5 for English and
Figure 6 5 for Chinese. From Figure 5 and
Figure 6, we can find when we use 10-best
dependency structures the performance is better.
So we choose 10-best dependency trees for the
test set.

From the experiments in Section 4.2, we can
find that even using the golden dependency
structure we can’t get totally correct phrase
structure. The reason is that although every
dependency sub-tree has its corresponding
phrase sub-tree, not every phrase sub-tree has
its corresponding dependency sub-tree. So the
remainder errors can’t be solved only by
dependency structure and a better way is to
modify the parsing model.

The final performances of test set comparing
with previous work are shown in Table 5 and
Table 6. We can easily find that our approach
has outperformed all the parsers which aren’t
improved through reranking stage or semi-
supervised approach. Although there is still a
margin between our parser and reranked parser
or semi-supervised parser, we believe that the
parsing performance can be improved further if
we bring the reranking or semi-supervised
approaches into our parsing framework.

5 Conclusion and Future work

In this paper, we present a novel phrase parsing
approach with the help of dependency structure.
Based on the consistency between phrase
structure and dependency structure, we propose
a novel inference framework. Guided by the
inference framework, inference algorithms
parse sentences hierarchically with the help of
dependency structures. Experimental results
show that our approach can efficiently get
better performance with both golden
dependency structure and N-best dependency

4.4 Discussion

3 http://www.ryanmcd.com/MSTParser/MSTParser.html
4 http://code.google.com/p/berkeleyparser/
5 F1 score at n=0 is the result of Berkeley parser running
on my machine

1298

Figure 6. F1 scores (%) of Dev Set for Chinese
with the help of N-best dependency trees Figure 5. F1 scores (%) of Dev Set for English with the

help of N-best dependency trees

structures generated automatically.
However, there are still some problems

remaining to further study. First, in our
approach we just use the unlabeled dependency
trees. The relationship labels carry some useful
information too, and we can make use of them
to further improve phrase parsing. Second,
phrase structure can also help the process of
dependency parsing (McDonald et al., 2006), so

we can combine phrase parsing process and
dependency parsing process together and make
them help each other.

English Chinese
len<=40 all len<=40 all

5-best 90.62 90.49 87.92 84.93
10-best 91.6 91.48 89.05 85.9
20-best 92.36 92.21 89.86 86.79
30-best 92.74 92.6 90.3 87.28
40-best 92.96 92.83 90.62 87.63
50-best 93.08 92.95 90.79 87.87

Table 4. Oracle unlabeled accuracy (%) of N-best
dependency structures generated from MSTParser

Acknowledgments
The research work has been partially funded by
the Natural Science Foundation of China under
Grant No. 60975053, 90820303 and 60736014,
the National Key Technology R&D Program
under Grant No. 2006BAH03B02, the Hi-Tech
Research and Development Program (“863”
Program) of China under Grant No.
2006AA010108-4, and also supported by the
China-Singapore Institute of Digital Media
(CSIDM) project under grant No. CSIDM-
200804.

References
Alexander Krotov, Mark Hepple, Robert Gaizauskas,

and Yorick Wilks. 1998. Compacting the Penn
Treebank grammar. In ACL-COLING ’98, pages
699-703.

<=40 All
Collins(1999) 88.6 88.2

Charniak and Johnson(2005) 90.1 89.55
Petrov and Klein(2007) 90.6 90.05

This Paper 91.13 90.54
Reranked

Charniak and Johnson(2005) 92.0 91.4
Huang(2008) 91.7

Semi-supervised
McClosky et al. (2006) 92.1

Table 5. F1 (%) of Test Set for English of
previous work and our approach

<=40 All
Chiang et al.(2002) 79.93 76.57
Bikel Thesis(2004) 81.2 79.0

Petrov and Klein(2007) 86.3 83.32
This Paper 86.76 83.93

Semi-supervised
Huang and Harper(2009) 85.18

Table 6. F1 (%) of Test Set for Chinese of
previous work and our approach

Dan Klein and Chris Manning. 2003. Accurate
Unlexicalized Parsing, In ACL ’03, pages 423-
430.

Daniel Jurafsky and James H. Martin. 2007.
SPEECH and LANGUAGE PROCESSING--a
draft, at Chapter 14.4.

Daniel M. Bikel. 2004. On the Parameter Space of
Generative Lexicalized Statistical Parsing Models.
Ph.D. thesis, U. of Pennsylvania.

Daniel M. Bikel. 2004. Intricacies of Collins’
Parsing Model. In Computational Linguistics,
30(4), pages 479-511.

Daniel M. Bikel and David Chiang. 2000. Two
Statistical Parsing Models Applied to the Chinese
Treebank. In the Proceedings of the Second
Chinese Language Processing Workshop.

1299

David Chiang and Daniel M. Bikel. 2002.
Recovering Latent Information in Treebanks. In
COLING ’02.

David McClosky, Eugene Charniak and Mark
Johnson. 2006. Effective self-training for parsing.
In ACL-06.

Deyi Xiong, Qun Liu and Shouxun Lin. 2005.
Lexicalized Beam Thresholding Parsing with
Prior and Boundary Estimates. the 6th
Conference on Intelligent Text Processing and
Computational Linguistics (CICLing), Pages 132
– 141.

D.H. Younger. 1967. Recognition and parsing of
context-free-languages in time n3. Information
and Control, 10(2):189-208.

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics.
Proceedings of the Fourteenth National
Conference on Artificial Intelligence AAAI
Press/MIT Press, Menlo Park.

Eugene Charniak. 2000. A maximum-
entropyinspired parser. In NAACL ’00, pages
132–139.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt
Discriminative Reranking. In ACL ’05.

Fei Xia and Martha Palmer. 2001. Converting
Dependency Structures to Phrase Structures. The
1st Human Language Technology Conference
(HLT-2001).

H. Gaifman. 1965. Dependency Systems and phrase-
Structure Systems. Information and Control,
pages 304-337.

H. Yamada and Y. Matsumoto. 2003. Statistical
dependency analysis with support vector
machines. In Proceedings of IWPT

J. Nivre, M. Scholz. 2004. Deterministic dependency
parsing of English text. In COLING ’04.

Liang Huang. 2008. Forest reranking:
Discriminative parsing with non-local features. In
ACL ‘08.

Mark Johnson. 1998. PCFG models of linguistic tree
representations. Computational Linguistics,
24(4):613–632.

Michael Collins. 1999a. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.
thesis, U. of Pennsylvania.

Michael Collins, Jan Hajic, Lance Ramshaw and
Christoph Tillmann. 1999b. A Statistical Parser
for Czech. In ACL ’99.

Richard Johansson and Pierre Nugues. 2007.
Extended Constituent-to-dependency Conversion
for English. In Proceedings of NODALIDA.

Roger Levy, Christopher Manning. 2003. Is it
harder to parse Chinese, or the Chinese Treebank?
In ACL ’03.

Ryan McDonald, Koby Grammer and Fernando
Pereira. 2006. Online learning of approximate
dependency parsing algorithms. In EACL ’06.

Slav Petrov and Dan Klein. 2007. Improved
Inference for Unlexicalized Parsing. In HLT-
NAACL ’07.

Slav Petrov, Leon Barrett, Romain Thibaux, and
Dan Klein. 2006. Learning Accurate, Compact,
and Interpretable Tree Annotation. In COLING-
ACL ’06.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005.
Probabilistic CFG with latent annotations. In
ACL ’05, pages 75–82.

T. Kasami. 1965. An efficient recognition and syntax
analysis algorithm for context-free languages.
Technical Report, AFCRL-65-758, Air Force
Cambridge Reserch Lab., Bedford, MA

Xavier Carreras, Michael Collins, and Terry Koo.
TAG, Dynamic Programming and the Perceptron
for Efficient, Feature-rich Parsing. In
CONLL ’08.

Xing Li, Chengqing Zong. 2005. A Hierarchical
Parsing Approach with Punctuation Processing
for Long Complex Chinese Sentences. In
IJCNLP ’05

Yusuke Miyao, Rune Sætre, Kenji Sagae, Takuya
Matsuzaki and Jun'ichi Tsujii. 2008. Task-
oriented Evaluation of Syntactic Parsers and
Their Representations. In ACL ’08, pages 46-54.

Zhongqiang Huang, Mary Harper. 2009. Self-
Training PCFG Grammars with Latent
Annotations Across Languages. In EMNLP ’09.

1300

