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Abstract

Previous research has demonstrated the
importance of handling differences be-
tween domains such as “newswire” and
“biomedicine” when porting NLP systems
from one domain to another. In this paper
we identify the related issue of subdomain
variation, i.e., differences between subsets
of a domain that might be expected to be-
have homogeneously. Using a large corpus
of research articles, we explore how subdo-
mains of biomedicine vary across a variety
of linguistic dimensions and discover that
there is rich variation. We conclude that
an awareness of such variation is necessary
when deploying NLP systems for use in
single or multiple subdomains.

1 Introduction

One of the most noticeable trends in the past
decade of Natural Language Processing (NLP) re-
search has been the deployment of language pro-
cessing technology to meet the information re-
trieval and extraction needs of scientists in other
disciplines. This meeting of fields has proven mu-
tually beneficial: scientists increasingly rely on
automated tools to help them cope with the expo-
nentially expanding body of publications in their
field, while NLP researchers have been spurred to
address new conceptual problems in theirs. Among
the fundamental advances from the NLP perspec-
tive has been the realisation that tools which per-
form well on textual data from one source may fail
to do so on another unless they are tailored to the
new source in some way. This has led to signifi-
cant interest in the idea of contrasting domains and
the concomitant problem of domain adaptation,

as well as the production of manually annotated
domain-specific corpora.1

One definition of domain variation associates
it with differences in the underlying probability
distributions from which different sets of data are
drawn (Daumé III and Marcu, 2006). The concept
also mirrors the notion of variation across thematic
subjects and the corpus-linguistic notions of reg-
ister and genre (Biber, 1988). In addition to the
differences in vocabulary that one would expect
to observe, domains can vary in many linguistic
variables that affect NLP systems. The scientific
domain which has received the most attention (and
is the focus of this paper) is the biomedical domain.
Notable examples of corpus construction projects
for the biomedical domain are PennBioIE (Kulick
et al., 2004) and GENIA (Kim et al., 2003). These
corpora have been used to develop systems for a
range of processing tasks, from entity recognition
(Jin et al., 2006) to parsing (Hara et al., 2005) to
coreference resolution (Nguyen and Kim, 2008).

An implicit assumption in much previous work
on biomedical NLP has been that particular subdo-
mains of biomedical literature – typically molec-
ular biology – can be used as a model of biomed-
ical language in general. For example, GENIA
consists of abstracts dealing with a specific set
of subjects in molecular biology, while PennBioIE
covers abstracts in two specialised domains, cancer
genomics and the behaviour of a particular class
of enzymes. This assumption of representative-
ness is understandable because linguistic annota-
tion is labour-intensive and it may not be worth-
while to produce annotated corpora for multiple
subdomains within a single discipline if there is lit-

1A workshop dedicated to domain adaptation is collocated
with ACL 2010.
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tle task-relevant variation across those subdomains.
However, such conclusions should not be made
before studying the actual degree of difference be-
tween the subdomains of interest.

One of the principal goals of this paper is to map
how the concept of “biomedical language”, often
construed as a monolithic entity, is composed of
diverse patterns of behaviour at more fine-grained
topical levels. Hence we study linguistic variation
in a broad biomedical corpus of abstracts and full
papers, the PMC Open Access Subset.2 We select
a range of lexical and structural phenomena for
quantitative investigation. The results indicate that
common subdomains for resource development are
not representative of biomedical text in general and
furthermore that different linguistic features often
partition the subdomains in quite different ways.

2 Related Work

A number of researchers have explored the dif-
ferences between non-technical and scientific lan-
guage. Biber and Gray (2010) describe two
distinctive syntactic characteristics of academic
writing which set it apart from general English.
Firstly, in academic writing additional information
is most commonly integrated by pre- and post-
modification of phrases rather than by the addi-
tion of extra clauses. Secondly, academic writing
places greater demands on the reader by omitting
non-essential information, through the frequent
use of passivisation, nominalisation and noun com-
pounding. Biber and Gray also show that these ten-
dencies towards “less elaborate and less explicit”
language have become more pronounced in recent
history.

We now turn to corpus studies that focus on
biomedical writing. Verspoor et al. (2009) use
measurements of lexical and structural variation
to demonstrate that Open Access and subscription-
based journal articles in a specific domain (mouse
genomics) are sufficiently similar that research on
the former can be taken as representative of the lat-
ter. While their primary goal is different from ours
and they do not consider variation across multiple
domains, they do compare their mouse genomics
corpus with small reference corpora drawn from

2http://www.ncbi.nlm.nih.gov/pmc/
about/openftlist.html

newswire and general biomedical sources. This
analysis unsurprisingly finds differences between
the domain and newswire corpora across many
linguistic dimensions; more interestingly for our
purposes, the comparison of domain text to the
broader biomedical superdomain shows a more
complex picture with similarities in some aspects
(e.g., passivisation and negation) and dissimilari-
ties in others (e.g., sentence length, semantic fea-
tures).

Friedman et al. (2002) document the “sublan-
guages” associated with two biomedical domains:
clinical reports and molecular biology articles.
They set out restricted ontologies and frequent co-
occurrence templates for the two domains and dis-
cuss the similarities and differences between them,
but they do not perform any quantitative analysis.

Other researchers have focused on specific phe-
nomena, rather than cataloguing a broad scope
of variation. Cohen et al. (2008) carry out a de-
tailed analysis of argument realisation with respect
to verbs and nominalisations, using the GENIA
and PennBioIE corpora. Nguyen and Kim (2008)
compare the behaviour of anaphoric pronouns in
newswire and biomedical corpora; they improve
the performance of a pronoun resolver by incorpo-
rating their observations, thus demonstrating the
importance of capturing domain-specific phenom-
ena. Nguyen and Kim’s findings are discussed in
more detail in Section 5.4 below.

3 Subdomains in the OpenPMC Corpus

The Open Access Subset of PubMed (OpenPMC)
is the largest publicly available corpus of full-text
articles in the biomedical domain. OpenPMC is
comprised of 169,338 articles drawn from 1233
medical journals, totalling approximately 400 mil-
lion words. The NIH maintains a one-to-many
mapping from journals to 122 subject areas (NIH,
2009b). This covers about 400 of the OpenPMC
journals, but these account for over 70% of the
database by byte size and word count. Journals are
assigned up to five subject areas with the majority
assigned one (69%) or two (26%) subjects. In this
paper we adopt the OpenPMC subject areas (e.g.
“Pulmonary Medicine”, “Genetics”, “Psychiatry”)
as the basis for subdomain comparison.
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Figure 1: OpenPMC word count by subdomain,
dark colouring indicates data assigned single sub-
domain, each lighter shade indicates an additional
overlapping subdomain

4 Methodology

4.1 Data selection and preprocessing

An important initial question was how to treat data
with multiple classifications: we only consider
journals assigned a single subdomain, to avoid
the added complexity of interactions in data from
overlapping subdomains. To ensure sufficient data
for comparing a variety of linguistic features, we
discard the subdomains with less than one mil-
lion words meeting the single-subdomain criterion.
After review, we also drop the “Biology” subdo-
main, which appears to function as a catch-all for
many loosely related areas. Figure 1 shows the

distribution of data across the subjects we use, by
word-count, with lighter-coloured areas represent-
ing data that is assigned multiple subjects. These
subjects provide a convenient starting point for di-
viding the corpus into subdomains (hereafter, “sub-
domain” will be used rather than “subject”). We
also add a reference subdomain, “Newswire”, com-
posed of a 6 million word random sample from the
English Gigaword corpus (Graff et al., 2005). The
final data set has a total of 39 subdomains.

Articles in the OpenPMC corpus are formatted
according to a standard XML tag set (NIH, 2009a).
We first convert each article to plain text, ignoring
“non-content” elements such as tables and formulas,
and split the result into sentences, aggregating the
results by subdomain.

4.2 Feature extraction

We investigate subdomain variation in our cor-
pus across a range of lexical, syntactic, sentential
and discourse features. The corpus is lemmatised,
tagged and parsed using the C&C pipeline (Cur-
ran et al., 2007) with the adapted part-of-speech
and lexical category tagging models produced by
Rimell and Clark (2009) for biomedical parsing.

From this output we count occurrences of noun,
verb, adjective and adverb lemmas, part-of-speech
(POS) tags, grammatical relations (GRs), chunks,
and lexical categories. The lemma features are
Zipfian-distributed items from an open class, so
we have experimented with filtering low-frequency
items at various thresholds to reduce noise and
improve processing speed. The other feature sets
can be viewed as closed classes, where filtering is
unnecessary.

Since verbs are central to the meaning and struc-
ture of sentences, we consider their special behav-
ior by constructing features for each verb’s dis-
tribution over other grammatical properties. Sev-
eral grammatical properties are captured by pairing
each verb with its POS (indicating e.g. tense, such
as present, past, and present participle). Voice is de-
termined from additional annotation output by the
C&C parser. Table 1 shows the POS-distribution
for the verb “restrict”, in two subdomains from
the corpus. Finally, we record distributions over
verb subcategorization frames (SCFs) taken by
each verb, and over the GRs it participates in.
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Subdomain VB VBG VBN VBP VBZ
Medical Informatics .35 .29 .06 .09 .21
Cell Biology .14 .43 .05 .10 .29

Table 1: Distribution over POS tags for verb “re-
strict”, in two subdomains

SCFs were extracted using a system of Preiss et al.
(2007).

To facilitate a more robust and interpretable anal-
ysis of vocabulary differences, we estimate a “topic
model” of the corpus with Latent Dirichlet Analy-
sis (Blei et al., 2003) using the MALLET toolkit.3

As preprocessing we divide the corpus into arti-
cles, removing stopwords and words shorter than
3 characters. The Gibbs sampling procedure is
parameterised to induce 100 topics, each giving a
coherent cluster of related words learned from the
data, and to run for 1000 iterations. We collate the
predicted distribution over topics for each article
in a subdomain, weighted by article wordcount, to
produce a topic distribution for the subdomain.

4.3 Measurements of divergence

Our goal is to illustrate the presence or absence
of differences between the feature sets, and to do
so we calculated the Jensen-Shannon divergence
and the Pearson correlation. Jensen-Shannon diver-
gence is a finite symmetric measurement of the di-
vergence between probability distributions, while
Pearson correlation quantifies the linear relation-
ship between two real-valued samples.

The count-features are weighted, for a given
subdomain, by the feature’s log-likelihood be-
tween the subdomain’s data and the rest of the
corpus. Log-likelihood has been shown to perform
well when comparing counts of potentially low-
frequency features (Rayson and Garside, 2000)
such as found in Zipfian-distributed data. This
serves to place more weight in the comparison on
items that are distinctive of the subdomain with
respect to the entire corpus.

While the count-features are treated as a single
distribution for the purposes of JSD, the verbwise-
features are composed of many distributions, one
for each verb lemma. Our approach is to com-
bine the JSD of the verbs, weighted by the log-

3http://mallet.cs.umass.edu

likelihood of the verb lemma between the two
subdomains in question, and normalize the dis-
tances to the interval [0, 1]. Using the lemma’s log-
likelihood assumes that, when a verb’s distribution
behaves differently in a subdomain, its frequency
changes as well.

We present the results as dendrograms and
heat maps. Dendrograms are tree structures that
illustrate the results of hierarchical clustering.
We perform hierarchical clustering on the inter-
subdomain divergences for each set of features.
The algorithm begins with each instance (in our
case, subdomains) as a singleton cluster, and re-
peatedly joins the two most similar clusters until
all the data is clustered together. The order of these
merges is recorded as a tree structure that can be
visualized as a dendrogram in which the length of
a branch represents the distance between its child
nodes. Similarity between clusters is calculated us-
ing average distance between all members, known
as “average linking”.

Heat maps show the pairwise calculation of
a metric in a grid of squares, where square
(x, y) is shaded according to the value of
metric(subx, suby). For our measurements of
JSD, black represents 0 (i.e. identical distributions)
and white represents the metric’s theoretical maxi-
mum of 1. We also inscribe the actual value inside
each square. Dendrograms are tree structures that
illustrate the hierarchical clustering procedure de-
scribed above. The dendrograms present all 39
subdomains, while for readability the heatmaps
present 12 subdomains selected for representative-
ness.

5 Results

Different thresholds for filtering low-frequency
terms had little effect on the divergence measures,
and served mainly to improve processing time. We
therefore report results using a cutoff of 150 occur-
rences (over the entire 234 million word data set)
and log-likelihood weights. The results of Pearson
correlation and JSD show similar trends, and due
to its specific design for comparing distributions
we only report the latter.
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5.1 Vocabulary and lexical features
Differences in vocabulary are what first comes to
mind when describing subdomains. Word features
are fundamental components for systems such as
POS taggers and lexicalised parsers; one therefore
expects that these systems will be affected by vari-
ation in lexical distributions. Figure 2a uses JSD
calculated on each subdomain’s distribution over
100 LDA-induced topics to compare vocabulary
distributions. Subdomains related to molecular
biology (Genetics, Molecular Biology) show the
smallest divergences, an interesting fact since these
are heavily used in building resources for BioNLP.
The dendrogram shows a rough division into “pub-
lic policy”, “patient-centric”, “applied” and “mi-
croscopic” subdomains, with the distance between
unrelated subdomains such as Biochemistry and
Pediatrics almost as large as their respective differ-
ences from Newswire.

We omit figures for variation over noun, verb
and adjective lemmas due to space restrictions; in
general, these correlate with the variation in LDA
topics though there are some differences. Figure 2b
shows JSD calculated on distributions over adverb
lemmas. Part of the variation is due to character-
istic markers of scientific argument (“therefore”,
“significantly”, “statistically”). A more interesting
factor is the coining of domain-specific adverbs,
an example of the tendency in scientific text to use
complex lexical items and premodifiers rather than
additional clauses. This also has the effect of mov-
ing subdomain-specific objects and processes from
verbs and nouns to adverbs. This behavior seems
non-continuous, in that subdomains either make
heavy, or almost no, use of it: for example, Pedi-
atrics has no subdomain-specific items among the
its ten top adverbs by log-likelihood, while Neo-
plasms has “histologically”, “immunohistochemi-
cally” and “subcutaneously”. These information-
dense terms could prove useful for tasks like auto-
matic curation of subdomain vocabularies, where
they imply relationships between their components,
the items they modify, etc.

5.2 Verb distributional behavior
Modelling verb behavior is important for both syn-
tactic (Collins, 2003) and semantic (Korhonen et
al., 2008) processing, and subdomains are known

to conscript verbs into specific roles that change the
distributions of their syntactic properties (Roland
and Jurafsky, 1998). The four properties we con-
sidered verbs’ distributions over (SCF, POS, GR
and voice) produced similar inter-subdomain JSD
values. Figure 2c demonstrates how verbs differ
between subdomains with respect to SCFs. For
example, while the Pediatrics subdomain uses the
verb “govern” in a single SCF among its 12 pos-
sibilities, the Genetics subdomain distributes its
usage over 7 of them. Two subdomains may both
use “restrict” with high frequency (e.g. Molecular
Biology and Ethics), but with different frequency
distributions over SCFs.

5.3 Syntax

It is difficult to measure syntactic complexity accu-
rately without access to a hand-annotated treebank,
but it is well-known that sentence length corre-
lates strongly with processing difficulty (Collins,
1996). The first column of Table 2 gives average
sentence lengths (excluding punctuation and “sen-
tences” of fewer than three words) for selected
domains. All standard errors are < 0.1. It is clear
that all biomedical subdomains typically use longer
sentences than newswire, though there is also vari-
ation within biomedicine, from an average length
of 27 words in Molecular Biology to 24.5 words
in Pediatrics.

“Packaging” information in complex pre- and/or
post-modified noun phrases is a characteristic fea-
ture of academic writing (Biber and Gray, 2010).
This increases the information density of a sen-
tence but brings with it syntactic and semantic
ambiguities. For example, the difficulty of resolv-
ing the internal structure of noun-noun compounds
and strings of prepositional phrases has been the fo-
cus of ongoing research in NLP; these phenomena
have also been identified as significant challenges
in biomedical language processing (Rosario and
Hearst, 2001; Schuman and Bergler, 2006). The
second and third columns of Table 2 present aver-
age lengths for full noun phrases, defined as every
word dominated by a head noun in the grammat-
ical relation graph for a sentence, and for base
nominals, defined as nouns plus premodifying ad-
jectives and nouns only. All standard errors are
≤ 0.01. Newswire text uses the simplest noun
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(a) LDA-induced distribution over topics

(b) Adverb lemma frequencies

(c) Verb distributions over subcategorization frames

Figure 2: Subdomain variation plotted as heat maps and dendrograms
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Sentence length Full NP length Base nominal length
Mol. Biology 27.0 Biochemistry 4.03 Biochemistry 1.85
Genetics 26.6 Genetics 3.90 Neoplasms 1.85
Cell Biology 26.3 Critical Care 3.86 Mol. Biology 1.84
Ethics 26.2 Neoplasms 3.85 Genetics 1.83
PMC Average 25.9 PMC Average 3.85 PMC Average 1.80
Biochemistry 25.8 Pediatrics 3.84 Cell Biology 1.80
Neoplasms 25.5 Med. Informatics 3.84 Critical Care 1.80
Psychiatry 25.3 Comm. Diseases 3.81 Med. Informatics 1.78
Critical Care 25.0 Therapeutics 3.80 Comm. Diseases 1.78
Therapeutics 24.9 Mol. Biology 3.79 Therapeutics 1.75
Comm. Diseases 24.9 Psychiatry 3.77 Psychiatry 1.75
Med. Informatics 24.6 Ethics 3.69 Pediatrics 1.73
Pediatrics 24.6 Cell Biology 3.55 Ethics 1.65
Newswire 19.1 Newswire 3.18 Newswire 1.60

Table 2: Average sentence, NP and base nominal lengths across domains

phrase structures; there is notable variation across
PMC domains. Full NP and base nominal lengths
do not always correlate; for example, Cell Biol-
ogy uses relatively long base NPs (nominalisations
and multitoken names in particular) but relatively
simple full NP structures.

5.4 Coreference

Resolving coreferential terms is a crucial and chal-
lenging task when extracting information from
texts in any domain. Nguyen and Kim (2008)
compare the use of pronouns in the newswire
and biomedical domains, using the GENIA cor-
pus as representative of the latter. Among the dif-
ferences observed between the domains were the
absence of any personal pronouns other than third-
person neuter pronouns in the GENIA corpus, and
a greater proportion of demonstrative pronouns in
GENIA than in the ACE or MUC newswire cor-
pora. Corroborating the importance of domain
modelling, Nguyen and Kim demonstrate that tai-
loring a pronoun resolution system to specific prop-
erties of the biomedical domain improves perfor-
mance.

As our corpus is not annotated for coreference
we restrict our attention to types that are reliably
coreferential: masculine/feminine personal pro-
nouns (he, she and case variations), neuter personal
pronouns (they, it and variations) and definite NPs
with demonstrative determiners such as this and

that. To filter out pleonastic pronouns we used a
combination of the C+C parser’s pleonasm tag and
heuristics based on Lappin and Leass (1994). To
filter out the most common class of non-anaphoric
demonstrative NPs we simply discarded any match-
ing the pattern this. . . paper|study|article.

Table 3 presents statistics for selected types of
coreferential noun phrases in a number of domains.
The results generally agree with the findings of
Nguyen and Kim (2008): biomedical text is on
average 200 times less likely than news text to
use gendered pronouns and twice as likely to use
anaphoric definite noun phrases. At the domain
level, however, there is clear variation within the
biomedical corpus. In contrast to Nguyen and
Kim’s observations about GENIA some domains
do make non-negligible use of gendered pronouns,
most notably Ethics (usually to refer to other schol-
ars) and domains such as Psychiatry and Pediatrics
where studies of actual patients are common. All
biomedical domains use demonstrative NPs more
frequently than newswire and only one (Ethics)
matches newswire for frequent use of neuter 3rd-
person pronouns.

6 Conclusion

In this paper we have explored the phenomenon
of linguistic variation at a finer-grained level than
previous NLP research, focusing on subdomains
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Pronouns (neuter, 3rd) Pronouns (non-neuter, 3rd) Demonstrative NPs
Ethics 0.0658 Newswire 0.0591 Genetics 0.0275
Newswire 0.0607 Ethics 0.0037 Med. Informatics 0.0263
Therapeutics 0.0354 Pediatrics 0.0015 Biochemistry 0.0263
Med. Informatics 0.0346 Psychiatry 0.0009 Ethics 0.0260
Psychiatry 0.0342 Comm. Diseases 0.0009 Mol. Biology 0.0251
Pediatrics 0.0308 Therapeutics 0.0005 PMC Average 0.0226
PMC Average 0.0284 PMC Average 0.0005 Cell Biology 0.0210
Genetics 0.0275 Critical Care 0.0004 Comm. Diseases 0.0207
Critical Care 0.0272 Neoplasms 0.0002 Neoplasms 0.0205
Mol. Biology 0.0258 Med. Informatics 0.0002 Psychiatry 0.0201
Biochemistry 0.0251 Genetics 0.0001 Critical Care 0.0201
Neoplasms 0.0227 Mol. Biology 2.5× 10−5 Therapeutics 0.0192
Cell Biology 0.0217 Biochemistry 2.0× 10−5 Pediatrics 0.0191
Comm. Diseases 0.0213 Cell Biology 1.5× 10−5 Newswire 0.0118

Table 3: Frequency of coreferential types (proportion of all NPs) across domains

rather than traditional domains such as “newswire”
and “biomedicine”. We have identified patterns of
variation across dimensions of vocabulary, syntax
and discourse that are known to be of importance
for NLP applications. While the magnitude of vari-
ation between subdomains is unsurprisingly less
pronounced than between coarser domains, sub-
domain variation clearly does exist and should be
taken into account when considering the generalis-
ability of systems trained and evaluated on specific
subdomains, for example molecular biology.

Future work includes directly evaluating the ef-
fect of subdomain variation on practical tasks, in-
vestigating further dimensions of variation such
as nominalisation usage and learning alternative
subdomain taxonomies directly from the corpus
text. Ultimately, we expect that a more nuanced
understanding of subdomain effects will have tan-
gible benefits for many applications of scientific
language processing.
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Abstract 

News tweets that report what is happen-
ing have become an important real-time 
information source. We raise the prob-
lem of Semantic Role Labeling (SRL) 
for news tweets, which is meaningful for 
fine grained information extraction and 
retrieval. We present a self-supervised 
learning approach to train a domain spe-
cific SRL system to resolve the problem. 
A large volume of training data is auto-
matically labeled, by leveraging the ex-
isting SRL system on news domain and 
content similarity between news and 
news tweets. On a human annotated test 
set, our system achieves  state-of-the-art 
performance, outperforming the SRL 
system trained on news. 

1 Introduction 

Tweets are text messages up to 140 characters. 
Every day, more than 50 million tweets are gen-
erated by millions of Twitter users. According to 
the investigation by Pear Analytics (2009), about 
4% tweets are related to news1. 

                                                 
* This work has been done while the author was visiting 
Microsoft Research Asia. 
1 http://blog.twitter.com/2010/02/measuring-tweets.html 

We divide news related tweets into two cate-
gories: those excerpted from news articles and 
those not. The former kind of tweets, hereafter 
called news excerpt, is formally written while 
the latter, hereafter called news tweet, varies in 
style and often is not grammatically correct. To 
understand the proportion of news tweets, we 
randomly selected 1000 tweets related to news, 
and got 865 news tweets. Following is an exam-
ple of anews tweet, containing oh, yea, which 
usually appear in spoken language, and :-(, an 
emoticon. 

oh yea and Chile earthquake the earth off it's 
axis according to NASA and shorten the day 
by a wee second :-(                                     (S1) 

News tweets arean important information 
source because they keep reporting what is hap-
pening in real time. For example, the earthquake 
near Los Angeles that happened on Tuesday, 
July 29, 2008 was first reported through news 
tweets only seconds later than the outbreak of 
the quake. Official news did not emerge about 
this event until four minutes later. By then, 
"Earthquake" was trending on Twitter Search 
with thousands of updates2. 

However, it is a daunting task for people to 
find out information they are interested in from 
such a huge number of news tweets, thus moti-
vating us to conduct some kind of information 

                                                 
2 http://blog.twitter.com/2008/07/twitter-as-news-wire.html 
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extraction such as event mining, where SRL 
plays a crucial  role (Surdeanu et al., 2003). 
Considering Sentence 1, suppose the agent 
earthquake and the patient day for the predicate 
shorten are identified. Then it is straightforward 
to output the event Chile earthquake shorten the 
day, which captures the essential information 
encoded in this tweet. 

Following Màrquez (2009), we define SRL 
for news tweets as the task of identifying the 
arguments of a given verb as predicate in a news 
tweet and assigning them semantic labels de-
scribing the roles they play for the predicate. To 
make our method applicable to general infor-
mation extraction tasks,  rather than only to 
some special scenarios such as arresting event 
extraction, we adopt general semantic roles, i.e., 
Agent(A0), Patient(A1), Location(AM-LOC), 
Temporal(AM-TMP),etc., instead of situation-
specific roles (Fillmore et al., 2004) such as 
Suspect, Authorities, and Offense in an arrest 
frame.  

Our first attempt is to directly apply the state-
of-art SRL system (Meza-Ruiz and Riedel, 2009) 
that trained on the CoNLL 08 shared task da-
taset(Surdeanu et al., 2008), hereafter called 
SRL-BS, to news tweets. Not surprisingly, we 
observe its F1 score drops sharply from 75.5% 
on news corpus to 43.3% on our human annotat-
ed news tweets, owing much to the informal 
written style of news tweets. 

Therefore, we have to build a domain specific 
SRL system for news tweets. Given the diversi-
fied styles of news tweets, building such a sys-
tem requires a larger number of annotated news 
tweets, which are not available, and are not af-
fordable for human labeling. We propose a novel 
method to automatically annotate news tweets, 
which leverages the existing resources of SRL 
for news domain, and content similarity between 
news and news tweets. We argue that the same 
event is likely to be reported by both news and 
news tweets, which results in  content similarity 
between the news and news tweet. Further, we 
argue that the news and news tweets reporting 
the same event tend to have similar predicate-
argument structures. We tested our assumptions 
on the event Chile earthquake that happened on 
Match 2nd, 2010. We got 261 news and 722 news 
tweets published on the same day that described 
this event.  Sentence 2 and 3 are two examples 

of the news excerpts and Sentence 1 is one ex-
ample of news tweets for this event.   

Chile Earthquake Shortened Earth Day    (S2) 

Chile Earthquake Shortened Day              (S3) 

Obviously Sentence 1, 2 and 3 all have predi-
shortened  with the same A0 and A1 ar-

guments. Our manually checking showed that in 
average each news tweet in those 993 samples 
had 2.4 news excerpts that had the same predi-
cate-argument structures.  

Our news tweet annotation approach consists 
of four steps. First, we submit hot queries to 
Twitter and for each query we obtain a list of 
tweets. Second, for each list of tweets, we single 
out news excerpts using heuristic rules and re-
move them from the list, conduct SRL on news 
excerpts using SRL-BS, and cluster them in 
terms of the similarity in content and predicate-
argument structures. Third, for each list of 
tweets, we try to merge every remaining tweet 
into one news excerpt cluster according to its 
content similarity to the cluster. Those that can 
be put into one news group are regarded as news 
tweet. Finally, semantic structures of news ex-
cerpts are passed to the news tweet in the same 
group through word alignment. 

Our domain specific SRL system is then 
trained on automatically constructed training 
data using the Conditional Random Field (CRF: 
Lafferty et al., 2001) learning framework. Our 
system is evaluated on a human labeled dataset, 
and achieves state-of-the-art performance, out-
performing the baseline SRL-BS.  

Our contributions can be summarized as fol-
lows: 

1) We propose to conduct SRL for news 
tweets for fine grained information ex-
traction and retrieval;  

2) We present a semi-supervised learning 
approach to train a domain specific SRL 
system for news tweets, which outper-
forms SRL-BS and achieves the state-of-
the-art performance on a human labeled 
dataset. 

The rest of this paper is organized as follows: 
In the next section, we review related work.  In 
Section 3 we detail key components of our ap-
proach. In Section 4, we setup experiments and 
evaluate the effectiveness of our method.  Final-
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ly, Section 5 concludes and presents the future 
work. 

2 Related Work 

Our related work falls into two categories: SRL 
on news and domain adaption. 

As for SRL on news, most researchers used 
the pipelined approach, i.e., dividing the task 
into several phases such as argument identifica-
tion, argument classification, global inference, 
etc.,  and conquering them individually (Xue and 
Palmer, 2004; Koomen et al., 2005; Cohn and 
Blunsom, 2005; Punyakanok et al., 2008; 
Toutanova et al., 2005; Toutanova et al., 2008). 
Exceptions to the pipelined approach exist.  
Màrquez et al. (2005) sequentially labeled the 
words according to their positions relative to an 
argument (i.e., inside, outside or at the beginning 
of it). Carreras et al. (2004) and Surdeanu et al. 
(2007) jointly labeled all the predicates. Vickrey 
and Koller(2008) simplified the input sentence 
by hand-written and machine learnt rules before 
conducting SRL. Some other approaches simul-
taneously resolved all the sub-tasks by integrat-
ing syntactic parsing and SRL into a single mod-
el (Musillo and Merlo, 2006; Merlo and Musillo, 
2008), or by using Markov Logic Networks 
(MLN, Richardson and Domingos, 2005) as the 
learning framework (Riedel and Meza-Ruiz, 
2008; Meza-Ruiz and Riedel, 2009). 

All the above approaches focus on sentences 
from news articles or other formal documents, 
and depend on human annotated corpus for 
training. To our knowledge, little study has been 
carried out on SRL for news tweets.  

As for domain adaption, some researchers re-
garded the out-of-

estimated the model parameters 
by maximizing the posterior under this prior dis-
tribution, and successfully applied their ap-
proach to language modeling (Bacchiani and 
Roark, 2003) and parsing (Roark and Bacchiani, 
2003). Daumé III and Marcu (2006) presented a 

o-
-

out-of-    
Unlike existing domain adaption approaches, 

our method is about adapting SRL system on 
news domain to the news tweets domain, two 
domains that differ in writing style but are linked 
through content similarity. 

3 Our Method 

Our method of SRL for news tweets is to train a 
domain specific SRL on automatically annotated 
training data as briefed in Section 1.  

In this section we present details of the five 
crucial components of our method, i.e., news 
excerpt identification, news excerpt clustering, 
news tweets identification, semantic structure 
mapping, and the domain specific SRL system 
constructing. 

3.1 News Excerpt Identification 

We use one heuristic rule to decide whether or 
not a tweet is news excerpt:  if a tweet has a link 
to a news article and its text content is included 
by the news article, it is news excerpt, otherwise 
not. 

Given a tweet, to apply this rule, we first ex-
tract the content link and expand it, if any, into 
the full link with the unshorten service3. This 
step is necessary because content link in tweet is 
usually shortened to reduce the total amount of 
characters. Next, we check if the full link points 
to any of the pre-defined news sites, which, in 
our experiments, are 57 English news websites. 
If yes, we download the web page and check if it 
exactly contains the text content of the input 
tweet. Figure 1 illustrates this process.  

Figure 1. An illustration of news excerpt identi-
fication. 

To test the precision of this approach, while 
preparing for the training data for the experi-
ments, we checked 100 tweets that were identi-
fied as news excerpt by this rule to find out they 
all are excerpted from news. 

                                                 
3 http://unshort.me 
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3.2 News Excerpt Clustering 

Given as input a list of news excerpts concerning 
the same query and published in the same time 
scope, this component uses the hierarchical ag-
glomerative clustering algorithm (Manning et 
al., 2008) to divide news excerpts into groups in 
terms of the similarity in content and predicate-
argument structures.  

Before clustering, for every news excerpt, we 
remove the content link and other metadata such 
as author, retweet marks (starting with RT @), 
reply marks (starting with @ immediately after 
the author), hash tags (starting with #), etc., and 
keep only the text content; then it is further 
parsed into tokens, POS tags, chunks and syntac-
tic tree using the OpenNLP toolkit4.  After that,  
SRL is conducted with SRL-BS to get predicate-
argument structures. Finally, every news excerpt 
is represented as frequency a vector of terms, 
including tokens, POS tagger, chunks, predicate-
argument structures, etc. A news cluster is re-
garded as a macro  news excerpt and is also 
represented as a term frequency vector, i.e., the 
sum of all the term vectors in the cluster.  Noisy 
terms, such as numbers and predefined stop 
words are excluded from the frequency vector. 
To reduce data sparseness, words are stemmed 
by Porter stemmer (Martin F. Porter, 1980). 

The cosine similarity is used to measure the 
relevance between two clusters, as defined in 
Formula 1.  

 ,
'

'
'

CVCV
CVCVCCCS               (1) 

Where C,  denote two clusters, CV, CV  de-
note  the term frequency vectors of C and   
respectively, and CS(C, ) stands for the  co-
sine similarity between C and  . 

Initially, one news excerpt forms one cluster.  
Then the clustering process repeats merging the 
two most similar clusters into one till the simi-
larity between any pair of clusters is below a 
threshold, which is experimentally set to 0.7 in 
our experiments. 

During the training data preparation process, 
we randomly selected 100 clusters, each with 3.2 
pieces of news in average. For every pair of 
news excerpts in the same cluster, we checked if 
                                                 
4 http://opennlp.sourceforge.net/ 

they shared similar contents and semantic struc-
tures, and found out that 91.1% were the cases. 

3.3 News Tweets Identification 

After news excerpts are identified and removed 
from the list, every remaining tweet is checked if 
it is a news tweet. Here we group news excerpts 
and news tweets together in two steps because 1) 
news excerpts count for only a small proportion 
of all the tweets in the list, making our two-step 
clustering algorithm more efficient; and 2) one-
step clustering tends to output meaningless clus-
ters that include no news tweets. 

Intuitively, news tweet, more often than not, 
have news counterparts that report similar con-
tents. Thus we use the following rule to identify 
news tweets: if the content similarity between 
the tweet and any news excerpt cluster is greater 
than a threshold, which is experimentally set to 
0.7 in our experiments, the tweet is a news tweet, 
otherwise it is not. Furthermore, each news 
tweet is merged into the cluster with most simi-
lar content. Finally, we re-label any news tweet 
as news excerpt, which is then process by SRL-
BS, if its content similarity to the cluster exceeds 
a threshold, which is experimentally set to 0.9 in 
our experiments. 

Again, the cosine similarity is used to meas-
ure the content similarity between tweet and 
news excerpt cluster. Each tweet is repressed as 
a term frequency vector. Before extracting terms 
from tweet, tweet metadata is removed and a 
rule-based normalization process is conducted to 
restore abnormal str

tools and OpenNLP are applied to get lemmas, 
POS tags, chunks, etc., and noisy terms are fil-
tered.  

We evaluated the performance of this ap-
proach when preparing for the training data. We 
randomly sampled 500 tweets that were identi-
fied as news tweets, to find that 93.8% were true 
news tweets. 

3.4 Semantic Structure Mapping 

Semantic structure mapping is formed as the 
task of word alignment from news excerpt to 
news tweet. A HMM alignment model is trained 
with GIZA++ (Franz and Hermann, 2000) on all 
(news excerpt, news tweet) pairs in the same 
cluster. After word alignment is done, semantic 
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information attached to a word in a news excerpt 
is passed to the corresponding word in the news 
tweet as illustrated in Figure 2. 
 

Chile Earthquake Shortened Earth Day
A0 predicate A1

NASA and shorten the day by a wee second :-(

oh yea and Chile earthquake the earth off it's axis according to

 
Figure 2. An example of mapping semantic 

structures from news excerpts to news tweets. 

In Figure 2, shorten, earthquake and day in 
two sentences are aligned, respectively; and two 
predicate-argument structures in the first sen-
tence, i.e., (shortened, earthquake, A0), (short-
ened, day, A1), are passed to the second. 

News tweets may receive no semantic infor-
mation from related news excerpts after mapping, 
because of word alignment errors or no news 
excerpt in the cluster with similar semantic 
structures.  Such tweets are dropped. 

Mapping may also introduce cases that violate 
the following two structural constraints in SRL 
(Meza-Ruiz and Riedel, 2009): 1) one (predi-
cate, argument) pair has only one role label in 
one sentence; and 2) for each predicate, each of 
the proper arguments (A0~A5) can occur at most 
once. Those conflicts are largely owing to the 
noisy outputs of SRL trained on news and to the 
alignment errors. While preparing for the train-
ing data for our experiments, we found 38.9% of 
news tweets had such conflicts.  

A majority voting schema and the structural 
constrains are used to resolve the conflicts as 
described below.   

1) Step 1, for every cluster, each (predicate, 
argument, role) is weighted according to 
its frequency in the cluster; 

2) Step 2, for every cluster, detect conflicts 
using the structural constrains; if no con-
flicts exist, stop; otherwise go to Step 3;   

3) Step 3, for every cluster, keep the one 
with higher weight in each conflicting 
(predicate, argument, role) pair; if the 
weights are equal,  drop both; 

Here is an example to show the conflicting 
resolution process.  Consider the cluster includ-
ing Sentence 1, 2 and 3, where (shorten, earth-
quake, A0), (shorten, earthquake, A1), (shorten, 

axis, A0), and (shorten, day, A1) occur 6, 4, 1 
and 3 times, respectively.  This cluster includes 
three conflicting pairs:   

1) (shorten, earthquake, A0) vs. (shorten, 
earthquake, A1); 

2) (shorten, earthquake, A1) vs. (shorten, 
day, A1); 

3) (shorten, earthquake, A0) vs. (shorten, ax-
is, A0); 

The first pair is first resolved, causing (short-
en, earthquake, A0) to be kept and (shorten, 
earthquake, A1) removed, which leads to the 
second pair being resolved as well; then we pro-
cess the third pair resulting in (shorten, earth-
quake, A0) being kept and (shorten, axis, A0) 
dropped; finally (shorten, earthquake, A0) and 
(shorten, day, A1) stay in the cluster. 

The conflicting resolution algorithm is sensi-
tive to the order of conflict resolution in Step 3. 
Still consider the three conflicting pairs listed 
above. If the second pair is first processed, only 
(shorten, earthquake, A0) will be left. Our strat-
egy is to first handle the conflict resolving which 
leads to most conflicts resolved. 

We tested the performance of this semantic 
structure mapping strategy while preparing for 
the training data. We randomly selected 56 news 
tweets with conflicts and manually annotated 
them with SRL. After the conflict resolution 
method was done, we observed that 38 news 
tweets were resolved correctly, 9 resolved but 
incorrectly, and 9 remain unresolved, suggesting 
the high precision of this method, which fits our 
task.  We leave it to our future work to study 
more advanced approach for semantic structure 
mapping. 

3.5 SRL System for News Tweets 

Following Màrquez et al. (2005), we regard SRL 
for tweets as a sequential labeling task, because 
of its joint inference ability and its openness to 
support other languages. 

We adopt conventional features for each token 
defined in Màrquez et al.(2005),  such as the 
lemma/POS tag of the current/previous/next to-
ken, the lemma of predicate and its combination 
with the lemma/POS tag of the current token, the 
voice of the predicate (active/passive), the dis-
tance between the current token and the predi-
cate, the relative position of the current token to 
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the predicate, and so on. We do not use features 
related to syntactic parsing trees, to allow our 
system not to rely on any syntactic parser, whose 
performance depends on style and language of 
text, which limits the generality of our system. 

Before extracting features, we perform a pre-
processing step to remove tweet metadata and 
normalize tweet text content, as described in 
Section 3.3. The OpenNLP toolkit is used for 
feature extraction, and the CRF++ toolkit 5  is 
used to train the model. 

4 Experiments 

In this section, we evaluate our SRL system on a 
gold-standard dataset consisting of 1,110 human 
annotated news tweets and show that our system 
achieves the state-of-the-art performance com-
pared with SRL-BS that is trained on news. Fur-
thermore, we study the contribution of automati-
cally generated training data. 

4.1 Evaluation Metric 

We adopt the widely used precision (Pre.), recall 
(Rec.) and F-score (F., the harmonic mean of 
precision and recall) as evaluation metrics.  

4.2 Baseline System 

We use SRL-BS as our baseline because of its 
state-of-art performance on news domain, and its 
readiness to use as well. 

4.3 Data Preparation 

We restrict to English news tweets to test our 
method. Our method can label news tweets of 
other languages, given that the related tools such 
as the SRL system on news domain, the word 
alignment tool, OpenNLP, etc., can support oth-
er languages.  

We build two corpora for our experiments: 
one is the training dataset of 10,000 news tweets 
with semantic roles automatically labeled; the 
other is the gold-standard dataset of 1,110 news 
tweets with semantic roles manually labeled. 

Training Dataset 
We randomly sample 80 queries from 300 

English queries extracted from the top stories of 
Bing news, Google news and Twitter trending 
topics from March 1, 2010 to March 4, 2010.  
                                                 
5 http://crfpp.sourceforge.net/ 

Submitting the 80 queries to Twitter search, 
we retrieve and download 512,000 tweets, from 
which we got 4,785 news excerpts and 11,427 
news tweets, which were automatically annotat-
ed using the method described in Section 3.   

Furthermore, 10,000 tweets are randomly se-
lected from the automatically annotated news 
tweets, forming the training dataset, while the 
other 1,427 news tweets are used to construct the 
gold-standard dataset. 

Gold-standard Dataset 
We ask two people to annotate the 1,427 news 

tweets, following the Annotation guidelines for 
PropBank6 with one exception: for phrasal ar-
guments, only the head word is labeled as the 
argument, because our system and SRL-BS con-
duct word level SRL. 

317 news tweets are dropped because of in-
consistent annotation, and the remaining 1,110 
news tweets form the gold-standard dataset.  

Quality of Training dataset 
Since the news tweets in the gold-standard da-

taset are randomly sampled from the automati-
cally labeled corpus and are labeled by both hu-
man and machine, we use them to estimate the 
quality of training data, i.e., to which degree the 
automatically generated results are similar to 
humans .   

We find that our method achieves 75.6% F1 
score, much higher than the baseline, suggesting 
the relatively high quality of the training data. 

4.4 Result and Analysis 

Table 1 reports the experimental results of our 
system (SRL-TS) and the baseline on the gold-
standard dataset. 
 

 Precision Recall F-Score 
SRL-BS 36.0 % 54.5% 43.3% 
SRL-TS 78.0% 57.1% 66.0% 

Table 1. Performances of our system and the 
baseline on the gold-standard dataset. 

As shown in Table 1, our system performs 
much better than the baseline on the gold-
standard dataset in terms of all metrics. We ob-
serve two types of errors that are often made by 
                                                 
6 http://verbs.colorado.edu/~mpalmer/projects/ace/PB 
guidelines.pdf 

703



SRL-BS but not so often by our system, which 
largely explains the difference in performance.  

The first type of errors, which accounts for 
25.3% of the total errors made by SRL-BS, is 
caused by the informal written style, such as el-
lipsis, of news tweets. For instance, for the ex-
ample Sentence 1 listed in Section 1, the SRL-
BS incorrectly identify earth as the A0 argument 
of the predicate shorten. The other type of errors, 
which accounts for 10.2% of the total errors 
made by SRL-BS, is related to the discretionary 
combination of news snippets. For example, 
consider the following news tweet: 

The Chile earthquake shifted the earth's axis, 
"shortened the length of an Earth day by 1.26 
miliseconds".                                              (S4) 

We analyze the errors made by our system 
and find that 12.5% errors are attributed to the 
complex syntactic structures, suggesting that 
combining our system with systems on news 
domain is a promising direction. For example, 
our system cannot identify the A0 argument of 
the predicate shortened, because of its blindness 
of attributive clause; in contrast, SRL-BS works 
on this case.  

wow..the earthquake that caused the 2004 In-
dian Ocean tsunami shortened the day by al-
most 3 microseconds..what does that even 
mean?! HOW?                                           (S5) 

We also find that 32.3% of the errors made by 
our system are more or less related to the train-
ing data, which has noise and cannot fully repre-
sent the knowledge of SRL on news tweets. For 
instance, our system fails to label the following 
sentence, partially because the predicate strike 
does not occur in the training set. 

8.8-Magnitude-Earthquake-Strikes-Chile (S6) 

We further study how the size of automatical-
r-

formance, as illustrated in Figure 3. We conduct 
two sets of experiments: in the first set, the train-
ing data is automatically labeled and the testing 
data is the gold-standard dataset; in the second 
set, half of the news tweets from the gold-
standard dataset are added to the training data, 
the remaining half forms the testing dataset. 
Curve 1 and 2 represent the experimental results 
of set 1 and 2, respectively. 

From Curve 1, we see that r-
formance increases sharply when the training 
data size varies from 5,000 to 6,000; then in-
creases relatively slowly with more training data; 
and finally reaches the highest when all training 
data is used.  Curve 2 reveals a similar trend. 

 

 
Figure 3. Performance on training data of vary-

ing size. 

This phenomenon is largely due to the com-
peting between two forces: the noise in the train-
ing data, and the knowledge of SRL encoded in 
the training data.  

Interestingly, from Figure 3, we observe that 
the contribution of human labeled data is no 
longer significant after 6,000 automatically la-
beled training data is used, reaffirming the effec-
tiveness of the training data. 

5 Conclusions and Future Work 

We propose to conduct SRL on news tweets for 
fine grained information extraction and retrieval. 
We present a self-supervised learning approach 
to train a domain specific SRL system for news 
tweets. Leveraging the SRL system on news 
domain and content similarity between news and 
news tweets, our approach automatically labels a 
large volume of training data by mapping SRL-
BS generated results of news excerpts to news 
tweets. Experimental results show that our sys-
tem outperforms the baseline and achieves the 
state-of-the-art performance.  

In the future, we plan to enlarge training data 
size and test our system on a larger dataset; we 
also plan to further boost the performance of our 
system by incorporating tweets specific features 
such as hash tags, reply/re-tweet marks into our 

704



CRF model, and by combining our system with 
SRL systems trained on news.  
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Abstract

Tree-based translation models, which ex-
ploit the linguistic syntax of source lan-
guage, usually separate decoding into two
steps: parsing and translation. Although
this separation makes tree-based decoding
simple and efficient, its translation perfor-
mance is usually limited by the number
of parse trees offered by parser. Alter-
natively, we propose to parse and trans-
late jointly by casting tree-based transla-
tion as parsing. Given a source-language
sentence, our joint decoder produces a
parse tree on the source side and a transla-
tion on the target side simultaneously. By
combining translation and parsing mod-
els in a discriminative framework, our ap-
proach significantly outperforms a forest-
based tree-to-string system by1.1 ab-
solute BLEU points on the NIST 2005
Chinese-English test set. As a parser,
our joint decoder achieves anF1 score of
80.6% on the Penn Chinese Treebank.

1 Introduction

Recent several years have witnessed the rapid
development of syntax-based translation models
(Chiang, 2007; Galley et al., 2006; Shen et al.,
2008; Quirk et al., 2005; Liu et al., 2006; Huang
et al., 2006; Eisner, 2003; Zhang et al., 2008; Chi-
ang, 2010), which incorporate formal or linguis-
tic syntax into translation process. Depending on
whether modeling the linguistic syntax of source
language or not, we divide them into two cate-
gories:string-based andtree-based models.1

1Mi et al. (2008) also distinguish between string-based
and tree-based models but depending on the type of input.

source

target
parse+translate

string tree

string

source

target

string
parse

tree
translate

string

(a)

(b)

Figure 1: Tree-based decoding: (a) separate pars-
ing and translation versus (b) joint parsing and
translation.

String-based models includestring-to-string
(Chiang, 2007) andstring-to-tree (Galley et al.,
2006; Shen et al., 2008). Regardless of the syn-
tactic information on the source side, they treat
decoding as a parsing problem: the decoder parses
a source-language sentence using the source pro-
jection of a synchronous grammar while building
the target sub-translations in parallel.

Tree-based models includetree-to-string (Liu
et al., 2006; Huang et al., 2006) andtree-to-tree
(Quirk et al., 2005; Eisner, 2003; Zhang et al.,
2008; Chiang, 2010). These models explicitly
use source parse trees and divide decoding into
two separate steps: parsing and translation. A
parser first parses a source-language sentence into
a parse tree, and then a decoder converts the tree
to a translation on the target side (see Figure 1(a)).

Figure 2 gives a training example for tree-to-
string translation, which consists of a Chinese
tree, an English sentence, and the word align-
ment between them. Romanized Chinese words
are given to facilitate identification. Table 1 shows
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 ¬!NR P NR VV AS NN

NPB NPB NPB

PP VPB

VP

IP

bushi yu shalong juxing le huitan

Bush held a meeting with Sharon

Figure 2: A training example that consists of a
Chinese parse, an English sentence, and the word
alignment between them.

a set of tree-to-string rules obtained from Figure
2. The source side of a rule is a tree fragment
and the target side is a string. We usex to denote
non-terminals and the associated subscripts indi-
cate the correspondence between non-terminals
on both sides.

Conventionally, decoding for tree-to-string
translation is cast as atree parsing problem (Eis-
ner, 2003). The tree parsing algorithm visits each
node in the input source tree in a top-down order
and tries to match each translation rule against the
local sub-tree rooted at the node. For example, the
first rule in Table 1 matches a sub-tree rooted at
IP0,6 in Figure 2. The descendent nodes ofIP0,6

(i.e.,NPB0,1, PP1,3, andVPB3,6) can be further
matched by other rules in Table 1. The matching
procedure runs recursively until the entire tree is
covered. Finally, the output on the target side can
be taken as a translation.

Compared with its string-based counterparts,
tree-based decoding is simpler and faster: there
is no need forsynchronous binarization (Huang
et al., 2009b; Zhang et al., 2006) and tree parsing
generally runs in linear time (Huang et al., 2006).

While separating parsing and translation makes
tree-based decoding simple and efficient, its
search space is limited by the number of parse
trees offered by parser. Studies reveal that tree-
based systems are prone to produce degenerate
translations due to the propagation of parsing mis-
takes (Quirk and Corston-Oliver, 2006). This
problem can be alleviated by offering more alter-

(1) IP(x1:NPB VP(x2:PPx3:VPB))→x1 x3 x2

(2) NPB(NR(bushi))→Bush
(3) PP(P(yu) x1:NPB)→with x1

(4) NPB(NR(shalong))→Sharon
(5) VPB(VV(juxing) AS(le) x1:NPB)→held a x1

(6) NPB(NN(huitan))→meeting

Table 1: Tree-to-string rules extracted from Figure
2.

natives to the pipeline. An elegant solution is to
replace 1-best trees with packed forests that en-
code exponentially many trees (Mi et al., 2008;
Liu et al., 2009). Mi et al. (2008) present an
efficient algorithm to match tree-to-string rules
against packed forests that encode millions of
trees. They prove that offering more alternatives
to tree parsing improves translation performance
substantially.

In this paper, we take a further step towards the
direction of offering multiple parses to translation
by proposingjoint parsing and translation. As
shown in Figure 1(b), our approach parses and
translates jointly as it finds a parse tree and a
translation of a source-language sentence simul-
taneously. We integrate the tree-to-string model
(Liu et al., 2006; Huang et al., 2006),n-gram lan-
guage model, probabilistic context-free grammar
(PCFG), and Collins’ Model 1 (Collins, 2003) in a
discriminative framework (Och, 2003). Allowing
parsing and translation to interact with each other,
our approach obtains an absolute improvement of
1.1 BLEU points over a forest-based tree-to-string
translation system (Mi et al., 2008) on the 2005
NIST Chinese-English test set. As a parser, our
joint decoder achieves anF1 score of80.6% on
the Penn Chinese Treebank.

2 Joint Parsing and Translation

2.1 Decoding as Parsing

We propose to integrate parsing and translation
into a single step. To achieve joint parsing and
translation, we cast tree-to-string decoding as a
monolingual parsing problem (Melamed, 2004;
Chiang, 2007; Galley et al., 2006): the de-
coder takes a source-language string as input and
parses it using the source-projection of SCFG
while building the corresponding sub-translations
simultaneously.
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For example, given the Chinese sentencebushi
yu sha long juxing le huitan in Figure 2, the
derivation in Table 1 explains how a Chinese tree,
an English string, and the word alignment be-
tween them are generated synchronously. Unlike
the string-based systems as described in (Chiang,
2007; Galley et al., 2006; Shen et al., 2008), we
exploit the linguistic syntax on the source side
explicitly. Therefore, the source parse trees pro-
duced by our decoder are meaningful from a lin-
guistic point of view.

As tree-to-string rules usually have multiple
non-terminals that make decoding complexity
generally exponential, synchronous binarization
(Huang et al., 2009b; Zhang et al., 2006) is a
key technique for applying the CKY algorithm
to parsing with tree-to-string rules.2 Huang et
al. (2009b) factor each tree-to-string rule into two
SCFG rules: one from the root nonterminal to
the subtree, and the other from the subtree to the
leaves. In this way, one can uniquely reconstruct
the original tree using a two-step SCFG deriva-
tion.

For example, consider the first rule in Table 1:

IP(x1:NPB VP(x2:PP x3:VPB))→x1 x3 x2

We use a specific non-terminal, say,T, to
uniquely identify the left-hand side subtree and
produce two SCFG rules:3

IP → 〈T 1 ,T 1 〉 (1)

T → 〈NPB 1 PP 2 VPB 3 ,NPB 1 VPB 3 PP 2 〉 (2)

where the boxed numbers indicate the correspon-
dence between nonterminals.

Then, the rule (2) can be further binarized into
two rules that have at most two non-terminals:

T → 〈NPB 1 PP-VPB 2 ,NPB 1 PP-VPB 2 〉 (3)

PP-VPB → 〈PP 1 VPB 2 ,VPB 2 PP 1 〉 (4)

wherePP-VPB is an intermediatevirtual non-
terminal.

2But CKY is not the only choice. The Earley algorithm
can also be used to parse with tree-to-string rules (Zhao and
Al-Onaizan, 2008). As the Earley algorithm binarizes multi-
nonterminal rules implicitly, there is no need for synchronous
binarization.

3It might look strange that the nodeVP disappears. This
node is actually stored in the monolithic nodeT. Please refer
to page 573 of (Huang et al., 2009b) for more details about
how to convert tree-to-string rules to SCFG rules.

We call rules the tree roots of which are vir-
tual non-terminalsvirtual rules and othersnatural
rules. For example, the rule (1) is a natural rule
and the rules (3) and (4) are virtual rules. We fol-
low Huang et al. (2009b) to keep the probabilities
of a natural rule unchanged and set those of a vir-
tual rule to 1.4

After binarizing tree-to-string rules into SCFG
rules that have at most two non-terminals, we can
use the CKY algorithm to parse a source sentence
and produce its translation simultaneously as de-
scribed in (Chiang, 2007; Galley et al., 2006).

2.2 Adding Parsing Models

As our decoder produces “genuine” parse trees
during decoding, we can integrate parsing mod-
els as features together with translation features
such as the tree-to-string model,n-gram language
model, and word penalty into a discriminative
framework (Och, 2003). We expect that pars-
ing and translation could interact with each other:
parsing offers linguistically motivated reordering
to translation and translation helps parsing resolve
ambiguity.

2.2.1 PCFG

We use the probabilistic context-free grammar
(PCFG) as the first parsing feature in our decoder.
Given a PCFG, the probability for a tree is the
product of probabilities for the rules that it con-
tains. That is, if a treeπ is a context-free deriva-
tion that involvesK rules of the formαk → βk,
its probability is given by

P(π) =
∏

k=1...K

Ppcfg(αk → βk) (5)

For example, the probability for the tree in Fig-
ure 2 is

P(π) = Ppcfg(IP → NPB VP) ×
Ppcfg(NPB → NR) ×
Ppcfg(NR → bushi) ×
. . . (6)

4This makes the scores of hypotheses in the same chart
cell hardly comparable because some hypotheses are cov-
ered by a natural non-terminal and others covered by a virtual
non-terminal. To alleviate this problem, we follow Huang et
al. (2009b) to separate natural and virtual hypotheses in dif-
ferent beams.
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IP
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NPB PP-VP

PP VPB

IP

NPB VP

PP VPB

Figure 3: Reconstructing original tree from virtual
rules. We first construct the tree on the left by
substituting the trees of the rules (1), (3), and (4)
and then restore the original tree on the right via
the monolithic nodeT.

There are 13 PCFG rules involved. We omit the
remaining 10 rules.

We formalize the decoding process as a deduc-
tive system to illustrate how to include a PCFG.
Given a natural rule

VP → 〈PP 1 VPB 2 ,VPB 2 PP 1 〉 (7)

the following deductive step grows an item in the
chart by the rule

(PP1,3) : (w1, e1) (VPB3,6) : (w2, e2)

(VP1,6) : (w, e2e1)
(8)

wherePP1,3 denotes the recognition of the non-
terminalPP spanning from the substring from po-
sition 1 through 3 (i.e.,yu shalong in Figure 2),w1

ande1 are the score and translation of the first an-
tecedent item, respectively, and the resulting item
score is calculated as:5

w = w1 + w2 + logPpcfg(VP → PP VPB) (9)

As the PCFG probabilities of natural rules are
fixed during decoding, they can be pre-computed
and stored in the rule table. Therefore, including
PCFG for natural rules hardly increases decoding
complexity.

However, calculating the PCFG probabilities
for virtual rules is quite different due to the pres-
ence of virtual non-terminals. For instance, using
the rule (4) in Section 2.1 to generate an item leads
to the following deductive step:

(PP1,3) : (w1, e1) (VPB3,6) : (w2, e2)

(PP-VPB1,6) : (w, e2e1)
(10)

5The logarithmic form of probability is used to avoid ma-
nipulating very small numbers for practical reasons.w1 and
w2 take the PCFG probabilities of the two antecedent items
into consideration.

As PP-VPB is a virtual non-terminal, the sub-
tree it dominates is a virtual tree, for which we
cannot figure out its PCFG probability. There-
fore, we have to postpone the calculation of PCFG
probabilities until reaching a natural non-terminal
such asIP. In other words, only when using the
rule (1) to produce an item, the decoding algo-
rithm can update PCFG probabilities because the
original tree can be restored from the special node
T now. Figure 3 shows how to reconstruct the
original tree from virtual rules. We first construct
the tree on the left by substituting the trees of the
rules (1), (3), and (4) and then restore the origi-
nal tree on the right viaT. Now, we can calculate
the PCFG probability of the original tree.6 In
practice, we pre-compute this PCFG probability
and store it in the rule (1) to reduce computational
overhead.

2.2.2 Lexicalized PCFG

Although widely used in natural language pro-
cessing, PCFGs are often criticized for the lack of
lexicalization, which is very important to capture
the lexical dependencies between words. There-
fore, we use Collins’ Model 1 (Collins, 2003), a
simple and effective lexicalized parsing model, as
the second parsing feature in our decoder.

Following Collins (2003), we first lexicalize a
tree by associating aheadword h with each non-
terminal. Figure 4 gives the lexicalized tree corre-
sponding to Figure 2. The left-hand side of a rule
in a lexicalized PCFG isP (h) and the right-hand
side has the form:

Ln(ln) . . . L1(l1)H(h)R1(τ1) . . . Rm(τm) (11)

where H is the head-child that inherits the
headwordh from its parentP , L1 . . . Ln and
R1 . . . Rm are left and right modifiers ofH, and
l1 . . . ln andτ1 . . . τm are the corresponding head-
words. Eithern or m may be zero, andn =
m = 0 for unary rules. Collins (2003) extends the
left and right sequences to include a terminating
STOP symbol. Thus,Ln+1 = Rm+1 = STOP.

6Postponing the calculation of PCFG probabilities also
leads to the “hard-to-compare” problem mentioned in foot-
note 4 due to the presence of virtual non-terminals. We still
maintain multiple beams for natural and virtual hypotheses
(i.e., items) to alleviate this prblem.
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bushi

bushi
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huitan

juxing

juxing

juxing

Figure 4: The lexicalized tree corresponding to
Figure 2.

Collins (2003) breaks down the generation of
the right-hand side of a rule into a sequence of
smaller steps. The probability of a rule is decom-
posed as:

Ph(H|P (h)) ×∏

i=1...n+1

Pl(Li(li)|P (h),H, t,∆) ×
∏

j=1...m+1

Pr(Rj(τj)|P (h),H, t,∆) (12)

wheret is the POS tag of of the headwordh and∆
is the distance between words that captures head-
modifier relationship.

For example, the probability of the lexicalized
rule IP(juxing) → NPB(bushi) VP(juxing) can
be computed as7

Ph(VP|IP, juxing) ×
Pl(NPB(bushi)|IP,VP, juxing) ×
Pl(STOP|IP,VP, juxing) ×
Pr(STOP|IP,VP, juxing) (13)

We still use the deductive system to explain
how to integrate the lexicalized PCFG into the de-
coding process. Now, Eq. (8) can be rewritten as:

(PPyu
1,3) : (w1, e1) (VPBjuxing

3,6 ) : (w2, e2)

(VPjuxing
1,6 ) : (w, e2e1)

(14)

whereyu and juxing are the headwords attached
to PP1,3, VPB3,6, andVP1,6. The resulting item

7For simplicity, we omit POS tag and distance in the pre-
sentation. In practice, we implemented the Collins’ Model 1
exactly as described in (Collins, 2003).

score is given by

w = w1 + w2 + logPh(VPB|VP, juxing) +

logPl(PP(yu)|VP,VPB, juxing) +

logPl(STOP|VP,VPB, juxing) +

logPr(STOP|VP,VPB, juxing) (15)

Unfortunately, the lexicalized PCFG probabili-
ties of most natural rules cannot be pre-computed
because the headword of a non-terminal must be
determined on the fly during decoding. Consider
the third rule in Table 1

PP(P(yu) x1:NPB) → with x1

It is impossible to know what the headword of
NPB is in advance, which depends on the ac-
tual sentence being translated. However, we could
safely say that the headword attached toPP is al-
waysyu becausePP should have the same head-
word with its childP.

Similar to the PCFG scenario, calculating lex-
icalized PCFG for virtual rules is different from
natural rules. Consider the rule (4) in Section 2.1,
the corresponding deductive step is

(PPyu
1,3) : (w1, e1) (VPBjuxing

3,6 ) : (w2, e2)

(PP-VPB−
1,6) : (w, e2e1)

(16)

where “−” denotes that the headword of
PP-VPB1,6 is undefined.

We still need to postpone the calculation of lex-
icalized PCFG probabilities until reaching a nat-
ural non-terminal such asIP. In other words,
only when using the rule (1) to produce an item,
the decoding algorithm can update the lexicalized
PCFG probabilities. After restoring the original
tree fromT, we need to visit backwards to fron-
tier nodes of the tree to find headwords and calcu-
late lexicalized PCFG probabilities. More specifi-
cally, updating lexicalized PCFG probabilities for
the rule the rule (1) involves the following steps:

1. Reconstruct the original tree from the rules
(1), (3), and (4) as shown in Figure 3;

2. Attach headwords to all nodes;

3. Calculate the lexicalized PCFG probabilities
according to Eq. (12).

711



Back-off Pl(Li(li)| . . . )
level

Ph(H| . . . ) Pr(Rj(τj)| . . . )
1 P , h, t P , H, h, t, ∆

2 P , t P , H, t, ∆

3 P P , H, ∆

Table 2: The conditioning variables for each level
of back-off.

As suggested by Collins (2003), we use back-
off smoothing for sub-model probabilities during
decoding. Table 2 shows the various levels of
back-off for each type of parameter in the lexi-
calized parsing model we use. For example,Ph

estimationp interpolates maximum-likelihood es-
timatesp1 = Ph(H|P, h, t), p2 = Ph(H|P, t),
andp3 = Ph(H|P ) as follows:

p1 = λ1p1 + (1 − λ1)(λ2p2 + (1 − λ2)p3) (17)

whereλ1, λ2, andλ3 are smoothing parameters.

3 Experiments

In this section, we try to answer two questions:

1. Does tree-based translation by parsing out-
perform the conventional tree parsing algo-
rithm? (Section 3.1)

2. How about the parsing performance of the
joint decoder? (Section 3.2)

3.1 Translation Evaluation

We used a bilingual corpus consisting of251K
sentences with7.3M Chinese words and9.2M En-
glish words to extract tree-to-string rules. The
Chinese sentences in the bilingual corpus were
parsed by an in-house parser (Xiong et al., 2005),
which obtains anF1 score of84.4% on the Penn
Chinese Treebank. After running GIZA++ (Och
and Ney, 2003) to obtain word alignments, we
used the GHKM algorithm (Galley et al., 2004)
and extracted11.4M tree-to-string rules from the
source-side parsed, word-aligned bilingual cor-
pus. Note that the bilingual corpus does not con-
tain the bilingual version of Penn Chinese Tree-
bank. In other words, all tree-to-string rules were
learned from noisy parse trees and alignments. We
used the SRILM toolkit (Stolcke, 2002) to train a

4-gram language model on the Xinhua portion of
the GIGAWORD corpus, which contains238M
English words. We trained PCFG and Collins’
Model 1 on the Penn Chinese Treebank.

We used the2002 NIST MT Chinese-English
test set as the development set and the2005 NIST
test set as the test set. Following Huang (2008),
we modified our in-house parser to produce and
prune packed forests on the development and test
sets. There are about105M parse trees encoded
in a forest of a sentence on average. We also ex-
tracted 1-best trees from the forests.

As the development and test sets have many
long sentences (≥ 100 words) that make our de-
coder prohibitively slow, we divided long sen-
tences into short sub-sentences simply based on
punctuation marks such as comma and period.
The source trees and target translations of sub-
sentences were concatenated to form the tree and
translation of the original sentence.

We compared our parsing-based decoder with
the tree-to-string translation systems based on the
tree parsing algorithm, which match rules against
either 1-best trees (Liu et al., 2006; Huang et al.,
2006) or packed forests (Mi et al., 2008). All the
three systems used the same rule set containing
11.4M tree-to-string rules. Given the1-best trees
of the test set, there are1.2M tree-to-string rules
that match fragments of the1-best trees. For the
forest-based system (Mi et al., 2008), the num-
ber of filtered rules increases to1.9M after replac-
ing 1-best trees with packed forests, which con-
tain 105M trees on average. As our decoder takes
a string as input,7.7M tree-to-string rules can be
used to parse and translate the test set. We bi-
narized99.6% of tree-to-string rules into16.2M
SCFG rules and discarded non-binarizable rules.
As a result, the search space of our decoder is
much larger than those of the tree parsing coun-
terparts.

Table 3 shows the results. All the three sys-
tems used the conventional translation features
such as relative frequencies, lexical weights, rule
count,n-gram language model, and word count.
Without any parsing models, the tree-based sys-
tem achieves a BLEU score of29.8. The forest-
based system outperforms the tree-based system
by +1.8 BLEU points. Note that each hyperedge
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Algorithm Input Parsing model # of rules BLEU (%) Time (s)

tree - 1.2M 29.8 0.56
tree parsing

forest PCFG 1.9M 31.6 9.49

- 32.0 51.41
PCFG 32.4 55.52

parsing string
Lex

7.7M
32.6 89.35

PCFG + Lex 32.7 91.72

Table 3: Comparison of tree parsing and parsing for tree-to-string translation in terms ofcase-insensitive
BLEU score and average decoding time (second per sentence).The column “parsing model” indicates
which parsing models were used in decoding. We use “-” to denote using only translation features.
“Lex” represents the Collins’ Model 1. We excluded the extraparsing time for producing1-best trees
and packed forests.

Forest size Exact match (%) Precision (%)

1 0.55 41.5
390 0.74 47.7

5.8M 0.92 54.1
66M 1.48 62.0
105M 2.22 65.9

Table 4: Comparison of 1-best trees produced by
our decoder and the parse forests produced by the
monolingual Chinese parser. Forest size repre-
sents the average number of trees stored in a for-
est.

in a parse forest is assigned a PCFG probabil-
ity. Therefore, the forest-based system actually in-
cludes PCFG as a feature (Mi et al., 2008). With-
out incorporating any parsing models as features,
our joint decoder achieves a BLEU score of32.0.
Adding PCFG and Collins’ Model 1 (i.e., “Lex” in
Table 2) increases translation performance. When
both PCFG and Collins’ Model 1 are used, our
joint decoder outperforms the tree parsing systems
based on 1-best trees (+2.9) and packed forests
(+1.1) significantly (p < 0.01). This result is also
better than that of using only translation features
significantly (from32.0 to 32.7, p < 0.05).

Not surprisingly, our decoder is much slower
than pattern matching on1-best trees and packed
forests (with the same beam size). In particu-
lar, including Collins’ Model 1 increases decoding
time significantly because its sub-model probabil-
ities requires back-off smoothing on the fly.

How many 1-best trees produced by our de-

coder are included in the parse forest produced by
a standard parser? We used the Chinese parser
to generate five pruned packed forests with dif-
ferent sizes (average number of trees stored in a
forest). As shown in Table 4, only2.22% of the
trees produced by our decoder were included in
the biggest forest. One possible reason is that
we used sub-sentence division to reduce decoding
complexity. To further investigate the matching
rate, we also calculated labeled precision, which
indicates how many brackets in the parse match
those in the packed forest. The labeled precision
on the biggest forest is65.9%, suggesting that the
1-best trees produced by our decoder are signifi-
cantly different from those in the packed forests
produced by a standard parser.8

3.2 Parsing Evaluation

We followed Petrov and Klein (2007) to divide the
Penn Chinese Treebank (CTB) version 5 as fol-
lows: Articles 1-270 and 400-1151 as the training
set, Articles 301-325 as the development set, and
Articles 271-300 as the test set. We used max-F1

training (Och, 2003) to train the feature weights.
We did not use sub-sentence division as the sen-
tences in the test set have no more than 40 words.

8The packed forest produced by our decoder (“rule”
forest) might be different from the forest produced by a
monolingual parser (“parser” forest). While tree-based and
forest-based decoders search in the intersection of the two
forests (i.e., matched forest), our decoder directly explores
the “rule” forest, which represents the true search space of
tree-to-string translation. This might be the key difference of
our approach from forest-based translation (Mi et al., 2008).
As sub-sentence division makes direct comparison of the two
forests quite difficult, we leave this to future work.
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Parsing model F1 (%) Time (s)

- 62.7 23.9

PCFG 65.4 24.7

Lex 79.8 48.8

PCFG + Lex 80.6 50.4

Table 5: Effect of parsing models on parsing per-
formance (≤ 40 words) and average decoding
time (second per sentence). We use “-” to denote
only using translation features.

Table 5 shows the results. Translation features
were used for all configurations. Without pars-
ing models, theF1 score is62.7. Adding Collins’
Model 1 results in much larger gains than adding
PCFG. With all parsing models integrated, our
joint decoder achieves anF1 score of80.6 on the
test set. Although lower than theF1 score of the
in-house parser that produces the noisy training
data, this result is still very promising because
the tree-to-string rules that construct trees in the
decoding process are learned from noisy training
data.

4 Related Work

Charniak et al. (2003) firstly associate lexical-
ized parsing model with syntax-based translation.
They first run a string-to-tree decoder (Yamada
and Knight, 2001) to produce an English parse
forest and then use a lexicalized parsing model to
select the best translation from the forest. As the
parsing model operates on the target side, it actu-
ally serves as a syntax-based language model for
machine translation. Recently, Shen et al. (2008)
have shown that dependency language model is
beneficial for capturing long-distance relations
between target words. As our approach adds pars-
ing models to the source side where the source
sentence is fixed during decoding, our decoder
does parse the source sentence like a monolingual
parser instead of a syntax-based language model.
More importantly, we integrate translation models
and parsing models in a discriminative framework
where they can interact with each other directly.

Our work also has connections to joint parsing
(Smith and Smith, 2004; Burkett and Klein, 2008)
and bilingually-constrained monolingual parsing

(Huang et al., 2009a) because we use another
language to resolve ambiguity for one language.
However, while both joint parsing and bilingually-
constrained monolingual parsing rely on the target
sentence, our approach only takes a source sen-
tence as input.

Blunsom and Osborne (2008) incorporate the
source-side parse trees into their probabilistic
SCFG framework and treat every source-parse
PCFG rule as an individual feature. The differ-
ence is that they parse the test set before decoding
so as to exploit the source syntactic information to
guide translation.

More recently, Chiang (2010) has shown
that (“exact”) tree-to-tree translation as pars-
ing achieves comparable performance with Hiero
(Chiang, 2007) using much fewer rules. Xiao et
al. (2010) integrate tokenization and translation
into a single step and improve the performance of
tokenization and translation significantly.

5 Conclusion

We have presented a framework for joint parsing
and translation by casting tree-to-string transla-
tion as a parsing problem. While tree-to-string
rules construct parse trees on the source side
and translations on the target side simultaneously,
parsing models can be integrated to improve both
translation and parsing quality.

This work can be considered as a final step to-
wards the continuum of tree-to-string translation:
from single tree to forest and finally to the inte-
gration of parsing and translation. In the future,
we plan to develop more efficient decoding al-
gorithms, analyze forest matching systematically,
and use more sophisticated parsing models.
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Abstract
We propose semantic role features for a
Tree-to-String transducer to model the re-
ordering/deletion of source-side semantic
roles. These semantic features, as well as
the Tree-to-String templates, are trained
based on a conditional log-linear model
and are shown to significantly outperform
systems trained based on Max-Likelihood
and EM. We also show significant im-
provement in sentence fluency by using
the semantic role features in the log-linear
model, based on manual evaluation.

1 Introduction

Syntax-based statistical machine translation
(SSMT) has achieved significant progress during
recent years (Galley et al., 2006; May and
Knight, 2007; Liu et al., 2006; Huang et al.,
2006), showing that deep linguistic knowledge,
if used properly, can improve MT performance.
Semantics-based SMT, as a natural extension
to SSMT, has begun to receive more attention
from researchers (Liu and Gildea, 2008; Wu
and Fung, 2009). Semantic structures have two
major advantages over syntactic structures in
terms of helping machine translation. First of all,
semantic roles tend to agree better between two
languages than syntactic constituents (Fung et al.,
2006). This property motivates the approach of
using the consistency of semantic roles to select
MT outputs (Wu and Fung, 2009). Secondly,
the set of semantic roles of a predicate models
the skeleton of a sentence, which is crucial to
the readability of MT output. By skeleton, we
mean the main structure of a sentence including
the verbs and their arguments. In spite of the
theoretical potential of the semantic roles, there
has not been much success in using them to
improve SMT systems.

Liu and Gildea (2008) proposed a semantic role
based Tree-to-String (TTS) transducer by adding
semantic roles to the TTS templates. Their ap-
proach did not differentiate the semantic roles of
different predicates, and did not always improve
the TTS transducer’s performance. Wu and Fung
(2009) took the output of a phrase-based SMT sys-
tem Moses (Koehn et al., 2007), and kept permut-
ing the semantic roles of the MT output until they
best matched the semantic roles in the source sen-
tence. This approach shows the positive effect of
applying semantic role constraints, but it requires
re-tagging semantic roles for every permuted MT
output and does not scale well to longer sentences.

This paper explores ways of tightly integrating
semantic role features (SRFs) into an MT system,
rather than using them in post-processing or n-
best re-ranking. Semantic role labeling (SRL) sys-
tems usually use sentence-wide features (Xue and
Palmer, 2004; Pradhan et al., 2004; Toutanova et
al., 2005); thus it is difficult to compute target-
side semantic roles incrementally during decoding.
Noticing that the source side semantic roles are
easy to compute, we apply a compromise approach,
where the target side semantic roles are generated
by projecting the source side semantic roles us-
ing the word alignments between the source and
target sentences. Since this approach does not per-
form true SRL on the target string, it cannot fully
evaluate whether the source and target semantic
structures are consistent. However, the approach
does capture the semantic-level re-ordering of the
sentences. We assume here that the MT system is
capable of providing word alignment (or equiva-
lent) information during decoding, which is gener-
ally true for current statistical MT systems.

Specifically, two types of semantic role features
are proposed in this paper: a semantic role re-
ordering feature designed to capture the skeleton-
level permutation, and a semantic role deletion fea-
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ture designed to penalize missing semantic roles in
the target sentence. To use these features during de-
coding, we need to keep track of the semantic role
sequences (SRS) for partial translations, which can
be generated based on the source-side semantic
role sequence and the corresponding word align-
ments. Since the SRL system and the MT sys-
tem are separate, a translation rule (e.g., a phrase
pair in phrase-based SMT) could cover two partial
source-side semantic roles. In such cases partial
SRSs must be recorded in such a way that they can
be combined later with other partial SRSs. Deal-
ing with this problem will increase the complexity
of the decoding algorithm. Fortunately, Tree-to-
String transducer based MT systems (Liu et al.,
2006; Huang et al., 2006) can avoid this problem
by using the same syntax tree for both SRL and
MT. Such an arrangement guarantees that a TTS
template either covers parts of one source-side se-
mantic role, or a few complete semantic roles. This
advantage motivates us to use a TTS transducer as
the MT system with which to demonstrate the use
of the proposed semantic role features. Since it is
hard to design a generative model to combine both
the semantic role features and the TTS templates,
we use a log-linear model to estimate the feature
weights, by maximizing the conditional probabil-
ities of the target strings given the source syntax
trees. The log-linear model with latent variables
has been discussed by Blunsom et al. (2008); we
apply this technique to combine the TTS templates
and the semantic role features.

The remainder of the paper is organized as fol-
lows: Section 2 describes the semantic role fea-
tures proposed for machine translation; Section 3
describes how semantic role features are used and
trained in a TTS transducer; Section 4 presents
the experimental results; and Section 5 gives the
conclusion.

2 Semantic Role Features for Machine
Translation

2.1 Defining Semantic Roles

There are two semantic standards with publicly
available training data: PropBank (Palmer et al.,
2005) and FrameNet (Johnson et al., 2002). Prop-
Bank defines a set of semantic roles for the verbs

in the Penn TreeBank using numbered roles. These
roles are defined individually for each verb. For
example, for the verb disappoint, the role name
arg1 means experiencer, but for the verb wonder,
role name arg1 means cause. FrameNet is moti-
vated by the idea that a certain type of verbs can
be gathered together to form a frame, and in the
same frame, a set of semantic roles is defined and
shared among the verbs. For example, the verbs
boil, bake, and steam will be in frame apply heat,
and they have the semantic roles of cook, food, and
heating instrument. Of these two semantic stan-
dards, we choose PropBank over FrameNet for the
following reasons:

1. PropBank has a simpler semantic definition
than FrameNet and thus is easier for auto-
matic labeling.

2. PropBank is built upon the Penn TreeBank
and is more consistent with statistical parsers,
most of which are trained on the Penn Tree-
Bank.

3. PropBank is a larger corpus than FrameNet.

Note that the semantic standard/corpus is not cru-
cial in this paper. Any training corpus that can be
used to automatically obtain the set of semantic
roles of a verb could be used in our approach.

2.2 Semantic Role Features

Ideally, we want to use features based on the true
semantic roles of the MT candidates. Consider-
ing there is no efficient way of integrating SRL
and MT, accurate target-side semantic roles can
only be used in post-processing and re-ranking
the MT outputs, where a limited number of MT
candidates are considered. On the other hand, it
is much easier to obtain reliable semantic roles
for the source sentences. This paper uses a com-
promise approach, where the target-side semantic
roles are projected from the source-side semantic
roles using the word alignment derived from the
translation process. More specifically, we define
two types of semantic role features:

1. Semantic Role Re-ordering (SRR) This fea-
ture describes re-ordering of the source-side
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semantic roles (including the predicate) in the
target side. It takes the following form:

SrcPred : SrcRole1, ..., SrcRolen

⇒ TarRole1, ..., TarRolen

where SrcPred and SrcRole denotes the
central verb and semantic roles in the source
side, and TarRole denotes the target-side
roles. The source/target SRSs do not need be
continuous, but there should be a one-to-one
alignment between the roles in the two sides.
Compared to the general re-ordering models
used in statistical MT systems, this type of
feature is capable of modeling skeleton-level
re-ordering, which is crucial to the fluency
of MT output. Because a predicate can have
different semantic role sequences in different
voices, passive/active are tagged for each oc-
currence of the verbs based on their POS and
preceding words. Figure 1 shows examples
of the feature SRR.

2. Deleted Roles (DR) are the individual source-
side semantic roles which are deleted in the
MT outputs, taking the form of:

SrcPred : SrcRole⇒ deleted

DR is meant to penalize the deletion of the
semantic roles. Though most statistical MT
systems have penalties for word deletion, it
is still useful to make separate features for
the deletion of semantic roles, which is con-
sidered more harmful than the deletion of
non-core components (e.g., modifiers) and
deserves more serious penalty. Examples of
the deletion features can be found in Figure 1.

Both types of features can be made non-lexicalized
by removing the actual verb but retaining its voice
information in the features. Non-lexicalized fea-
tures are used in the system to alleviate the problem
of sparse verbs.

3 Using Semantic Role Features in
Machine Translation

This section describes how to use the proposed se-
mantic role features in a Tree-to-String transducer,

I  did  not  see  the  b

没有 看见

arg0

arg‐neg

arg1

SRR:
see‐active: arg‐neg verb
borrowed‐active: arg1 a
borrowed‐active: arg1 ve
borrowed‐active: arg0 ve
borrowed‐active: arg1 a

DR:
see‐active: arg0  delet

book  you  borrowed

你借的 书

arg1

arg0

  arg‐neg verb
rg0  arg0 arg1
erb  verb arg1
erb  arg0 verb
rg0 verb  arg0 verb arg1

ted 

Figure 1: Examples of the semantic role features

assuming that the semantic roles have been tagged
for the source sentences. We first briefly describe
the basic Tree-to-String translation model used in
our experiments, and then describe how to modify
it to incorporate the semantic role features.

3.1 Basic Tree-to-String Transducer

A Tree-to-String transducer receives a syntax tree
as its input and, by recursively applying TTS tem-
plates, generates the target string. A TTS tem-
plate is composed of a left-hand side (LHS) and
a right-hand side (RHS), where the LHS is a sub-
tree pattern and the RHS is a sequence of variables
and translated words. The variables in the RHS
of a template correspond to the bottom level non-
terminals in the LHS’s subtree pattern, and their
relative order indicates the permutation desired at
the point where the template is applied to translate
one language to another. The variables are further
transformed, and the recursive process goes on un-
til there are no variables left. The formal descrip-
tion of a TTS transducer is given by Graehl and
Knight (2004), and our baseline approach follows
the Extended Tree-to-String Transducer defined by
Huang et al. (2006). For a given derivation (de-
composition into templates) of a syntax tree, the
translation probability is computed as the product
of the templates which generate both the source
syntax trees and the target translations.

Pr(S | T,D∗) =
∏

t∈D∗
Pr(t)

Here, S denotes the target sentence, T denotes the
source syntax tree, and D∗ denotes the derivation
of T . In addition to the translation model, the
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function DECODE(T )
for tree node v of T in bottom-up order do

for template t applicable at v do

{c1, c2}=match(v, t);
s.leftw = c1.leftw;
s.rightw = c2.rightw;
s.val = c1.val × c2.val;
s.val ×= Pr(t);
s.val ×= Pr(c2.leftw|c1.rightw);
add s to v’s beam;

Figure 2: Decoding algorithm for the standard Tree-to-String
transducer. leftw/rightw denote the left/right boundary
word of s. c1, c2 denote the descendants of v, ordered based
on RHS of t.

TTS system includes a trigram language model,
a deletion penalty, and an insertion bonus. The
bottom-up decoding algorithm for the TTS trans-
ducer is sketched in Figure 2. To incorporate the
n-gram language model, states in the algorithm
denote a tree node’s best translations with different
left and right boundary words. We use standard
beam-pruning to narrow the search space. To sim-
plify the description, we assume in Figure 2 that
a bigram language model is used and all the TTS
templates are binarized. It is straightforward to
generalize the algorithm for larger n-gram models
and TTS templates with any number of children in
the bottom using target-side binarized combination
(Huang et al., 2006).

3.2 Modified Tree-to-String Transducer with
Semantic Role Features

Semantic role features can be used as an auxiliary
translation model in the TTS transducer, which
focuses more on the skeleton-level permutation.
The model score, depending on not only the in-
put source tree and the derivation of the tree, but
also the semantic roles of the source tree, can be
formulated as:

Pr(S | T,D∗) =
∏

f∈F (S,T.role,D∗)

Pr(f)

where T denotes the source syntax tree with
semantic roles, T.role denotes the seman-
tic role sequence in the source side and
F (S.role, T.role,D∗) denotes the set of defined
semantic role features over T.role and the target
side semantic role sequence S.role. Note that
given T.role and the derivation D∗, S.role can

VP

NP
[giving: 

VBG
[giving: verb]

giving

VP
[giving: arg

TTS template: (VP (VBG givin
Triggered  SRR:  giving‐active: a
Triggered DR:     giving‐active: v

NP
[giving: 

VBG
[giving: verb]

giving

arg2]
NP

[giving: arg1]

g2 arg1]

g )  NP#1 NP#2 )   NP#1 NP#2
arg2 arg1  arg2 arg1
verb  deleted

arg2]
NP

[giving: arg1]

Figure 3: An example showing the combination of the se-
mantic role sequences of the states. Above/middle is the state
information before/after applying the TTS template, and bot-
tom is the used TTS template and the triggered SRFs during
the combination.

be easily derived. Now we show how to in-
corporate the two types of semantic role features
into a TTS transducer. To use the semantic role
re-ordering feature SRR, the states in the decod-
ing algorithm need to be expanded to encode the
target-side SRSs. The SRSs are initially attached
to the translation states of the source tree con-

给 PP VBZ 新 考验

VP

VBZ
[bring: verb]

NP
[bring: arg1]

PP
[bring: arg3]

NNP NN

new test

0 3 4

^

Combined SRS arg3 verb arg1

Median = 3 arg1

Figure 4: An example showing how to compute the target side
position of a semantic role by using the median of its aligning
points.
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stituents which are labeled as semantic roles for
some predicate. These semantic roles are then
accumulated with re-ordering and deletion oper-
ations specified by the TTS templates as the de-
coding process goes bottom-up. Figure 5 shows
the decoding algorithm incorporating the SRR fea-
tures. The model component corresponding to the
feature SRR is computed when combining two
translation states. I.e., the probabilities of the SRR
features composed based on the semantic roles of
the two combining states will be added into the
combined state. See Figure 3 for examples. The
theoretical upper bound of the decoding complex-
ity is O(NM4(n−1)R(

∑C
i=0

C!
i! )

V ), where N is
the number of nodes in the source syntax tree, M
is the vocabulary size of the target language, n is
the order of the n-gram language model, R is the
maximum number of TTS templates which can be
matched at a tree node, C is the maximum number
of roles of a verb, and V is the maximum number
of verbs in a sentence. In this formula,

∑C
i=0

C!
i!

is the number of role sequences obtained by first
choosing i out of C possible roles and then per-
muting the i roles. This theoretical upper bound
is not reached in practice, because the number of
possible TTS templates applicable at a tree node
is very limited. Furthermore, since we apply beam
pruning at each tree node, the running time is con-
trolled by the beam size, and is linear in the size of
the tree.

The re-ordering of the semantic roles from
source to target is computed for each TTS template
as part of the template extraction process, using
the word-level alignments between the LHS/RHS
of the TTS template (e.g., Figure 3). This is usu-
ally straightforward, with the exception of the case
where the words that are aligned to a particular
role’s span in the source side are not continuous
in the target side, as shown in Figure 4. Since
we are primarily interested in the relative order of
the semantic roles, we approximate each seman-
tic role’s target side position by the median of the
word positions that is aligned to. If more than one
semantic role is mapped to the same position in
the target side, their source side order will be used
as their target side order, i.e., monotonic transla-
tion is assumed for those semantic roles. Figure 4
shows an example of calculating the target side

function DECODE(T )
for tree node v of T in bottom-up order do

for template t applicable at v do
{c1, c2}=match(v, t);
s.leftw = c1.leftw;
s.rightw = c2.rightw;
s.role = concatenate(c1.role, c2.role);
if v is a semantic role then

set s.role to v.role;
s.val = c1.val × c2.val;
s.val ×= Pr(t);
s.val ×= Pr(c2.leftw|c1.rightw);

. Compute the probabilities associated with semantic roles
s.val ×=

Q
f∈Sema(c1.role,c2.role,t)

Pr(f);
add s to v’s beam;

Figure 5: Decoding algorithm using semantic role features.
Sema(c1.role, c2.role, t) denotes the triggered semantic
role features when combining two children states, and ex-
amples can be found in Figure 3.

SRS based on a complicated TTS template. The
word alignments in the TTS templates are also used
to compute the deletion feature DR. Whenever a
semantic role is deleted in a TTS template’s RHS,
the corresponding deletion penalty will be applied.

3.3 Training

We describe two alternative methods for training
the weights for the model’s features, including both
the individual TTS templates and the semantic
role features. The first method maximizes data
likelihood as is standard in EM, while the second
method maximizes conditional likelihood for a log-
linear model following Blunsom et al. (2008).

3.3.1 Maximizing Data Likelihood
The standard way to train a TTS translation

model is to extract the minimum TTS templates us-
ing GHKM (Galley et al., 2004), and then normal-
ize the frequency of the extracted TTS templates
(Galley et al., 2004; Galley et al., 2006; Liu et al.,
2006; Huang et al., 2006). The probability of the
semantic features SRR and DR can be computed
similarly, given that SRR and DR can be derived
from the paired source/target sentences and the
word alignments between them. We refer to this
model as max-likelihood training and normalize
the counts of TTS templates and semantic features
based on their roots and predicates respectively.

We wish to overcome noisy alignments from
GIZA++ and learn better TTS rule probabilities
by re-aligning the data using EM within the TTS
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E-step:
for all pair of syntax tree T and target string S do

for all TTS Template t, semantic features f do
EC(t) +=

P
D:t∈D Pr(S,T,D)P
D′ Pr(S,T,D′) ;

EC(f) +=
P

D:f∈D Pr(S,T,D)P
D′ Pr(S,T,D′) ;

M-step:
for all TTS Template t, semantic features f do

Pr(t) = EC(t)P
t′:t′.root=t.root EC(t′) ;

Pr(f) = EC(f)P
f′:f′.predicate=t.predicate EC(f ′) ;

Figure 6: EM Algorithm For Estimating TTS Templates and
Semantic Features

framework (May and Knight, 2007). We can es-
timate the expected counts of the TTS templates
and the semantic features by formulating the prob-
ability of a pair of source tree and target string
as:

X
D

Pr(S, T,D) =
X
D

0@Y
t∈D

Pr(t)
Y

f∈F (S,T.role,D)

Pr(f)

1A
Though the above formulation, which makes the
total probability of all the pairs of trees and strings
less than 1, is not a strict generative model, we can
still use the EM algorithm (Dempster et al., 1977)
to estimate the probability of the TTS templates
and the semantic features, as shown in Figure 6.

The difficult part of the EM algorithm is the E-
step, which computes the expected counts of the
TTS templates and the semantic features by sum-
ming over all possible derivations of the source
trees and target strings. The standard inside-
outside algorithm (Graehl and Knight, 2004) can
be used to compute the expected counts of the TTS
templates. Similar to the modification made in the
TTS decoder, we can add the target-side semantic
role sequence to the dynamic programming states
of the inside-outside algorithm to compute the ex-
pected counts of the semantic features. This way
each state (associated with a source tree node) rep-
resents a target side span and the partial SRSs. To
speed up the training, a beam is created for each
target span and only the top rated SRSs in the beam
are kept.

3.3.2 Maximizing Conditional Likelihood
A log-linear model is another way to combine

the TTS templates and the semantic features to-
gether. Considering that the way the semantic

function COMPUTE PARTITION(T )
for tree node v of T in bottom-up order do

for template t applicable at v do
for {s1, s2}=Match(v, t) do

s.sum += s1.sum× s2.sum×
exp(λt +

P
f∈Sema(s1,s2,t)

λf );
s.role = concatenate(s1.role, s2.role);
add s to v;

for state s in root do res += s.sum;
return res;

Figure 7: Computing the partition function of the conditional
probability Pr(S|T ). Sema(s1, s2, t) denotes all the seman-
tic role features generated by combining s1 and s2 using t.

role features are defined makes it impossible to
design a sound generative model to incorporate
these features, a log-linear model is also a theoreti-
cally better choice than the EM algorithm. If we
directly translate the EM algorithm into the log-
linear model, the problem becomes maximizing
the data likelihood represented by feature weights
instead of feature probabilities:

Pr(S, T ) =

P
D exp

P
i λifi(S, T,D)P

S′,T ′
P

D′ exp
P

i λifi(S′, T ′, D′)

where the features f include both the TTS tem-
plates and the semantic role features. The numer-
ator in the formula above can be computed using
the same dynamic programming algorithm used to
compute the expected counts in the EM algorithm.
However, the partition function (denominator) re-
quires summing over all possible source trees and
target strings, and is infeasible to compute. In-
stead of approximating the partition function using
methods such as sampling, we change the objective
function from the data likelihood to the conditional
likelihood:

Pr(S | T ) =
P

D exp
P

i λifi(S, T,D)P
S′∈all(T )

P
D′ exp

P
i λifi(S′, T,D′)

where all(T ) denotes all the possible target strings
which can be generated from the source tree T .
Given a set of TTS templates, the new partition
function can be efficiently computed using the dy-
namic programming algorithm shown in Figure 7.
Again, to simplify the illustration, only binary TTS
templates are used. Using the conditional proba-
bility as the objective function not only reduces
the computational cost, but also corresponds better
to the TTS decoder, where the best MT output is
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selected only among the possible candidates which
can be generated from the input source tree using
TTS templates.

The derivative of the logarithm of the objective
function (over the entire training corpus) w.r.t. a
feature weight can be computed as:

∂ log
Q

S,T Pr(S | T )
∂λi

=
X
S,T

{ECD|S,T (fi)− ECS′|T (fi)}

where ECD|S,T (fi), the expected count of a fea-
ture over all derivations given a pair of tree and
string, can be computed using the modified inside-
outside algorithm described in Section 3.2, and
ECS′|T (fi), the expected count of a feature over
all possible target strings given the source tree,
can be computed in a similar way to the partition
function described in Figure 7. With the objective
function and its derivatives, a variety of optimiza-
tion methods can be used to obtain the best feature
weights; we use LBFGS (Zhu et al., 1994) in our
experiments. To prevent the model from overfitting
the training data, a weighted Gaussian prior is used
with the objective function. The variance of the
Gaussian prior is tuned based on the development
set.

4 Experiments

We train an English-to-Chinese translation system
using the FBIS corpus, where 73,597 sentence
pairs are selected as the training data, and 500
sentence pairs with no more than 25 words on the
Chinese side are selected for both the development
and test data.1 Charniak (2000)’s parser, trained on
the Penn Treebank, is used to generate the English
syntax trees. To compute the semantic roles for the
source trees, we use an in-house max-ent classifier
with features following Xue and Palmer (2004) and
Pradhan et al. (2004). The semantic role labeler
is trained and tuned based on sections 2–21 and
section 24 of PropBank respectively. The standard
role-based F-score of our semantic role labeler is
88.70%. Modified Kneser-Ney trigram models
are trained using SRILM (Stolcke, 2002) on the
Chinese portion of the training data. The model

1The total 74,597 sentence pairs used in experiments are
those in the FBIS corpus whose English part can be parsed
using Charniak (2000)’s parser.

(n-gram language model, TTS templates, SRR,
DR) weights of the transducer are tuned based on
the development set using a grid-based line search,
and the translation results are evaluated based on a
single Chinese reference using BLEU-4 (Papineni
et al., 2002). Huang et al. (2006) used character-
based BLEU as a way of normalizing inconsistent
Chinese word segmentation, but we avoid this prob-
lem as the training, development, and test data are
from the same source.

The baseline system in our experiments uses
the TTS templates generated by using GHKM
and the union of the two single-direction align-
ments generated by GIZA++. Unioning the two
single-direction alignments yields better perfor-
mance for the SSMT systems using TTS templates
(Fossum et al., 2008) than the two single-direction
alignments and the heuristic diagonal combination
(Koehn et al., 2003). The two single-direction
word alignments as well as the union are used to
generate the initial TTS template set for both the
EM algorithm and the log-linear model. The ini-
tial TTS templates’ probabilities/weights are set to
their normalized counts based on the root of the
TTS template (Galley et al., 2006). To test seman-
tic role features, their initial weights are set to their
normalized counts for the EM algorithm and to 0
for the log-linear model. The performance of these
systems is shown in Table 1. We can see that the
EM algorithm, based only on TTS templates, is
slightly better than the baseline system. Adding
semantic role features to the EM algorithm actu-
ally hurts the performance, which is not surprising
since the combination of the TTS templates and
semantic role features does not yield a sound gen-
erative model. The log-linear model based on TTS
templates achieves significantly better results than
both the baseline system and the EM algorithm.
Both improvements are significant at p < 0.05
based on 2000 iterations of paired bootstrap re-
sampling of the test set (Koehn, 2004).

Adding semantic role features to the log-linear
model further improves the BLEU score. One prob-
lem in our approach is the sparseness of the verbs,
which makes it difficult for the log-linear model
to tune the lexicalized semantic role features. One
way to alleviate this problem is to make features
based on verb classes. We first tried using the verb
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TTS Templates + SRF + Verb Class
Union 15.6 – –
EM 15.9 15.5 15.6

Log-linear 17.1 17.4 17.6

Table 1: BLEU-4 scores of different systems

equal better worse
With SRF vs. W/O SRF 72% 20.2% 7.8%

Table 2: Distribution of the sentences where the semantic
role features give no/positive/negative impact to the sentence
fluency in terms of the completeness and ordering of the
semantic roles.

classes in VerbNet (Dang et al., 1998). Unfortu-
nately, VerbNet only covers about 34% of the verb
tokens in our training corpus, and does not im-
prove the system’s performance. We then resorted
to automatic clustering based on the aspect model
(Hofmann, 1999; Rooth et al., 1999). The training
corpus used in clustering is the English portion of
the selected FBIS corpus. Though automatically
obtained verb clusters lead to further improvement
in BLEU score, the total improvement from the se-
mantic role features is not statistically significant.
Because BLEU-4 is biased towards the adequacy
of the MT outputs and may not effectively evaluate
their fluency, it is desirable to give a more accurate
evaluation of the sentence’s fluency, which is the
property that semantic role features are supposed
to improve. To do this, we manually compare
the outputs of the two log-linear models with and
without the semantic role features. Our evaluation
focuses on the completeness and ordering of the
semantic roles, and better, equal, worse are tagged
for each pair of MT outputs indicating the impact
of the semantic role features. Table 2 shows the
manual evaluation results based on the entire test
set, and the improvement from SRF is significant
at p < 0.005 based on a t-test. To illustrate how
SRF impacts the translation results, Figure 8 gives
3 examples of the MT outputs with and without
the SRFs.

5 Conclusion

This paper proposes two types of semantic role
features for a Tree-to-String transducer: one mod-
els the reordering of the source-side semantic role
sequence, and the other penalizes the deletion of a
source-side semantic role. These semantic features

Source Launching1 New2 Dip

SRF On 实施1 新的2 外交3 攻势4

SRF Off 新的2 外交3 攻势4

Source
It1 is2 therefore3 ne
transformation9 of10

high14 technologies15

SRF On 所以123 要4 加快6,7 高新

SRF Off 所以123 要4 高技术14,15

Source
A1 gratifying2 chan
structure8 of9 ethnic

SRF On 少数民族10,11 结构8 也4

SRF Off 一个1 可喜的2 变化3 , 还

plomatic3 Offensive4

4

ecessary4 to5 speed6 up7 the8

traditional11 industries12 with13

5

新技术14,15 改造9 传统产业11,12

, 加快6,7 传统产业11,12 改造9

nge3 also4 occurred5 in6 the7

10 minority11 cadres12

发生5 可喜的2 变化3

还在4 少数民族10,11 干部的 结构8

Figure 8: Examples of the MT outputs with and without SRFs.
The first and second example shows that SRFs improve the
completeness and the ordering of the MT outputs respectively,
the third example shows that SRFs improve both properties.
The subscripts of each Chinese phrase show their aligned
words in English.

and the Tree-to-String templates, trained based on
a conditional log-linear model, are shown to sig-
nificantly improve a basic TTS transducer’s per-
formance in terms of BLEU-4. To avoid BLEU’s
bias towards the adequacy of the MT outputs, man-
ual evaluation is conducted for sentence fluency
and significant improvement is shown by using
the semantic role features in the log-linear model.
Considering our semantic features are the most ba-
sic ones, using more sophisticated features (e.g.,
the head words and their translations of the source-
side semantic roles) provides a possible direction
for further experimentation.
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Abstract

This paper analyzes the contribution of se-
mantic roles to TimeML event recognition
and classification. For that purpose, an
approach using conditional random fields
with a variety of morphosyntactic features
plus semantic roles features is developed
and evaluated. Our system achieves an
F1 of 81.4% in recognition and a 64.2%
in classification. We demonstrate that the
application of semantic roles improves the
performance of the presented system, es-
pecially for nominal events.

1 Introduction

Event recognition and classification has been
pointed out to be very important to improve com-
plex natural language processing (NLP) applica-
tions such as automatic summarization (Daniel et
al., 2003) and question answering (QA) (Puste-
jovsky, 2002). Natural language (NL) texts often
describe sequences of events in a time line. In the
context of summarization, extracting such events
may aid in obtaining better summaries when these
have to be focused on specific happenings. In
the same manner, the access to such information
is crucial for QA systems attempting to address
questions about events.

The analysis of events as well as the classifica-
tion of the different forms they adopt in NL text is
not a new issue (Vendler, 1967). It relates not only
to linguistics but different scientific areas such as
philosophy, psychology, etc.

In NLP, different definitions of event can be
found regarding the target application.

On the one hand, in topic detection and track-
ing (Allan, 2002), event is defined as an instance
of a topic identified at document level describing
something that happen (e.g., “wars”). The aim of

this task is to cluster documents on the same topic,
that is to say, the same event.

On the other hand, information extraction (IE)
provides finer granularity event definitions. IE
proposes standard schemes to annotate the indi-
vidual events within the scope of a document.
STAG scheme (2000) was aimed to identify events
in news and their relationship with points in a tem-
poral line. More recently, TimeML (Pustejovsky
et al., 2003a) presented a rich specification for an-
notating events in NL text extending the features
of the previous one.

This paper is focused on the TimeML view of
events. TimeML defines events as situations that
happen or occur, or elements describing states
or circumstances in which something obtains or
holds the truth. These events are generally ex-
pressed by tensed or untensed verbs, nominaliza-
tions, adjectives, predicative clauses or preposi-
tional phrases. TimeML guidelines define seven
classes of events:

• Reporting. Action of a person or organization declar-
ing or narrating an event (e.g., “say”)

• Perception. Physical perception of another event (e.g.,
“see”, “hear”)

• Aspectual. Aspectual predication of another event
(e.g., “start”, “continue”)

• I Action. Intensional action (e.g., “try”)

• I State. Intensional state (e.g., “feel”, “hope”)

• State. Circumstance in which something holds the
truth (e.g., “war”, “in danger”)

• Occurrence. Events that describe things that happen
(e.g., “erupt”, “arrive”)

The following sentence shows an example of an
occurrence event and a state event.

It’s <EVENT class="OCCURRENCE">turning</EVENT>
out to be another <EVENT class="STATE">bad</EVENT>
financial week.

725



The automatic annotation of events has been
addressed with different data-driven approaches.
Current approaches are mainly based on mor-
phosyntactic information. Our hypothesis is that
semantic roles, as higher language level analysis
information, may be useful as additional feature
to improve the performance of such approaches.

Within this setting, the main objective of this
paper is to analyze (1) the contribution of seman-
tic roles, as additional feature, and (2) the influ-
ence of conditional random fields (CRFs), as ma-
chine learning (ML) technique, in the events auto-
matic recognition and classification task.

This paper is structured as follows. Firstly,
related work in the task is reviewed in Section
2. The next section provides a detailed descrip-
tion of our proposal to address event recognition
and classification. After that, Section 4 includes
an evaluation of the proposal, and a comparative
analysis of the results. Finally, conclusions are
drawn in Section 5.

2 Related Work

There is only one corpus available annotated with
TimeML events: TimeBank (Pustejovsky et al.,
2003b). Hence, all the approaches regarding
TimeML events extraction have been evaluated
using this corpus.

EVITA system (Saurı́ et al., 2005) recognizes
events by combining linguistic and statistical tech-
niques. The main features used to manually
encode event recognition rules are the follow-
ing: part-of-speech (PoS) tagging, lemmatizing,
chunking, lexical lookup and contextual pars-
ing. Furthermore, WordNet information com-
bined with Bayesian learned disambiguation was
used to identify nominal events. EVITA obtained
74.03% precision, 87.31% recall, and 80.12%
Fβ=1 in event recognition over TimeBank.

Boguraev and Ando (2005) present an evalu-
ation on automatic TimeML events annotation.
They set out the task as a classification prob-
lem and used a robust risk minimization (RRM)
classifier to solve it. The Fβ=1 results obtained
by a 5-fold cross validation over TimeBank were
78.6% for recognition and 61.3% for classifica-
tion. Moreover, they evaluated the impact of ap-
plying word-profiling techniques over their ap-

proach to exploit unannotated data. Using this ad-
ditional information, the Fβ=1 results improved to
80.3% and 64.0%. In this evaluation, neither pre-
cision nor recall were given.

STEP (Bethard and Martin, 2006) is a system
for TimeML event recognition and classification.
This approach uses a rich set of textual, morpho-
logical, dependency and WordNet hypernymy fea-
tures to build a Support Vector Machine (SVM)
model. The model was trained using 9/10 of the
TimeBank. The test, carried out using the remain-
ing 1/10 of the corpus, obtained a 82.0% preci-
sion, 70.6% recall and 75.9% Fβ=1 for recognition
and a 66.7% precision, 51.2% recall and 57.9%
Fβ=1 for classification.

Finally, March and Baldwin (2008) present an
evaluation on event recognition using a multi-
class classifier (BSVM). The main features used
to train the classifier are word and PoS context
window, stop words removal and feature general-
ization through words grouping (numbers, named
entities, etc.). The result for the best feature com-
bination in a 10-fold cross validation over Time-
Bank was 76.4% Fβ=1.

It is worth mentioning that there are two ver-
sions of the TimeBank corpus, 1.1 and 1.2. The
latest version is the current gold standard. Both
versions consist of the same documents1, mainly
news articles and transcribed broadcast news from
different domains. EVITA is the only reference
which used TimeBank 1.2 while the rest of re-
viewed references used TimeBank 1.1.

3 Our proposal: semantic roles
enhancing a CRF model

In this section, the motivation for our proposal,
and our specific approach are presented.

3.1 Motivation

The next two subsections describe the main
feature (semantic roles) and the ML algorithm
(CRFs) we selected to address event recognition
and classification; and the reasons why we think
they could be useful in that task.

1Except 3 documents removed in TimeBank 1.2
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3.1.1 Semantic roles

Semantic role labeling (SRL) has achieved im-
portant results in the last years (Gildea and Juraf-
sky, 2002). For each predicate in a sentence, se-
mantic roles identify all constituents, determining
their arguments (agent, patient, etc.) and their ad-
juncts (locative, temporal, etc.). Currently, there
exist different role sets aimed to cover opposed re-
quirements. They range from more specific, such
as FrameNet (Baker et al., 1998), to more general
like PropBank (Palmer et al., 2005). Figure 1 il-
lustrates a semantic role labeled sentence.

Figure 1: Semantic roles example

Many research efforts into the application of se-
mantic roles demonstrated that this information is
useful for different NLP purposes (Melli et al.,
2006). Focusing on TimeML, semantic roles have
been applied to temporal expressions recognition
(Llorens et al., 2009), and temporal links classi-
fication (Hagège and Tannier, 2007). However,
they have not been used to recognize and classify
TimeML events.

Semantic roles provide structural relations of
the predicates in which events may participate.
Beyond syntactic relations expressed by means of
the different types of phrases, semantic roles give
further information about semantic relations be-
tween the arguments of a predicate. Therefore,
as richer information, roles may better distinguish
tokens to be candidate events. In addition, differ-
ent semantic role settings may represent specific
event classes.

Example 1 shows four sentences annotated with
PropBank semantic roles (in square brackets) in
which the noun “control” participates. In the sen-
tences 1 and 2, “control” does not represent an
event, while in the sentences 3 and 4, it repre-
sents an state event. It can be seen that the noun
“control”, when it is contained by A1 role it may
represent an event. However, it is not an event
when contained by A0 or AM-MNR roles. The
analysis may also take into account the governing

verb. In the example, we could specify that “con-
trol” represents an event when contained by A1
role of “seek” and “obtain” verbs; and the oppo-
site for the A0 role of “emerge” and the AM-MNR
of “had”.

(1) 1. “[Control procedures A0] will emerge”
2. “[Iraq A0] had [thousands of Americans A1] [under
its control AM-MNR]”
3. “[Crane Co. A0] may obtain [control of Milton Roy
Corp. A1]”
4. “[Pattison’s A0] decided to seek [control A1]”

Our hypothesis is that semantic roles, as ad-
ditional information, may help in the recogni-
tion and classification of events. The information
about the role of a token and the verb it depends
on, or the set of roles of the sentence, could be
useful for determining whether a token or a se-
quence of tokens is an event or not. Due to the
fact that roles represent high level information in
NL text, they are more independent from word to-
kens. Hence, roles may aid in learning more gen-
eral models that could improve the results of ap-
proaches focused on lower level information.

3.1.2 CRF probabilistic model

Conditional Random Fields is a popular and ef-
ficient ML technique for supervised sequence la-
beling (Lafferty et al., 2001). CRFs are undirected
graphical models, a special case of conditionally-
trained finite state machines. A key advantage of
CRFs is their flexibility to include a wide variety
of arbitrary, non-independent features of the input.

We see the task set out in this paper as a se-
quence labeling problem. Assume X is a random
variable over data sequences to be labeled, and Y
is a random variable over the corresponding label
sequences (hidden), being all Y components (Yi)
members of a finite label alphabet γ. X might
range over NL sentences and Y range over event
annotations of those sentences, with γ the set of
possible event IOB22 labels. The following ex-
ample illustrates the event recognition problem.

(2) X Y
was ?
another ? B-EVENT
bad ? ? = I-EVENT
week ? O

2IOB2 format: (B)egin, (I)nside, and (O)utside
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The variables X and Y are jointly distributed
over both label and observation sequences. How-
ever, unlike Hidden Markov Models (generative)
in which p(X, Y ), CRFs (discriminative) con-
struct a conditional model from paired observa-
tion and label sequences: p(Y |X). Graphically,
CRFs are represented by undirected graphs, G =
(V, E) such that Y = (Yv), v ε V , so that Y is
indexed by the vertices of G. Then (X, Y ) is a
conditional random field if Yv variables obey the
Markov property with respect to the graph when
conditioned on X:

P (Yv|X, Yw, v �= w) = P (Yv|X, Yw, v ∼ w),

where v ∼ w means that Yv and Yw are connected
neighbors in G.

To extend the problem to event classification,
the alphabet γ must be extended with the event
classes (state, aspectual, etc.).

CRFs have been successfully applied to many
sequence labeling tasks (Sha and Pereira, 2003;
McCallum and Li, 2003).

From our point of view, the task addressed in
this paper is well suited for this ML technique.
Events may depend on structural properties of NL
sentences. Not only the word sequence, but mor-
phological, syntactic and semantic information is
related with the event structure (Tenny and Puste-
jovsky, 2000).

For example, sequences of verbs may represent
i action+occurrence or aspectual+occurrence
events (see Example 3).

(3) “The president will <EVENT class="i action"> try

</EVENT> to <EVENT class="occurrence"> assist

</EVENT> to the <EVENT class="occurrence">

conference </EVENT>”

“Saddam will <EVENT class="aspectual"> begin

</EVENT> <EVENT class="occurrence"> withdrawing

</EVENT> troops from Iranian territory on Friday”

In addition, for instance, many state event in-
stances are represented by “to be” plus a variable
quality (see Example 4).

(4) “It is <EVENT class="occurrence"> turning

</EVENT> out to be another <EVENT class="state">

bad </EVENT> financial week.”

Given this analysis, our hypothesis is that CRFs
will be useful in the recognition of events in which
the sequential and structural properties are rele-
vant.

3.2 Approach description

This paper proposes CRFs as learning method
to infer an event recognition and classification
model. Our system includes CRF++ toolkit3 for
training and testing our approach. The learning
process was done using CRF-L2 algorithm and
hyper-parameter C=1.

The definition of the features is crucial for the
architecture of the system. The features used in
our approach are grouped in two feature sets. On
the one hand, general features, which comprise
morphosyntactic and ontological information. On
the other hand, semantic roles features, which are
the main focus of this paper.

The general features used to train our CRF
model are described regarding each language
analysis level.

• Morphological: The lemma and PoS con-
text, in a 5-window (-2,+2), was employed.
This basic linguistic feature showed good re-
sults in different NLP tasks, as well as in
event recognition and classification (March
and Baldwin, 2008). Tokenization, PoS and
lemmatization were obtained using TreeTag-
ger (Schmid, 1994).

• Syntactic: Different events are contained in
particular types of phrases and syntactic de-
pendencies. This feature tries to tackle this
by considering syntactic information. Char-
niak parser (Charniak and Johnson, 2005)
was used to obtain the syntactic tree.

• Lexical semantics: WordNet (Fellbaum,
1998) top ontology classes have been widely
used to represent word meaning at ontologi-
cal level, and demonstrated its worth in many
tasks. We obtained the four top classes for
each word.

The specific semantic roles features used to en-
hance the training framework of the CRF model
were developed considering PropBank role set.
PropBank was applied in our system due to the
high coverage it offers in contrast to FrameNet.
In order to get PropBank semantic roles, the CCG

3http://crfpp.sourceforge.net/
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SRL tool (Punyakanok et al., 2004) was used for
labeling the corpus.

• Role: For each token, we considered the role
regarding the verb the token depends on. Se-
mantic roles information may be useful for
distinguish particular lemmas that are events
only when appearing under a precise role.

• Governing verb: The verb to which the cur-
rent token holds a particular role. This may
distinguish tokens appearing under the influ-
ence of different verbs.

• Role+verb combination: The previous two
features were combined to capture the rela-
tion between them. This introduces new clas-
sification information by distinguishing roles
depending on different verbs. The impor-
tance of this falls especially on the numbered
roles of PropBank (A0, A1, ...) holding dif-
ferent meanings when depending on different
verbs.

• Role configuration: This consists of the set
of roles depending on the verb the token de-
pends on. This may be particularly useful
for distinguish different sentence settings and
thus, whether a token denotes an event in a
particular sentence type.

The system consists of two main processes.
Firstly, given TimeML annotated text, it obtains
the defined features plus the IOB2 tags of the an-
notated events. Then, using this data the system
learns (trains) a model for event recognition and
a model for event classification. Secondly, given
plain text, it automatically gets the defined fea-
tures using the described tools. With this data,
the system applies the learned models to recog-
nize and classify TimeML events.

4 Evaluation

In this section, firstly, the corpus, criteria and mea-
sures are defined. Secondly, the results obtained
by our approach are presented. After that, the con-
tribution of our approach is measured through dif-
ferent experiments: (1) general contribution, (2)
semantic roles contribution, and (3) CRFs contri-
bution. And finally, our approach is compared to
the state of the art systems.

4.1 Corpus, criteria and measures

For the evaluation, the TimeBank 1.2 corpus
(7881 events) was used without modification. All
the results reported in this evaluation were ob-
tained using a 5-fold cross validation. The n-fold
train-test sets were built sorting the corpus files
alphabetically and then sequentially select each
set regarding the documents size. It is important
to highlight the latter because if the n-folds were
made regarding the number of documents, the sets
had not been homogeneous due to the differences
in TimeBank document sizes.

Only annotations matching the exact event span
were considered as correct in recognition and
classification, requiring also the class matching in
the second case.

The following measures were used to score the
evaluated approaches.

• Precision correct annotations
total approach annotations

• Recall correct annotation
total corpus annotations

• Fβ=1
2 ∗ precision ∗ recall

precision + recall

4.2 Our approach results

Table 1 shows the results obtained by our ap-
proach for both recognition and classification of
events. The last column (BF) indicates the best
Fβ=1 results obtained in the individual folds.

Precision Recall Fβ=1 BF
Recognition 83.43 79.54 81.40 82.43
Classification 68.84 60.15 64.20 69.68

Table 1: Our approach (CRF+Roles) results

The results show a high Fβ=1 score in both
recognition and classification, showing a good
balance between precision and recall. This indi-
cates that our approach is appropriate to address
this task.

Focusing on classification task, Table 2 shows
the detailed scores for each event class.

Looking at the specific class results, reporting
obtained the best results. This is due to the fact
that 80% of reporting events are represented by
lemmas “say” and “report” with PoS “VBD” and
“VBZ”. Occurrence, perception, aspectual and
i state obtained classification results over 50%.
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Class (instances) Precision Recall Fβ=1

Reporting (1021) 91.90 89.18 90.51
Perception (48) 65.93 66.83 66.37
Aspectual (258) 81.35 47.00 59.57

I Action (673) 51.40 29.30 37.32
I State (582) 68.44 43.70 53.34
State (1107) 50.01 24.84 33.19

Occurrence (4192) 66.73 72.07 69.29

Table 2: CRF+Roles 5-fold detailed results

Although perception and aspectual are quite re-
stricted to some lemmas, they obtained results be-
low reporting. This is due to the fact that Time-
Bank contains very few examples of these classes.
I action and state show poorer results. In the
case of the former, this is because some non-
intensional verbs (e.g., “look”) appear in the cor-
pus as i action under certain conditions, for exam-
ple, when there is modality or these verbs appear
in conditional sentences. This suggests the neces-
sity of incorporating a word sense disambiguation
(WSD) technique. Our approach did not take into
account this information and thus the results are
lower for this event class. In the case of state, the
reasons for the low performance are the richness
of this event class by means of lemmas, PoS, and
phrases.

Finally, Table 3 shows the results of our ap-
proach by word class.

Precision Recall Fβ=1

Verb 91.56 92.15 91.33
Recognition Noun 72.67 48.26 58.42

Adj. 66.78 38.09 48.35
Verb 73.86 74.21 73.51

Classification Noun 62.73 41.33 49.53
Adj. 55.69 31.12 40.41

Table 3: CRF+Roles 5-fold word class results

It may be seen that the best results in both
recognition and classification are obtained in verb
events, followed by noun and adjective.

4.3 Contribution analysis

This subsection details the contribution of each as-
pect of our approach through three comparative
experiments.

First experiment: general contribution

This experiment measures the general contribu-

tion of our approach by comparing its results with
a baseline. TimeBank was analyzed to find a ba-
sic general rule to annotate events. The events are
mainly denoted by verbs, pertaining to occurrence
class. Hence, we propose a baseline that annotates
all verbs as occurrence events. Table 4 shows re-
sults obtained by this baseline for both recognition
and classification of events.

Prec. Recall Fβ=1

Our approach Recog. 83.43 79.54 81.40
Class. 68.84 60.15 64.20

Baseline Recog. 72.50 65.20 68.60
Class. 46.01 53.19 49.34

Table 4: Our approach vs Baseline results

Given the simplicity of the baseline, the results
obtained are quite high. However, our approach
Fβ=1 significantly improves baseline by 19% for
recognition and 30% for classification.

Second experiment: roles contribution

The main objective of this paper is to determine
the impact of semantic roles in this task. To quan-
tify it, a non-roles version of our approach was
evaluated. This version only uses the general fea-
tures described in section 3. Table 5 shows the
results obtained.

Precision Recall Fβ=1

Our approach Recog. 83.43 79.54 81.40
Class. 68.84 60.15 64.20

Non-roles Recog. 82.96 74.81 78.67
Class. 67.53 54.80 60.50

Table 5: Our approach vs Non-roles results

Comparing these results with the ones obtained
by our full featured approach, the application
of roles improved especially the recall. Specifi-
cally, recall improved by 6% and 10% for recog-
nition and classification respectively. The main
improvement was achieved by state and occur-
rence classes (60% of the total improvement), es-
pecially, nominal events of that classes that con-
centrate around the 70% of the total contribution.

To illustrate corpus examples that have been
improved by roles, Example 5 shows two sen-
tences containing state events that were correctly
tagged by the roles approach and missed by the
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non-roles. In the examples, the TimeML events
annotation and below the semantic roles annota-
tion is reported.

(5) “There are still few buyers and the mood is <EVENT

class=STATE>gloomy</EVENT>”
“[There A0] are [still AM-TMP] [few buyers A1] and [the
mood A0] is [gloomy AM-MNR]”

“Security is now <EVENT>better</EVENT>”
“[Security A0] is [now AM-TMP] [better AM-MNR]”

In these cases, AM-MNR role information lead to
a correct state event recognition.

Third experiment: CRFs contribution

In order to measure the CRFs contribution to this
task, an extra experiment was carried out. This
consisted of comparing, under the same setting,
CRFs with a popular learning technique: support
vector machines (SVM). As in Bethard and Mar-
tin (2006), YamCha4 software was used (parame-
ters: C=1 and polynomial degree=2).

Table 6 shows the results obtained by the SVM-
based approach in recognition and Table 7 reports
the improvement (CRFs over SVM) distribution
in the different word classes.

Precision Recall Fβ=1

Our approach (CRF) 83.43 79.54 81.40
SVM 80.00 75.10 77.40

Table 6: Our approach (CRF) vs SVM results

Verb Noun Adj. Adv. Prep.
General 22% 71% 5% 1% 1%

Table 7: CRF improvement distribution among
the word classes

These results verify that CRF improves SVM
Fβ=1 by 5% in this task. Furthermore, especially
noun events take advantage of using CRF.

Finally, Figure 2 illustrates the results of our ap-
proach over the described experiments.

4.4 Comparison with the state of the art

Most systems found in the literature are data-
driven approaches using morphosyntactic fea-
tures. SVM based approaches (Bethard and Mar-
tin, 2006; March and Baldwin, 2008) achieved,

4http://chasen.org/˜taku/software/YamCha/

Figure 2: Fβ=1 Results

approximately, 76% and 58% Fβ=1 in event
recognition and classification respectively. Bogu-
raev and Ando (2005) used a robust risk mini-
mization classifier to address this task and ob-
tained 78.6% and 61% (without exploiting unan-
notated data). These results are very similar to the
ones obtained by our non-roles approach. This
suggests that using, apart from morphosyntactic
features, additional features based on semantic
roles could improve the approaches.

EVITA system (Saurı́ et al., 2005) combines
linguistic and statistical techniques. On the one
hand, it consists of a set of manually encoded rules
based on morphosyntactic information. On the
other hand, it includes a Bayesian learned disam-
biguation module to identify nominal events. The
later was trained and tested using the whole cor-
pus, therefore, the results could be inflated by this
fact. For that reason, Bethard and Martin (2006)
presented an EVITA implementation (Sim-Evita)
to compare the results. Sim-Evita obtains an 73%
and 51% Fβ=1 in event recognition and classifica-
tion respectively. These results suggest that data-
driven improve rule-based approaches.

Only STEP evaluation showed detailed classifi-
cation results. We agree that state events are the
most complex and heterogeneous ones. Focus-
ing on such events, our Fβ=1 results (33%) im-
prove Bethard’s (25%) by 32%. Regarding the
results obtained for each word class. Bethard’s
results presented good performance on classify-
ing verb events (71%), but lower results in noun
events (34%). Our approach results for noun
events (49%) improve theirs by 44%. This sug-
gests that the application of semantic roles en-
ables our approach on making more general pre-
dictions. In this manner, our system may recog-
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nize unseen nominal event instances as long as
they share, with the seen instances, some semantic
roles features.

5 Conclusions and Further Work

This paper presented an approach for the recogni-
tion and classification of TimeML events consist-
ing of a CRF model learned using semantic roles
as main feature. In addition to morphosyntactic
features, the model was enhanced including ex-
tra semantic information, semantic role labeling,
used for other applications with satisfactory re-
sults, but never employed before for this purpose.
Our proposal was evaluated using the gold stan-
dard corpus, TimeBank 1.2, and the results ob-
tained were analyzed and compared to measure
the impact of both semantic roles and CRFs in the
described task.

The obtained Fβ=1 results demonstrated that
semantic roles are useful to recognize (81.43%)
and classify (64.20%) TimeML events, improv-
ing the presented baseline by 19% for recogni-
tion and 30% for classification. Specifically, Se-
mantic roles employed as additional feature im-
proved the recall of the non-roles version by 6%
and 10% for recognition and classification respec-
tively. This indicates that roles features led to
more general models capable of better annotat-
ing unseen instances. The roles contribution was
more significant in state and occurrence classes of
noun events, concentrating around the 70% of the
improvement.

Furthermore, it was verified that CRFs achieve
higher results than models learned using other
ML techniques such as SVM (5% improvement),
contributing especially to nominal events. This
demonstrated that CRF models are appropriate to
face the task.

Finally, to the extent our results are compara-
ble to state of the art evaluations, ours outper-
form the Fβ=1 scores in both recognition and clas-
sification. Especially, our approach showed bet-
ter performance than related works in state (32%
improvement) and nominal events (44% improve-
ment). Hence, the extension of the current ap-
proaches with semantic roles features could bene-
fit their performance.

The main difficulties found in the task ad-

dressed in this paper are related to i action and
state events. In the former, we detected that
modality and the word senses are important and
must be treated to distinguish such events. In
the later, although they were improved by our
approach, state events are still the most com-
plex class of events due to their richness in con-
trast to the reduced size of the training data. We
agree with related literature that event classifi-
cation results are still below other tasks perfor-
mance, which indicates that this task is inherently
complex and more training data may lead to sig-
nificant improvements.

As further work we propose, firstly, improv-
ing the i action results by taking into account the
modality considering the AM-MOD role, and the
word senses using a WSD technique. Secondly,
the application of FrameNet role set (finer granu-
larity) to determine which kind of roles are better
to improve the current event annotation systems.
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Abstract

We study the problem of integrating scat-
tered online opinions. For this purpose,
we propose to exploit structured ontology
to obtain well-formed relevant aspects to
a topic and use them to organize scattered
opinions to generate a structured sum-
mary. Particularly, we focus on two main
challenges in implementing this idea, (1)
how to select the most useful aspects from
a large number of aspects in the ontology
and (2) how to order the selected aspects
to optimize the readability of the struc-
tured summary. We propose and explore
several methods for solving these chal-
lenges. Experimental results on two dif-
ferent data sets (US Presidents and Digital
Cameras) show that the proposed methods
are effective for selecting aspects that can
represent the major opinions and for gen-
erating coherent ordering of aspects.

1 Introduction

The explosive growth of online opinions raises in-
teresting challenges for opinion integration and
summarization. It is especially interesting to in-
tegrate and summarize scattered opinions in blog
articles and forums as they tend to represent the
general opinions of a large number of people and
get refreshed quickly as people dynamically gen-
erate new content, making them valuable for un-
derstanding the current views of a topic.

However, opinions in blogs and forums are
usually fragmental, scattered around, and buried
among other off-topic content, so it is quite chal-
lenging to organize them in a meaningful way.
Traditional text summarization techniques gener-
ate an unstructured list of sentences as a sum-
mary, which cannot reveal representative opinions

on different aspects of a topic or effectively facil-
itate navigation into the huge opinion space. To
address this limitation, recent work has shown the
usefulness of generating a structured summary of
opinions, in which related opinions are grouped
into topical aspects with explicit labeling of all the
aspects. A major challenge in producing such a
structured summary is how to generate these as-
pects for an arbitrary topic (e.g., products, politi-
cal figures, policies, etc.). Intuitively, the aspects
should be concise phrases that can both be easily
interpreted in the context of the topic under con-
sideration and capture the major opinions. How-
ever, where can we find such phrases and which
phrases should we select as aspects? Furthermore,
once we selected aspects, how should we order
them to improve the readability of a structured
summary? One way to generate aspects is to clus-
ter all the opinion sentences and then identify rep-
resentative phrases in each cluster. Although as-
pects selected in this way can effectively capture
the major opinions, a major limitation is that it is
generally hard to ensure that the selected phrases
are well connected with the given topic (Chen and
Dumais, 2000).

In this paper, we propose a novel approach
to generating aspects by leveraging the ontolo-
gies with structured information that are available
online, such as open domain knowledge base in
Freebase1. Such kind of ontology data is not in
small scale by any measure. For example, Free-
base alone contains more than 10 million topics,
3000 types, and 30,000 properties; moreover, it is
constantly growing as people collaboratively con-
tribute. Freebase provides different properties for
different types of topics such as personal infor-
mation for a “US President” and product features
for a “Digital Camera”. Since this kind of re-
sources can provide related entities/relations for a

1http://www.freebase.com
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wide range of topics , our general idea is to lever-
age them as guidance for more informed organi-
zation of scattered online opinions, and in partic-
ular, to select the most important properties of a
topic from such structured ontology as aspects to
generate a structured opinion summary. A signif-
icant advantage of this approach to aspect genera-
tion is that the selected aspects are guaranteed to
be very well connected with the topic, but it also
raises an additional challenge in selecting the as-
pects to best capture the major opinions from a
large number of aspects provided for each topic in
the ontology. Different from some existing work
on exploiting ontologies, e.g., (Sauper and Barzi-
lay, 2009), which relies on training data, we focus
on exploring unsupervised approaches, which can
be applied to a larger scope of topics.

Specifically, given a topic with entries in an on-
tology and a collection of scattered online opin-
ions about the topic, our goal is to generate a
structured summary where representative major
opinions are organized with well aligned aspects
and in an order easy for human to follow. We
propose the following general approach: First, re-
trieval techniques are employed to align opinions
to relevant aspects. Second, a subset of most inter-
esting aspects are selected. Third, we will further
order the selected aspects to present them in a rea-
sonable order. Finally, for the opinions uncovered
by the selected aspects from the ontology, we use
a phrase ranking method to suggest new aspects to
add to the ontology for increasing its coverage.

Implementing the second and third steps in-
volves special challenges. In particular, without
any training data, it is unclear how we should
show the most interesting aspects in ontology with
major opinions aligned and which presentation
order of aspects is natural and intuitive for hu-
man. Solving these two challenges is the main
focus of this paper. We propose three meth-
ods for aspect selection, i.e., size-based, opinion
coverage-based, and conditional entropy-based
methods, and two methods for aspect ordering,
i.e., ontology-ordering and coherence ordering.
We evaluate our methods on two different types of
topics: US Presidents and Digital Cameras. Qual-
itative results demonstrate the utility of integrating
opinions based on structured ontology as well as

the generalizability of proposed methods. Quan-
titative evaluation is also conducted to show the
effectiveness of our methods.

Note that we use the term ”opinion” to broadly
refer to any discussion in opinionated sources
such as blogs and reviews. This allows us to for-
mulate and solve the problem in a general way.
Indeed, the main goal of our work is to extract
and organize the major opinions about a topic that
are buried in many scattered opinionated sources
rather than perform deeper understanding of opin-
ions (e.g., distinguishing positive from negative
opinions), which can be done by using any exist-
ing sentiment analysis technique as an orthogonal
post-processing step after applying our method.

2 Related Work

Aspect summarization, i.e., structured opinion
summarization over topical aspects, has attracted
much attention recently. Existing work iden-
tifies aspects using frequent-pattern/association-
rule mining, e.g. (Liu et al., 2005; Popescu and
Etzioni, 2005), sentence clustering, e.g. (Ga-
mon et al., 2005; Leouski and Croft, 1996), or
topic modeling, e.g. (Mei et al., 2006; Titov and
McDonald, 2008). After that, meaningful and
prominent phrases need to be selected to repre-
sent the aspects, e.g. (Zhao and He, 2006; Mei
et al., 2007). However, these methods suffer from
the problem of producing trivial aspects. Conse-
quently, some of the aspects generated are very
difficult to interpret (Chen and Dumais, 2000). In
this paper, we propose a different kind of approach
that is to use aspects provided by ontology which
are known to be relevant and easy to interpret.

Ontology is used in (Carenini et al., 2005) but
only for mapping product features. The closest
work to ours are (Lu and Zhai, 2008; Sauper and
Barzilay, 2009); both try to use well-written arti-
cles for summarization. However, (Lu and Zhai,
2008) assumes the well-written article is struc-
tured with explicit or implicit aspect information,
which does not always hold in practice, while
(Sauper and Barzilay, 2009) needs a relatively
large amount of training data in the given domain.
In comparison, our work only needs the ontology
information for the given topic which is much eas-
ier to obtain from resources such as Freebase.

735



3 Methods
Given (1) an input topic T , (2) a large number of
aspects/properties A = {A1, ..., Am} from an on-
tology that are related to T , and (3) a huge col-
lection of scattered opinion sentences about the
topic DT = {s1, . . . , sn}, our goal is to gener-
ate a structured organization of opinions that are
both aligned well with the interesting aspects and
representative of major opinions about the topic.

The envisioned structured organization consists
of a sequence of selected aspects from ontol-
ogy ordered to optimize readability and a set of
sentences matching each selected aspect. Once
we obtain a set of sentences in each aspect, we
can easily apply a standard text summarization
method to further summarize these sentences, thus
the unique challenges related to our main idea of
exploiting ontology are the following, which are
also the main focus of our study:
Aspect Selection: How can we select a subset of
aspects A′ ⊂ A to capture the major opinions in
our opinion set DT ?
Aspect Ordering: How can we order a subset of
selected aspects A′ so as to present them in an or-
der π(A′) that is most natural with respect to hu-
man perception?
New Aspects Suggestion: Can we exploit the
opinions in DT to suggest new aspects to be added
to the ontology?

3.1 Aspect Selection
In order to align the scattered opinions to the
most relevant aspects, we first use each aspect la-
bel Ai ∈ A as a query to retrieve a set of rel-
evant opinions in the collection Si ⊆ DT with
a standard language modeling approach, i.e., the
KL-divergence retrieval model (Zhai and Lafferty,
2001). Up to 1000 opinion sentences are retrieved
for each aspect; each opinion sentence can be po-
tentially aligned to several aspects. In this way,
scattered online discussion are linked to the most
relevant aspects in the ontology, which enables a
user to use aspects as ”semantic bridges” to navi-
gate into the opinion space..

However, there are usually a lot of candidate
aspects in an ontology, and only some are heav-
ily commented in online discussions, so showing
all the aspects is not only unnecessary, but also
overwhelming for users. To solve this problem,

we propose to utilize the aligned opinions to fur-
ther select a subset of the most interesting aspects
A′ ⊂ A with size k. Several approaches are pos-
sible for this subset selection problem.
Size-based: Intuitively, the selected subset A′

should reflect the major opinions. So a straightfor-
ward method is to order the aspects Ai by the size
of the aligned opinion sentences Si, i.e., the num-
ber of relevant opinion sentences, and then select
the top k ones.
Opinion Coverage-based: The previous method
does not consider possible redundancy among the
aspects. A better approach is to select the subset
that covers as many distinct opinion sentences as
possible. This can be formulated as a maximum
coverage problem, for which a greedy algorithm
is known to be a good approximation: we select
one aspect at a time that is aligned with the largest
number of uncovered sentences.
Conditional Entropy-based: Aspects from a struc-
tured ontology are generally quite meaningful, but
they are not designed specifically for organizing
the opinions in our data set. Thus, they do not
necessarily correspond well to the natural clus-
ters in scattered opinions. To obtain aspects that
are aligned well with the natural clusters in scat-
tered opinions, we can first cluster DT into l
clusters C = {C1, . . . , Cl} using K-means with
TF × IDF as features, and then choose the sub-
set of aspects that minimize Conditional Entropy
of the cluster label given the aspect:

A′ = argminH(C|A′) = argmin
−

∑

Ai∈A′,Ci∈C
p(Ai, Ci) log

p(Ai, Ci)

p(Ai)




This Conditional Entropy measures the uncer-
tainty about the cluster label of a sentence given
the knowledge of its aspect. Intuitively, if the as-
pects are aligned well with the clusters, we would
be able to predict well the cluster label of a sen-
tence if we know its aspect, thus there would be
less uncertainty about the cluster label. In the
extreme case when the cluster label can be com-
pletely determined by the aspect, the conditional
entropy would reach its minimum (i.e., 0). Intu-
itively, the conditional entropy-based method es-
sentially selects the most appropriate aspects from
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Algorithm 1 Greedy Algorithm for

Conditional Entropy Based Aspect Selection
Input: A = {A1, ..., Am}
Output: k-sized A′ ⊆ A
1: A′ = {∪m

i=1Ai}
2: for j=1 to k do
3: bestH =∞; bestA = A0

4: for each Ai in A do
5: tempA′ = {Ai, A

′ \Ai}
6: if H(C|tempA′) < bestH then
7: bestH = H(C|tempA′)
8: bestA = Ai

9: A′ = {bestA,A′ \ bestA}
10: output A′

the ontology to label clusters of opinions.
The exact solution of this combinatorial optimiza-
tion problem is NP-complete, so we employ a
polynomial time greedy algorithm to approximate
it: in the i-th iteration, we select the aspect that
can minimize the conditional entropy given the
previous i − 1 selected aspects. Pseudo code is
given in Algorithm 1.
3.2 Aspect Ordering
In order to present the selected aspects to users
in a most natural way, it is important to obtain a
coherent order of them, i.e., generating an order
consistent with human perception. To achieve this
goal, our idea is to use human written articles on
the topic to learn how to organize the aspects au-
tomatically. Specifically, we would order aspects
so that the relative order of the sentences in all the
aspects would be as consistent with their order in
the original online discussions as possible.

Formally, the input is a subset of selected as-
pects A′; each Ai ∈ A′ is aligned with a set of
relevant opinion sentences Si = {Si,1, Si,2, ...}.
We define a coherence measurement function over
sentence pairs Co(Si,k, Sj,l), which is set to 1 iff
Si,k appears before Sj,l in the same article. Other-
wise, it is set to 0. Then a coherence measurement
function over an aspect pair can be calculated as

Co(Ai, Aj) =

∑
Si,k∈Si,Sj,l∈Sj

Co(Si,k, Sj,l)

|Si||Sj |

As an output, we would like to find a permutation
π̂(A′) that maximizes the coherence of all pair-
wise aspects, i.e.,

π̂(A′) = arg max
π(A′)

∑

Ai,Aj∈A′,Ai≺Aj

Co(Ai, Aj)

Algorithm 2 Greedy Algorithm for

Coherence Based Aspect Ordering
Input: A
Output: π(A)
1: for each Ai, Aj in A do
2: calculate Co(Ai, Aj)
3: for p = 1 to len = A.size() do
4: Max = A[1]
5: for each aspect Ai in A do
6: Ai.coherence = 0
7: for each aspect Aj in π(A) do
8: Ai.coherence+ = Co(Aj , Ai)
9: for each aspect Aj in A, j 6= i do

10: Ai.coherence+ = Co(Ai, Aj)
11: if Ai.coherence > Max.coherence then
12: Max = Ai

13: remove Max from A; add Max to π(A)
14: output π(A)

where Ai ≺ Aj means that Ai is before Aj . It
is easy to prove that the problem is NP-complete.
Therefore, we resort to greedy algorithms to find
approximations of the solution. Particularly we
view the problem as a ranking problem. The al-
gorithm proceeds by finding at each ranking po-
sition an aspect that can maximize the coherence
measurement, starting from the top of the rank list.
The detailed algorithm is given in Algorithm 2.
3.3 New Aspects Suggestion
Finally, if the opinions cover more aspects than in
the ontology, we also want to identify informative
phrases to label such extra aspects; such phrases
can also be used to further augment the ontology
with new aspects.

This problem is similar to existing work on gen-
erating labels for clusters (Zeng et al., 2004) or
topic models (Mei et al., 2007). Here we employ
a simple but representative technique to demon-
strate the feasibility of discovering interesting new
aspects for augmenting the ontology. We first ex-
tract named entities from scattered opinions DT

using Stanford Named Entity Recognizer (Finkel
et al., 2005). After that, we rank the phrases by
pointwise Mutual Information (MI):

MI(T, ph) = log
P (T, ph)

P (T )P (ph)

where T is the given topic and ph refers to a candi-
date entity phrase. P (T, ph) is proportional to the
number of opinion sentences they co-occur; P (T )
or P (ph) are proportional to the number of times
T or ph appears. A higher MI value indicates a

737



Statistics Category 1 Category 2
US president Digital Camera

Number of Topics 36 110
Number of Aspects 65±26 32±4
Number of Opinions 1001±1542 170±249

Table 1: Statistics of Data Sets

stronger association. We can then suggest the top
ranked entity phrases that are not in the selected
aspects as new aspects.

4 Experiments
4.1 Data Sets
To examine the generalizability of our methods,
we test on two very different categories of top-
ics: US Presidents and Digital Cameras.2 For the
ontology, we leverage Freebase, downloading the
structured ontology for each topic. For the opin-
ion corpus, we use blog data for US Presidents and
customer reviews for Digital Cameras. The blog
entries for US Presidents were collected by using
Google Blog Search3 with the name of a president
as the query. Customer reviews for Digital Cam-
eras were crawled from CNET4. The basic statis-
tics of our data sets is shown in Table 1. For all the
data collections, Porter stemmer (Porter, 1997) is
applied and stop words are removed.
4.2 Sample Results
We first show sample results of automatic orga-
nization of online opinions. We use the opin-
ion coverage-based algorithm to select 10 aspects
(10-20 aspects were found to be optimal in (Käki,
2005)) and then apply the coherence-based aspect
ordering method. The number of clusters is set so
that there are on average 15 opinions per cluster.
Opinion Organization: Table 2 and Table 3
present sample results for President Ronald Rea-
gan and Sony Cybershot DSC-W200 camera re-
spectively5. We can see that (1) although Freebase
aspects provide objective and accurate informa-
tion about the given topics, extracted opinion sen-
tences offer additional subjective information; (2)
aligning scattered opinion sentences to most rel-
evant aspects in the ontology helps digestion and

2We have made our data sets available at http://
timan.cs.uiuc.edu/downloads.html .

3http://blogsearch.google.com
4http://www.cnet.com
5Due to space limit, we only show the first few aspects as

output by our methods.

navigation; and (3) the support number, which is
the number of opinion sentences aligned to an as-
pect, can show the popularity of the aspect in the
online discussions.
Adaptability of Aspect Selection: Being un-
supervised is a significant advantage of our meth-
ods over most existing work. It provides flexibil-
ity of applying the methods in different domains
without the requirement of training data, benefit-
ing from both the ontology based template guid-
ance as well as data-driven approaches. As a re-
sult, we can generate different results for differ-
ent topics even in the same domain. In Table 4,
we show the top three selected and ordered as-
pects for Abraham Lincoln and Richard Nixon.
Although they belong to the same category, differ-
ent aspects are picked up due to the differences in
online opinions. People talk a lot about Lincoln’s
role in American Civil War and his famous quo-
tation, but when talking about Nixon, people fo-
cus on ending the Vietnam war and the Watergate
scandal. “Date of birth” and “Government posi-
tion” are ranked first because people tend to start
talking from these aspects, which is more natural
than starting from aspects like “Place of death”.
Baseline Comparison: We also show below the
aspects for Lincoln generated by a representative
approach using clustering method (e.g. (Gamon et
al., 2005)). i.e., we label the largest clusters by se-
lecting phrases with top mutual information. We
can see that although some phrases make sense,
not all are well connected with the given topic;
using aspects in ontology circumvents this prob-
lem. This example confirms the finding in pre-
vious work that the popular existing clustering-
based approach to aspects generation cannot gen-
erate meaningful labels (Chen and Dumais, 2000).
Vincent
New Salem State Historic Site
USS Abraham Lincoln
Martin Luther King Jr
Gettysburg
John F.

New Aspect Discovery: Finally, in Table 5 we
show some phrases ranked among top 10 using
the method described in Section 3.3. They reveal
additional aspects covered in online discussions
and serve as candidate new aspects to be added to
Freebase. Interestingly, John Wilkes Booth, who
assassinated President Lincoln, is not explicitly
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FreeBase Aspects Supt Representative Opinion Sentences
Appointees: 897 Martin Feldstein, whose criticism of Reagan era deficits has not been forgotten.
- Martin Feldstein Reagan’s first National Security advisor was quoted as declaring...
- Chief Economic Advisor
Government Positions Held: 967 1981 Jan 20, Ronald Reagan was sworn in as president as 52 American hostages
- President of the United States boarded a plane in Tehran and headed toward freedom.
- Jan 20, 1981 to Jan 20, 1989 40th president of the US Ronald Reagan broke the so called “20 year curse”...
Vice president: 847 8 years, 1981-1988 George H. W. Bush as vice president under Ronald Reagan...
- George H. W. Bush ...exception to the rule was in 1976, when George H W Bush beat Ronald.

Table 2: Opinion Organization Result for President Ronald Reagan

FreeBase Aspects Supt Representative Opinion Sentences
Format: 13 Quality pictures in a compact package.
- Compact ... amazing is that this is such a small and compact unit but packs so much power.
Supported Storage Types: 11 This camera can use Memory Stick Pro Duo up to 8 GB
- Memory Stick Duo Using a universal storage card and cable (c’mon Sony)
Sensor type: 10 I think the larger ccd makes a difference.
- CCD but remember this is a small CCD in a compact point-and-shoot.
Digital zoom: 47 once the digital :smart” zoom kicks in you get another 3x of zoom
-2× I would like a higher optical zoom, the W200 does a great digital zoom translation...

Table 3: Opinion Organization Result for Sony Cybershot DSC-W200 Camera

listed in Freebase, but we can find it in people’s
online discussion using mutual information.

4.3 Evaluation of Aspect Selection
Measures: Aspect selection is a new challenge,
so there is no standard way to evaluate it. It is also
very hard for human to read all of the aspects and
opinions and then select a gold standard subset.
Therefore, we opt to use indirect measures captur-
ing different characteristics of the aspect selection
problem (1) Aspect Coverage (AC): we first as-
sign each aspect Ai to the cluster Cj that has the
most overlapping sentences with Ai, approximat-
ing the cluster that would come into mind when
a reader sees Ai. Then AC is defined as the per-
centage of the clusters covered by at least one as-
pect. (2) Aspect Precision (AP ): for each cov-
ered cluster Ci, AP measures the Jaccard similar-
ity between Ci as a set of opinions and the union
of all aspects assigned to Ci. (3) Average Aspect
Precision (AAP ): defines averaged AP for all
clusters where an uncovered Ci has a zero AP ;
it essentially combines AC and AP . We also re-
port Sentence Coverage (SC), i.e., how many dis-
tinct opinion sentences can be covered by the se-
lected aspects and Conditional Entropy (H), i.e.,
how well the selected aspects align with the nat-
ural clusters in the opinions; a smaller H value
indicates a better alignment.
Results: We summarize the evaluation results in

Measures SC H AC AP AAP
PRESIDENTS
Random 503 1.9069 0.5140 0.0933 0.1223
Size-based 500 1.9656 0.3108 0.1508 0.0949
Opin Cover 746 1.8852 0.5463 0.0913 0.1316
Cond Ent. 479 1.7687 0.5770 0.0856 0.1552
CAMERAS
Random 55 1.6389 0.6554 0.0871 0.1271
Size-based 70 1.6463 0.6071 0.1077 0.1340
Opin Cover 82 1.5866 0.6998 0.0914 0.1564
Cond Ent. 70 1.5598 0.7497 0.0789 0.1574

Table 6: Evaluation Results for Aspect Selection

Table 6. In addition to the three methods de-
scribed in Section 3.1, we also include one base-
line of averaging 10 runs of random selection. The
best performance by each measure on each data
set is highlighted in bold font. Not surprisingly,
opinion coverage-based approach has the best
sentence coverage (SC) performance and condi-
tional entropy-based greedy algorithm achieves
the lowest H . Size-based approach is best in as-
pect precision but at the cost of lowest aspect cov-
erage. The trade-off between AP and AC is com-
parable to that between precision and recall as
in information retrieval while AAP summarizes
the combination of these two. The greedy algo-
rithm based on conditional entropy outperforms
all other approaches in AC and also in AAP , sug-
gesting that it can provide a good balance between
AP and AC.
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Supt Richard-Nixon Supt Abraham-Lincoln
50 Date of birth: 419 Government Positions Held:

- Jan 9, 1913 - United States Representative Mar 4,1847-Mar 3,1849
108 Tracks Recorded: 558 Military Commands:

- 23-73 Broadcast: End of the Vietnam War - American Civil War - United States of America
120 Works Written About This Topic: 810 Quotations: - Nearly all men can stand adversity, but if

- Watergate you want to test a man’s character, give him power.
Table 4: Comparison of Aspect Selection for Two Presidents (aligned opinions are omitted here)

Suggested Phrases Supporting Opinion Sentences
Abraham Lincoln Presidential Library CDB projects include the Abraham Lincoln Presidential Library and Museum
Abraham Lincoln Memorial ..., eventually arriving at Abraham Lincoln Memorial.
John Wilkes Booth John Wilkes Booth shoots President Abraham Lincoln at Ford’s Theatre ...

Table 5: New Phrases for Abraham Lincoln

4.4 Evaluation of Aspect Ordering

Human Annotation: In order to quantitatively
evaluate the effectiveness of aspect ordering, we
conduct user studies to establish gold standard or-
dering. Three users were each given k selected as-
pects and asked to perform two tasks for each US
President: (1) identify clusters of aspects that are
more natural to be presented together (cluster con-
straints) and (2) identify aspect pairs where one
aspect is preferred to appear before the other from
the viewpoint of readability. (order constraints).
We did not ask them to provide a full order of
the k aspects, because we suspect that there are
usually more than one “perfect” order. Instead,
identifying partial orders or constraints is easier
for human to perform, thus provides more robust
gold standard.
Human Agreement: After obtaining the human
annotation results, we first study human consen-
sus on the ordering task. For both types of human
identified constraints, we convert them into pair-
wise relations of aspects, e.g., “Ai and Aj should
be presented together” or “Ai should be displayed
before Aj”. Then we calculate the agreement per-
centage among the three users. In Table 7, we can
see that only a very small percentage of pair-wise
partial orders (15.92% of the cluster constraints
and none of the order constraints) are agreed by
all the three users, though the agreement of clus-
tering is much higher than that of ordering. This
indicates that ordering the aspects is a subjective
and difficult task.
Measures: Given the human generated gold stan-
dard of partial constraints, we use the follow-
ing measures to evaluate the automatically gen-

AgreedBy Cluster Constraint Order Constraint
1 37.14% 89.22%
2 46.95% 10.78%
3 15.92% 0.00%

Table 7: Human Agreement on Ordering

erated full ordering of aspects: (1) Cluster Pre-
cision (prc): for all the aspect pairs placed in
the same cluster by human, we calculate the per-
centage of them that are also placed together in
the system output. (2) Cluster Penalty (pc): for
each aspect pair placed in the same cluster by hu-
man, we give a linear penalty proportional to the
number of aspects in between the pair that the
system places; pc can be interpreted as the aver-
age number of aspects between aspect pairs that
should be presented together in the case of mis-
ordering. Smaller penalty corresponds to better
ordering performance. (3) Order Precision (pro):
the percentage of correctly predicted aspect pairs
compared with human specified order.
Results: In Table 8, we report the ordering
performance based on two selection algorithms:
opinion coverage-based and conditional entropy-
based. Different selection algorithms provide dif-
ferent subsets of aspects for the ordering algo-
rithms to operate on. For comparison with our
coherence-based ordering algorithm, we include a
random baseline and Freebase ontology ordering.
Note that Freebase order is a very strong baseline
because it is edited by human even though the pur-
pose was not for organizing opinions. To take into
account the variation of human annotation, we use
four versions of gold standard: three are from the
individual annotators and one from the union of
their annotation. We did not include the gold stan-
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Selection Gold Cluster Precision (prc) Cluster Penalty (pc) Order Precision (pro)
Algo STD Random Freebase Coherence Random Freebase Coherence Random Freebase Coherence

Opin Cover 1 0.3290 0.9547 0.9505 1.8798 0.1547 0.1068 0.4804 0.7059 0.4510
Opin Cover 2 0.3266 0.9293 0.8838 1.7944 0.3283 0.1818 0.4600 0.4000 0.4000
Opin Cover 3 0.2038 0.4550 0.4417 2.5208 1.3628 1.7994 0.5202 0.4561 0.5263
Opin Cover union 0.3234 0.7859 0.7237 1.8378 0.6346 0.4609 0.4678 0.4635 0.4526

Cond Entropy 1 0.2540 0.9355 0.8978 2.0656 0.2957 0.2016 0.5106 0.7111 0.5444
Cond Entropy 2 0.2535 0.7758 0.8323 2.1790 0.7530 0.5222 0.4759 0.6759 0.5093
Cond Entropy 3 0.2523 0.4030 0.5545 2.3079 2.1328 1.1611 0.5294 0.7143 0.8175
Cond Entropy union 0.3067 0.7268 0.7488 1.9735 1.0720 0.7196 0.5006 0.6500 0.6833

Table 8: Evaluation Results on Aspect Ordering

dard that is the intersection of three annotators be-
cause that would leave us with too little overlap.
We have several observations: (1) In general, re-
sults show large variations when using different
versions of gold standard, indicating the subjec-
tive nature of the ordering task. (2) Coherence-
based ordering shows similar performance to
Freebase order-based in cluster precision (prc),
but when we take into consideration the distance-
based penalty (pc) of separating aspects pairs in
the same cluster, coherence-based ordering is al-
most always significantly better except in one
case. This shows that our method can effectively
learn the coherence of aspects based on how their
aligned opinion sentences are presented in online
discussions. (3) Order precision (pro) can hardly
distinguish different ordering algorithm. This in-
dicates that people vary a lot in their preferences
as which aspects should be presented first. How-
ever, in cases when the random baseline outper-
forms others the margin is fairly small, while
Freebase order and coherence-based order have a
much larger margin of improvement when show-
ing superior performance.

5 Conclusions and Future Work

A major challenge in automatic integration of
scattered online opinions is how to organize all
the diverse opinions in a meaningful way for any
given topic. In this paper, we propose to solve this
challenge by exploiting related aspects in struc-
tured ontology which are guaranteed to be mean-
ingful and well connected to the topic. We pro-
posed three different methods for selecting a sub-
set of aspects from the ontology that can best
capture the major opinions, including size-based,
opinion coverage-based, and conditional entropy-
based methods. We also explored two ways to
order aspects, i.e., ontology-order and coherence

optimization. In addition, we also proposed ap-
propriate measures for quantitative evaluation of
both aspect selection and ordering.

Experimental evaluation on two data sets (US
President and Digital Cameras) shows that by ex-
ploiting structured ontology, we can generate in-
teresting aspects to organize scattered opinions.
The conditional entropy method is shown to be
most effective for aspect selection, and the coher-
ence optimization method is more effective than
ontology-order in optimizing the coherence of the
aspect ordering, though ontology-order also ap-
pears to perform reasonably well. In addition, by
extracting salient phrases from the major opinions
that cannot be covered well by any aspect in an
existing ontology, we can also discover interest-
ing new aspects to extend the existing ontology.

Complementary with most existing summariza-
tion work, this work proposes a new direction of
using structured information to organize and sum-
marize unstructured opinions, opening up many
interesting future research directions. For in-
stance, in order to focus on studying aspect selec-
tion and ordering, we have not tried to optimize
sentences matching with aspects in the ontology;
it would be very interesting to further study how
to accurately retrieve sentences matching each as-
pect. Another promising future work is to orga-
nize opinions using both structured ontology in-
formation and well-written overview articles.
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Abstract

We propose an unsupervised approach uti-
lizing only raw corpora to enhance mor-
phological alignment involving highly in-
flected languages. Our method focuses on
closed-class morphemes, modeling their
influence on nearby words. Our language-
independent model recovers important
links missing in the IBM Model 4 align-
ment and demonstrates improved end-to-
end translations for English-Finnish and
English-Hungarian.

1 Introduction

Modern statistical machine translation (SMT)
systems, regardless of whether they are word-,
phrase- or syntax-based, typically use the word as
the atomic unit of translation. While this approach
works when translating between languages with
limited morphology such as English and French,
it has been found inadequate for morphologically-
rich languages like Arabic, Czech and Finnish
(Lee, 2004; Goldwater and McClosky, 2005;
Yang and Kirchhoff, 2006). As a result, a line
of SMT research has worked to incorporate mor-
phological analysis to gain access to information
encoded within individual words.

In a typical MT process, word aligned data is
fed as training data to create a translation model.
In cases where a highly inflected language is
involved, the current word-based alignment ap-
proaches produce low-quality alignment, as the
statistical correspondences between source and

∗This work was supported by a National Research Foun-
dation grant “Interactive Media Search” (grant # R-252-000-
325-279)

target words are diffused over many morpholog-
ical forms. This problem has a direct impact on
end translation quality.

Our work addresses this shortcoming by
proposing a morphologically sensitive approach
to word alignment for language pairs involving
a highly inflected language. In particular, our
method focuses on a set of closed-class mor-
phemes (CCMs), modeling their influence on
nearby words. With the model, we correct er-
roneous alignments in the initial IBM Model 4
runs and add new alignments, which results in im-
proved translation quality.

After reviewing related work, we give a case
study for morpheme alignment in Section 3. Sec-
tion 4 presents our four-step approach to construct
and incorporate our CCM alignment model into
the grow-diag process. Section 5 describes exper-
iments, while Section 6 analyzes the system mer-
its. We conclude with suggestions for future work.

2 Related Work

MT alignment has been an active research area.
One can categorize previous approaches into those
that use language-specific syntactic information
and those that do not. Syntactic parse trees
have been used to enhance alignment (Zhang and
Gildea, 2005; Cherry and Lin, 2007; DeNero
and Klein, 2007; Zhang et al., 2008; Haghighi et
al., 2009). With syntactic knowledge, modeling
long distance reordering is possible as the search
space is confined to plausible syntactic variants.
However, they generally require language-specific
tools and annotated data, making such approaches
infeasible for many languages. Works that follow
non-syntactic approaches, such as (Matusov et al.,
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i1 declare2 resumed3 the4 session5 of6 the7 european8 parliament9 adjourned10 on11 1312 december13 199614

-1 julistan2 euroopan3 parlamentin4 perjantaina5 136 joulukuuta7 19968 keskeytyneen9 istuntokauden10 uudelleen11 avatuksi12

Direct: 1-2 2-2 3-9 4-3 5-10 6-10 7-3 8-12 9-12 10-12 11-5 12-6 13-7 14-8

Inverse: 1-1 2-2 8-3 9-4 10-5 12-6 13-7 14-8 10-9 10-10 10-11 10-12

(a)

Gloss: -1 declare2 european3 parliament 4 on-friday5 136 december7 19968 adjourned9 session10 resumed11,12

i1 declare2 resume+3 d4 the5 session6 of7 the8 european9 parliament10 adjourn+11 ed12 on13 1314 december15 199616

- julist+ a+ n euroopa+ n parlament+ in perjantai+ n+ a 13 joulukuu+ ta 1996 keskeyty+ neen istunto+ kauden uude+ lle+ en avatuksi
1   2      3   4        5          6          7           8        9          10 11 12      13        14   15         16           17        18            19        20       21  22       23

Direct: 1-23 2-23 3-23 4-23 5-22 6-23 7-22 8-6 9-5 10-7 11-16 12-16 13-9 14-12 15-13 16-15

Inverse: 1-1 2-2 2-3 5-4 9-5 8-6 10-7 10-8 11-9 0-10 7-11 14-12 15-13 15-14 16-15 11-16 11-17 11-18 11-19 11-20 11-21 0-22 11-23

(b)

Figure 1: Sample English-Finnish IBM Model 4 alignments: (a) word-level and (b) morpheme-level. Solid lines indicate
intersection alignments, while the exhaustive asymmetric alignments are listed below. In (a), translation glosses for Finnish
are given; the dash-dot line is the incorrect alignment. In (b), bolded texts are closed-class morphemes (CCM), while bolded
indices indicate alignments involving CCMs. The dotted lines are correct CCM alignments not found by IBM Model 4.

2004; Liang et al., 2006; Ganchev et al., 2008),
which aim to achieve symmetric word alignment
during training, though good in many cases, are
not designed to tackle highly inflected languages.

Our work differs from these by taking a middle
road. Instead of modifying the alignment algo-
rithm directly, we preprocess asymmetric align-
ments to improve the input to the symmetrizing
process later. Also, our approach does not make
use of specific language resources, relying only on
unsupervised morphological analysis.

3 A Case for Morpheme Alignment

The notion that morpheme based alignment would
be useful in highly inflected languages is intu-
itive. Morphological inflections might indicate
tense, gender or number that manifest as separate
words in largely uninflected languages. Capturing
these subword alignments can yield better word
alignments that otherwise would be missed.

Let us make this idea concrete with a case study
of the benefits of morpheme based alignment. We
show the intersecting alignments of an actual En-
glish (source)→ Finnish (target) sentence pair in
Figure 1, where (a) word-level and (b) morpheme-
level alignments are shown. The morpheme-
level alignment is produced by automatically seg-
menting words into morphemes and running IBM
Model 4 on the resulting token stream.

Intersection links (i.e., common to both direct
and inverse alignments) play an important role in
creating the final alignment (Och and Ney, 2004).
While there are several heuristics used in the sym-
metrizing process, the grow-diag(onal) process is

common and prevalent in many SMT systems,
such as Moses (Koehn et al., 2007). In the grow-
diag process, intersection links are used as seeds
to find other new alignments within their neigh-
borhood. The process continues iteratively, until
no further links can be added.

In our example, the morpheme-level intersec-
tion alignment is better as it has no misalignments
and adds new alignments. However it misses
some key links. In particular, the alignments of
closed-class morphemes (CCMs; later formally
defined) as indicated by the dotted lines in (b) are
overlooked in the IBM Model 4 alignment. This
difficulty in aligning CCMs is due to:

1. Occurrences of garbage-collector words
(Moore, 2004) that attract CCMs to align to
them. Examples of such links in (b) are 1–23
or 11–21 with the occurrences of rare words
adjourn+11 and avatuksi23. We further
characterize such errors in Section 6.1.

2. Ambiguity among CCMs of the same surface
that causes incorrect matchings. In (b), we
observe multiple occurrence of the and n
on the source and target sides respectively.
While the link 8–6 is correct, 5–4 is not as i1
should be aligned to n4 instead. To resolve
such ambiguity, context information should
be considered as detailed in Section 4.3.

The fact that rare words and multiple affixes
often occur in highly inflected languages exacer-
bates this problem, motivating our focus on im-
proving CCM alignment. Furthermore, having ac-
cess to the correct CCM alignments as illustrated
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in Figure 1 guides the grow-diag process in find-
ing the remaining correct alignments. For exam-
ple, the addition of CCM links i1–n4 and d4–
lle21 helps to identify declare2–julist2
and resume3–avatuksi23 as admissible align-
ments, which would otherwise be missed.

4 Methodology

Our idea is to enrich the standard IBM Model 4
alignment by modeling closed-class morphemes
(CCMs) more carefully using global statistics and
context. We realize our idea by proposing a four-
step method. First, we take the input parallel cor-
pus and convert it into morphemes before training
the IBM Model 4 morpheme alignment. Second,
from the morpheme alignment, we induce auto-
matically bilingual CCM pairs. The core of our
approach is in the third and fourth steps. In Step 3,
we construct a CCM alignment model, and apply
it on the segmented input corpus to obtain an au-
tomatic CCM alignment. Finally, in Step 4, we in-
corporate the CCM alignment into the symmetriz-
ing process via our modified grow-diag process.

4.1 Step 1: Morphological Analysis

The first step presupposes morphologically seg-
mented input to compute the IBM Model 4 mor-
pheme alignment. Following Virpioja et al.
(2007), we use Morfessor, an unsupervised an-
alyzer which learns morphological segmentation
from raw tokenized text (Creutz and Lagus, 2007).

The tool segments input words into labeled
morphemes: PRE (prefix), STM (stem), and SUF
(suffix). Multiple affixes can be proposed for
each word; word compounding is allowed as well,
e.g., uncarefully is analyzed as un/PRE+
care/STM+ ful/SUF+ ly/SUF. We append a
“+” sign to each nonfinal tag to distinguish word-
internal morphemes from word-final ones, e.g.,
“x/STM” and “x/STM+” are considered different
tokens. The “+” annotation enables the restoration
of the original words, a key point to enforce word
boundary constraints in our work later.

4.2 Step 2: Bilingual CCM Pairs

We observe that low and highly inflected lan-
guages, while intrinsically different, share more

en fi en fi en fi
the1 -n†1 in6 -ssa‡15 me166 -ni‡60
-s2 -t‡9 is7 on‡2 me166 minun†282
to3 -ä6 that8 että‡7 why168 siksi‡187
to3 maan91 that8 ettei‡283 view172 mieltä†162
of4 -a4 we10 -mme‡10 still181 vielä‡108
of4 -en†5 we10 meidän†52 where183 jossa‡209
of4 -sta†19 we10 me‡113 same186 samaa‡334
and5 ja‡3 we10 emme123 he187 hän‡184
and5 sekä‡122 we10 meillä†231 good189 hyvä‡321
and5 eikä203 . . . . . . over-408 yli-‡391

Table 1: English(en)-Finnish(fi) Bilingual CCM pairs
(N=128). Shown are the top 19 and last 10 of 168 bilingual
CCM pairs extracted. Subscript i indicates the ith most fre-
quent morpheme in each language. ‡ marks exact correspon-
dence linguistically, whereas † suggests rough correspon-
dence w.r.t http://en.wiktionary.org/wiki/.

in common at the morpheme level. The many-
to-one relationships among words on both sides
is often captured better by one-to-one correspon-
dences among morphemes. We wish to model
such bilingual correspondence in terms of closed-
class morphemes (CCM), similar to Nguyen and
Vogel (2008)’s work that removes nonaligned af-
fixes during the alignment process. Let us now
formally define CCM and an associative measure
to gauge such correspondence.

Definition 1. Closed-class Morphemes (CCM)
are a fixed set of stems and affixes that ex-
hibit grammatical functions just like closed-class
words. In highly inflected languages, we observe
that grammatical meanings may be encoded in
morphological stems and affixes, rather than sep-
arate words. While we cannot formally identify
valid CCMs in a language-independent way (as
by definition they manifest language-dependent
grammatical functions), we can devise a good ap-
proximation. Following Setiawan et al. (2007),
we induce the set of CCMs for a language as the
top N frequent stems together with all affixes1.

Definition 2. Bilingual Normalized PMI
(biPMI) is the averaged normalized PMI com-
puted on the asymmetric morpheme alignments.
Here, normalized PMI (Bouma, 2009), known to
be less biased towards low-frequency data, is de-
fined as: nPMI(x, y) = ln p(x,y)

p(x)p(y))/- ln p(x, y),
where p(x), p(y), and p(x, y) follow definitions
in the standard PMI formula. In our case, we only

1Note that we employ length and vowel sequence heuris-
tics to filter out corpus-specific morphemes.
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compute the scores for x, y being morphemes fre-
quently aligned in both asymmetric alignments.

Given these definitions, we now consider a pair
of source and target CCMs related and termed a
bilingual CCM pair (CCM pair, for short) if they
exhibit positive correlation in their occurrences
(i.e., positive nPMI2 and frequent cooccurrences).

We should note that relying on a hard thresh-
old of N as in (Setiawan et al., 2007) is brittle
as the CCM set varies in sizes across languages.
Our method is superior in the use of N as a start-
ing point only; the bilingual correspondence of the
two languages will ascertain the final CCM sets.

Take for example the en and fi CCM sets with
154 and 214 morphemes initially (each consist-
ing of N=128 stems). As morphemes not having
their counterparts in the other language are spu-
rious, we remove them by retaining only those in
the CCM pairs. This effectively reduces the re-
spective sizes to 91 and 114. At the same time,
these final CCMs cover a much larger range of top
frequent morphemes than N , up to 408 en and 391
fi morphemes, as evidenced in Table 1.

4.3 Step 3: The CCM Alignment Model

The goal of this model is to predict when appear-
ances of a CCM pair should be deemed as linking.

With an identified set of CCM pairs, we know
when source and target morphemes correspond.
However, in a sentence pair there can be many in-
stances of both the source and target morphemes.
In our example, the the–n pair corresponds to
definite nouns; there are two the and three -n in-
stances, yielding 2× 3=6 possible links.

Deciding which instances are aligned is a deci-
sion problem. To solve this, we inspect the IBM
Model 4 morpheme alignment to construct a CCM
alignment model. The CCM model labels whether
an instance of a CCM pair is deemed semantically
related (linked). We cast the modeling problem as
supervised learning, where we choose a maximum
entropy (ME) formulation (Berger et al., 1996).

We first discuss sample selection from the IBM
Model 4 morpheme alignment, and then give de-
tails on the features extracted. The processes de-
scribed below are done per sentence pair with fm

1 ,

2nPMI has a bounded range of [−1, 1] with values 1 and
0 indicating perfect positive and no correlation, respectively.

en1 and U denoting the source, target sentences and
the union alignments, respectively.

Class labels. We base this on the initial IBM
Model 4 alignment to label each CCM pair in-
stance as a positive or negative example: Positive
examples are simply CCM pairs in U. To be pre-
cise, links j–i in U are positive examples if fj–ei
is a CCM pair. To find negative examples, we in-
ventory other potential links that share the same
lexical items with a positive one. That is, a link
j′–i′ not in U is a negative example, if a positive
link j–i such that fj = f ′

j and ei = e′i exists.
We stress that our collection of positive exam-

ples contains high-precision but low-recall IBM
Model 4 links, which connect the reliable CCM
pairs identified before. The model then general-
izes from these samples to detect incorrect CCM
links and to recover the correct ones, enhancing
recall. We later detail this process in §4.4.

Feature Set. Given a CCM pair instance, we
construct three feature types: lexical, monolin-
gual, and bilingual (See Table 2). These features
capture the global statistics and contexts of CCM
pairs to decide if they are true alignment links.
• Lexical features reflect the tendency of the

CCM pair being aligned to themselves. We use
biPMI, which aggregates the global alignment
statistics, to determine how likely source and tar-
get CCMs are associated with each other.
• Monolingual context features measure the

association among tokens of the same language,
capturing what other stems and affixes co-occur
with the source/target CCM:

1. within the same word (intra). The aim is to
disambiguate affixes as necessary in highly
inflected languages where same stems could
generate different roles or meanings.

2. outside the CCM’s word boundary (inter).
This potentially capture cues such as tense,
or number agreement. For example, in En-
glish, the 3sg agreement marker on verbs -s
often co-occurs with nearby pronouns e.g.,
he, she, it; whereas the same marker on
nouns (-s), often appears with plural deter-
miners e.g., these, those, many.

To accomplish this, we compute two monolin-
gual nPMI scores in the same spirit as biPMI, but
using the morphologically segmented input from
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Feature Description Examples
Lexical — biPMI: None [−1, 0], Low (0, 1/3], Medium (1/3, 2/3], High (2/3, 1] pmid−lle=Low
Monolingual Context — Capture morpheme cooccurrence with the src/tgt CCM
Intra – Within the same word srcWd−lle=resume, tgtWd−lle=en, tgtWd−lle=uude
Inter – To the Left & Right, in different words srcLd−lle=i, srcRd−lle=the, tgtRd−lle=avatuksi
Bilingual context — Capture neighbor links’ cooccurrence with the CCM pair link
bi0 – Most descriptive, capturing in terms of surface forms only→ maybe sparse bi0d−lle=resume–avatuksi
bi1 – Generalizes morphemes into relative locations (Left, Within, Right) bi1d−lle=W–avatuksi, bi1d−lle=resume–R
bi2 – Most general, coupling token types (Close, Open) /w relative positions bi2d−lle=O–WR

Table 2: Maximum entropy feature set. Shown are feature types, descriptions and examples. Most examples are given for
the alignment d4–lle+21 of the same running example in §3. Note that we only partially list the bilingual context features.

each language separately. Two morphemes are
“linked” if within a context window of wc words.
• Bilingual context features model cross-

lingual reordering, capturing the relationships be-
tween the CCM pair link and its neighbor3 links.
Consider a simple translation between an English
phrase of the form we 〈verb〉 and the Finnish
one 〈verb〉 -mme, where -mme is the 1pl verb
marker. We aim to capture movements such as
“the open-class morphemes on the right of we and
on the left of -mme are often aligned”. These will
function as evidence for the ME learner to align
the CCM pair (we, -mme). We encode the bilin-
gual context at three different granularities, from
most specific to most general ones (cf Table 2).

4.4 Step 4: Incorporate CCM Alignment

At test time, we apply the trained CCM alignment
model to all CCM pairs occurring in each sentence
pair to find CCM links. On our running exam-
ple in Figure 1, the CCM classifier tests 17 CCM
pairs, identifying 6 positive CCM links of which
4 are true positives (dotted lines in (b)).

Though mostly correct, we note that some of
the predicted links conflict: (d4–lle21, ed12–
neen17 and ed12–lle21) share alignment end-
points. Such sharing in CCM alignments is rare
and we believe should be disallowed. This moti-
vates us to resolve all CCM link conflicts before
incorporating them into the symmetrizing process.

Resolving link conflicts. As CCM pairs are
classified independently, they possess classifica-
tion probabilities which we use as evidence to re-
solve the conflicts. In our example, the classifica-
tion probabilities for (d4–lle21, ed12–neen17,
ed12–lle21) are (0.99, 0.93, 0.79) respectively.

We use a simple, “best-first” greedy approach
3Within a context window ofwc words as in monolingual.

to determine which links are kept and which are
dropped to satisfy our assumption. In our case,
we pick the most confident link, d4–lle21 with
probability 0.99. This precludes the incorrect link,
ed12–lle21, but admits the other correct one
ed12–neen17, probability 0.93. As a result, this
resolution successfully removes the incorrect link.

Modifying grow-diag. We incorporate the set
of conflict-resolved CCM links into the grow-diag
process. This step modifies the input alignments
as well as the growing process. U and I denote the
IBM Model 4 union and intersection alignments.

In our view, the resolved CCM links can serve
as a quality mark to “upgrade” links before input
into the grow-diag process. We upgrade resolved
CCM links: (a) those ∈ U → part of I , treating
them as alignment seeds; (b) those /∈ U → part
of U , using them for exploration and growing. To
reduce spurious alignments, we discarded links in
U that conflict with the resolved CCM links.

In the usual grow-diag, links immediately adja-
cent to a seed link l are considered candidates to
be appended into the alignment seeds. While suit-
able for word-based alignment, we believe it is too
small a context when the input are morphemes.

For morpheme alignment, the candidate context
makes more sense in terms of word units. We thus
enforce word boundaries in our modified grow-
diag. We derive word boundaries for end points in
l using the morphological tags and the “+” word-
end marker mentioned in §4.1. Using such bound-
aries, we can then extend the grow-diag to con-
sider candidate links within a neighborhood of wg

words; hence, enhancing the candidate coverage.

5 Experiments

We use English-Finnish and English-Hungarian
data from past shared tasks (WPT05 and WMT09)
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to validate our approach. Both Finnish and Hun-
garian are highly inflected languages, with numer-
ous verbal and nominal cases, exhibiting agree-
ment. Dataset statistics are given in Table 3.

en-fi # en-hu #
Train Europarl-v1 714K Europarl-v4 1,510K
LM Europarl-v1-fi 714K News-hu 4,209K
Dev wpt05-dev 2000 news-dev2009 2051
Test wpt05-test 2000 news-test2009 3027

Table 3: Dataset Statistics: the numbers of parallel sen-
tences for training, LM training, development and test sets.

We use the Moses SMT framework for our
work, creating both our CCM-based systems and
the baselines. In all systems built, we obtain
the IBM Model 4 alignment via GIZA++ (Och
and Ney, 2003). Results are reported using case-
insensitive BLEU (Papineni et al., 2001).

Baselines. We build two SMT baselines:
w-system: This is a standard phrase-based

SMT, which operates at the word level. The sys-
tem extracts phrases of maximum length 7 words,
and uses a 4-gram word-based LM.

wm-system: This baseline works at the word
level just like the w-system, but differs at the
alignment stage. Specifically, input to the IBM
Model 4 training is the morpheme-level corpus,
segmented by Morfessor and augmented with “+”
to provide word-boundary information (§4.1). Us-
ing such information, we constrain the alignment
symmetrization to extract phrase pairs of 7 words
or less in length. The morpheme-based phrase ta-
ble is then mapped back to word forms. The pro-
cess continues identically as in the w-system.

CCM-based systems. Our CCM-based sys-
tems are similar in spirit to the wm system: train at
the morpheme, but decode at the word level. We
further enhance the wm-system at the alignment
stage. First, we train our CCM model based on
the initial IBM Model 4 morpheme alignment, and
apply it to the morpheme corpus to obtain CCM
alignment, which are input to our modified grow-
diag process. The CCM approach defines the set-
ting of three parameters: 〈N , wc, wg〉 (Section 4).
Due to our resource constraints, we set N=128,
similar to (Setiawan et al., 2007), and wc=1 ex-
perimentally. We only focus on the choice of wg,
testing wg={1, 2} to explore the effect of enforc-
ing word boundaries in the grow-diag process.

5.1 English-Finnish results

We test the translation quality of both directions
(en-fi) and (fi-en). We present results in Table 4 for
7 systems, including: our baselines, three CCM-
based systems with word-boundary knowledge
wg={0, 1, 2} and two wm-systems wg={1, 2}.

Results in Table 4 show that our CCM approach
effectively improves the performance. Compared
to the wm-system, it chalks up a gain of 0.46
BLEU points for en-fi, and a larger improvement
of 0.93 points for the easier, reverse direction.

Further using word boundary knowledge in our
modified grow-diag process demonstrates that the
additional flexibility consistently enhances BLEU
for wg = 1, 2. We achieve the best performance
at wg = 2 with improvements of 0.67 and 1.22
BLEU points for en-fi and fi-en, respectively.

en-fi fi-en
w-system 14.58 23.56
wm-system 14.47 22.89
wm-system + CCM 14.93+0.46 23.82+0.93

wm-system + CCM + wg = 1 15.01 23.95
wm-system + CCM + wg = 2 15.14+0.67 24.11+1.22

wm-system + wg = 1 14.44 22.92
wm-system + wg = 2 14.28 23.01
(Ganchev, 2008) - Base 14.72 22.78
(Ganchev, 2008) - Postcat 14.74 23.43+0.65

(Yang, 2006) - Base N/A 22.0
(Yang, 2006) - Backoff N/A 22.3+0.3

Table 4: English/Finnish results. Shown are BLEU
scores (in %) with subscripts indicating absolute improve-
ments with respect to the wm-system baseline.

Interestingly, employing the word boundary
heuristic alone in the original grow-diag does not
yield any improvement for en-fi, and even worsens
as wg is enlarged (as seen in Rows 6–7). There
are only slight improvements for fi-en with larger
wg.This attests to the importance of combining the
CCM model and the modified grow-diag process.

Our best system outperforms the w-system
baseline by 0.56 BLEU points for en-fi, and yields
an improvement of 0.55 points for fi-en.

Compared to works experimenting en/fi trans-
lation, we note the two prominent ones by Yang
and Kirchhoff (2006) and recently by Ganchev
et al. (2008). The former uses a simple back-off
method experimenting only fi-en, yielding an im-
provement of 0.3 BLEU points. Work in the op-
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posite direction (en-fi) is rare, with the latter pa-
per extending the EM algorithm using posterior
constraints, but showing no improvement; for fi-
en, they demonstrate a gain of 0.65 points. Our
CCM method compares favorably against both ap-
proaches, which use the same datasets as ours.

5.2 English-Hungarian results
To validate our CCM method as language-
independent, we also perform preliminary exper-
iments on en-hu. Table 5 shows the results using
the same CCM setting and experimental schemes
as in en/fi. An improvement of 0.35 BLEU points
is shown using the CCM model. We further im-
prove by 0.44 points with word boundary wg=1,
but performance degrades for the larger window.
Due to time constraints, we leave experiments
for the reverse, easier direction as future work.
Though modest, the best improvement for en-hu
is statistical significant at p<0.01 according to
Collins’ sign test (Collins et al., 2005).

System BLEU
w-system 9.63
wm-system 9.47
wm-system + CCM 9.82 +0.35

wm-system + CCM + wg = 1 9.91 +0.44

wm-system + CCM + wg = 2 9.87

Table 5: English/Hungarian results. Subscripts indicate
absolute improvements with respect to the wm-system.

We note that MT experiments for en/hu 4 are
very limited, especially for the en to hu direction.
Novák (2009) obtained an improvement of 0.22
BLEU with no distortion penalty; whereas Koehn
and Haddow (2009) enhanced by 0.5 points us-
ing monotone-at-punctuation reordering, mini-
mum Bayes risk and larger beam size decoding.

While not directly comparable in the exact set-
tings, these systems share the same data source
and splits similar to ours. In view of these com-
munity results, we conclude that our CCM model
does perform competitively in the en-hu task, and
indeed seems to be language independent.

6 Detailed Analysis

The macroscopic evaluation validates our ap-
proach as improving BLEU over both baselines,

4Hungarian was used in the ACL shared task 2008, 2009.

but how do the various components contribute?
We first analyze the effects of Step 4 in produc-
ing the CCM alignment, and then step backward
to examine the contribution of the different feature
classes in Step 3 towards the ME model.

6.1 Quality of CCM alignment

To evaluate the quality of the predicted CCM
alignment, we address the following questions:

Q1: What is the portion of CCM pairs being
misaligned in the IBM Model 4 alignment?

Q2: How does the CCM alignment differ from
the IBM Model 4 alignment?

Q3: To what extent do the new links introduced
by our CCM model address Q1?

Given that we do not have linguistic expertise in
Finnish or Hungarian, it is not possible to exhaus-
tively list all misaligned CCM pairs in the IBM
Model 4 alignment. As such, we need to find other
form of approximation in order to address Q1.

We observe that correct links that do not exist
in the original alignment could be entirely miss-
ing, or mistakenly aligned to neighboring words.
With morpheme input, we can also classify mis-
takes with respect to intra- or inter-word errors.
Figure 2 characterizes errors T1, T2 and T3, each
being a more severe error class than the previous.
Focusing on ei in the figure, links connecting ei
to fj′ or fj′′ are deemed T1 errors (misalignments
happen on one side). A T2 error aligns f ′′

j within
the same word, while a T3 error aligns it outside
the current word but still within its neighborhood.
This characterization is automatic, cheap and has
the advantage of being language-independent.

fj fj' fj’’

1 word

T1

T2

T3

1 word

ei ei' ei’’

Figure 2: Categorization of CCM missing links. Given
that a CCM pair link (fj–ei) is not present in the IBM Model
4, occurrences of any nearby link of the types T[1−3] can be
construed as evidence of a potential misalignment.

Statistics in Table 6(ii) answers Q1, suggest-
ing a fairly large number of missing CCM links:
3, 418K for en/fi and 6, 216K for en/hu, about
12.35% and 12.06% of the IBM Model 4 union
alignment respectively. We see that T1 errors con-
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stitute the majority, a reasonable reflection of the
garbage- collector5 effect discussed in Section 3.

General (i) Missing CCM links (ii)
en/fi en/hu en/fi en/hu

Direct 17,632K 34,312K T1 2,215K 3,487K
Inverse 18,681K 34,676K T2 358K 690K
D ∩ I 8,643K 17,441K T3 845K 2,039K
D ∪ I 27,670K 51,547K Total 3,418K 6,216K

Table 6: IBM Model 4 alignment statistics. (i) General
statistics. (ii) Potentially missing CCM links.

Q2 is addressed by the last column in Ta-
ble 7. Our CCM model produces about 11.98%
(1,035K/8,643K) new CCM links as compared to
the size of the IBM Model 4 intersection align-
ment for en/fi, and similarly, 9.52% for en/hu.

Orig. Resolved I U\I New
en/fi 5,299K 3,433K 1065K 1,332K 1,035K
en/hu 9,425K 6,558K 2,752K 2,146K 1,660K

Table 7: CCM vs IBM Model 4 alignments. Orig. and
Resolved give # CCM links predicted in Step 4 before and
after resolving conflicts. Also shown are the number of re-
solved links present in the Intersection, Union excluding I
(U\I) of the IBM Model 4 alignment and New CCM links.

Lastly, figures in Table 8 answer Q3, revealing
that for en/fi, 91.11% (943K/1,035K) of the new
CCM links effectively cover the missing CCM
alignments, recovering 27.59% (943K/3,418K) of
all missing CCM links. Our modified grow-diag
realizes a majority 76.56% (722K/943K) of these
links in the final alignment.

We obtain similar results in the en/hu pair for
link recovery, but a smaller percentage 22.59%
(330K/1,461K) are realized through the modified
symmetrization. This partially explains why im-
provements are modest for en/hu.

New CCM Links (i) Modified grow-diag (ii)
en/fi en/hu en/fi en/hu

T1 707K 1,002K 547K 228K
T2 108K 146K 79K 22K
T3 128K 313K 96K 80K
Total 943K 1,461K 722K 330K

Table 8: Quality of the newly introduced CCM links.
Shown are # new CCM links addressing the three error types
before (i) and after (ii) the modified grow-diag process.

6.2 Contributions of ME Feature Classes
We also evaluate the effectiveness the ME features
individually through ablation tests. For brevity,

5E.g., ei prefers f′j or f′′j (garbage collectors) over fj .

we only examine the more difficult translation di-
rection, en to fi. Results in Table 9 suggest that
all our features are effective, and that removing
any feature class degrades performance. Balanc-
ing specificity and generality, bi1 is the most
influential feature in the bilingual context group.
For monolingual context, inter, which captures
larger monolingual context, outperforms intra.
The most important feature overall is pmi, which
captures global alignment preferences. As feature
groups, bilingual and monolingual context fea-
tures are important sources of information, as re-
moving them drastically decreases system perfor-
mance by 0.23 and 0.16 BLEU, respectively.

System BLEU
all (wm-system+CCM) 14.93
−bi2 14.90 −intra 14.89
−bi1 14.84∗−0.09 −pmi 14.81∗−0.12

−bi0 14.89 −bi{2/1/0} 14.70∗−0.23

−inter 14.85 −in{ter/tra} 14.77∗−0.16

Table 9: ME feature ablation tests for English-Finnish
experiments. ∗ mark results statistically significant at p <
0.05, differences are subscripted.

7 Conclusion and Future Work

In this work, we have proposed a language-
independent model that addresses morpheme
alignment problems involving highly inflected
languages. Our method is unsupervised, requiring
no language specific information or resources, yet
its improvement on BLEU is comparable to much
semantically richer, language-specific work. As
our approach deals only with input word align-
ment, any downstream modifications of the trans-
lation model also benefit.

As alignment is a central focus in this work, we
plan to extend our work over different and mul-
tiple input alignments. We also feel that better
methods for the incorporation of CCM alignments
is an area for improvement. In the en/hu pair, a
large proportion of discovered CCM links are dis-
carded, in favor of spurious links from the union
alignment. Automatic estimation of the correct-
ness of our CCM alignments may improve end
translation quality over our heuristic method.
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Abstract

We propose to analyse semantic similar-
ity in comparable text by matching syn-
tactic trees and labeling the alignments
according to one of five semantic simi-
larity relations. We present a Memory-
based Graph Matcher (MBGM) that per-
forms both tasks simultaneously as a com-
bination of exhaustive pairwise classifica-
tion using a memory-based learner, fol-
lowed by global optimization of the align-
ments using a combinatorial optimization
algorithm. The method is evaluated on a
monolingual treebank consisting of com-
parable Dutch news texts. Results show
that it performs substantially above the
baseline and close to the human reference.

1 Introduction

Natural languages allow us to express essentially
the same underlying meaning as many alterna-
tive surface forms. In other words, there are of-
ten many similar ways to say the same thing.
This characteristic poses a problem for many nat-
ural language processing applications. Automatic
summarizers, for example, typically rank sen-
tences according to their informativity and then
extract the top n sentences, depending on the re-
quired compression rate. Although the sentences
are essentially treated as independent of each
other, they typically are not. Extracted sentences
may have substantial semantic overlap, result-
ing in unintended redundancy in the summaries.
This is particularly problematic in the case of
multi-document summarization, where sentences
extracted from related documents are very likely

to express similar information in different ways
(Radev and McKeown, 1998). Therefore, if se-
mantic similarity between sentences could be de-
tected automatically, this would certainly help to
avoid redundancy in summaries.

Similar arguments can be made for many other
NLP applications. Automatic duplicate and pla-
giarism detection beyond obvious string overlap
requires recognition of semantic similarity. Au-
tomatic question-answering systems may benefit
from clustering semantically similar candidate an-
swers. Intelligent document merging software,
which supports a minimal but lossless merge of
several revisions of the same text, must handle
cases of paraphrasing, restructuring, compression,
etc. Recognizing textual entailments (Dagan et
al., 2005) could arguably be seen as a specific in-
stance of detecting semantic similarity.

In addition to merely detecting semantic simi-
larity, we can ask to what extent two expressions
share meaning. For instance, the meaning of one
sentence can be fully contained in that of another,
the meaning of one sentence can overlap only
partly with that of another, etc. This requires an
analysis of the semantic similarity between a pair
of expressions. Like detection, automatic analy-
sis of semantic similarity can play an important
role in NLP applications. To return to the case
of multi-document summarization, analysing the
semantic similarity between sentences extracted
from different documents provides the basis for
sentence fusion, a process where a new sentence
is generated that conveys all common information
from both sentences without introducing redun-
dancy (Barzilay and McKeown, 2005; Marsi and
Krahmer, 2005b).
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Analysis of semantic similarity can be ap-
proached from different angles. A basic approach
is to use string similarity measures such as the
Levenshtein distance or the Jaccard similarity co-
efficient. Although cheap and fast, this fails to
account for less obvious cases such as synonyms
or syntactic paraphrasing. At the other extreme,
we can perform a deep semantic analysis of two
expressions and rely on formal reasoning to de-
rive a logical relation between them. This ap-
proach suffers from issues with coverage and ro-
bustness commonly associated with deep linguis-
tic processing. We therefore think that the middle
ground between these two extremes offers the best
option. In this paper we present a new method
for analysing semantic similarity in comparable
text. It relies on a combination of morphologi-
cal and syntactic analysis, lexical resources such
as word nets, and machine learning from exam-
ples. We propose to analyse semantic similarity
between sentences by aligning their syntax trees,
where each node is matched to the most similar
node in the other tree (if any). In addition, we
label these alignments according to the type of
similarity relation that holds between the aligned
phrases. The labeling supports further processing.
For instance, Marsi & Krahmer (2005b; 2008) de-
scribe how to generate different types of sentence
fusions on the basis of this relation labeling.

In the next Section we provide a more formal
definition of the task of matching syntactic trees
and labeling alignments, followed by a discusion
of related work in Section 3. Section 4 describes a
parallel, monolingual treebank used for develop-
ing and testing our approach. In Section 5 we pro-
pose a new algorithm for simultaneous node align-
ment and relation labeling. The results of several
evaluation experiments are presented in Section 6.
We finish with a conclusion.

2 Problem statement

Aligning a pair of similar syntactic trees is the pro-
cess of pairing those nodes that are most similar.
More formally: let v be a node in the syntactic
tree T of sentence S and v′ a node in the syntactic
tree T ′ of sentence S′. A labeled node alignment
is a tuple < v, v′, r > where r is a label from a set
of relations. A labeled tree alignment is a set of

labeled node alignments. A labeled tree matching
is a tree alignment in which each node is aligned
to at most one other node.

For each node v, its terminal yield STR(v) is de-
fined as the sequence of all terminal nodes reach-
able from v (i.e., a substring of sentence S).
Aligning node v to v′ with label r indicates that
relation r holds between their yields STR(v) and
STR(v′). We label alignments according to a small
set of semantic similarity relations. As an exam-
ple, consider the following Dutch sentences:

(1) a. Dagelijks
Daily

koffie
coffee

vermindert
diminishes

risico
risk

op
on

Alzheimer
Alzheimer

en
and

Dementie.
Dementia.

b. Drie
Three

koppen
cups

koffie
coffee

per
a

dag
day

reduceert
reduces

kans
chance

op
on

Parkinson
Parkinson

en
and

Dementie.
Dementia.

The corresponding syntax trees and their (partial)
alignment is shown in Figure 1. We distinguish
the following five mutually exclusive similarity
relations:

1. v equals v′ iff lower-cased STR(v) and
lower-cased STR(v′) are identical – example:
Dementia equals Dementia;

2. v restates v′ iff STR(v) is a proper para-
phrase of STR(v′) – example: diminishes re-
states reduces;

3. v generalizes v′ iff STR(v) is more general
than STR(v′) – example: daily coffee gener-
alizes three cups of coffee a day;

4. v specifies v′ iff STR(v) is more specific than
STR(v′) – example: three cups of coffee a day
specifies dailly coffee;

5. v intersects v′ iff STR(v) and STR(v′) share
meaning, but each also contains unique infor-
mation not expressed in the other – example:
Alzheimer and Dementia intersects Parkin-
son and Dementia.

Our interpretation of these relations is one of
common sense rather than strict logic, akin to
the definition of entailment employed in the RTE
challenge (Dagan et al., 2005). Note also that re-
lations are prioritized: equals takes precedence
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smain

np vermindert np

Dagelijks koffie

np

General izes

reduceert

Restates

risico pp

op conj

Altzheimer en Dementie

conj

Intersects

Dementie

Equals

smain

np

Drie koppen koffie pp

per dag

kans pp

op

Parkinson en

Figure 1: Example of two aligned and labeled syntactic trees. For expository reasons the alignment is
not exhaustive.

over restates, etc. Furthermore, equals, restates
and intersects are symmetrical, whereas general-
izes is the inverse of specifies. Finally, nodes con-
taining unique information, such as Alzheimer and
Parkinson, remain unaligned.

3 Related work

Many syntax-based approaches to machine trans-
lation rely on bilingual treebanks to extract trans-
fer rules or train statistical translation models. In
order to build bilingual treebanks a number of
methods for automatic tree alignment have been
developed, e.g., (Gildea, 2003; Groves et al.,
2004; Tinsley et al., 2007; Lavie et al., 2008).
Most related to our approach is the work on dis-
criminative tree alignment by Tiedemann & Kotzé
(2009). However, these algorithms assume that
source and target sentences express the same in-
formation (i.e. parallel text) and cannot cope
with comparable text where parts may remain un-
aligned. See (MacCartney et al., 2008) for further
arguments and empirical evidence that MT align-
ment algorithms are not suitable for aligning par-
allel monolingual text.

MacCartney, Galley, and Manning (2008) de-
scribe a system for monolingual phrase alignment
based on supervised learning which also exploits
external resources for knowledge of semantic re-
latedness. In contrast to our work, they do not
use syntactic trees or similarity relation labels.
Partly similar semantic relations are used in (Mac-
Cartney and Manning, 2008) for modeling seman-
tic containment and exclusion in natural language
inference. Marsi & Krahmer (2005a) is closely

related to our work, but follows a more com-
plicated method: first a dynamic programming-
based tree alignment algorithm is applied, fol-
lowed by a classification of similarity relations us-
ing a supervised-classifier. Other differences are
that their data set is much smaller and consists
of parallel rather than comparable text. A major
drawback of this algorithmic approach it that it
cannot cope with crossing alignments. We are not
aware of other work that combines alignment with
semantic relation labeling, or algorithms which
perform both tasks simultaneously.

4 Data collection

For developing our alignment algorithm we use
the DAESO corpus1. This is a Dutch parallel
monolingual treebank of 1 million words, half
of which were manually annotated. The corpus
consists of pairs of sentences with different lev-
els of semantic overlap, ranging from high (dif-
ferent Dutch translations of books from Darwin,
Montaigne and Saint-Exupéry) to low (different
press releases from the two main news agencies
in The Netherlands, ANP and NOVUM). For this
paper, we concentrate on the latter part of the
DAESO corpus, where the proportion of Equals
and Restates is relatively low. This corpus seg-
ment consists of 8,248 pairs of sentences, contain-
ing 162,361 tokens (ignoring punctuation). All
sentences were tokenized and tagged, and subse-
quently parsed by the Alpino dependency parser
for Dutch (Bouma et al., 2001). Two annota-

1http://daeso.uvt.nl
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Alignment: Labeling:

Eq: Re: Spec: Gen: Int: Macro: Micro:

Words: F: 95.38 95.48 58.50 65.81 65.00 25.85 62.11 88.72
SD: 2.16 2.69 7.63 13.05 11.25 18.74

Full trees: F: 88.31 95.83 71.38 60.21 66.71 62.67 71.36 81.92
SD: 1.15 2.27 3.77 7.63 8.17 6.14

Table 1: Average F-scores (in percentages, with Standard Deviations) for the six human annotators on
alignment and semantic relation labeling, for words and for full syntactic trees.

tors determined which sentences in the compa-
rable news reports contained semantic overlap.
Six other annotators produced manual alignments
of words and phrases in matched sentence pairs,
which resulted in 86,227 aligned pairs of nodes.

A small sample of 10 similar press releases
comprising a total of 48 sentence pairs was inde-
pendently annotated by all six annotators to deter-
mine inter-annotator agreement. We used preci-
sion, recall and F-score on alignment. To calcu-
late these scores for relation labeling, we simply
restrict the set of alignments to those labeled with
a particular relation, ignoring all others. Likewise,
we restrict these sets to terminal node alignments
in order to get scores on word alignment.

Given the six annotations A1, . . . , A6, we re-
peatedly took one as the True annotation against
which the five other annotations were evaluated.
We then computed the average scores over these
6 ∗ 5 = 30 scores (note that with this proce-
dure, precision, recall and F score end up being
equal). Table 1 summarizes the results, both for
word alignments and for full syntactic tree align-
ment. It can be seen that for alignment of words an
average F-score of over 95 % was obtained, while
alignment for full syntactic trees results in an F-
score of 88%. For relation labeling, the scores dif-
fered per relation, as is to be expected: the average
F-score for Equals was over 95% for both word
and full tree alignment2, and for the other rela-
tions average F-scores between 0.6 and 0.7 were

2At first sight, it may seem that labeling Equals is a trivial
and deterministic task, for which the F-score should always
be close to 100%. However, the same word may occur multi-
ple times in the source or target sentences, which introduces
ambiguity. This frequently occurs with function words such
as determiners and prepositions. Moreover, choosing among
several equivalent Equals alignments may sometimes involve
a somewhat arbitrary decision. This situation arises, for in-
stance, when a proper noun is mentioned just once in the
source sentence but twice in the target sentence.

obtained. The exception to note is Intersects on
word level, which only occurred a few times ac-
cording to a few of the annotators. The macro
and micro (weighted) F-score averages on labeled
alignment are 62.11% and 88.72% for words, and
71.36% and 81.92% for full syntactic trees.

5 Memory-based Graph Matcher

In order to automatically perform the alignment
and labeling tasks described in Section 2, we cast
these tasks simultaneously as a combination of ex-
haustive pairwise classification using a supervised
machine learning algorithm, followed by global
optimization of the alignments using a combina-
torial optimization algorithm. Input to the tree
matching algorithm is a pair of syntactic trees con-
sisting of a source tree Ts and a target tree Tt.

Step 1: Feature extraction For each possible
pairing of a source node ns in tree Ts and a target
node nt in tree Tt, create an instance consisting of
feature values extracted from the input trees. Fea-
tures can represent properties of individual nodes,
e.g. the category of the source node is NP, or rela-
tions between nodes, e.g. source and target node
share the same part-of-speech.

Step 2: Classification A generic supervised
classifier is used to predict a class label for each
instance. The class is either one of the seman-
tic similarity relations or the special class none,
which is interpreted as no alignment. Our im-
plementation employs the memory-based learner
TiMBL (Daelemans et al., 2009), a freely avail-
able, efficient and enhanced implementation of k-
nearest neighbour classification. The classifier is
trained on instances derived according to Step 1
from a parallel treebank of aligned and labeled
syntactic trees.
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Step 3: Weighting Associate a cost with each
prediction so that high costs indicate low confi-
dence in the predicted class and vice versa. We
use the normalized entropy of the class labels in
the set of nearest neighbours (H) defined as

H = −
∑

c∈C p(c) log2 p(c)

log2|C|
(1)

where C is the set of class labels encountered in
the set of nearest neighbours (i.e., a subset of the
five relations plus none), and p(c) is the probabil-
ity of class c, which is simply the proportion of
instances with class label c in the set of nearest
neighbours. Intuitively this means that the cost
is zero if all nearest neighbours are of the same
class, whereas the cost goes to 1 if the nearest
neighbours are equally distributed over all possi-
ble classes.

Step 4: Matching The classification step will
usually give rise to one-to-many alignment of
nodes. In order to reduce this to just one-to-one
alignments, we search for a node matching which
minimizes the sum of costs over all alignments.
This is a well-known problem in combinato-
rial optimization known as the Assignment Prob-
lem. The equivalent in graph-theoretical terms
is a minimum weighted bipartite graph match-
ing. This problem can be solved in polynomial
time (O(n3)) using e.g., the Hungarian algorithm
(Kuhn, 1955). The output of the algorithm is the
labeled tree matching obtained by removing all
node alignments labeled with the special none re-
lation.

6 Experiments

6.1 Experimental setup
Word alignment and full tree alignments are con-
ceptually different tasks, which require partly dif-
ferent features and may have different practical
applications. These are therefore addressed in
separate experiments.

Table 2 summarizes the respective sizes of de-
velopment and the held-out test set in terms of
number of aligned graph pairs, number of aligned
node pairs and number of tokens. The percentage
of aligned nodes over all graphs is calculated rela-
tive to the number of nodes over all graphs. Since

Data Graph Node Tokens Aligned
pairs pairs nodes (%)

word develop 2 664 13 027 45 149 15.71
word test 547 2 858 10 005 14.96
tree develop 2 664 22 741 45 149 47.20
tree test 547 4 894 10 005 47.05

Table 2: Properties of develop and test data sets

Data Eq Re Spec Gen Int

word develop 84.92 6.15 2.10 1.77 5.07
word test 85.62 6.09 2.17 1.99 4.13
tree develop 56.61 6.57 7.52 6.38 22.91
tree test 58.40 7.11 7.40 6.38 20.72

Table 3: Distribution of semantic similarity rela-
tions for word alignment and for full tree align-
ments in both develop and test data sets

alignments involving non-terminal nodes are ig-
nored in the task of word alignment, the number of
aligned node pairs and the percentage of aligned
nodes is lower in the word develop and word test
sets. Table 3 gives the distribution of semantic re-
lations in the development and test set, for word
and tree alignment. It can be observed that the
distribution if fairly skewed with Equals being the
majority class, even more so for word alignments.
Another thing to notice is that Intersects are much
more frequent at the level of non-terminal align-
ments.

Development was carried out using 10-fold
cross validation on the development data and con-
sequently reported scores on the development data
are averages over 10 folds. Only two parameters
were coarsely optimized on the development set.
First, the amount of downsampling of the none
class varied between 0.1 or 0.5. Second, the pa-
rameter k of the memory-based classifier – the
number of nearest neighbours taken into account
during classification – ranged from 1 to 15. Opti-
mal settings were finally applied when testing on
the held-out data.

A simple greedy alignment procedure served as
baseline. For word alignment, identical words are
aligned as Equals and identical roots as Restates.
For full tree alignment, this is extended to the level
of phrases so that phrases with identical words are
aligned as Equals and phrases with identical roots
as Restates. The baseline does not predict Spec-

756



ifies, Generalizes or Intersects relations, as that
would require a more involved, knowledge-based
approach.

All features used are described in Table 4.
The word-based features rely on pure string pro-
cessing and require no linguistic preprocessing.
The morphology-based features exploit the lim-
ited amount of morphological analysis provided
by the Alpino parser (Bouma et al., 2001). For
instance, it provides word roots and decomposes
compound words. Likewise the part-of-speech-
based features use the coarse-grained part-of-
speech tags assigned by the Alpino parser. The
lexical-semantic features rely on the Cornetto
database (Vossen et al., 2008), a recent exten-
sion to the Dutch WordNet, to look-up synonym
and hypernym relations among source and tar-
get lemmas. Unfortunately there is no word
sense disambiguation module to identify the cor-
rect senses. In addition, a background corpus
of over 500M words of (mainly) news text pro-
vides the word counts required to calculate the
Lin similarity measure (Lin, 1998). The syntax-
based features use the syntactic structure, which
is a mix of phrase-based and dependency-based
analysis. The phrasal features express similar-
ity between the terminal yields of source and tar-
get nodes. With the exception of same-parent-lc-
phrase, these features are only used for full tree
alignment, not for word alignment.

6.2 Results on word alignment

We evaluate our alignment model in two steps:
first focussing on word alignment and then on full
tree alignment. Table 5 summarizes the results for
MBGM on word alignment (50% downsampling
and k = 3), which we compare statistically to the
baseline performance, and informally with the hu-
man scores reported in Table 1 in Section 4 (note
that the human scores are only for a subset of the
data used for automatic evaluation).

The first thing to observe is that the MBGM
scores on the development and tests sets are
very similar throughout. For predicting word
alignments, the MBGM system performs signif-
icantly better than the baseline system (t(18) =
17.72, p < .0001). On the test set, MBGM ob-
tains an F-score of nearly 89%, which is almost

exactly halfway between the scores of the base-
line system and the human scores. In a similar
vein, the performance of the MBGM system on
relation labeling is considerably better than that
of the baseline system. For all semantic rela-
tions, MBGM performs significantly better than
the baseline (t(18) > 9.4138, p < .0001 for each
relation, trivially so for the Specifies, Generalizes
and Intersects relations, which the baseline system
never predicts).

The macro scores are plain averages over the 5
scores on each relation, whereas the micro scores
are weighted averages. As the Equals is the major-
ity class and at the same time easiest to predict, the
micro scores are higher. The macro scores, how-
ever, better reflect performance on the real chal-
lenge, that is, correctly predicting the relations
other than Equals. The MBGM macro average
is 27.37% higher than the baseline (but still some
10% below the human top line), while the micro
average is 5.83% higher and only 0.75% below
the human top line. Macro scores on the test set
are overall lower than those on the develop set,
presumably because of tuning on the development
data.

6.3 Results on tree alignment

Table 6 contains the results of full tree alignment
(50% downsampling and k = 5); here both termi-
nal and non-terminal nodes are aligned and clas-
sified in one pass. Again scores on the develop-
ment and test set are very similar, the latter being
slightly better. For full tree alignment, MBGM
once again performs significantly better than the
baseline, t(18) = 25.68, p < .0001. With an F-
score on the test set of 86.65, MBGM scores al-
most 20 percent higher than the baseline system.
This F-score is less than 2% lower than the aver-
age F-score obtained by our human annotators on
full tree alignment, albeit not on exactly the same
sample. The picture that emerges for semantic re-
lation labeling is closely related to the one we saw
for word alignments. MBGM significantly out-
performs the baseline, for each semantic relation
(t(18) > 12.6636, p < .0001). MBGM scores a
macro average F-score of 52.24% (an increase of
30.05% over the baseline) and a micro average of
80.03% (12.68% above the base score). It is inter-
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Feature Type Description

Word

word-subsumption string indicate if source word equals, has as prefix, is a prefix of, has a suffix, is a
suffix of, has as infix or is an infix of target word

shared-pre-/in-/suffix-len int length of shared prefix/infix/suffix in characters
source/target-stop-word bool test if source/target word is in a stop word list of frequent function words
source/target-word-len int length of source/target word in characters
word-len-diff int word length difference in characters
source/target-word-uniq bool test if source/target word is unique in source/target sentence
same-words-lhs/rhs int no. of identical preceding/following words in source and target word contexts

Morphology

root-subsumption string indicate if source root equals, has as prefix, is a prefix of, has a suffix, is a suffix
of, has as infix or is an infix of target root

roots-share-pre-/in-/suffix bool source and target root share a prefix/infix/suffix

Part-of-speech

source/target-pos string source/target part-of-speech
same-pos bool test if source and target have same part-of-speech
source/target-content-word bool test if source/target word is a content word
both-content-word bool test if both source and target word are content words

Lexical-semantic using Cornetto

cornet-restates float 1.0 if source and target words are synonyms and 0.5 if they are near-synonyms,
zero otherwise

cornet-specifies float Lin similarity score if source word is a hyponym of target word, zero otherwise
cornet-generalizes float Lin similarity score if source word is a hypernym of target word, zero otherwise
cornet-intersects float Lin similarity score if source word share a common hypernym, zero otherwise

Syntax

source/target-cat string source/target syntactic category
same-cat bool test if source and target have same syntactic category
source/target-parent-cat string source/target syntactic category of parent node
source/target-deprel string source/target dependency relation
same-deprel bool test if source and target have same dependency relation
same-dephead-root bool test if the dependency heads of the source and target have same root

Phrasal

word-prec/rec float precision/recall on the yields of source and target nodes
same-lc-phrase bool test if lower-cased yields of source and target nodes are identical
same-parent-lc-phrase bool test if lower-cased yields of parents of source and target nodes are identical
source/target-phrase-len int length of source/target phrase in words
phrase-len-diff int phrase length difference in words

Table 4: Features (where slashes indicate multiple versions of the same feature, e.g. source/target-pos
represents the two features source-pos and target-pos)

esting to observe that MBGM obtains higher F-
scores on Equals and on Intersects (the two most
frequent relations) than the human annotators ob-
tained. As a result of this, the micro F-score of
the automatic full tree alignment is less than 2%
lower than the human reference score.

Tree alignment can also be implemented as a
two-step procedure, where in the first step align-
ments and semantic relation classifications at the
word level are produced, while in the second step
these are used to predict alignments and seman-
tic relations for non-terminals. We experimented

with such a two-step procedure as well, in one ver-
sion using the actual word alignments and in the
other the predicted word alignments. The scores
of the two-step prediction are only marginally dif-
ferent from those of one step prediction, both for
alignment and for relation classification, giving
improvements in the order of about 1% for both
subtasks. As is to be expected, the scores with
true word alignments are much better than those
with predicted word alignments. They are inter-
esting though, because they suggest that a fairly
good full tree alignment can be automatically ob-
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Alignment: Labeling:

Eq: Re: Spec: Gen: Int: Macro: Micro:

Prec: 80.59 81.84 46.26 0.00 0.00 0.00 25.61 80.22
Develop baseline: Rec: 81.58 93.10 34.71 0.00 0.00 0.00 25.56 82.20

F: 81.08 87.11 39.66 0.00 0.00 0.00 25.35 80.70

Prec: 91.72 94.54 61.26 74.60 67.82 45.80 68.80 90.82
Develop MBGM: Rec: 87.82 95.91 46.19 40.87 43.22 27.27 50.61 86.96

F: 89.73 95.02 52.67 52.81 52.80 34.19 57.50 88.85

Prec: 82.45 83.83 43.12 0.00 0.00 0.00 25.39 82.17
Test baseline: Rec: 82.19 93.87 27.01 0.00 0.00 0.00 24.18 82.02

F: 82.32 88.57 33.22 0.00 0.00 0.00 24.36 82.14

Prec: 90.92 94.20 53.33 59.87 54.21 42.47 60.84 89.90
Test MBGM: Rec: 87.09 95.41 40.21 32.75 43.28 20.31 46.39 86.11

F: 88.96 94.80 45.85 42.34 48.17 27.48 51.73 87.97

Table 5: Scores (in percentages) on word alignment and semantic relation labeling

Alignment: Labeling:

Eq: Re: Spec: Gen: Int: Macro: Micro:

Prec: 82.50 83.76 46.72 0.00 0.00 0.00 26.10 82.18
Develop baseline: Rec: 54.54 93.66 20.01 0.00 0.00 0.00 22.74 54.34

F: 65.67 88.43 28.02 0.00 0.00 0.00 23.29 65.42

Prec: 92.23 96.15 55.90 54.40 56.15 70.33 66.59 84.99
Develop MBGM: Rec: 81.04 94.03 26.64 21.71 29.34 70.27 48.40 74.68

F: 86.27 95.08 36.08 31.03 38.54 70.30 54.21 79.50

Prec: 84.23 85.68 42.24 0.00 0.00 0.00 25.58 84.14
Test baseline: Rec: 56.21 94.44 14.08 0.00 0.00 0.00 21.70 56.15

F: 67.43 89.85 21.12 0.00 0.00 0.00 22.19 67.35

Prec: 92.27 96.67 60.25 46.92 56.85 68.64 65.87 85.23
Test MBGM: Rec: 81.67 94.54 27.87 19.55 30.94 71.01 48.87 75.44

F: 86.65 95.60 38.11 27.60 40.07 69.80 54.24 80.03

Table 6: Scores (in percentages) on full tree alignment and semantic relation labeling

tained given a manually checked word alignment.

7 Conclusions

We have proposed to analyse semantic similarity
between comparable sentences by aligning their
syntax trees, matching each node to the most sim-
ilar node in the other tree (if any). In addi-
tion, alignments are labeled with a semantic sim-
ilarity relation. We have presented a Memory-
based Graph Matcher (MBGM) that performs
both tasks simultaneously as a combination of ex-
haustive pairwise classification using a memory-
based learning algorithm, and global optimization
of alignments using a combinatorial optimization
algorithm. It relies on a combination of morpho-
logical/syntactic analysis, lexical resources such
as word nets, and machine learning using a par-

allel monolingual treebank. Results on aligning
comparable news texts from a monolingual paral-
lel treebank for Dutch show that MBGM consis-
tently and significantly outperforms the baseline,
both for alignment and labeling. This holds both
for word alignment and tree alignment.

In future research we will test MBGM on other
data, as the DAESO corpus contains sub-corpora
with various degrees of semantic overlap. In addi-
tion, we intend to explore alternative features from
word space models. Finally, we plan to evaluate
MBGM in the context of NLP applications such
as multi-document summarization. This includes
work on how to define similarity at the sentence
level in terms of the proportion of aligned con-
stituents. Both MBGM and the annotated data set
will be publicly released.2
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Abstract
This paper investigates how to automat-
ically create a dialogue control compo-
nent of a listening agent to reduce the cur-
rent high cost of manually creating such
components. We collected a large number
of listening-oriented dialogues with their
user satisfaction ratings and used them to
create a dialogue control component using
partially observable Markov decision pro-
cesses (POMDPs), which can learn a pol-
icy to satisfy users by automatically find-
ing a reasonable reward function. A com-
parison between our POMDP-based com-
ponent and other similarly motivated sys-
tems using human subjects revealed that
POMDPs can satisfactorily produce a dia-
logue control component that can achieve
reasonable subjective assessment.

1 Introduction

Although task-oriented dialogue systems have
been actively researched (Hirshman, 1989; Fer-
guson et al., 1996; Nakano et al., 1999; Walker
et al., 2002), recently non-task-oriented functions
are starting to attract attention, and systems with-
out a specific task that deal with more casual di-
alogues, such as chats, are being actively investi-
gated from their social and entertainment aspects
(Bickmore and Cassell, 2001; Higashinaka et al.,
2008; Higuchi et al., 2008).

In the same vein, we have been working on
listening-oriented dialogues in which one conver-
sational participant attentively listens to the other
(hereafter, listening-oriented dialogue). Our aim
is to build listening agents that can implement
such a listening process so that users can satisfy
their desire to speak and be heard. Figure 1 shows

an excerpt from a typical listening-oriented dia-
logue. In the literature, dialogue control compo-
nents for less (or non-) task-oriented dialogue sys-
tems, such as listening agents, have typically used
hand-crafted rules for dialogue control, which
can be problematic because completely covering
all dialogue states by hand-crafted rules is diffi-
cult when the dialogue has fewer task restrictions
(Wallace, 2004; Isomura et al., 2009).

To solve this problem, this paper aims to auto-
matically build a dialogue control component of a
listening agent using partially observable Markov
decision processes (POMDPs). POMDPs, which
make it possible to learn a policy that can max-
imize the averaged reward in partially observable
environments (Pineau et al., 2003), have been suc-
cessfully adopted in task-oriented dialogue sys-
tems for learning a dialogue control module from
data (Williams and Young, 2007). However, no
work has attempted to use POMDPs for less (or
non-) task-oriented dialogue systems, such as lis-
tening agents, because user goals are not as well-
defined as task-oriented ones, complicating the
finding of a reasonable reward function.

We apply POMDPs to listening-oriented dia-
logues by having the system learn a policy that si-
multaneously maximizes how well users feel that
they are being listened to (hereafter, user satis-
faction) and how smoothly the system generates
dialogues (hereafter, smoothness). This formu-
lation is new; no work has considered both user
satisfaction and smoothness using POMDPs. We
collected a large amount of listening-oriented di-
alogues and annotated them with dialogue acts
and also obtained subjective evaluation results for
them. From them, we calculated the rewards and
learned the POMDP policies. We evaluated the
dialogue-act tag sequences of our POMDPs using
human subjects.
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Utterance Dialogue act
S: Good evening. GREETING

The topic is “food,” nice to
meet you.

GREETING

L: Nice to meet you, too. GREETING
S: I had curry for dinner. S-DISC (sub: fact)

Do you like curry? QUESTION (sub: pref)
L: Yes, I do. SYMPATHY
S: Really? REPEAT

Me, too. SYMPATHY
L: Do you usually go out to eat? QUESTION (sub: habit)
S: No, I always cook at home. S-DISC (sub: habit)

I don’t use any special spices,
but I sometimes cook noodles
using soup and curry.

S-DISC (sub: habit)

L: That sounds good! S-DISC (sub: pref (pos-
itive))

Figure 1: Excerpt of a typical listening-oriented
dialogue. Dialogue topic is “food.” Dialogue acts
corresponding to utterances are shown in paren-
theses (See Table 1 for meanings): S-DISC stands
for SELF-DISCLOSURE; PREF for PREFERENCE;
S for speaker; and L for listener. The dialogue
was translated from Japanese by the authors.

The next section introduces related work. Sec-
tion 3 describes our approach. Section 4 de-
scribes our collection of listening-oriented dia-
logues. This is followed in Section 5 by an evalua-
tion experiment that compared our POMDP-based
dialogue control with other similarly motivated
systems. The last section summarizes the main
points and mentions future work.

2 Related work

With increased attention on social dialogues and
senior peer counseling, work continues to emerge
on listening-oriented dialogues. One early work
is (Maatman et al., 2005), which showed that vir-
tual agents can give users the sense of being heard
using such gestures as nodding and head shak-
ing. Recently, Meguro et al. (2009a) analyzed
the characteristics of listening-oriented dialogues.
They compared listening-oriented dialogues and
casual conversations between humans, revealing
that the two types of dialogues have significantly
different flows and that listeners actively ques-
tion with frequently inserted self-disclosures; the
speaker utterances were mostly concerned with
self-disclosure.

Shitaoka et al. (2010) also investigated the
functions of listening agents, focusing on their
response generation components. Their system
takes the confidence score of speech recognition

into account and changes the system response ac-
cordingly; it repeats the user utterance or makes
an empathic utterance for high-confidence user ut-
terances and makes a backchannel when the con-
fidence is low. The system’s empathic utterances
can be “I’m happy” or “That’s too bad,” depend-
ing on whether a positive or negative expression
is included in the user utterances. Their system’s
response generation only uses the speech recogni-
tion confidence and the polarity of user utterances
as cues to choose its actions. Currently, it does
not consider the utterance content or the user in-
tention.

In order for listening agents to achieve high
smoothness, a switching mechanism between the
“active listening mode,” in which the system is
a listener, and the “topic presenting mode,” in
which the system is a speaker, has been proposed
(Yokoyama et al., 2010; Kobayashi et al., 2010).
Here, the system uses a heuristic function to main-
tain a high user interest level and to keep the sys-
tem in an active listening mode. Dialogue con-
trol is done by hand-crafted rules. Our motivation
bears some similarity to theirs in that we want to
build a listening agent that gives users a sense of
being heard; however, we want to automatically
make such an agent from dialogue data.

POMDPs have been introduced for robot action
control (Pineau et al., 2003). Here, the system
learns to make suitable movements for complet-
ing a certain task. Over the years, POMDPs have
been actively studied for applications to spoken
dialogue systems. Williams et al. (2007) suc-
cessfully used a POMDP for dialogue control in a
ticket-buying domain in which the objective was
to fix the departure and arrival places for tickets.
Recent work on POMDPs indicates that it is pos-
sible to train a dialogue control module in task-
oriented dialogues when the user goal is obvious.
In contrast, in this paper, we aim to verify whether
POMDPs can be applied to less task-oriented di-
alogues (i.e., listening-oriented dialogues) where
user goals are not as obvious.

In a recent study, Minami et al. (2009) ap-
plied POMDPs to non-task-oriented man-machine
interaction. Their system learned suitable ac-
tion control of agents that can act smoothly by
obtaining rewards from the statistics of artifi-
cially generated data. Our work is different be-
cause we use real human-human dialogue data to
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train POMDPs for dialogue control in listening-
oriented dialogues.

3 Approach

A typical dialogue system has utterance under-
standing, dialogue control, and utterance gen-
eration modules. The utterance understanding
module comprehends user natural-language utter-
ances, whose output (i.e., a user dialogue act) is
passed to the dialogue control module. The dia-
logue control module chooses the best system di-
alogue act at every dialogue point using the user
dialogue act as input. The utterance generation
module generates natural-language utterances and
says them to users by realizing the system dia-
logue acts as surface forms.

This paper focuses on the dialogue control
module of a listening agent. Since a listening-
oriented dialogue has a characteristic conversation
flow (Meguro et al., 2009a), focusing on this mod-
ule is crucial because it deals with the dialogue
flow. Our objective is to train from data a dialogue
control module that achieves a smooth dialogue
flow that makes users feel that they are being lis-
tened to attentively.

3.1 Dialogue control using POMDPs
The purpose of our dialogue control is to simulta-
neously create situations in which users feel lis-
tened to (i.e., user satisfaction) and to generate
smooth action sequences (i.e., smoothness). To
do this, we automatically and statistically train
the reward and the policy of the POMDP using a
large amount of listening-oriented dialogue data.
POMDP is a reinforcement learning framework
that can learn a policy to select an action sequence
that maximizes average future rewards. Setting a
reward is crucial in POMDPs.

For our purpose, we introduce two different re-
wards: one for user satisfaction and the other for
smoothness. Before creating a POMDP structure,
we used the dynamic Bayesian network (DBN)
structure (Fig. 2) to obtain the statistical structure
of the data and the two rewards.

The random values in the DBN are as follows:
so and sa are the dialogue state and action state,
o is a speaker observation, a is a listener action,
and d is a random variable for an evaluation score
that indicates the degree of the user being listened
to. This evaluation score can be obtained by ques-
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Figure 2: DBN and POMDP structures employed
in this paper. Note that a in the POMDP is isolated
from other states because it is decided by a learned
policy.

tionnaires, and the variable is used for calculat-
ing a user satisfaction reward for the POMDP.
The DBN arcs in Fig. 2 define the emission and
transition probabilities. Pr(o′|s′

o) is the emission
probability of o′ given s′

o. Pr(d|so) is the emis-
sion probability of d given so. Pr(s′

o|so, a) is a
transition probability from so to s′

o given a. The
DBN is trained using the EM algorithm. Using
the obtained variables, we calculate the two re-
ward functions as follows:

(1) Reward for user satisfaction This reward is
obtained from the d variable by

r1((so, ∗), a) =

max∑

d=min

d × Pr(d|so, a),

where * is arbitrary sa and min and max are min-
imum and maximum evaluation scores.

(2) Reward for smoothness For smoothness,
we maximize the action predictive probability
given the history of actions and observations. The
probability is calculated from listening-oriented
dialogue data. sa is introduced for estimating the
predictive probability of action a and for selecting
a to maximize the predictive probability.

We set Pr(a|sa) = 1 when a = sa so that sa

corresponds one-on-one with a. Then, if at = sa

at time t is given, we obtain

Pr(at|o1, a1, . . . , at−1, ot)

=
∑

s′
a

Pr(at|s′
a) Pr(s′

a|o1, a1, . . . , at−1, ot)

= Pr(sa|o1, a1, . . . , ot−1, at−1, ot)

Consequently, maximizing the predictive proba-
bility of a equals maximizing that of sa. If we
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set 1.0 to reward r2((∗, sa), a) when sa = a, the
POMDP will generate actions that maximize their
predictive probabilities. We believe that this re-
ward should increase the smoothness of a system
action sequence since the sequence is generated
according to the statistics of human-human dia-
logues.

Converting a DBN into a POMDP The DBN
is converted into a POMDP (Fig. 2), while main-
taining the transition and output probabilities. We
convert d to r as described above.

The system is in a partially observed state.
Since the state is not known exactly, we use a dis-
tribution called “belief state” bt with which we ob-
tain the average reward that will be gained in the
future at time t by:

Vt =

∞∑

τ=0

γτ
∑

s

bτ+t((so, sa))r((so, sa), aτ+t),

where τ is a discount factor; namely, the future
reward is decreased by τ . A policy is learned by
value iteration so that the action that maximizes
Vt can be chosen. We define r((so, sa), a) as fol-
lows:
r((so, sa), a) = r1((so, ∗), a) + r2((∗, sa), a).

By balancing these two rewards, we can choose
an action that satisfies both user satisfaction and
smoothness.

4 Data collection
We collected listening-oriented dialogues using
human subjects who consisted of ten listeners
(five males and five females) and 37 speakers (18
males and 19 females). The listeners and speak-
ers ranged from 20 to 60 years old and were all
native Japanese speakers. Listeners and speakers
were matched to form a listener-speaker pair and
communicated over the Internet with our chat in-
terface. They used only text; they were not al-
lowed to use voice, video, or facial expressions.
The speakers chose their own listener and freely
participated in dialogues from 7:00 pm to mid-
night for a period of 15 days. One conversation
was restricted to about ten minutes. The subjects
talked about a topic chosen by the speaker. There
were 20 predefined topics: money, sports, TV and
radio, news, fashion, pets, movies, music, house-
work and childcare, family, health, work, hob-
bies, food, human relationships, reading, shop-
ping, beauty aids, travel, and miscellaneous. The

listeners were instructed to make it easy for the
speakers to say what the speakers wanted to say.
We collected 1260 listening-oriented dialogues.

4.1 Dialogue-act annotation
We labeled the collected dialogues using the
dialogue-act tag set shown in Table 1. We made
these tags by selecting, extending, and modifying
those from previous studies that concerned human
listening behaviors in some way (Meguro et al.,
2009a; Jurafsky et al., 1997; Ivey and Ivey, 2002).
In our tag set, only question and self-disclosure
tags have sub-category tags. Two annotators (not
the authors) labeled each sentence of our collected
dialogues using these 32 tags. In dialogue-act an-
notation, since there can be several sentences in
one utterance, one annotator first split the utter-
ances into sentences, and then both annotators la-
beled each sentence with a single dialogue act.

4.2 Obtaining evaluation scores
POMDPs need evaluation scores (i.e., d) for dia-
logue acts (i.e., a) for training a reward function.
Therefore, we asked a third-party participant, who
was neither a listener nor a speaker in our dialogue
data collection, to evaluate the user satisfaction
levels of the collected dialogues. She rated each
dialogue in terms of how she would have felt “be-
ing heard” after the dialogue if she had been the
speaker of the dialogue in question. She provided
ratings on the 7-point Likert scale for each dia-
logue. Since she rated the whole dialogue with a
single rating, we set the evaluation score of each
action within a dialogue using the evaluation score
for that dialogue.

We used a third-person’s evaluation and not the
original person’s to avoid the fact that the eval-
uative criterion is too different between humans;
identical evaluation scores from two people do
not necessarily reflect identical user satisfaction
levels. We highly valued the reliability and con-
sistency of the third-person scores. This way, at
least, we can train a policy that maximizes its av-
erage reward function for the rater, which we need
to verify first before considering adaptation to two
or more individuals.

5 Experiment

5.1 Experimental setup
The experiment followed three steps.
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GREETING Greeting and confirmation of dialogue
theme. e.g., Hello. Let’s talk about
lunch.

INFORMATION Delivery of objective information. e.g.,
My friend recommended a restaurant.

SELF-
DISCLOSURE

Disclosure of preferences and feelings.

sub: fact e.g., I live in Tokyo.
sub: experience e.g., I had a hamburger for lunch.
sub: habit e.g., I always go out for dinner.
sub: preference e.g., I like hamburgers.

(positive)
sub: preference e.g., I don’t really like hamburgers.

(negative)
sub: preference e.g., Its taste is near my homemade

(neutral) taste.
sub: desire e.g., I want to try it.
sub: plan e.g., I’m going there next week.
sub: other

ACKNOWLEDGM-
ENT

Encourage the conversational partner to
speak. e.g., Well. Aha.

QUESTION Utterances that expect answers.
sub: information e.g., Please tell me how to cook it.
sub: fact e.g., What kind of curry?
sub: experience e.g., What did you have for dinner?
sub: habit e.g., Did you cook it yourself?
sub: preference e.g., Do you like it?
sub: desire e.g., Don’t you want to eat rice?
sub: plan e.g., What are you going to have for

dinner?
sub: other

SYMPATHY Sympathetic utterances and praises.
e.g., Me, too.

NON-SYMPATHY Negative utterances. e.g., Not really.
CONFIRMATION Confirm what the conversation partner

said. e.g., Really?
PROPOSAL Encourage the partner to act. e.g., Try

it.
REPEAT Repeat the partner’s utterance.
PARAPHRASE Paraphrase the partner’s utterance.
APPROVAL Broach or show goodwill toward the

partner. e.g., Absolutely!
THANKS Express thanks e.g., Thank you.
APOLOGY Express regret e.g., I’m sorry.
FILLER Filler between utterances. e.g., Uh. Let

me see.
ADMIRATION Express affection. e.g., Ha-ha.
OTHER Other utterances.

Table 1: Definition and example of dialogue acts

In the first step, we created our POMDP sys-
tem using our approach (See Section 3.1). We
also made five other systems for comparison that
we describe in Section 5.2. Each system outputs
dialogue-act tag sequences for evaluation. The
dialogue theme was “food” because it was the
most frequent theme and accounted for 20% of
our data (See Table 2 for the statistics); we trained
our POMDP using the “food” dialogues. We re-
stricted the dialogue topic to verify that our ap-
proach at least works with a small set. Since there
is no established measure for automatically eval-
uating a dialogue-act tag sequence, we evaluated

All Food (subset of All)
# dialogues 1260 250
# words 479881 94867
# utterances per dialogue 28.2 29.1
# dialogues per listener 126 25
# dialogues per speaker 34 6.8
# dialogue acts 67801 13376
inter-annotator agreement 0.57 0.55

Table 2: Statistics of collected dialogues and
dialogue-act annotation. Inter-annotator agree-
ment means agreement of dialogue-act annotation
using Cohen’s κ.

our dialogue control module using human subjec-
tive evaluations. However, this is very difficult to
do because dialogue control modules only output
dialogue acts, not natural language utterances.

In the second step, we recruited participants
who created natural language utterances from
dialogue-act tag sequences. In their creating dia-
logues, we provided them with situations to stim-
ulate their imaginations. Table 3 shows the situ-
ations, which were deemed common in everyday
Japanese life; we let the participants create utter-
ances that fit the situations. These situations were
necessary because, without restrictions, the evalu-
ation scores could be influenced by dialogue con-
tent rather than by dialogue flow.

For this dialogue-imagining exercise, we re-
cruited 16 participants (eight males and eight fe-
males) who ranged from 19 to 39 years old. Each
participant made twelve dialogues using two situ-
ations. For assigning the situations, we first cre-
ated four conditions: (1) a student and living with
family, (2) working and living with family, (3) a
student and living alone, and (4) working and liv-
ing alone. Then the participants were categorized
into one of these conditions on the basis of their
actual lifestyle and assigned two of the situations
matching the condition.

For each situation, each participant created six
imaginary dialogues from the six dialogue-act se-
quences output by the six systems: our POMDP
and the other five systems for comparison. This
process produced such dialogues as shown in
Figs. 5 and 6. The dialogue in Fig. 5 was made
from a dialogue-act tag sequence of a human-
human conversation using No. 1 of Table 3. The
dialogue in Fig. 6 was made from the sequence of
our POMDP using No. 2 of Table 3.

In the third step, we additionally recruited three
judges (one male and two females) to evalu-
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ate the imagined 192 (16 × 2 × 6) dialogues.
The judges were neither the participants who
made dialogues nor those who rated the collected
listening-oriented dialogues. Six dialogues made
from one situation were randomly shown to the
judges one-by-one, who then filled out question-
naires to indicate their user satisfaction levels by
answering this question on a 7-point Likert scale:
“If you had been the speaker, would you have felt
that you were listened to?”

5.2 Systems for comparison

We created our POMDP-based dialogue control
and five other systems for comparison.

POMDP We learned a policy based on our ap-
proach. We used “food” dialogues (See Section
4), and the evaluation scores were those described
in Section 4.2. This system used the policy to
generate sequences of dialogue-act tags by sim-
ulation; user observations were generated based
on emission probability, and system actions were
generated based on the policy.

In this paper, the total number of observations
and actions was 33 because we have 32 dialogue-
act tags (See Table 1) plus a “skip” tag. In learning
the policy, an observation and an action must indi-
vidually take turns, but our data can include mul-
tiple dialogue-act tags in one utterance. There-
fore, if there is more than one dialogue-act tag
in one utterance, a “skip” is inserted between the
tags. The state numbers for So and Sa were 16
and 33, respectively. In this experiment, we set 10
to r2((∗, sa), a).

EvenPOMDP We arranged a POMDP using
only the smoothness reward (hereafter, Even-
POMDP) by creating a POMDP system with a
fixed evaluation score; hence user satisfaction
is not incorporated in the reward. When using
fixed (even) evaluation scores for all dialogues,
the effect of the user satisfaction reward is de-
nied, and the system only generates highly fre-
quent sequences. We have EvenPOMDP to clarify
whether user satisfaction is necessary. The other
conditions are identical as in the POMDP system.

HMM We modeled our dialogue-act tag se-
quences using a Speaker HMM (SHMM) (Me-
guro et al., 2009a), which has been utilized to
model two-party listening-oriented dialogues. In a
SHMM, half the states emit listener dialogue acts,

Listener：

GREETING

Speaker：

GREETING

Listener：

QUESTION

Speaker：

S-DISC

Listener：

S-DISC

SYMPATHY

or

1

2

3

4

5

Figure 3: Structure of rule-based system

and the other half emit speaker dialogue acts. All
states are connected to each other. We modeled
the “food” dialogues using an SHMM, and made
the model generate the most probable dialogue-act
tag sequences. More specifically, first, a dialogue-
act tag was generated randomly based on the ini-
tial state. If the state was that of a listener, we
generated a maximum likelihood action and the
state was randomly transited based on the transi-
tion probability. If the state was that of a speaker,
we randomly generated an action based on the
emission probability and the state was transited
using the maximum likelihood transition proba-
bility.

Rule-based system This system creates
dialogue-act tag sequences using hand-crafted
rules that are based on the findings in (Meguro et
al., 2009a) and are realized as shown in Fig. 3.
A sequence begins at state 1© in Fig. 3, and one
dialogue act is generated at each state. At state
3©, a sub-category tag under QUESTION is chosen
randomly, and at state 4©, a matched sub-category
tag under SELF-DISCLOSURE is chosen. At
state 5©, the listener’s SELF-DISCLOSURE or
SYMPATHY is generated randomly.

Human dialogue sequence This system created
dialogue-act tag sequences by randomly choosing
dialogues between humans from the collected data
and used their annotated tag sequences.

Random This system simply created dialogue-
act tag sequences at random.

5.3 Experimental results

Figure 4 shows the average subjective evaluation
scores. Except between HMM and EvenPOMDP,
there was a significant difference (p<0.01) be-
tween all systems in a non-parametric multiple
comparison test (Steel-Dwass test). The dialogues
shown in Figs. 5 and 6 were generated by the sys-
tems. The dialogue in Fig. 5 was made from hu-
man dialogue sequences, and the one in Fig. 6 was
made from POMDP.
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With whom What day What time What Where Who made
1 family weekday around 6:00 pm grilled salmon home mother
2 family weekend around 7:00 pm potato and meat home mother
3 co-workers weekday at noon boiled seaweed lunch box myself
...

...
...

...
...

...
...

32 friend weekday at noon hamburger school cafeteria N/A

Table 3: Dialogue situations relating to everyday Japanese life

We qualitatively analyzed the dialogues of each
system and observed the following characteristics:

POMDP At a dialogue’s beginning, the system
greets several times and shifts to a different phase
in which listeners ask questions and self-disclose
to encourage speakers to reciprocate.

Rule-based The output of this system seems
very natural and easy to read. The dialogue-act
tags followed reasonable rules, making it easier
for the participants to create natural utterances
from them.

Human conversation The dialogues between
humans were obviously natural before they were
changed to tags from the natural-language ut-
terances. However, human dialogues have ran-
domness, which makes it difficult for the partic-
ipants to create natural-language utterances from
the tags. Hence, the evaluation score for this sys-
tem was lower than the “Rule-based.”

HMM, EvenPOMDP Since these systems con-
tinually output the same action tags, their output
was very unnatural. For example, greetings never
stopped because GREETING is most frequently
followed by GREETING in the data. These sys-
tems have no mechanism to stop this loop.

POMDP successfully avoided such continua-
tion because its actions have more varied rewards.
For example, GREETING is repeated in Even-
POMDP because its smoothness reward is high;
however, in POMDP, although the smoothness re-
ward remains high, its user satisfaction reward is
not that high. This is because greetings appear
in all dialogues and their user satisfaction reward
converges to the average. Therefore, such actions
as greetings do not get repeated in POMDP. In
POMDP, some states have high user satisfaction
rewards, and the POMDP policy generated actions
to move to such states.

Random Since this system has more variety
of tags than HMM, its evaluation scores out-
performed HMM, but were outperformed by
POMDP, which learned statistically from the data.

Rule-based

6.07
Human 

dialogue

5.22 POMDP

（Proposed）

3.76
Random

2.67

HMM
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1.16
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Figure 4: System scores. Except between
POMDP and EvenPOMDP, significant differences
exist among all systems (p<0.01).

From our qualitative analysis, we found that
POMDP can generate more satisfying sequences
than HMM/EvenPOMDP because it does not fall
into the loop of frequent dialogue-act tag se-
quences. This suggests the usefulness of incor-
porating two kinds of rewards into the policy and
that our approach for setting a reward is promis-
ing.

However, with the proposed POMDP, unnatural
sequences remain; for example, the system sud-
denly output THANKS, as shown in Fig. 6. The
number of states may have been too small. We
plan to investigate what caused this in the future.

In our qualitative analysis, we observed that
randomness in dialogues might hold a clue for
improving evaluation scores. Therefore, we
measured the perplexity of each system output
using dialogue-act trigrams and obtained 72.8
for “Random,” 27.4 for “Human dialogue,” 7.4
for “POMDP,” 3.2 for “HMM,” 2.5 for “Even-
POMDP,” and 1.7 for “Rule-based.”

The perplexity of the human dialogues is less
than that of the random system, but humans also
exhibit a certain degree of freedom. On the other
hand, POMDP’s perplexity is less than the human
dialogues; they still have some freedom, which
probably led to their reasonable evaluation scores.
Considering that HMM and EvenPOMDP, which
continually output the same dialogue acts, had low
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Utterance Dialogue act
S: Hello. GREETING
L: Nice to meet you GREETING
S: I had dinner at home today. S-DISC (sub: fact)

Do you like grilled salmon? QUESTION, PREF
L: Yes, I think so. SYMPATHY

I sometimes want to have a
fancy meal.

S-DISC (sub: de-
sire)

S: Deluxe. REPEAT
Me too. SYMPATHY

L: Do you usually do your own
cooking?

QUESTION (sub:
habit)

S: No, I don’t. S-DISC, HABIT
I always buy my meals at the
convenience store.

S-DISC (sub:
habit)

L: I like the lunch boxes of conve-
nience stores

S-DISC (sub: pref
(positive))

Figure 5: Excerpt of listening-oriented dialogue
that participant imagined from tag sequences of
human conversations. Dialogue was translated
from Japanese by the authors.

Utterance Dialogue act
L: Nice to meet you. GREETING

Where and who did you have
dinner with today?

QUESTION (sub:
fact)

S: I had “niku-jaga” (meat and
beef) with my family at home.

S-DISC (sub: fact)

L: Oh. ADMIRATION
S: I think it is normal to eat with

your family at home.
S-DISC (sub: pref
(neutral))

L: Thanks. THANKS
Do you have any brothers or sis-
ters?

QUESTION (sub:
fact)

Soon, my brother and his wife
will visit my home.

S-DISC (sub: plan)

S: I see. SYMPATHY
L: I want to use expensive meat in

my “niku-jaga.”
S-DISC (sub: de-
sire)

Oh. ADMIRATION
Please give me your recipe. QUESTION (sub:

information)
S: My friends claim that my

“niku-jaga” is as good as a
restaurant’s.

INFORMATION

L: I’d love to try it S-DISC (sub: de-
sire)

Figure 6: Excerpt of a listening-oriented dialogue
made from tag sequences of POMDP

evaluation scores, we conclude that randomness is
necessary in non-task-oriented dialogues and that
some randomness can be included with our ap-
proach. We do not discuss “Rule-based” here be-
cause its tag sequence was meant to have small
perplexity.

6 Conclusion and Future work

This paper investigated the possibility of automat-
ically building a dialogue control module from di-

alogue data to create automated listening agents.
With a POMDP as a learning framework,

a dialogue control module was learned from
the listening-oriented dialogues we collected and
compared with five different systems. Our
POMDP system showed higher performance in
subjective evaluations than other statistically mo-
tivated systems, such as an HMM-based one, that
work by selecting the most likely subsequent ac-
tion in the dialogue data. When we investigated
the output sequences of our POMDP system, the
system frequently chose to self-disclose and ques-
tion, which corresponds to human listener be-
havior, as revealed in the literature (Meguro et
al., 2009a). This suggests that learning dialogue
control by POMDPs is achievable for listening-
oriented dialogues.

The main contribution of this paper is that
we successfully showed that POMDPs can be
used to train dialogue control policies for less
task-oriented dialogue systems, such as listening
agents, where the user goals are not as clear as
task-oriented ones. We also revealed that the re-
ward function can be learned effectively by our
formulation that simultaneously maximizes user
satisfaction and smoothness. Finding an appro-
priate reward function is a real challenge for less
task-oriented dialogue systems; this work has pre-
sented the first workable solution.

Much work still remains. Even though we
conducted an evaluation experiment by simula-
tion (i.e, offline evaluation), human dialogues ob-
viously do not necessarily proceed as in simula-
tions. Therefore, we plan to evaluate our sys-
tem using online evaluation, which also forces us
to implement utterance understanding and gener-
ation modules. We also want to incorporate the
idea of topic shift into our policy learning because
we observed in our data that listeners frequently
change topics to keep speakers motivated. We are
also considering adapting the system behavior to
users. Specifically, we want to investigate dia-
logue control that adapts to the personality traits
of users because it has been found that the flow
of listening-oriented dialogues differs depending
on the personality traits of users (Meguro et al.,
2009b). Finally, although we only dealt with text,
we also want to extend our approach to speech and
other modalities, such as gestures and facial ex-
pressions.
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Abstract

Texts are commonly interpreted based on
the entire discourse in which they are sit-
uated. Discourse processing has been
shown useful for inference-based applica-
tion; yet, most systems for textual entail-
ment – a generic paradigm for applied in-
ference – have only addressed discourse
considerations via off-the-shelf corefer-
ence resolvers. In this paper we explore
various discourse aspects in entailment in-
ference, suggest initial solutions for them
and investigate their impact on entailment
performance. Our experiments suggest
that discourse provides useful informa-
tion, which significantly improves entail-
ment inference, and should be better ad-
dressed by future entailment systems.

1 Introduction

This paper investigates the problem of recognising
textual entailment within discourse. Textual En-
tailment (TE) is a generic framework for applied
semantic inference (Dagan et al., 2009). Under
TE, the relationship between a text (T) and a tex-
tual assertion (hypothesis, H) is defined such that
T entails H if humans reading T would infer that
H is most likely true (Dagan et al., 2006).

TE has been successfully applied to a variety of
natural language processing applications, includ-
ing information extraction (Romano et al., 2006)
and question answering (Harabagiu and Hickl,
2006). Yet, most entailment systems have thus
far paid little attention to discourse aspects of in-
ference. In part, this is the result of the unavail-
ability of adept tools for handling the kind of dis-
course processing required for inference. In addi-
tion in the main TE benchmarks, the Recognising
Textual Entailment (RTE) challenges, discourse

played little role. This state of affairs has started
to change with the recent introduction of the RTE
Pilot “Search” task (Bentivogli et al., 2009b), in
which assessed texts are situated within complete
documents. In this setting, texts need to be inter-
preted based on their entire discourse (Bentivogli
et al., 2009a), hence attending to discourse issues
becomes essential. Consider the following exam-
ple from the task’s dataset:

(T) The seven men on board were said to have
as little as 24 hours of air.

For the interpretation of T, e.g. the identity and
whereabouts of the seven men, one must consider
T’s discourse. The preceding sentence T’, for in-
stance, provides useful information to that aim:

(T’) The Russian navy worked desperately to
save a small military submarine.

This example demonstrates a common situation in
texts, and is also applicable to the RTE Search
task’s setting. Still, little was done by the task’s
participants to consider discourse, and sentences
were mostly processed independently.

Analyzing the Search task’s development set,
we identified several key discourse aspects that af-
fect entailment in a discourse-dependent setting.
First, we observed that the coverage of available
coreference resolution tools is considerably lim-
ited. To partly address this problem, we extend the
set of coreference relations to phrase pairs with
a certain degree of lexical overlap, as long as no
semantic incompatibility is found between them.
Second, many bridging relations (Clark, 1975) are
realized in the form of “global information” per-
ceived as known for entire documents. As bridg-
ing falls completely out of the scope of available
resolvers, we address this phenomenon by iden-
tifying and weighting prominent document terms
and allowing their incorporation in inference even
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when they are not explicitly mentioned in a sen-
tence. Finally, we observed a coherence-related
discourse phenomenon, namely inter-relations be-
tween entailing sentences in the discourse, such
as the tendency of entailing sentences to be ad-
jacent to one another. To that end, we apply a
two-phase classification scheme, where a second-
phase meta-classifier is applied, extracting dis-
course and document-level features based on the
classification of each sentence on its own.

Our results show that, even when simple so-
lutions are employed, the reliance on discourse-
based information is helpful and achieves a sig-
nificant improvement of results. We analyze the
contribution of each component and suggest some
future work to better attend to discourse in entail-
ment systems. To our knowledge, this is the most
extensive effort thus far to empirically explore the
effect of discourse on entailment systems.

2 Background

Discourse plays a key role in text understanding
applications such as question answering or infor-
mation extraction. Yet, such applications typically
only handle a narrow aspect of discourse, address-
ing coreference by term substitution (Dali et al.,
2009; Li et al., 2009). The limited coverage and
scope of existing tools for coreference resolution
and the unavailability of tools for addressing other
discourse aspects also contribute to this situation.
For instance, VP anaphora and bridging relations
are usually not handled at all by such resolvers. A
similar situation is seen in the TE research field.

The prominent benchmark for entailment sys-
tems evaluation is the series of RTE challenges.
The main task in these challenges has tradition-
ally been to determine, given a text-hypothesis
pair (T,H), whether T entails H. Discourse played
no role in the first two RTE challenges as
T’s were constructed of short simplified texts.
In RTE-3 (Giampiccolo et al., 2007), where
some paragraph-long texts were included, inter-
sentential relations became relevant for correct in-
ference. Yet the texts in the task were manually
modified to ensure they are self-contained. Con-
sequently, little effort was invested by the chal-
lenges’ participants to address discourse issues
beyond the standard substitution of coreferring

nominal phrases, using publicly available tools
such as JavaRap (Qiu et al., 2004) or OpenNLP1,
e.g. (Bar-Haim et al., 2008).

A major step in the RTE challenges towards a
more practical setting of text processing applica-
tions occurred with the introduction of the Search
task in the Fifth RTE challenge (RTE-5). In this
task entailing sentences are situated within doc-
uments and depend on other sentences for their
correct interpretation. Thus, discourse becomes
a substantial factor impacting inference. Surpris-
ingly, discourse hardly received any treatment in
this task beyond the standard use of coreference
resolution (Castillo, 2009; Litkowski, 2009), and
an attempt to address globally-known information
by removing from H words that appear in docu-
ment headlines (Clark and Harrison, 2009).

3 The RTE Search Task

The RTE-5 Search task was derived from the
TAC Summarization task2. The dataset consists
of several corpora, each comprised of news arti-
cles concerning a specific topic, such as the im-
pact of global warming on the Arctic or the Lon-
don terrorist attacks in 2005. Hypotheses were
manually generated based on Summary Content
Units (Nenkova et al., 2007), clause-long state-
ments taken from manual summaries of the cor-
pora. Texts are unmodified sentences in the arti-
cles. Given a topic and a hypothesis, entailment
systems are required to identify all sentences in
the topic’s corpus that entail the hypothesis.

Each sentence-hypothesis pair in both the de-
velopment and test sets was annotated, judging
whether the sentence entails the hypothesis. Out
of 20,104 annotations in the development set, only
810 were judged as positive. This small ratio (4%)
of positive examples, in comparison to 50% in tra-
ditional RTE tasks, better corresponds to the natu-
ral distribution of entailing texts in a corpus, thus
better simulates practical settings.

The task may seem as a variant of information
retrieval (IR), as it requires finding specific texts
in a corpus. Yet, it is fundamentally different from
IR for two reasons. First, the target output is a set

1http://opennlp.sourceforge.net
2http://www.nist.gov/tac/2009/Summarization/
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of sentences, each evaluated independently, rather
than a set of documents. Second, the decision cri-
terion is entailment rather than relevance.

Despite the above, apparently, IR techniques
provided hard-to-beat baselines for the RTE
Search task (MacKinlay and Baldwin, 2009), out-
performing every other system that relied on in-
ference without IR-based pre-filtering. At the cur-
rent state of performance of entailment systems, it
seems that lexical coverage largely overshadows
any other approach in this task. Still, most (6 out
of 8) participants in the challenge applied their en-
tailment systems to the entire dataset without a
prior retrieval of candidate sentences. F1 scores
for such systems vary between 10% and 33%, in
comparison to over 40% of the IR-based methods.

4 The Baseline RTE System

In this work we used BIUTEE, Bar-Ilan Univer-
sity Textual Entailment Engine (Bar-Haim et al.,
2008; Bar-Haim et al., 2009), a state of the art
RTE system, as a baseline and as a basis for our
discourse-based enhancements. This section de-
scribes this system’s architecture; the methods by
which it was augmented to address discourse are
presented in Section 5.

To determine entailment, BIUTEE performs the
following main steps:

Preprocessing First, all documents are parsed
and processed with standard tools for named en-
tity recognition (Finkel et al., 2005) and corefer-
ence resolution. For the latter purpose, we use
OpenNLP and enable the substitution of corefer-
ring terms. This is the only way by which BIUTEE

addresses discourse, representing the state of the
art in entailment systems.

Entailment-based transformations Given a
T-H pair (both represented as dependency
parse trees), the system applies a sequence of
knowledge-based entailment transformations over
T, generating a set of texts which are entailed by
it. The goal is to obtain consequent texts which
are more similar to H. Based on preliminary re-
sults on the development set, in our experiments
(Section 6) we use WordNet (Fellbaum, 1998) as
the system’s only knowledge resource, using its
synonymy, hyponymy and derivation relations.

Classification A supervised classifier, trained
on the development set, is applied to determine
entailment of each pair based on a set of syntactic
and lexical syntactic features assessing the degree
by which T and its consequents cover H.

5 Addressing Discourse

In the following subsections we describe the
prominent discourse phenomena that affect infer-
ence, which we have identified in an analysis of
the development set and addressed in our imple-
mentation. As mentioned, these phenomena are
poorly addressed by available reference resolvers
or fall completely out of their scope.

5.1 Augmented coreference set
A large number of coreference relations are com-
prised of terms which share lexical elements, (e.g.
“airliners’s first flight” and “Airbus A380’s first
flight”). Although common in coreference rela-
tions, standard resolvers miss many of these cases.
For the purpose of identifying additional corefer-
ring terms, we consider two noun phrases in the
same document as coreferring if: (i) their heads
are identical and (ii) no semantic incompatibil-
ity is found between their modifiers. The types
of incompatibility we handle are: (a) mismatch-
ing numbers, (b) antonymy and (c) co-hyponymy
(coordinate terms), as specified by WordNet. For
example, two nodes of the noun distance would
be considered incompatible if one is modified by
short and the second by its antonym long. Simi-
larly, two modifier co-hyponyms of distance, such
as walking and running would also result such
an incompatibility. Adding more incompatibility
types (e.g. first vs. second flight) may further im-
prove the precision of this method.

5.2 Global information
Key terms or prominent pieces of information that
appear in the document, typically at the title or the
first few sentences, are many times perceived as
“globally” known throughout the document. For
example, the geographic location of the document
theme, mentioned at the beginning of the docu-
ment, is assumed to be known from that point on,
and will often not be mentioned explicitly in fur-
ther sentences. This is a bridging phenomenon
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that is typically not addressed by available dis-
course processing tools. To compensate for that,
we identify key terms for each document based
on tf-idf scores and consider them as global in-
formation for that document. For example, global
terms for the topic discussing the ice melting in
the Arctic, typically contain a location such as
Arctic or Antarctica and terms referring to ice, like
permafrost or iceshelf.

We use a variant of tf-idf, where term frequency
is computed as follows: tf(ti,j) = ni,j+~λ

> · ~fi,j .
Here, ni,j is the frequency of term i in document j
(ti,j), which is incremented by additional positive
weights (~λ) for a set of features ( ~fi,j) of the term.
Based on our analysis, we defined the following
features, which correlated mostly with global in-
formation: (i) does the term appear in the title?
(ii) is it a proper name? (iii) is it a location? The
weights for these features are set empirically.

The document’s top-n global terms are added
to each of its sentences. As a result, a global term
that occurs in the hypothesis is matched in each
sentence of the document, regardless of whether
the term explicitly appears in the sentence.

Considering the previous sentence Another
method for addressing missing coreference and
bridging relations is based on the assumption that
adjacent sentences often refer to the same entities
and events. Thus, when extracting classification
features for a given sentence, in addition to the
features extracted from the parse tree of the sen-
tence itself, we extract the same set of features
from the current and previous sentences together.
Recall the example presented in Section 1. T is
annotated as entailing the hypothesis “The AS-28
mini-submarine was trapped underwater”, but the
word submarine, e.g., appears only in its preced-
ing sentence T’. Thus, considering both sentences
together when classifying T increases its coverage
of the hypothesis. Indeed, a bridging reference re-
lates on board in T with submarine in T’, justify-
ing our assumption in this case.

5.3 Document-level classification

Beyond discourse references addressed above,
further information concerning discourse and doc-
ument structure is available in the Search setting

and may contribute to entailment classification.
We observed that entailing sentences tend to come
in bulks. This reflects a common coherence as-
pect, where the discussion of a specific topic is
typically continuous rather than scattered across
the entire document. This locality phenomenon
may be useful for entailment classification since
knowing that a sentence entails the hypothesis in-
creases the probability that adjacent sentences en-
tail the hypothesis as well.

To capture this phenomenon, we use a two-
phase meta-classification scheme, in which a
meta-classifier utilizes entailment classifications
of the first classification phase to extract meta-
features and determine the final classification de-
cision. This scheme also provides a convenient
way to combine scores from multiple classifiers
used in the first classification phase. We refer
to these as base-classifiers. This scheme and the
meta-features we used are detailed hereunder.

Let us write (s, h) for a sentence-hypothesis
pair. We denote the set of pairs in the development
(training) set asD and in the test set as T . We split
D into two halves, D1 and D2. We make use of n
base-classifiers, C1, . . . , Cn, among which C? is
a designated classifier with additional roles in the
process, as described below. Classifiers may dif-
fer, for example, in their classification algorithm.
An additional meta-classifier is denoted CM . The
classification scheme is shown as Algorithm 1.

Algorithm 1 Meta-classification
Training

1: Extract features for every (s, h) in D
2: Train C1, . . . , Cn on D1

3: Classify D2, using C1, . . . , Cn

4: Extract meta-features for D2 using the
classification of C1, . . . , Cn

5: Train CM on D2

Classification
6: Extract features for every (s, h) in T
7: Classify T using C1, . . . , Cn

8: Extract meta-features for T
9: Classify T using CM

At Step 1, features are extracted for every (s, h)
pair in the training set, as in the baseline system.
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In Steps 2 and 3 we split the training set into two
halves (taking half of each topic), train n different
classifiers on the first half and then classify the
second half using each of the n classifiers. Given
the classification scores of the n base-classifiers
to the (s, h) pairs in the second half of the train-
ing set, D2, we add in Step 4 the meta-features
described in Section 5.3.1.

After adding the meta-features, we train
(Step 5) a meta-classifier on this new set of fea-
tures. Test sentences then go through the same
process: features are extracted for them and they
are classified by the already trained n classifiers
(Steps 6 and 7), meta-features are extracted in
Step 8, and a final classification decision is made
by the meta-classifier in Step 9.

A retrieval step may precede the actual en-
tailment classification, allowing the processing of
fewer and potentially “better” candidates.

5.3.1 Meta-features
The following features are extracted in our

meta-classification scheme:

Classification scores The classification score of
each of the n base-classifiers.

Title entailment In many texts, and in news ar-
ticles in particular, the title and the first few sen-
tences often represent the entire document’s con-
tent. Thus, knowing whether these sentences en-
tail the hypothesis may be an indicator to the gen-
eral potential of the document to include entailing
sentences. Two binary features are added accord-
ing to the classification of C? indicating whether
the title entails the hypothesis and whether the first
sentence entails it.

Second-closest entailment Considering the lo-
cality phenomenon described above, we add a fea-
ture assigning higher scores to sentences in the
vicinity of an entailment environment. This fea-
ture is computed as the distance to the second-
closest entailing sentence in the document (count-
ing the sentence itself as well), according to the
classification ofC?. Formally, let i be the index of
the current sentence and J be the set of indices of
entailing sentences in the document according to
C?. For each j ∈ J we compute di,j = |i−j|, and
choose the second smallest di,j as di. The idea is
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Figure 1: Comparison of the closest and second-closest
schemes when applied to a bulk of entailing sentences (in
white) situated within a non-entailing environment (in gray).
Unlike the closest one, the second-closest scheme assigns
larger distance values to non-entailing sentences located on
the ‘edge’ of the bulk (5 and 10) than to entailing ones.

that if entailing sentences indeed always come in
bulks, then di = 1 for all entailing sentences, but
di > 1 for all non-entailing ones. Figure 1 illus-
trates such a case, comparing the second-closest
distance with the distance to the closest entailing
sentence. In the closest scheme we do not count
the sentence as closest to itself since it would dis-
regard the environment of the sentence altogether,
eliminating the desired effect. We scale the dis-
tance and add the feature score: − log(di).

Smoothed entailment This feature addressed
the locality phenomenon by smoothing the
classification score of sentence i with the scores
of adjacent sentences, weighted by their distance
from the current sentence i. Let s(i) be the
score assigned by C? to sentence i. We add the
Smoothed Entailment feature score:

SE(i) =
∑

w(b|w|·s(i+w))∑
w(b|w|)

where 0 < b < 1 is the decay parameter and w is
an integer bounded between−N and N , denoting
the distance from sentence i.

1st sentence entailing title Bensley and Hickl
(2008) showed that the first sentence in a news ar-
ticle typically entails the article’s title. We there-
fore assume that in each document, s1 ⇒ s0,
where s1 and s0 are the document’s first sentence
and title respectively. Hence, under entailment
transitivity, if s0 ⇒ h then s1 ⇒ h. The cor-
responding binary feature states whether the sen-
tence being classified is the document’s first sen-
tence and the title entails h according to C?.
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P (%) R (%) F1 (%)
BIU-BL 14.53 55.25 23.00
BIU-DISC 20.82 57.25 30.53
BIU-BL3 14.86 59.00 23.74
BIU-DISCno−loc 22.35 57.12 32.13
All-yes baseline 4.6 100.0 8.9

Table 1: Micro-average results.

Note that the above locality-based features rely
on high accuracy of the base classifier C?. Oth-
erwise, it will provide misleading information to
the features computation. We analyze the effect
of this accuracy in Section 6.

6 Results and Analysis

Using the RTE-5 Search data, we compare
BIUTEE in its baseline configuration (cf. Sec-
tion 4), denoted BIU-BL, with its discourse-aware
enhancement (BIU-DISC) which uses all the com-
ponents described in Section 5. To alleviate the
strong IR effect described in Section 3, both sys-
tems are applied to the complete datasets (both
training and test), without candidates pre-filtering.

BIU-DISC uses three base-classifiers (n = 3):
SVMperf (Joachims, 2006), and Naı̈ve Bayes and
Logistic Regression from the WEKA package
(Witten and Frank, 2005). The first among these
is set as our designated classifier C?, which is
used for the computation of the document-level
features. SVMperf is also used for the meta-
classifier. For the smoothed entailment score (cf.
Section 5.3), we used b = 0.9 and N = 3. Global
information is added by enriching each sentence
with the highest-ranking term in the document, ac-
cording to tf-idf scores (cf. Section 5.2), where
document frequencies were computed based on
about half a million documents from the TIP-
STER corpus (Harman, 1992). The set of weights
~λ equals {2, 1, 4} for title terms, proper names and
locations, respectively. All parameters were tuned
based on a 10-fold cross-validation on the devel-
opment set, optimizing the micro-averaged F1.

The results are presented in Table 1. As can be
seen in the table, BIU-DISC outperforms BIU-BL in
every measure, showing the impact of addressing
discourse in this setting. To rule out the option that
the improvement is simply due to the fact that we
use three classifiers for BIU-DISC and a single one

P (%) R (%) F1 (%)
By Topic

BIU-BL 16.54 55.62 25.50
BIU-DISC 22.69 57.96 32.62
All-yes baseline 4.85 100.00 9.25

By Hypothesis
BIU-BL 22.87 59.62 33.06
BIU-DISC 27.81 61.97 38.39
All-yes baseline 4.96 100.00 9.46

Table 2: Macro-average results.

for BIU-BL, we show (BIU-BL3) the results when
the baseline system is applied in the same meta-
classification configuration as BIU-DISC, with the
same three classifiers. Apparently, without the
discourse information this configuration’s contri-
bution is limited.

As mentioned in Section 5.3, the benefit from
the locality features rely directly on the perfor-
mance of the base classifiers. Hence, considering
the low precision scores obtained here, we applied
BIU-DISC to the data in the meta-classification
scheme, but with locality features removed. The
results, shown as BIU-DISCno−loc in the Table, in-
dicate that indeed performance increases without
these features. The last line of the table shows the
results obtained by a naı̈ve baseline where all test-
set pairs are considered entailing.

For completeness, Table 2 shows the macro-
averaged results, when averaged over the topics or
over the hypotheses. Although we tuned our sys-
tem to maximize micro-averaged F1, these figures
comply with the ones shown in Table 1.

Analysis of locality As discussed in Section 5,
determining whether a sentence entails a hypothe-
sis should take into account whether adjacent sen-
tences also entail the hypothesis. In the above ex-
periment we were unable to show the contribution
of our system’s component that attempts to cap-
ture this information; on the contrary, the results
show it had a negative impact on performance.

Still, we claim that this information can be use-
ful when used within a more accurate system. We
try to validate this conjecture by understanding
how performance of the locality features varies as
the systems becomes more accurate. We do so via
the following simulation.

When classifying a certain sentence, the classi-
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Figure 2: F1 performance of BIU-DISC as a function of
the accuracy in classifying adjacent sentences.

fications of its adjacent sentences are given by an
oracle classifier that provides the correct answer
with probability p. The system is applied using
two locality features: the 1st sentence entailing
title feature and a close variant of the smoothed
entailment feature, which calculates the weighted
average of adjacent sentences, but disregards the
score of the currently evaluated sentence.3 Thus
we supply information about adjacent sentences
and test whether overall performance increases
with the accuracy of this information.

We performed this experiment for p in a range
of [0.5-1.0]. Figure 2 shows the results of this sim-
ulation, based on the average F1 of five runs for
each p. Since performance, from a certain point,
increases with the accuracy of the oracle classi-
fier, we can conclude that indeed precise infor-
mation about adjacent sentences improves perfor-
mance on the current sentence, and that locality is
a true phenomenon in the data. We note, however,
that performance improves only when accuracy is
very high, suggesting the currently limited prac-
tical potential of this information, at least in the
way locality was represented in this work.

Ablation tests Table 3 presents the results of the
ablation tests performed to evaluate the contribu-
tion of each component. Based on the result re-
ported in Table 1 and the above discussion, the
tests were performed relative to BIU-DISCno−loc,
the optimal configuration. As seen in the table,
the removal of each component causes a drop
in results. For global information we see a mi-

3The second-closest entailment feature was not used as it
considers the oracle’s decision for the current sentence, while
we wish to use only information about adjacent sentences.

Component removed F1 (%) ∆F1 (%)
Previous sent. features 28.55 3.58
Augmented coref. 26.73 5.40
Global information 31.76 0.37

Table 3: Results of ablation tests relative to
BIU-DISCno−loc. The columns specify the compo-
nent removed, the micro-averaged F1 score achieved without
it, and the marginal contribution of the component.

nor difference, which is not surprising considering
the conservative approach we took, using a sin-
gle global term for each sentence. Possibly, this
information is also included in the other compo-
nents, thus proving no marginal contribution rel-
ative to them. Under the conditions of an over-
whelming majority of negative examples, this is
a risky method to use, and should be considered
when the ratio of positive examples is higher. For
future work, we intend to use this information via
classification features (e.g. the coverage obtained
with and without global information), rather than
the crude addition of the term to the sentence.

Analysis of augmented coreferences We an-
alyzed the performance of the component for
augmenting coreference relations relative to the
OpenNLP resolver. Recall that our component
works on top of the resolver’s output and can add
or remove coreference relations. As a complete
annotation of coreference chains in the dataset is
unavailable, we performed the following evalua-
tion. Recall is computed based on the number
of identified pairs from a sample of 100 intra-
document coreference and bridging relations from
the annotated dataset described in (Mirkin et al.,
2010). Precision is computed based on 50 pairs
sampled from the output of each method, equally
distributed over topics. The results, shown in Ta-
ble 4, indicate the much higher recall obtained
by our component at some cost in precision. Al-
though rather simple, the ablation test of this com-
ponent shows its usefulness. Still, both methods
achieve low absolute recall, suggesting the need
for more robust tools for this task.

P (%) R (%) F1 (%)
OpenNLP 74 16 26.3
Augmented coref. 60 28 38.2

Table 4: Performance of coreference methods.
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Figure 3: F1 performance as a function of the number of
retrieved candidates.

Candidate retrieval setting As mentioned in
Section 3, best performance of RTE systems in the
task was obtained when applying a first step of IR-
based candidate filtering. We therefore compare
the performance of BIU-DISC with that of BIU-BL

under this setting as well.4 For candidate retrieval
we used Lucene, a state of the art search engine5,
in a range of top-k retrieved candidates. The re-
sults are shown in Figure 3. For reference, the fig-
ure also shows the performance along this range
of Lucene as-is, when no further inference is ap-
plied to the retrieved candidates.

While BIU-DISC does not outperform BIU-BL at
every point, the area under the curve is clearly
larger for BIU-DISC. The figure also indicates that
BIU-DISC is far more robust, maintaining a stable
F1 and enabling a stable tradeoff between recall
and precision along the whole range (recall ranges
between 42% and 55% for k ∈ [15 − 100], with
corresponding precision range of 51% to 33%).

Finally, Table 5 shows the results of the best
systems as determined in our first experiment.
We performed a single experiment to compare
BIU-DISCno−loc and BIU-BL3 under a candidate re-
trieval setting, using k = 20, where both systems
highly perform. We compare these results to the
highest score obtained by Lucene, as well as to the
two best submissions to the RTE-5 Search task6.
BIU-DISCno−loc outperforms all other methods and
its result is significantly better than BIU-BL3 with
p < 0.01 according to McNemar’s test.

4This time, for global information, the document’s three
highest ranking terms were added to each sentence.

5http://lucene.apache.org
6The best one is an earlier version of this work (Mirkin et

al., 2009); the second is MacKinlay and Baldwin’s (2009).

P (%) R (%) F1 (%)
BIU-DISCno−loc 50.77 45.12 47.78
BIU-BL3 51.68 40.38 45.33
Lucene, top-15 35.93 52.50 42.66
RTE-5 best 40.98 51.38 45.59
RTE-5 second-best 42.94 38.00 40.32

Table 5: Performance of best configurations.

7 Conclusions

While it is generally assumed that discourse inter-
acts with semantic entailment inference, the con-
crete impacts of discourse on such inference have
been hardly explored. This paper presented a first
empirical investigation of discourse processing
aspects related to entailment. We argue that avail-
able discourse processing tools should be substan-
tially improved towards this end, both in terms of
the phenomena they address today, namely nom-
inal coreference, and with respect to the cover-
ing of additional phenomena, such as bridging
anaphora. Our experiments show that even rather
simple methods for addressing discourse can have
a substantial positive impact on the performance
of entailment inference. Concerning the local-
ity phenomenon stemming from discourse coher-
ence, we learned that it does carry potentially use-
ful information, which might become beneficial
in the future when better-performing entailment
systems become available. Until then, integrating
this information with entailment confidence may
be useful. Overall, we suggest that entailment sys-
tems should extensively incorporate discourse in-
formation, while developing sound algorithms for
addressing various discourse phenomena, includ-
ing the ones described in this paper.
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Abstract

The detailed analyses of sentence struc-
ture provided by parsers have been applied
to address several information extraction
tasks. In a recent bio-molecular event ex-
traction task, state-of-the-art performance
was achieved by systems building specif-
ically on dependency representations of
parser output. While intrinsic evalua-
tions have shown significant advances in
both general and domain-specific pars-
ing, the question of how these translate
into practical advantage is seldom con-
sidered. In this paper, we analyze how
event extraction performance is affected
by parser and dependency representation,
further considering the relation between
intrinsic evaluation and performance at
the extraction task. We find that good
intrinsic evaluation results do not always
imply good extraction performance, and
that the types and structures of differ-
ent dependency representations have spe-
cific advantages and disadvantages for the
event extraction task.

1 Introduction

Advanced syntactic parsing methods have been
shown to effective for many information extrac-
tion tasks. The BioNLP 2009 Shared Task, a re-
cent bio-molecular event extraction task, is one
such task: analysis showed that the application of
a parser correlated with high rank in the task (Kim

et al., 2009). The automatic extraction of bio-
molecular events from text is important for a num-
ber of advanced domain applications such as path-
way construction, and event extraction thus a key
task in Biomedical Natural Language Processing
(BioNLP).

Methods building feature representations and
extraction rules around dependency representa-
tions of sentence syntax have been successfully
applied to a number of tasks in BioNLP. Several
parsers and representations have been applied in
high-performing methods both in domain studies
in general and in the BioNLP’09 shared task in
particular, but no direct comparison of parsers or
representations has been performed. Likewise,
a number of evaluation of parser outputs against
gold standard corpora have been performed in the
domain, but the broader implications of the results
of such intrinsic evaluations are rarely considered.
The BioNLP’09 shared task involved documents
contained also in the GENIA treebank (Tateisi et
al., 2005), creating an opportunity for direct study
of intrinsic and task-oriented evaluation results.
As the treebank can be converted into various de-
pendency formats using existing format conver-
sion methods, evaluation can further be extended
to cover the effects of different representations.

In this this paper, we consider three types of de-
pendency representation and six parsers, evaluat-
ing their performance from two different aspects:
dependency-based intrinsic evaluation, and effec-
tiveness for bio-molecular event extraction with a
state-of-the-art event extraction system. Compar-
ison of intrinsic and task-oriented evaluation re-
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phosphorylationTRAF2 binding
inhibits

TRAF2 CD40ThemeThemeTheme
Cause Theme

… In this study we hypothesized that the phosphorylation of TRAF2 inhibits binding to the CD40 cytoplasmic domain. …Negative_regulation
Phospholylation Binding

Figure 1: Event Extraction.

sults shows that performance against gold stan-
dard annotations is not always correlated with
event extraction performance. We further find
that the dependency types and overall structures
employed by the different dependency representa-
tions have specific advantages and disadvantages
for the event extraction task.

2 Bio-molecular Event Extraction

In this study, we adopt the event extraction task
defined in the BioNLP 2009 Shared Task (Kim et
al., 2009) as a model information extraction task.
Figure 1 shows an example illustrating the task
of event extraction from a sentence. The shared
task provided common and consistent task defi-
nitions, data sets for training and evaluation, and
evaluation criteria. The shared task defined five
simple events (Gene expression, Transcription,
Protein catabolism, Phosphorylation, and Local-
ization) that take one core argument, a multi-
participant binding event (Binding), and three reg-
ulation events (Regulation, Positive regulation,
and Negative regulation) used to capture both bi-
ological regulation and general causation. The
participants of simple and Binding events were
specified to be of the general Protein type, while
regulation-type events could also take other events
as arguments, creating complex event structures.

We consider two subtasks, Task 1 and Task 2,
out of the three defined in the shared task. Task 1
focuses on core event extraction, and Task 2
involves augmenting extracted events with sec-
ondary arguments (Kim et al., 2009). Events are
represented with a textual trigger, type, and ar-
guments, where the trigger is a span of text that
states the event in text. In Task 1 the event argu-
ments that need to be extracted are restricted to the
core Theme and Cause roles, with secondary ar-

guments corresponding to locations and sites con-
sidered in Task 2.

2.1 Event Extraction System

For evaluation, we apply the system of Miwa et al.
(2010b). The system was originally developed for
finding core events (Task 1) using the native out-
put of the Enju and GDep parsers. The system
consists of three supervised classification-based
modules: a trigger detector, an event edge detec-
tor, and a complex event detector. The trigger
detector classifies each word into the appropriate
event types, the event edge detector classifies each
edge between an event and a candidate participant
into an argument type, and the complex event de-
tector classifies event candidates constructed by
all edge combinations, deciding between event
and non-event. The system uses one-vs-all sup-
port vector machines (SVMs) for classification.

The system operates on one sentence at a time,
building features for classification based on the
syntactic analyses for the sentence provided by
the two parsers as well as the sequence of the
words in the sentence, including the target candi-
date. The features include the constituents/words
around entities (triggers and proteins), the depen-
dencies, and the shortest paths among the enti-
ties. The feature generation is format-independent
regarding the shared properties of different for-
mats, but makes use also of format-specific infor-
mation when available for extracting features, in-
cluding the dependency tags, word-related infor-
mation (e.g. a lexical entry in Enju format), and
the constituents and their head information.

We apply here a variant of the base system in-
corporating a number of modifications. The ap-
plied system performs feature selection removing
two classes of features that were found not to be
beneficial for extraction performance, and applies
a refinement of the trigger expressions of events.
The system is further extended to find also sec-
ondary arguments (Task 2). For a detailed descrip-
tion of these improvements, we refer to Miwa et
al. (2010a).

3 Parsers and Representations

Six publicly available parsers and three depen-
dency formats are considered in this paper. The
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Figure 2: Stanford basic dependency tree
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Figure 3: CoNLL-X dependency treenoun_arg1arg1 prep_arg12arg1 prep_arg12arg2 P2NFAT/AP-1 complex formed only with P andverb_arg1arg1 adj_arg1arg1 coord_arg12arg1 coord_arg12arg2
Figure 4: Predicate Argument Structure

parsers are GDep (Sagae and Tsujii, 2007), the
Bikel parser (Bikel) (Bikel, 2004), the Stanford
parser with two probabilistic context-free gram-
mar (PCFG) models1 (Wall Street Journal (WSJ)
model (Stanford WSJ) and “augmented English”
model (Stanford eng)) (Klein and Manning,
2003), the Charniak-Johnson reranking parser,
using David McClosky’s self-trained biomedi-
cal parsing model (MC) (McClosky, 2009), the
C&C CCG parser, adapted to biomedical text
(C&C) (Rimell and Clark, 2009), and the Enju
parser with the GENIA model (Miyao et al.,
2009). The formats are Stanford Dependen-
cies (SD) (Figure 2), the CoNLL-X dependency
format (CoNLL) (Figure 3) and the predicate-
argument structure (PAS) format used by Enju
(Figure 4). With the exception of Stanford and
Enju, the analyses of these parsers were provided
by the BioNLP 2009 Shared Task organizers.

The six parsers operate in a number of different
frameworks, reflected in their analyses. GDep is
a native dependency parser that produces CoNLL
dependency trees, with dependency types similar
to those of CoNLL 2007. Bikel, Stanford, and MC

1Experiments showed no benefit from using the lexical-
ized models with the Stanford parser.

Enju
C&CGDepMcClosky-CharniakBikel PASPTB

CCG SDConll-X
Stanford

Figure 5: Format conversion dependencies in six
parsers. Formats adopted for the evaluation are
shown in solid boxes. SD: Stanford Dependency
format, CCG: Combinatory Categorial Grammar
output format, PTB: Penn Treebank format, and
PAS: Predicate Argument Structure in Enju for-
mat.

are phrase-structure parsers trained on Penn Tree-
bank format (PTB) style treebanks, and they pro-
duce PTB trees. C&C is a deep parser based on
Combinatory Categorial Grammar (CCG), and its
native output is in a CCG-specific format. The
output of C&C can be converted into SD by a
rule-based conversion script (Rimell and Clark,
2009). Enju is deep parser based on Head-driven
Phrase Structure Grammar (HPSG) and produces
a format containing predicate argument structures
along with a phrase structure tree in Enju format,
which can be converted into PTB format (Miyao
et al., 2009).

For direct comparison and for the study of con-
tribution of the formats in which the six parsers
output their analyses to task performance, we ap-
ply a number of conversions between the out-
puts, shown in Figure 5. The Enju PAS output is
converted into PTB using the method introduced
by (Miyao et al., 2009). SD is generated from
PTB by the Stanford tools (de Marneffe et al.,
2006), and CoNLL generated from PTB by us-
ing Treebank Converter (Johansson and Nugues,
2007). With the exception of GDep, all CoNLL
outputs are generated by the conversion and thus
share dependency types. We note that all of these
conversions can introduce some errors in the con-
version process.
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4 Evaluation Setting

4.1 Event Extraction Evaluation

Event extraction performance is evaluated using
the evaluation script provided by the BioNLP’09
shared task organizers for the development data
set, and the online evaluation system of the task
for the test data set2 . Results are reported under
the official evaluation criterion of the task, i.e. the
“Approximate Span Matching/Approximate Re-
cursive Matching” criterion.

The event extraction system described in Sec-
tion 2.1 is used with the default settings given in
(Miwa et al., 2010b). The C-values of SVMs are
set to 1.0, but the positive and negative examples
are balanced by placing more weight on the posi-
tive examples. The examples predicted with con-
fidence greater than 0.5, as well as the examples
with the most confident labels, are extracted. Task
1 and Task 2 are solved at once for the evaluation.

Some of the parse results do not include word
base forms or part-of-speech (POS) tags, which
are required by the event extraction system. To
apply these parsers, the GENIA Tagger (Tsuruoka
et al., 2005) output is adopted to add this informa-
tion to the results.

4.2 Dependency Representation Evaluation

The parsers are evaluated with precision, recall,
and F-score for each dependency type. We note
that the parsers may produce more fine-grained
word segmentations than that of the gold standard:
for example, two words “p70(S6)-kinase activa-
tion” in the gold standard tree (Figure 6 (a)) is
segmented into five words by Enju (Figure 6 (b)).
In the evaluation the word segmentations in the
gold tree are used, and dependency transfer and
word-based normalization are performed to match
parser outputs to these. Dependencies related to
the segmentations are transferred to the enclosing
word as follows. If one word is segmented into
several segments by a parser, all the dependencies
between the segments are removed (Figure 6 (c))
and the dependency between another word and
the segments is converted into the dependency be-
tween the two words (Figure 6 (d)).

2http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/SharedTask/

The parser outputs in SD and CoNLL can be
assumed to be trees, so each node in the tree have
only one parent node. However, in the converted
tree nodes can have more than one parent. We
cannot simply apply accuracy, or (un)labeled at-
tachment score3. Word-based normalization is
performed to avoid negative impact by the word
segmentations by parsers. When (a) and (d) in
Figure 6 are compared, the counts of correct re-
lations will be 1.0 (0.5 for upper NMOD and 0.5
for lower NMOD in Figure 6 (d)) for the parser
(precision), and the counts of correct relations will
be 1.0 (for NMOD in Figure 6 (a)) for the gold
(recall). This F-score is a good approximation of
accuracy.

4.3 GENIA treebank processing

For comparison and evaluation, the texts in the
GENIA treebank (Tateisi et al., 2005) are con-
verted to the various formats as follows. To create
PAS, the treebank is converted with Enju, and for
trees that fail conversion, parse results are used in-
stead. The GENIA treebank is also converted into
PTB4, and then converted into SD and CoNLL as
described in Section 3. While based on manually
annotated gold data, the converted treebanks are
not always correct due to conversion errors.

5 Evaluation

This section presents evaluation results. Intrinsic
evaluation is first performed in Section 5.1. Sec-
tion 5.2 considers the effect of different SD vari-
ants. Section 5.3 presents the results of experi-
ments with different parsers. Section 5.4 shows
the performance of different parsers. Finally, the
performance of the event extraction system is dis-
cussed in context of other proposed methods for
the task in Section 5.5.

5.1 Intrinsic Evaluation

We initially briefly consider the results of an in-
trinsic evaluation comparing parser outputs to ref-
erence data automatically derived from the gold
standard treebank. Table 1 shows results for the
parsers whose outputs could be converted into the

3http://nextens.uvt.nl/ ∼conll/
4http://categorizer.tmit.bme.hu/

∼illes/genia ptb/
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activationp70(S6)-kinaseNMOD
(a) Gold Word Segmen-
tations

-kinasep70 ( S6 ) activationNMOD
NMOD

PRN P
P

(b) Parser Word Seg-
mentations

-kinasep70 ( S6 ) activationNMOD
NMOD

(c) Inner Dependency
Removal

activationp70(S6)-kinaseNMOD
NMOD

(d) Dependency Trans-
fer

Figure 6: Example of Word Segmentations of the words by gold and Enju and Dependency Transfer.

Typed Untyped
SD CoNLL SD CoNLL

P R F P R F P R F P R F
Bikel 70.31 70.37 70.34 77.81 77.56 77.69 80.54 80.60 80.57 82.43 82.18 82.31

SP WSJ 74.11 73.94 74.03 81.41 81.47 81.44 81.36 81.16 81.26 84.05 84.05 84.05
SP eng 79.08 78.89 78.98 84.92 84.82 84.87 84.16 83.96 84.06 86.54 86.47 86.51
C&C 80.31 78.04 79.16 - 84.91 82.28 83.57 -
MC 79.56 79.63 79.60 88.13 87.87 88.00 87.43 87.50 87.47 89.81 89.42 89.62
Enju 85.59 85.62 85.60 88.59 89.51 89.05 88.28 88.30 88.29 90.24 90.77 90.50

Table 1: Comparison of precision, recall, and F-score results with five parsers (two models for Stanford)
in two different formats on the development data set (SP abbreviates for Stanford Parser). Results
shown separately for evaluation including dependency types and one eliminating them. Parser/model
combinations above the line do not use in-domain data, others do.

SD and CoNLL dependency representations us-
ing the Stanford tools and Treebank Converter, re-
spectively. For Stanford, both the Penn Treebank
WSJ section and “augmented English” (eng) mod-
els were tested; the latter includes biomedical do-
main data. The Enju results for PAS are 91.48
with types and 93.39 without in F-score. GDep
not shown as its output is not compatible with that
of Treebank Converter.

Despite numerical differences, the two repre-
sentations and two criteria (typed/untyped) all
produce largely the same ranking of the parsers.5

The evaluations also largely agree on the magni-
tude of the reduction in error afforded through the
use of in-domain training data for the Stanford
parser, with all estimates falling in the 15-19%
range. Similarly, all show substantial differences
between the parsers, indicating e.g. that the error
rate of Enju is 50% or less of that of Bikel.

These results serve as a reference point for ex-
trinsic evaluation results. However, it should be

5One larger divergence is between typed and untyped SD
results for MC. Analysis suggest one cause is frequent errors
in tagging hyphenated noun-modifiers such asNF-kappaBas
adjectives.

BD CD CDP CTD
Task 1 55.60 54.35 54.59 54.42
Task 2 53.94 52.65 52.88 52.76

Table 2: Comparison of the F-score results with
different SD variants on the development data set
with the MC parser. The best score in each task is
shown in bold.

noted that as the parsers make use of annotated
domain training data to different extents, this eval-
uation does not provide a sound basis for direct
comparison of the parsers themselves.

5.2 Stanford Dependency Setting

SD have four different variants: basic depen-
dencies (BD), collapsed dependencies (CD), col-
lapsed dependencies with propagation of conjunct
dependencies (CDP), and collapsed tree depen-
dencies (CTD) (de Marneffe and Manning, 2008).
Except for BD, these variants do not necessarily
connect all the words in the sentence, and CD and
CDP do not necessarily form a tree structure. Ta-
ble 2 shows the comparison results with the MC
parser. Dependencies are generalized by remov-
ing expressions after “” of the dependencies (e.g.
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“ with” in prep with) for better performance. We
find that basic dependencies give the best perfor-
mance to event extraction, with little difference
between the other variants. This result is surpris-
ing, as variants other than basic have features such
as the resolution of conjunctions that are specif-
ically designed for practical applications. How-
ever, basic dependencies were found to consis-
tently provide best performance also for the other
parsers6. Thus, in the following evaluation, the
basic dependencies are adopted for all SD results.

5.3 Parser Comparison on Event Extraction

Results with different parsers and different for-
mats on the development data set are summarized
in Table 3. Baseline results are produced by re-
moving dependency information from the parse
results. The baseline results differ between the
representations as the word base forms and POS
tags produced by the GENIA tagger for use with
SD and CoNLL are different from PAS, and be-
cause head word information in the Enju format is
used. The evaluation finds best results for both
tasks with Enju, using its native output format.
However, as discussed in Section 2.1, the treat-
ment of PAS and the other two formats are slightly
different, this result does not necessarily indicate
that PAS is the best alternative for event extrac-
tion.

The Bikel and Stanford WSJ parsers, lacking
models adapted to the biomedical domain, per-
forms mostly worse than the other parsers. The
other parsers, even though trained on the treebank,
do not provide performance as high as that for
using the GENIA treebank, but, with the excep-
tion of Stanford eng with CoNLL, results with the
parsers are only slightly worse than results with
the treebank. The results with the data derived
from the GENIA treebank can be considered as
upper bounds for the parsers and formats at the
task, although conversion errors are expected to
lower these bounds to some extent. The results
suggest that there is relative little remaining ben-
efit to be gained from improving parser perfor-
mance.

6Collapsed tree dependencies are not evaluated on the
C&C parser since the conversion is not provided.

5.4 Effects of Dependency Representation

Intrinsic evaluation results (Section 5.1) cannot
be used directly for comparing the parsers, since
some of the parsers contain models trained on the
GENIA treebank. To investigate the effects of the
evaluation results to the event extraction, we per-
formed event extraction with eliminating the de-
pendency types. Table 4 summarizes the results
with the dependency structures (without the de-
pendency types) on the development data set. In-
terestingly, we find the performance increases in
Bikel and Stanford by eliminating the dependency
types. This implies that the inaccurate depen-
dency types shown in Table 1 confused the event
extraction system. SD and PAS drops more than
CoNLL, and Enju with CoNLL structures perform
best in total when the dependency types are re-
moved. This result shows that the formats have
their own strengths in finding events, and CoNLL
structure with SD or PAS types can be a good rep-
resentation for the event extraction.

By comparing Table 3, Table 1, and Table 4,
we found that the better dependency performance
does not always produce better event extraction
performance especially when the difference of the
dependency performance is small. MC and Enju
results show that performance in dependency is
important for event extraction. SD can be better
than CoNLL for the event extraction (shown with
the gold treebank data in Table 3), but the types
and relations of CoNLL were well predicted, and
MC and Enju performed better for CoNLL than
for SD in total.

5.5 Performance of Event Extraction System

Several systems are compared by the extraction
performance on the shared task test data in Ta-
ble 5. GDep and Enju with PAS are used for the
evaluation, which is the same evaluation setting
with the original system by Miwa et al. (2010b).
The performance of the best systems in the orig-
inal shared task is shown for reference ((Björne
et al., 2009) in Task 1 and (Riedel et al., 2009)
in Task 2). The event extraction system performs
significantly better than the best systems in the
shared task, further outperforming the original
system. This shows that the comparison of the
parsers is performed with a state-of-the-art sys-
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Task 1 Task 2
SD CoNLL PAS SD CoNLL PAS

Baseline 51.05 - 50.42 49.17 - 48.88
Bikel 53.29 53.22 - 51.40 51.27 -

Stanford WSJ 53.51 54.38 - 52.02 52.04 -
Stanford eng 55.02 53.66 - 53.41 52.74 -

GDep - 55.70 - - 54.37 -
MC 55.60 56.01 - 53.94 54.51 -
C&C 56.09 - - 54.27 - -
Enju 55.48 55.74 56.57 54.06 54.37 55.31

GENIA 56.34 56.09 57.94 55.04 54.57 56.40

Table 3: Comparison of F-score results with six parsers in three different formats on the development
data set. Results without dependency information are shown as baselines. The results with the GENIA
treebank (converted into PTB and PAS) are shown for comparison. The best score in each task is shown
in bold, and the best score in each task and format is underlined.

Task 1 Task 2
SD CoNLL PAS SD CoNLL PAS

Bikel 53.41 (+0.12) 53.92 (+0.70) - 51.59 (+0.19) 52.21 (+0.94) -
Stanford WSJ 53.03 (-0.48) 54.52 (+0.14) - 51.43 (-0.59) 52.60 (-0.14) -
Stanford eng 54.48 (-0.54) 54.02 (+0.36) - 52.88 (-0.53) 52.28 (+0.24) -

GDep - 54.97 (-0.73) - - 53.71 (-0.66) -
MC 54.22 (-1.38) 55.24 (-0.77) - 52.73 (-1.21) 53.42 (-1.09) -
C&C 54.64(-1.45) - - 52.98 (-1.29) - -
Enju 53.74 (-1.74) 55.66(-0.08) 55.23(-1.34) 52.29 (-1.77) 53.97(-0.40) 53.69(-1.62)

GENIA 55.79 (-0.55) 55.64 (-0.45) 56.42 (-1.52) 54.17 (-0.87) 53.83 (-0.74) 55.34 (-1.06)

Table 4: Comparison of F-score results with six parsers in three different dependency structures (with-
out the dependency types) on the development data set. The changes from Table 3 are shown.

Simple Binding Regulation All
Task 1

Ours 66.84/ 78.22/ 72.08 48.70 / 52.65 / 50.60 38.48/ 55.06/ 45.30 50.13/ 64.16/ 56.28
Miwa 65.31 / 76.44 / 70.44 52.16/ 53.08/ 52.62 35.93 / 46.66 / 40.60 48.62 / 58.96 / 53.29
Björne 64.21 / 77.45 / 70.21 40.06 / 49.82 / 44.41 35.63 / 45.87 / 40.11 46.73 / 58.48 / 51.95
Riedel N/A 23.05 / 48.19 / 31.19 26.32 / 41.81 / 32.30 36.90 / 55.59 / 44.35

Baseline 62.94 / 68.38 / 65.55 48.41 / 34.50 / 40.29 29.40 / 40.00 / 33.89 43.93 / 50.11 / 46.82
Task 2

Ours 65.43/ 75.56/ 70.13 46.42/ 50.31/ 48.29 38.18/ 54.45/ 44.89 49.20/ 62.57/ 55.09
Riedel N/A 22.35 / 46.99 / 30.29 25.75 / 40.75 / 31.56 35.86 / 54.08 / 43.12

Baseline 60.88 / 63.78 / 62.30 44.99 / 31.78 / 37.25 29.07 / 39.52 / 33.50 42.62 / 47.84 / 45.08

Table 5: Comparison of Recall / Precision / F-score results on the test data set. Results on simple,
binding, regulation, and all events are shown. GDep and Enju with PAS are used. Results by Miwa et
al. (2010b), Bj̈orne et al. (2009), Riedel et al. (2009), and Baseline for Task 1 and Task 2 are shown for
comparison. Baseline results are produced by removing dependency information from the parse results
of GDep and Enju. The best score in each result is shown in bold.

tem.

6 Related Work

Many approaches for parser comparison have
been proposed, and most comparisons have used
gold treebanks with intermediate formats (Clegg
and Shepherd, 2007; Pyysalo et al., 2007). Parser
comparison has also been proposed on specific

tasks such as unbounded dependencies (Rimell
et al., 2009) and textual entailment (Önder Eker,
2009)7. Among them, application-oriented parser
comparison across several formats was first intro-
duced by Miyao et al. (2009), who compared eight
parsers and five formats for the protein-protein in-
teraction (PPI) extraction task. PPI extraction, the

7http://pete.yuret.com/
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recognition of binary relations of between pro-
teins, is one of the most basic information ex-
traction tasks in the BioNLP field. Our findings
do not conflict with those of Miyao et al. Event
extraction can be viewed as an additional extrin-
sic evaluation task for syntactic parsers, providing
more reliable and evaluation and a broader per-
spective into parser performance. An additional
advantage of application-oriented evaluation on
BioNLP shared task data is the availability of a
manually annotated gold standard treebank, the
GENIA treebank, that covers the same set of ab-
stracts as the task data. This allows the gold tree-
bank to be considered as an evaluation standard,
in addition to comparison of performance in the
primary task.

7 Conclusion

We compared six parsers and three formats on a
bio-molecular event extraction task with a state-
of-the-art event extraction system from two dif-
ferent aspects: dependency-based intrinsic eval-
uation and task-based extrinsic evaluation. The
specific task considered was the BioNLP shared
task, allowing the use of the GENIA treebank as
a gold standard parse reference. Five of the six
considered parsers were applied using biomedi-
cal models trained on the GENIA treebank, and
they were found to produce similar performance.
The comparison of the parsers from two aspects
showed slightly different results, and and the
dependency representations have advantages and
disadvantages for the event extraction task.

The contributions of this paper are 1) the com-
parison of intrinsic and extrinsic evaluation on
several commonly used parsers with a state-of-
the-art system, and 2) demonstration of the lim-
itation and possibility of the parser and system
improvement on the task. One limitation of this
study is that the comparison between the parsers
is not perfect, as the parsers are used with the pro-
vided models, the format conversions miss some
information from the original formats, and results
with different formats depend on the ability of
the event extraction system to take advantage of
their strengths. To maximize comparability, the
system was designed to extract features identi-
cally from similar parts of the dependency-based

formats, further adding information provided by
other formats, such as the lexical entries of the
Enju format, from external resources. The results
of this paper are expected to be useful as a guide
not only for parser selection for biomedical infor-
mation extraction but also for the development of
event extraction systems.

The comparison in the present evaluation is
limited to the dependency representation. As fu-
ture work, it would be informative to extend the
comparison to other syntactic representation, such
as the PTB format. Finally, the evaluation showed
that the system fails to recover approximately
40% of events even when provided with manually
annotated treebank data, showing that other meth-
ods and resources need to be adopted to further
improve bio-molecular event extraction systems.
Such improvement is left as future work.
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Abstract

Relations between entities in text have
been widely researched in the natu-
ral language processing and information-
extraction communities. The region con-
necting a pair of entities (in a parsed
sentence) is often used to construct ker-
nels or feature vectors that can recognize
and extract interesting relations. Such re-
gions are useful, but they can also incor-
porate unnecessary distracting informa-
tion. In this paper, we propose a rule-
based method to remove the information
that is unnecessary for relation extraction.
Protein–protein interaction (PPI) is used
as an example relation extraction problem.
A dozen simple rules are defined on out-
put from a deep parser. Each rule specif-
ically examines the entities in one target
interaction pair. These simple rules were
tested using several PPI corpora. The PPI
extraction performance was improved on
all the PPI corpora.

1 Introduction

Relation extraction (RE) is the task of finding a
relevant semantic relation between two given tar-
get entities in a sentence (Sarawagi, 2008). Some
example relation types are person–organization
relations (Doddington et al., 2004), protein–
protein interactions (PPI), and disease–gene as-
sociations (DGA) (Chun et al., 2006). Among
the possible RE tasks, we chose the PPI extrac-
tion problem. PPI extraction is a major RE task;

around 10 corpora have been published for train-
ing and evaluation of PPI extraction systems.

Recently, machine-learning methods, boosted
by NLP techniques, have proved to be effec-
tive for RE. These methods are usually intended
to highlight or select the relation-related regions
in parsed sentences using feature vectors or ker-
nels. The shortest paths between a pair of enti-
ties (Bunescu and Mooney, 2005) or pair-enclosed
trees (Zhang et al., 2006) are widely used as focus
regions. These regions are useful, but they can in-
clude unnecessary sub-paths such as appositions,
which cause noisy features.

In this paper, we propose a method to remove
information that is deemed unnecessary for RE.
Instead of selecting the whole region between
a target pair, the target sentence is simplified
into simpler, pair-related, sentences using general,
task-independent, rules. By addressing particu-
larly the target entities, the rules do not affect im-
portant relation-related expressions between the
target entities. We show how rules of two groups
can be easily defined using the analytical capabil-
ity of a deep parser with specific examination of
the target entities. Rules of the first group can re-
place a sentence with a simpler sentence, still in-
cluding the two target entities. The other group of
rules can replace a large region (phrase) represent-
ing one target entity, with just a simple mention of
that target entity. With only a dozen simple rules,
we show that we can solve several simple well-
known problems in RE, and that we can improve
the performance of RE on all corpora in our PPI
test-set.
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2 Related Works

The general paths, such as the shortest path or
pair-enclosed trees (Section 1), can only cover
a part of the necessary information for relation
extraction. Recent machine-learning methods
specifically examine how to extract the missing
information without adding too much noise. To
find more representative regions, some informa-
tion from outside the original regions must be
included. Several tree kernels have been pro-
posed to extract such regions from the parse
structure (Zhang et al., 2006). Also the graph
kernel method emphasizes internal paths with-
out ignoring outside information (Airola et al.,
2008). Composite kernels have been used to com-
bine original information with outside informa-
tion (Zhang et al., 2006; Miwa et al., 2009).

The approaches described above are useful,
but they can include unnecessary information that
distracts learning. Jonnalagadda and Gonzalez
(2009) applied bioSimplify to relation extraction.
BioSimplify is developed to improve their link
grammar parser by simplifying the target sentence
in a general manner, so their method might re-
move important information for a given target re-
lation. For example, they might accidentally sim-
plify a noun phrase that is needed to extract the
relation. Still, they improved overall PPI extrac-
tion recall using such simplifications.

To remove unnecessary information from a sen-
tence, some works have addressed sentence sim-
plification by iteratively removing unnecessary
phrases. Most of this work is not task-specific;
it is intended to compress all information in a tar-
get sentence into a few words (Dorr et al., 2003;
Vanderwende et al., 2007). Among them, Vickrey
and Koller (2008) applied sentence simplification
to semantic role labeling. With retaining all argu-
ments of a verb, Vickrey simplified the sentence
by removing some information outside of the verb
and arguments.

3 Entity-Focused Sentence
Simplification

We simplify a target sentence using simple rules
applicable to the output of a deep parser called
Mogura (Matsuzaki et al., 2007), to remove noisy

information for relation extraction. Our method
relies on the deep parser; the rules depend on the
Head-driven Phrase Structure Grammar (HPSG)
used by Mogura, and all the rules are written for
the parser Enju XML output format. The deep
parser can produce deep syntactic and semantic
information, so we can define generally applica-
ble comprehensive rules on HPSG with specific
examination of the entities.

For sentence simplification in relation extrac-
tion, the meaning of the target sentence itself is
less important than maintaining the truth-value of
the relation (interact or not). For that purpose,
we define rules of two groups: clause-selection
rules and entity-phrase rules. A clause-selection
rule constructs a simpler sentence (still includ-
ing both target entities) by removing noisy infor-
mation before and after the relevant clause. An
entity-phrase rule simplifies an entity-containing
region without changing the truth-value of the re-
lation. By addressing the target entities particu-
larly, we can define rules for many applications,
and we can simplify target sentences with less
danger of losing relation-related mentions. The
rules are summarized in Table 1.

Our method is different from the sentence sim-
plification in other systems (ref. Section 2). First,
our method relies on the parser, while bioSimplify
by Jonnalagadda and Gonzalez (2009) is devel-
oped for the improvement of their parser. Second,
our method tries to keep only the relation-related
regions, unlike other general systems including
bioSimplify which tried to keep all information in
a sentence. Third, our entity-phrase rules modify
only the entity-containing phrases, while Vickrey
and Koller (2008) tries to remove all information
outside of the target verb and arguments.

3.1 Clause-selection Rules

In compound or complex sentences, it is natural
to assume that one clause includes both the target
entities and the relation-related information. It can
also be assumed that the remaining sentence parts,
outside the clause, contain less related (or noisy)
information. The clause-selection rules simplify a
sentence by retaining only the clause that includes
the target entities (and by discarding the remain-
der of the sentence). We define three types of
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Rule Group Rule Type # Example (original→ simplified )
Sentence Clause 1 We show that A interacts with B.→ A interacts with B.

Clause Selection Relative Clause 2 ... A that interacts with B.→ A interacts with B.
Copula 1 A is a protein that interacts with B.→ A interacts with B.

Apposition 2 a protein, A→ A

Entity Phrase Exemplification 4 proteins, such as A→ A
Parentheses 2 a protein (A)→ A

Coordination 3 protein and A→ A

Table 1: Rules for Sentence Simplification. (# is the rule count. A and B are the target entities.)

(a) S
bbbbbbb \\\\\\\

... VP
bbbbbbb \\\\\\\

N*
ccccc [[[[[ Vcc

77
(copular) ...

bbbbbbb \\\\\\\
... ENTITY ... N* S-REL

bbbbbbb \\\\\\\
NP-REL

NN
...

ccccc [[[[[
... ENTITY ...

A is a protein that interacts with B .

(b) S
bbbbbbb \\\\\\\

N*
ccccc [[[[[ ...

ccccc [[[[[
... ENTITY ... ... ENTITY ...

A interacts with B .

Figure 1: Copula Rule. (a) is simplified to (b).
The arrows represent predicate–argument rela-
tions.

(a) N*
bbbbbbb \\\\\\\

N* ...
bbbbbbb ]]]]]]]]]]]]]

PN

RR
55(apposition) N*

ccccc [[[[[
... ENTITY ...

protein , A

(b) N*
ccccc [[[[[
... ENTITY ...

A

Figure 2: Apposition Rule.

clause-selection rules for sentence clauses, rela-
tive clauses, and copula. Thesentence clause rule
finds the (smallest) clause that includes both tar-
get entities. It then replaces the original sentence
with the clause. Therelative clause rulescon-
struct a simple sentence from a relative clause and
the antecedent. If this simple sentence includes
the target entities, it is used instead of the orig-
inal sentence. We define two rules for the case
where the antecedent is the subject of the relative
clause. One rule is used when the relative clause
includes both the target entities. The other rule is
used when the antecedent includes one target en-
tity and the relative clause includes the other tar-
get entity. Thecopula rule is for sentences that

include copular verbs (e.g. be, is, become, etc).
The rule constructs a simple sentence from a rel-
ative clause with the subject of the copular verb
as the antecedent subject of the clause. The rule
replaces the target sentence with the constructed
sentence, if the relative clause includes one target
entity and the subject of a copular verb includes
the other target entity, as shown in Figure 1.

3.2 Entity-phrase Rules

Even the simple clauses (or paths between two
target entities) include redundant or noisy expres-
sions that can distract relation extraction. Some
of these expressions are related to the target enti-
ties, but because they do not affect the truth-value
of the relation, they can be deleted to make the
path simple and clear. The target problem affects
which expressions can be removed. We define
four types of rules for appositions, exemplifica-
tions, parentheses, and coordinations. Twoappo-
sition rulesare defined to select the correct ele-
ment from an appositional expression. One ele-
ment modifies or defines the other element in ap-
position, but the two elements represent the same
information from the viewpoint of PPI. If the tar-
get entity is in one of these elements, removing the
other element does not affect the truth-value of the
interaction. Many of these apposition expressions
are identified by the deep parser. The rule to se-
lect the last element is presented in Figure 2. Four
exemplification rulesare defined for the two ma-
jor types of expressions using the phrases “includ-
ing” or “such as”. Exemplification is represented
by hyponymy or hypernymy. As for appositions,
the truth-value of the interaction does not change
whether we use the specific mention or the hyper-
class that the mention represents. Twoparenthe-
ses rulesare defined. Parentheses are useful for
synonyms, hyponyms, or hypernyms (ref. the two
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1: S ← input sentence
2: repeat
3: reset rules{apply all the rules again}
4: P ← parseS
5: repeat
6: r ← next rule{null if no more rules}
7: if r is applicable toP then
8: P ← applyr to P
9: S ← sentence extracted fromP

10: break (Goto 3)
11: end if
12: until r is null
13: until r is null
14: return S

Figure 3: Pseudo-code for sentence simplifica-
tion.

former rules). Threecoordination rulesare de-
fined. Removing other phrases from coordinated
expressions that include a target entity does not
affect the truth-value of the target relation. Two
rules are defined for simple coordination between
two phrases (e.g. select left or right phrase), and
one rule is defined to (recursively) remove one
element from lists of more than two coordinated
phrases (while maintaining the coordinating con-
junction, e.g. “and”).

3.3 Sentence Simplification

To simplify a sentence, we apply rules repeatedly
until no more applications are possible as pre-
sented in Figure 3. After one application of one
rule, the simplified sentence is re-parsed before
attempting to apply all the rules again. This is be-
cause we require a consistent parse tree as a start-
ing point for additional applications of the rules,
and because a parser can produce more reliable
output for a partly simplified sentence than for the
original sentence. Using this method, we can also
backtrack and seek out conversion errors by exam-
ining the cascade of partly simplified sentences.

4 Evaluation

To elucidate the effect of the sentence simplifi-
cation, we applied the rules to five PPI corpora
and evaluated the PPI extraction performance. We
then analyzed the errors. The evaluation settings
will be explained in Section 4.1. The results of the
PPI extraction will be explained in Section 4.2. Fi-
nally, the deeper analysis results will be presented

in Section 4.3.

4.1 Experimental Settings

The state-of-the-art PPI extraction system
AkaneRE by Miwa et al. (2009) was used to
evaluate our approach. The system uses a com-
bination of three feature vectors: bag-of-words
(BOW), shortest path (SP), and graph features.
Classification models are trained with a support
vector machine (SVM), and AkaneRE (with
Mogura) is used with default parameter settings.
The following two systems are used for a state-
of-the-art comparison: AkaneRE with multiple
parsers and corpora (Miwa et al., 2009), and
Airola et al. (2008) single-parser, single-corpus
system.

The rules were evaluated on the BioIn-
fer (Pyysalo et al., 2007), AIMed (Bunescu et al.,
2005), IEPA (Ding et al., 2002), HPRD50 (Fun-
del et al., 2006), and LLL (Ńedellec, 2005) cor-
pora1. Table 2 shows the number of positive (in-
teracting) vs. all pairs. One duplicated abstract in
the AIMed corpus was removed.

These corpora have several differences in their
definition of entities and relations (Pyysalo et al.,
2008). In fact, BioInfer and AIMed target all oc-
curring entities related to the corpora (proteins,
genes, etc). On the other hand, IEPA, HPRD50,
and LLL only use limited named entities, based
either on a list of entity names or on a named en-
tity recognizer. Only BioInfer is annotated for
other event types in addition to PPI, including
static relations such as protein family member-
ship. The sentence lengths are also different. The
duplicated pair-containing sentences contain the
following numbers of words on average: 35.8 in
BioInfer, 31.3 in AIMed, 31.8 in IEPA, 26.5 in
HPRD50, and 33.4 in LLL.

For BioInfer, AIMed, and IEPA, each corpus is
split into training, development, and test datasets2.
The training dataset from AIMed was the only
training dataset used for validating the rules. The
development datasets are used for error analysis.
The evaluation was done on the test dataset, with
models trained using training and development

1http://mars.cs.utu.fi/PPICorpora/
GraphKernel.html

2This split method will be made public later.
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BioInfer AIMed IEPA HPRD50 LLL
pos all pos all pos all pos all pos all

training 1,848 7,108 684 4,072 256 630 - - - -
development 256 928 102 608 23 51 - - - -

test 425 1,618 194 1,095 56 136 - - - -
all 2,534 9,653 980 5,775 335 817 163 433 164 330

Table 2: Number of positive (pos) vs. all possible sentence pairs in used PPI corpora.

BioInfer AIMed IEPA
Rule Applied F AUC Applied F AUC Applied F AUC

No Application 0 62.5 83.0 0 61.2 87.9 0 73.4 82.5
Clause Selection 4,313 63.5 83.9 2,569 62.5 88.2 307 75.0 83.7

Entity Phrase 22,066 60.5 80.9 7,784 61.2 86.1 1,031 72.7 83.3
ALL 26,281 62.9 82.1 10,783 60.2 85.7 1,343 75.4 85.7

Table 3: Performance of PPI Extraction on test datasets. “Applied” represents the number of times the
rules are applied on the corpus. “No Application” means PPI extraction without sentence simplification.
ALL is the case all rules are used. The top scores for each corpus are shown in bold.

datasets). Ten-fold cross-validation (CV) was
done to facilitate comparison with other existing
systems. For HPRD50 and LLL, there are insuf-
ficient examples to split the data, so we use these
corpora only for comparing the scores and statis-
tics. We split the corpora for the CV, and mea-
sured theF -score (%) and area under the receiver
operating characteristic (ROC) curve (AUC) as
recommended in (Airola et al., 2008). We count
each occurrence as one example because the cor-
rect interactions must be extracted for each occur-
rence if the same protein name occurs multiple
times in a sentence.

In the experiments, the rules are applied in the
following order: sentence–clause, exemplifica-
tion, apposition, parentheses, coordination, cop-
ula, and relative-clause rules. Furthermore, if the
same rule is applicable in different parts of the
parse tree, then the rule is first applied closest to
the leaf-nodes (deepest first). The order of the
rules is arbitrary; changing it does not affect the
results much. We conducted five experiments us-
ing the training and development dataset in IEPA,
each time with a random shuffling of the order of
the rules; the results were 77.8±0.26 inF -score
and 85.9±0.55 in AUC.

4.2 Performance of PPI Extraction

The performance after rule application was bet-
ter than the baseline (no application) on all the
corpora, and most rules could be frequently ap-
plied. We show the PPI extraction performance on

Rule Applied F AUC
No Application 0 72.9 84.5
Sentence Clause 145 71.6 83.8
Relative Clause 7 73.3 84.1

Copula 0 72.9 84.5
Clause Selection 152 71.4 83.4

Apposition 64 73.2 84.6
Exemplification 33 72.9 84.7

Parentheses 90 72.9 85.1
Coordination 417 73.6 85.4
Entity Phrase 605 74.1 86.6

ALL 763 75.0 86.6

Table 4: Performance of PPI Extraction on
HPRD50.

Rule Applied F AUC
No Application 0 79.0 84.6
Sentence Clause 135 81.3 85.2
Relative Clause 42 78.8 84.6

Copula 0 79.0 84.6
Clause Selection 178 81.0 85.6

Apposition 197 79.6 83.9
Exemplification 0 79.0 84.6

Parentheses 56 79.5 85.8
Coordination 322 84.2 89.4
Entity Phrase 602 83.8 90.1

ALL 761 82.9 90.5

Table 5: Performance of PPI Extraction on LLL.

BioInfer, AIMed, and IEPA with rules of different
groups in Table 3. The effect of using rules of
different types for PPI extraction from HPRD50
and LLL is reported in Table 4 and Table 5. Ta-
ble 6 shows the number of times each rule was
applied in an “apply all-rules” experiment. The
usability of the rules depends on the corpus, and
different combinations of rules produce different
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Rule B AIMed IEPA H LLL
S. Cl. 3,960 2,346 300 150 135
R. Cl. 287 212 17 5 24
Copula 60 57 1 0 0
Cl. Sel. 4,307 2,615 318 155 159
Appos. 3,845 1,100 99 69 198
Exempl. 383 127 11 33 0
Paren. 2,721 2,158 235 91 88
Coord. 15,025 4,783 680 415 316
E. Foc. 21,974 8,168 1,025 608 602
Sum 26,281 10,783 1,343 763 761

Table 6: Distribution of the number of rules ap-
plied when all rules are applied. B:BioInfer, and
H:HPRD50 corpora.

Rules Miwa et al. Airola et al.
F AUC F AUC F AUC

B 60.0 79.8 68.3 86.4 61.3 81.9
A 54.9 83.7 65.2 89.3 56.4 84.8
I 77.8 88.7 76.6 87.8 75.1 85.1
H 75.0 86.6 74.9 87.9 63.4 79.7
L 82.9 90.5 86.7 90.8 76.8 83.4

Table 7: Comparison with the results by Miwa et
al. (2009) and Airola et al. (2008). The results
with all rules are reported.

results. For the clause-selection rules, the per-
formance was as good as or better than the base-
line for all corpora, except for HPRD50, which
indicates that the pair-containing clauses also in-
clude most of the important information for PPI
extraction. Clause selection rules alone could im-
prove the overall performance for the BioInfer and
AIMed corpora. Entity-phrase rules greatly im-
proved the performance on the IEPA, HPRD50,
and LLL corpora, although these rules degraded
the performance on the BioInfer and AIMed cor-
pora. These phenomena hold even if we use small
parts of the two corpora, so this is not because of
the size of the corpora.

We compare our results with the results by
Miwa et al. (2009) and Airola et al. (2008) in Ta-
ble 7. On three of five corpora, our method pro-
vides better results than the state-of-the-art system
by Airola et al. (2008), and also provides com-
parable results to those obtained using multiple
parsers and corpora (Miwa et al., 2009) despite
the fact that our method uses one parser and one
corpus at a time. We cannot directly compare our
result with Jonnalagadda and Gonzalez (2009) be-
cause the evaluation scheme, the baseline system,

[FP→TN][Sentence, Parenthesis, Coordination]To
characterizethe AAV functions mediating this effect,
cloned AAV type 2 wild-type or mutant genomes were
transfected into simian virus 40 (SV40)-transformed
hamster cells together with thesix HSV replicationgenes
(encodingUL5, UL8, major DNA-binding protein,DNA
polymerase, UL42 , and UL52) which together are
necessary and sufficient for the induction of SV40 DNA
amplification (R. Heilbronn and H. zur Hausen, J. Virol.
63:3683-3692, 1989). (BioInfer.d760.s0)
[TP→FN][Coordination] Both theGT155-calnexin and
the GT155-CAP-60interactions were dependent on the
presence of a correctly modified oligosaccharide group
on GT155, a characteristic of many calnexin interactions.
(AIMed.d167.s1408)
[TN→TN][Coordination, Parenthesis]Leptin may act as
a negative feedback signal to the hypothalamic control of
appetite through suppression ofneuropeptide Y (NPY)
secretionand stimulation of cocaine and amphetamine
regulated transcript(CART) . (IEPA.d190.s454)

Figure 4: A rule-related error, a critical error, and
a parser-related error. Regions removed by the
rules are underlined, and target proteins are shown
in bold. Predictions, applied rules, and sentence
IDs are shown.

[FN→TP][Sentence, Coordination]WASp contains a
binding motif for the Rho GTPaseCDC42Hsas well as
verprolin / cofilin-like actin-regulatory domains, but no
specificactinstructureregulatedby CDC42Hs-WASphas
beenidentified. (BioInfer.d795.s0)
[FN→TP][Parenthesis, Apposition] The proteinRaf-1 , a
keymediatorof mitogenesisanddifferentiation, associates
with p21ras(refs1-3) . (AIMed.d124.s1055)
[FN→TP][Sentence, Parenthesis]On the basis of
far-Western blot and plasmon resonance (BIAcore)
experiments, we show here that recombinantbovine
prion protein (bPrP)(25-242) strongly interacts with the
catalytic alpha/alpha’ subunits ofprotein kinase CK2
(alsotermed’caseinkinase2’) (IEPA.d197.s479)

Figure 5: Correctly simplified cases. The first
sentence is a difficult (not PPI) relation, which is
typed as “Similar” in the BioInfer corpus.

and test parts differ.

4.3 Analysis

We trained models using the training datasets
and classified the examples in the development
datasets. Two types of analysis were performed
based on these results:simplification-basedand
classification-based analysis.

For thesimplification-based analysis, we com-
pared positive (interacting) and negative pair sen-
tences that produce the exact same (inconsistent)
sentence after protein names normalization and
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BioInfer AIMed IEPA
Before simplification FN FP TP TN FN FP TP TN FN FP TP TN Not AffectedAfter simplification TP TN FN FP TP TN FN FP TP TN FN FP

No Error 18 2 3 35 14 21 21 8 3 2 0 4 32
No Application 3 2 0 3 0 7 8 0 0 1 0 1 7

Number of Errors 0 2 0 32 4 2 1 4 0 0 0 0 1
Number of Pairs 21 6 3 70 18 30 30 12 3 3 0 5 40

Coordination 0 0 0 20 4 2 1 0 0 0 0 0 1
Sentence 0 2 0 4 0 0 0 4 0 0 0 0 0

Parenthesis 0 0 0 5 0 0 0 0 0 0 0 0 0
Exemplification 0 0 0 2 0 0 0 0 0 0 0 0 0

Apposition 0 0 0 1 0 0 0 0 0 0 0 0 0

Table 8: Distribution of sentence simplification errors compared to unsimplified predictions with their
types (on the three development datasets). TP, True Positive; TN, True Negative; FN, False Negative;
FP, False Positive. “No Error” means that simplification was correct; “No Application” means that no
rule could be applied; Other rule names mean that an error resulted from that rule application. “Not
Affected” means that the prediction outcome did not change.

simplification in the training dataset. The numbers
of such inconsistent sentences are 7 for BioIn-
fer, 78 for AIMed, and 1 for IEPA. The few in-
consistencies in BioInfer and IEPA are from er-
rors by the rules, mainly triggered by parse errors.
The frequent inconsistencies in AIMed are mostly
from inconsistent annotations. For example, even
if all coordinated proteins are either interacting or
not, only the first protein mention is annotated as
interacting.

For the classification-based analysis, we
specifically examine simplified pairs that were
predicted differently before and after the simplifi-
cation. Pairs predicted differently before and after
rule application were selected: 100 random pairs
from BioInfer and all 90 pairs from AIMed. For
IEPA, all 51 pairs are reported. Simplified results
are classified as errors when the rules affect a re-
gion unrelated to the entities in the smallest sen-
tence clause. The results of analysis are shown in
Table 8. There were 34 errors in BioInfer, and 11
errors in AIMed. Among the errors, there were
five critical errors (in two sentences, in AIMed).
Critical errors mean that the pairs lost relation-
related mentions, and the errors are the only er-
rors which caused the changes in the truth-value
of the relation. There was also arule-related er-
ror (in BioInfer), which means that rules with cor-
rect parse results affect a region unrelated to the
entities, and parse errors (parser-related errors).
Figure 4 shows the rule-related error in BioInfer,
one critical error in AIMed, and one parser-related

error in IEPA.

5 Discussion

Our end goal is to provide consistent relation
extraction for real tasks. Here we discuss the
“safety” of applying our simplification rules, the
difficulties in the BioInfer and AIMed corpora, the
reduction of errors, and the requirements for such
a general (PPI) extraction system.

Our rules are applicable to sentences, with little
danger of changing the relation-related mentions.
Figure 5 shows three successfully simplified cases
(“No Error” cases from Table 8). The sentence
simplification leaves sufficient information to de-
termine the value of the relation in these exam-
ples. Relation-related mentions remained for most
of the simplification error cases. There were only
five critical errors, which changed the truth-value
of the relation, out of 46 errors in 241 pairs shown
in Table 8. Please note that some rules can be
dangerous for other relation extraction tasks. For
example, thesentence clause rulecould remove
modality information (negation, speculation, etc.)
modifying the clause, but there are few such cases
in the PPI corpora (see Table 8). Also, the task of
hedge detection (Morante and Daelemans, 2009)
can be solved separately, in the original sentences,
after the interacting pairs have been found. For
example, in the BioNLP shared task challenge
and the BioInfer corpus, interaction detection and
modality are treated as two different tasks. Once
other NLP tasks, like static relation (Pyysalo et
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al., 2009) or coreference resolution, become good
enough, they can supplement or even substitute
some of the proposed rules.

There are different difficulties in the BioInfer
and AIMed corpora. BioInfer includes more com-
plicated sentences and problems than the other
corpora do, because 1) the apposition, coordi-
nation, and exemplification rules are more fre-
quently used in the BioInfer corpus than in the
other corpora (shown in Table 6), 2) there were
more errors in the BioInfer corpus than in other
corpora among the simplified sentences (shown
in Table 8), and 3) BioInfer has more words per
sentence and more relation types than the other
corpora. AIMed contains several annotation in-
consistencies as explained in Section 4.3. These
inconsistencies must be removed to properly eval-
uate the effect of our method.

Simplification errors are mostly caused by
parse errors. Our rule specifically examines a part
of parser output; a probability is attached to the
part. The probability is useful for defining the or-
der of rule applications, and then-best results by
the parser are useful to fix major errors such as co-
ordination errors. By using these modifications of
rule applications and by continuous improvement
in parsing technology for the biomedical domain,
the performance on the BioInfer and AIMed cor-
pora will be improved also for the all rules case.

The PPI extraction system lost the ability to
capture some of the relation-related expressions
left by the simplification rules. This indicates
that the system used to extract some relations (be-
fore simplification) by using back-off features like
bag-of-words. The system can reduce bad effects
caused by parse errors, but it also captures the an-
notation inconsistencies in AIMed. Our simpli-
fication (without errors) can capture more general
expressions needed for relation extraction. To pro-
vide consistent PPI relation extraction in a general
setting (e.g. for multiple corpora or for other pub-
lic text collections), the parse errors must be dealt
with, and a relation extraction system that can cap-
ture (only) general relation-related expressions is
needed.

6 Conclusion

We proposed a method to simplify sentences, par-
ticularly addressing the target entities for relation
extraction. Using a few simple rules applicable
to the output of a deep parser called Mogura,
we showed that sentence simplification is effec-
tive for relation extraction. Applying all the rules
improved the performance on three of the five
corpora, while applying only the clause-selection
rules raised the performance for the remaining two
corpora as well. We analyzed the simplification
results, and showed that the simple rules are ap-
plicable with little danger of changing the truth-
values of the interactions.

The main contributions of this paper are: 1) ex-
planation of general sentence simplification rules
using HPSG for relation extraction, 2) presenting
evidence that application of the rules improve re-
lation extraction performance, and 3) presentation
of an error analysis from two viewpoints: simpli-
fication and classification results.

As future work, we are planning to refine and
complete the current set of rules, and to cover
the shortcomings of the deep parser. Using these
rules, we can then make better use of the parser’s
capabilities. We will also attempt to apply our
simplification rules to other relation extraction
problems than those of PPI.

Acknowledgments

This work was partially supported by Grant-in-
Aid for Specially Promoted Research (MEXT,
Japan), Genome Network Project (MEXT, Japan),
and Scientific Research (C) (General) (MEXT,
Japan).

795



References

Airola, Antti, Sampo Pyysalo, Jari Björne, Tapio
Pahikkala, Filip Ginter, and Tapio Salakoski. 2008.
A graph kernel for protein-protein interaction ex-
traction. InProceedings of the BioNLP 2008 work-
shop.

Bunescu, Razvan C. and Raymond J. Mooney. 2005.
A shortest path dependency kernel for relation ex-
traction. InHLT ’05: Proceedings of the confer-
ence on Human Language Technology and Empiri-
cal Methods in Natural Language Processing, pages
724–731.

Bunescu, Razvan C., Ruifang Ge, Rohit J. Kate, Ed-
ward M. Marcotte, Raymond J. Mooney, Arun K.
Ramani, and Yuk Wah Wong. 2005. Compara-
tive experiments on learning information extractors
for proteins and their interactions.Artificial Intelli-
gence in Medicine, 33(2):139–155.

Chun, Hong-Woo, Yoshimasa Tsuruoka, Jin-Dong
Kim, Rie Shiba, Naoki Nagata, Teruyoshi Hishiki,
and Jun’ichi Tsujii. 2006. Extraction of gene-
disease relations from medline using domain dictio-
naries and machine learning. InThe Pacific Sympo-
sium on Biocomputing (PSB), pages 4–15.

Ding, J., D. Berleant, D. Nettleton, and E. Wurtele.
2002. Mining medline: abstracts, sentences, or
phrases? Pacific Symposium on Biocomputing,
pages 326–337.

Doddington, George, Alexis Mitchell, Mark Przy-
bocki, Lance Ramshaw, Stephanie Strassel, and
Ralph Weischedel. 2004. The automatic content
extraction (ACE) program: Tasks, data, and evalua-
tion. In Proceedings of LREC’04, pages 837–840.

Dorr, Bonnie, David Zajic, and Richard Schwartz.
2003. Hedge trimmer: A parse-and-trim approach
to headline generation. Inin Proceedings of Work-
shop on Automatic Summarization, pages 1–8.

Fundel, Katrin, Robert K̈uffner, and Ralf Zimmer.
2006. Relex—relation extraction using dependency
parse trees.Bioinformatics, 23(3):365–371.

Jonnalagadda, Siddhartha and Graciela Gonzalez.
2009. Sentence simplification aids protein-protein
interaction extraction. InProceedings of the 3rd
International Symposium on Languages in Biology
and Medicine, pages 109–114, November.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsu-
jii. 2007. Efficient HPSG parsing with supertag-
ging and cfg-filtering. InIJCAI’07: Proceedings of
the 20th international joint conference on Artifical
intelligence, pages 1671–1676, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Miwa, Makoto, Rune Sætre, Yusuke Miyao, and
Jun’ichi Tsujii. 2009. Protein-protein interac-
tion extraction by leveraging multiple kernels and
parsers.International Journal of Medical Informat-
ics, June.

Morante, Roser and Walter Daelemans. 2009. Learn-
ing the scope of hedge cues in biomedical texts. In
Proceedings of the BioNLP 2009 Workshop, pages
28–36, Boulder, Colorado, June. Association for
Computational Linguistics.

Nédellec, Claire. 2005. Learning language in logic -
genic interaction extraction challenge. InProceed-
ings of the LLL’05 Workshop.

Pyysalo, Sampo, Filip Ginter, Juho Heimonen, Jari
Björne, Jorma Boberg, Jouni Järvinen, and Tapio
Salakoski. 2007. BioInfer: A corpus for infor-
mation extraction in the biomedical domain.BMC
Bioinformatics, 8:50.

Pyysalo, Sampo, Antti Airola, Juho Heimonen, Jari
Björne, Filip Ginter, and Tapio Salakoski. 2008.
Comparative analysis of five protein-protein inter-
action corpora. InBMC Bioinformatics, volume
9(Suppl 3), page S6.

Pyysalo, Sampo, Tomoko Ohta, Jin-Dong Kim, and
Jun’ichi Tsujii. 2009. Static relations: a piece
in the biomedical information extraction puzzle.
In BioNLP ’09: Proceedings of the Workshop on
BioNLP, pages 1–9, Morristown, NJ, USA. Asso-
ciation for Computational Linguistics.

Sarawagi, Sunita. 2008. Information extraction.
Foundations and Trends in Databases, 1(3):261–
377.

Vanderwende, Lucy, Hisami Suzuki, Chris Brockett,
and Ani Nenkova. 2007. Beyond sumbasic: Task-
focused summarization with sentence simplifica-
tion and lexical expansion.Inf. Process. Manage.,
43(6):1606–1618.

Vickrey, David and Daphne Koller. 2008. Sentence
simplification for semantic role labeling. InPro-
ceedings of ACL-08: HLT, pages 344–352, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics.

Zhang, Min, Jie Zhang, Jian Su, and Guodong Zhou.
2006. A composite kernel to extract relations be-
tween entities with both flat and structured features.
In ACL-44: Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics, pages 825–832. Association for
Computational Linguistics.

796



Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 797–805,
Beijing, August 2010

Using Cross-Lingual Projections to Generate Semantic Role  
Labeled Corpus for Urdu - A Resource Poor Language 

Smruthi Mukund 
CEDAR 

University at Buffalo 
smukund@buffalo.edu 

Debanjan Ghosh 
Thomson Reuters R&D 

debanjan.ghosh@ 

thomsonreuters.com 

Rohini K. Srihari 
CEDAR 

University at Buffalo 
rohini@cedar.buffalo.edu 

 

Abstract 

In this paper we explore the possibility of 
using cross lingual projections that help 
to automatically induce role-semantic 
annotations in the PropBank paradigm 
for Urdu, a resource poor language. This 
technique provides annotation projections 
based on word alignments. It is relatively 
inexpensive and has the potential to re-
duce human effort involved in creating 
semantic role resources. The projection 
model exploits lexical as well as syntac-
tic information on an English-Urdu paral-
lel corpus. We show that our method ge-
nerates reasonably good annotations with 
an accuracy of 92% on short structured 
sentences. Using the automatically gen-
erated annotated corpus, we conduct pre-
liminary experiments to create a semantic 
role labeler for Urdu. The results of the 
labeler though modest, are promising and 
indicate the potential of our technique to 
generate large scale annotations for Urdu.  

1 Introduction 

Semantic Roles (also known as thematic roles) 
help to understand the semantic structure of a 
document (Fillmore, 1968). At a fundamental 
level, they help to capture the similarities and 
differences in the meaning of verbs via the ar-
guments they define by generalizing over surface 
syntactic configurations.  In turn, these roles aid 
in domain independent understanding as the se-
mantic frames and semantic understanding sys-
tems do not depend on the syntactic configura-
tion for each new application domain. Identify-
ing semantic roles benefit several language 
processing tasks - information extraction (Sur-
deanu et al., 2003), text categorization (Moschitti, 

2008) and finding relations in textual entailment 
(Burchardt and Frank 2006). 

Automatically identifying semantic roles is of-
ten referred to as shallow semantic parsing (Gil-
dea and Jurafsky, 2002). For English, this 
process is facilitated by the existence of two 
main SRL annotated corpora – FrameNet (Baker 
et al., 1998) and PropBank (Palmer et al., 2005). 
Both datasets mark almost all surface realizations 
of semantic roles. FrameNet has 800 semantic 
frames that cover 120,000 example sentences1. 
PropBank has annotations that cover over 
113,000 predicate-argument structures. Clearly 
English is well supported with resources for se-
mantic roles. However, there are other widely 
spoken resource poor languages that are not as 
privileged. The PropBank based resources avail-
able for languages like Chinese (Xue and Palmer, 
2009), Korean (Palmer et al., 2006) and Spanish 
(Taule, 2008) are only about two-thirds the size 
of the English PropBank.  

Several alternative techniques have been ex-
plored in the literature to generate semantic role 
labeled corpora for resource poor languages as 
providing manually annotated data is time con-
suming and involves intense human labor. Am-
bati and Chen (2007) have conducted an exten-
sive survey and outlined the benefits of using 
parallel corpora to transfer annotations. A wide 
range of annotations from part of speech (Hi and 
Hwa, 2005) and chunks (Yarowsky et al., 2001) 
to word senses (Diab and Resnik, 2002), depen-
dencies (Hwa et al., 2002) and semantic roles 
(Pado and Lapata, 2009) have been successfully 
transferred between languages. FrameNet style 
annotations in Chinese is obtained by mapping 
English FrameNet entries directly to concepts 
listed in HowNet2 (online ontology for Chinese) 
with an accuracy of 68% (Fung and Chen, 2004). 

                                                 
1 Wikipedia - http://en.wikipedia.org/wiki/PropBank 
2 http://www.keenage.com/html/e_index.html 
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Fung et al. (2007) analyze an automatically an-
notated English-Chinese parallel corpus and 
show high cross-lingual agreement for PropBank 
roles (range of 75%-95% based on the roles).  

In this paper we explore the possibility of us-
ing English-Urdu parallel corpora to generate 
SRL annotations for Urdu, a less commonly 
taught language (LCTL). Earlier attempts to gen-
erate SRL corpora using annotation projections 
have been for languages such as German, French 
(Pado and Lapata, 2009) and Italian (Moschitti, 
2009) that have high vocabulary overlap with 
English. Also, German belongs to the same lan-
guage family as English (Germanic family). Ur-
du on the other hand is an Indic language that is 
grammatically very different and shares almost 
no vocabulary with English.  

The technique of cross lingual projections war-
rants good BLEU score that ensures correct word 
alignments. According to NIST 2008 Open Ma-
chine Translation challenge 3 , a 0.2280 best 
BLEU score was achieved for Urdu to English 
translation. This is comparable to the BLEU 
scores achieved for German to English – 0.253 
and French to English – 0.3 (Koehn, 2005). But, 
for SRL transfer, perfect word alignment is not 
mandatory as SRL requires semantic correspon-
dence only. According to Fillmore (1982) se-
mantic frames are based on conceptual structures. 
They are generalizations over surface structures 
and hence less prone to syntactic variations. 
Since English and Urdu have a reasonable se-
mantic correspondence (Example 3), we believe 
that the projections when capped with a post 
processing step will considerably reduce the 
noise induced by inaccurate alignments and pro-
duce acceptable mappings. 

Hindi is syntactically similar to Urdu. These 
languages are standardized forms of Hindustani. 
They are free word order languages and follow a 
general SOV (Subject-Object-Verb) structure. 
Projection approach has been used by (Mukerjee 
et al., 2006) and (Sinha, 2009) to transfer verb 
predicates from English onto Hindi. Sinha (2009) 
achieves a 90% F-Measure in verb predicate 
transfer from English to Hindi. This shows that 
using cross lingual transfer approach to obtain 
semantic annotations for Urdu from English is an 
idea worth exploring. 
                                                 
3http://www.itl.nist.gov/iaui/894.01/tests/mt/2008/doc/mt08
_official_results_v0.html 

1.1 Approach 

Our approach leverages existing English 
PropBank annotations provided via the SemLink4 
corpus. SemLink provides annotations for 
VerbNet using the pb (PropBank) attribute. By 
using English-Urdu parallel corpus we acquire 
verb predicates and their arguments. When we 
transfer verb predicates (lemmas), we also 
transfer pb attributes. We obtain annotation 
projections from the parallel corpora as follows:  
1. Take a pair of sentences E (in English) and U 

(in Urdu) that are translations of each other.  
2. Annotate E with semantic roles. 
3. Project the annotations from E onto U using 

word alignment information, lexical 
information and linguistic rules that involve 
syntactic information. 

There are several challenges to the annotation 
projection technique. Dorr (1994) presents some 
major lexical-semantic divergence problems 
applicable in this scenario:  
(a) Thematic Divergence - In some cases, al-

though there exists semantic parallelism, the 
theme of the English sentence captured in 
the subject changes into an object in the Ur-
du sentence (Example 1). 

(b) Conflatational Divergence - Sometimes tar-
get translations spans over a group of words 
(Example 1: plays is mapped to kirdar ada). 
Trying to ascertain this word span for se-
mantic roles is difficult as the alignments 
can be incomplete and very noisy. 

(c) Demotional divergence and Structural di-
vergence - Despite semantic relatedness, in 
some sentence pairs, alignments obtained 
from simple projections generate random 
matchings as the usage is syntactically dis-
similar (Example 2). 

Handling all challenges adds complexity to our 
model. The heuristic rules that we implement are 
guided by linguistic knowledge of Urdu. This 
increases the effectiveness of the alignments. 

 
Example 1: 

I 
(subject) 

am Angry at Reheem 
(object) 

 

Raheem 
(subject)  

mujhe 
(object) 

Gussa dilate hai 

(Raheem brings anger in me) 

                                                 
4 http://verbs.colorado.edu/semlink/ 
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Example 2: (noun phrase to prepositional pharse) 

Ali attended work today 
 

Ali aaj daftar mein haazir tha 
(Ali was present at work today) 

2 Generating Parallel Corpora 

PropBank provides SRL annotated corpora for 
English. It uses predicate independent labels 
(ARG0, ARG1, etc.) which indicate how a verb 
relates to its arguments. The argument types are 
consistent across all uses of a single verb and do 
not consider the sense of the verb. We use the 
PropBank annotations provided for the Wall 
Street Journal (WSJ) part of the Penn Tree bank 
corpus (Marcus et al., 2004). The arguments of a 
verb are labeled sequentially from ARG0 to 
ARG5 where ARG0 is the proto-typical Agent, 
ARG1 is the proto-typical patient, ARG2 is the 
recipient, and so on. There are other adjunct tags 
in the dataset that are indicated by ARGM that 
include tags for location (ARGM-LOC), tempor-
al tags (ARGM-TMP) etc.  

An Urdu corpus of 6000 sentences corres-
ponding to 317 WSJ articles of Penn Tree Bank 
corpus is provided by CRULP5 (used in the NIST 
2008 machine translation task). We consider 
2350 English sentences with PropBank annota-
tions that have corresponding Urdu translations 
(CRULP corpus) for our experiments. 

2.1 Sentence Alignment 

Sentence alignment is a prerequisite for any pa-
rallel corpora processing. As the first step, we 
had to generate a perfect sentence aligned paral-
lel corpus as the translated sentences, despite 
belonging to the same domain (WSJ – Penn tree 
bank), had several errors in demarcating the sen-
tence boundaries.  

Sentence alignment between English and Urdu 
is achieved over two iterations. In the first itera-
tion, the length of each sentence is calculated 
based on the occurrence of words belonging to 
important part of speech categories such as prop-
er nouns, adjectives and verbs. Considering main 
POS categories for length assessment helps over-
come the conflatational divergence issue. For 
each English sentence, Urdu sentences with the 
same length are considered to be probable candi-

                                                 
5http://www.crulp.org/ 

dates for alignment. In the second iteration, an 
Urdu-English lexicon is used on the Urdu corpus 
and English translations are obtained. An Eng-
lish-Urdu sentence pair with maximum lexical 
match is considered to be sentence aligned.  

Clearly this method is highly dependent on the 
existence of an exhaustive Urdu-English dictio-
nary. The lexicons that we use to perform loo-
kups are collected by mining Wikipedia and oth-
er online resources (Mukund et al., 2010). How-
ever, lexicon lookups will fail for Out-Of-
Vocabulary words. There could also be a colli-
sion if Urdu sentences have English transliterated 
words (Example 3, “office”). Such errors are 
manually verified for correctness. 

 
Example 3: 

Kya  aaj tum office gaye ? 

 

Did you go to the office today ? 

2.2 Word Alignment 

In the case of generating word alignments it is 
beneficial to calculate alignments in both transla-
tion directions (English – Urdu and Urdu - Eng-
lish). This nature of symmetry will help to re-
duce alignment errors. We use the Berkeley 
Aligner6 word alignment package which imple-
ments a joint training model with posterior de-
coding (Liang et al., 2006) to consider bidirec-
tional alignments. Predictions are made based on 
the agreements obtained by two bidirectional 
models in the training phase. The intuitive objec-
tive function that incorporates data likelihood 
and a measure of agreement between the models 
is maximized using an EM-like algorithm. This 
alignment model is known to provide 29% re-
duction in AER over IBM model 4 predictions.  

On our data set the word alignment accuracy 
is 71.3% (calculated over 200 sentence pairs). In 
order to augment the alignment accuracy, we 
added 3000 Urdu-English words and phrases ob-
tained from the Urdu-English dictionary to our 
parallel corpus. The alignment accuracy im-
proved by 3% as the lexicon affects the word co-
occurrence count. 

Word alignment in itself does not produce ac-
curate semantic role projections from English to 
Urdu. This is because the verb predicates in Urdu 
can span more than one token. Semantic roles 

                                                 
6 http://nlp.cs.berkeley.edu/Main.html 
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can cover sentential constituents of arbitrary 
length, and simply using word alignments for 
projection is likely to result in wrong role spans. 
Also, alignments are not obtained for all words. 
This could lead to missing projections. 

One way to correct these alignment errors is to 
devise token based heuristic rules. This is not 
very beneficial as writing generic rules is diffi-
cult and different errors demand specific rules. 
We propose a method that considers POS, tense 
and chunk information along with word align-
ments to project annotations. 

 

 
Figure 1: Projection model 

 
Our proposed approach can be explained in 

two stages as shown in figure 1. In Stage 1 only 
verb predicates are transferred from English to 
Urdu. Stage 2 involves transfer of arguments and 
depends on the output of Stage 1. Predicate 
transfer cannot rely entirely on word alignments 
(§3). Rules devised around the chunk boundaries 
boost the verb predicate recognition rate. 

Any verb group sequence consisting of a main 
verb and its auxiliaries are marked as a verb 
chunk. Urdu data is tagged using the chunk tag 
set proposed exclusively for Indian languages by 
Bharati et al., (2006). Table 1 shows the tags that 
are important for this task. 

 
Verb Chunk Description 

VGF 
Verb group is finite  

(decided by the auxiliaries) 

VGNF 
Verb group for non-finite adverbial 

and adjectival chunk 
VGNN Verb group has a gerund 

Table 1: Verb chunk tags in Urdu 

The sentence aligned parallel corpora that we 
feed as input to our model is POS tagged for both 
English and Urdu. Urdu data is also tagged for 
chunk boundaries and morphological features 
like tense, gender and number information.  
Named Entities are also marked on the Urdu data 
set as they help in tagging the ARGM arguments. 
All the NLP taggers (POS, NE, Chunker, and 
Morphological Analyzer) used in this work are 
detailed in Mukund et al., (2010). 

English data is not chunked using a conven-
tional chunk tagger. Each English sentence is 
split into virtual phrases at boundaries deter-
mined by the following parts of speech – IN, TO, 
MD, POS, CC, DT, SYM,: (Penn Tree Bank tag-
set). These tags represent positions in a sentence 
that typically mark context transitions (they are 
mostly the closed class words). We show later 
how these approximate chunks assist in correct-
ing predicate mappings. 

We use an Urdu-English dictionary (§2.1) that 
assigns English meanings to Urdu words in each 
sentence. Using translation information from a 
dictionary can help transfer verb predicates when 
the translation equivalent preserves the lexical 
meaning of the source language.  

The first rule that gets applied for predicate 
transfer is based on lexicon lookup. If the Eng-
lish verb is found to be a synonym to an Urdu 
word that is part of a verb chunk, then the lemma 
associated with the English word is transferred to 
the entire verb chunk in Urdu. However not all 
translations’ equivalents are lexically synonym-
ous. Sometimes the word used in Urdu is differ-
ent in meaning to that in English but relevant in 
the context (lexical divergence).  

The word alignments considered in proximity 
to the approximate English chunks come to res-
cue in such scenarios. Here, for all the words 
occurring in each Urdu verb chunk, correspond-
ing English aligned words are found from the 
word alignments. If the words that are found be-
long to the same approximate English chunk, 
then the verb predicate of that chunk (if present) 
is projected onto the verb chunk in Urdu. This 
heuristic technique increases the verb projection 
accuracy by about 15% as shown in §4. 

The Penn tree bank tag set for English part of 
speech has different tags for verbs based on the 
tense information. VBD is used to indicate past 
tense, and VBP and VBZ for present tense. Urdu 
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also has the tense information associated with the 
verbs in some cases. We exploit this similarity to 
project the verb predicates from English onto 
Urdu. 

The adverbial chunk in Urdu includes pure ad-
verbial phrases. These chunks also form part of 
the verb predicates.  

   S 
 
 
RBP          NP                        VGNF 
 
RB         NN   VB     AUXA    

 (gayi/گئی)        (dali/ڈالی)  (jaan/جان)     (dobara/دوباره)

[English meaning – Revitalized] 
Figure 2: example for demotional divergence 

 
E.g. consider the English word “revitalized” 

(figure 2). This is tagged VBD. However, the Ur-
du equivalent of this word is “دوباره جان ڈالی گئی” 

(dobara jaan daali gayi ~ to put life in again). 
The POS tags are “RB, NN, VB, AUXA” (adverb, 

noun, verb, aspectual auxiliary). The word “do-

bara” is a part of the adverbial chunk RBP and 
the infinite verb chunk VGNF spans across the 
last two words “daali gayi”. “jaan” is a noun 
chunk. This kind of demotional divergence is 
commonly observed in languages like Hindi and 
Urdu. In order to consider this entire phrase to be 
the Urdu equivalent representation of the English 
word “revitalized”, a rule for adverbial chunk is 
included as the last step to account for un-
accommodated English verbs in the projections. 

In the PropBank corpus, predicate argument re-
lations are marked for almost all occurrences of 
non-copula verbs. We however do not have POS 
tags that help to identify non-copula words. 
Words that can be auxiliary verbs occur as non-
copula verbs in Urdu. We maintain a list of such 
auxiliary verbs. When the verb chunk in Urdu 
contains only one word and belongs to the list, 
we simply ignore the verb chunk and proceed to 
the next chunk. This avoids several false posi-
tives in verb projections.  

Stage 2 of the model includes the transfer of 
arguments. In order to see how well our method 
works, we project all argument annotations from 
English onto Urdu. We do not consider word 
alignments for arguments with proper nouns. The 
double metaphone algorithm (Philips 2000) is 
applied on both English NNP (proper noun) 
tagged words as well as English transliterated 
Urdu (NNP) tagged words. Arguments from 

English are mapped onto Urdu for word pairs 
with the same metaphone code. 

For other arguments, we consider word align-
ments in proximity to verb predicates. The argu-
ment boundaries are determined based on chunk 
and POS information. We observe that our me-
thod projects the annotations associated with 
nouns fairly well. However, when the arguments 
contain adjectives, the boundaries are disconti-
nuous. In such cases, we consider the entire 
chunk without the case marker as a probable 
candidate for the projected argument. We also 
have some issues with the ARGM-MOD argu-
ments in that they overlap with the verb predi-
cates. When the verb predicate that it overlaps 
with is a complex predicate, we consider the en-
tire verb chunk to be the Urdu equivalent candi-
date argument. These rules along with word 
alignments yield fairly accurate projections.  

The rules that we propose are dependent on the 
POS, chunk and tense information that are lan-
guage specific. Hence our method is language 
independent only to the extent that the new lan-
guage considered should have similar syntactic 
structure as Urdu. Indic languages fall in this 
category. 

3 Verb Predicates 

Detecting verb predicates can be a challenging 
task especially if very reliable and efficient tools 
such as POS tagger and chunkers are not availa-
ble. We apply the POS tagger (CRULP tagset, 
88% F-Score) and Chunker (Hindi tagset, 90% 
F-Score) provided by Mukund et al., (2010) on 
the Urdu data set and show that syntactic infor-
mation helps to compensate alignment errors. 
Stanford POS tagger7 (Penn Tree bank tagset) is 
applied on the English data set. 

Predicates can be simple predicates that lie 
within the chunk boundary or complex predicates 
when they span across chunk boundaries. When 
verbs in English are expressed in Urdu/Hindi, in 
several cases, more than one word is used to 
achieve perfect translation. In English the tense 
of the verb is mostly captured by the verb mor-
pheme such as “asked” “said” “saying”. In Ur-
du the tense is mostly captured by the auxiliary 
verbs. So a single word English verb such as 
“talking” would be translated into two words 

                                                 
7 http://nlp.stanford.edu/software/tagger.shtml 
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“batein karna” where “karna”~ do is the aux-
iliary verb. However this cannot be generalized 
as there are instances when translations are word 
to word. E.g. “said” is mapped to a single word 
Urdu verb “kaha”. 

Complex predicates in Urdu can occur in the 
following POS combinations. /oun+Verb, Ad-
jective+Verb, Verb+Verb, Adverb+Verb. Table 2 
lists the main verb tags present in the Urdu POS 
tagset. (refer Penn Tree bank POS tagset for 
English tags). 

 
Urdu Tags Description 

VB Verb 

VBI Infinitive Verb 

VBL Light Verb 

VBLI Infinitive Light Verb 

VBT Verb to be 

AUXA Aspectual Auxiliary 

AUXT Tense Auxiliary 

Table 2: Verb tags 
 
Auxiliary verbs in Urdu occur alongside VB, 

VBI, VBL or VBLI tags. Sinha (2009) defines 
complex predicates as a group of words consist-
ing of a noun (NN/NNP), an adjective (JJ), a verb 
(VB) or an adverb (RB) followed by a light verb 
(VBL/VBLI). Light verbs are those which contri-
bute to the tense and agreement of the verb (Butt 
and Geuder, 2001). However, despite the exis-
tence of a light verb tag, it is noticed that in sev-
eral sentences, verbs followed by auxiliary verbs 
need to be grouped as a single predicate. Hence, 
we consider such combinations as belonging to 
the complex predicate category.  
E1G- According_VBG to_TO some_DT estimates_NNS 

the_DT rule_NN changes_NNS would_MD cut_VB insid-

er_NN filings_NNS by_IN more_JJR than_IN a_DT 

third_JJ 

URD- [Kuch_QN  andaazon_NN  ke_CM  muta-

biq_NNCM]_NP [kanoon_NN mein_CM]_NP [tabdee-

liayan_NN]_NP[ androni_JJ    drjbndywn_NN  

ko_CM]_NP [ayk_CD thayiy_FR se_CM]_NP [zyada_I 
kam_JJ]_JJP [karey_VBL gi_AUXT]_VGF 

Example 4 
Example 4 demonstrates the existence of a light 
verb in a complex predicate. The English verb 
“cut” is mapped to “کم کريں گی” (kam karey gi) 
belonging to the VBF chunk group.  
E�G- Rolls_NNP -_: Royce_NNP Motor_NNP 

Cars_NNPS Inc._NNP said_VBD it_PRP expects_VBZ 

its_PRP$ U.S._NNP sales_NNS to_TO remain_VB 

steady_JJ at_IN about_IN 1 200_CD cars_NNS in_IN 

1990_CD 

URD - [Rolls  Royce motor car inc_NNPC ne_CM]_NP 
[kaha_VB]_VBNF [wo_PRP]_NP [apney_PRRFP$]_NP 

[U.S._NNP ki_CM]_NP [ frwKt_NN ko_CM]_NP 

[1990_CD mein_CM]_NP [takreeban_RB]_RBP [1200_CD 

karon_NN par_CM]_NP [mtwazn_JJ]_JJP [rakhne_VBI 
ki_CM]_VGNN [tawaqqo_NN]_NP [karte_VB 

hai_AUXT]_VGF 
Example 5 

 
In example 5, “said” corresponds to one Urdu 

word “کہا”(kaha) that also captures the tense in-
formation (past). However, consider the verb 
“expects”. This is a clear case of noun-verb 
complex predicate where “expects” is mapped to 
 .(tawaqqo karte hai)”توقع کرتی ہے“
E1G- /ot_RB all_PDT those_DT who_WP wrote_VBD 

oppose_VBP the_DT changes_NNS  

URD -wo tamaam  jinhon ne likha tabdeeliyon ke [mukha-

lif_JJ]_JJP [nahi_RB]_RBP [hain_VBT]_VGF 
Example 6 

 
In example 6, verb predicates are “wrote” and 

“oppose”. Consider the word “oppose”. There 
are two ways of representing this word in Urdu. 
As a verb chunk the translation would be “muk-

halifat nahi karte” and as an adjectival chunk 
“mukhalif nahi hai”. The latter form of repre-
sentation is used widely in the available transla-
tion corpus. The Urdu equivalent of “oppose” is 
 .(mukhalif hai)”مخالف ہيں“

Another interesting observation in example 6 is 
the existence of discontinuous predicates. 
Though “oppose” is one word in English, the 
Urdu representation has two words that do not 
occur together. The adverb “nahi” ~“not” oc-
curs between the adjective and the verb. Statisti-
cally dealing with this issue is extremely chal-
lenging and affects the boundaries of other ar-
guments. Generalizing the rules needed to identi-
fy discontinuous predicates requires more de-
tailed analysis of the corpus – from the linguistic 
aspect – and has not been attempted in this paper. 
We however map “ ہيں نہيں مخالف ”(mukhalif nahi 
hai) to the predicate “oppose”. “nahi” is treated 
as an argument ARG_NEG in PropBank. 

4 Projection Results 

It is impossible for us to report our projection 
results on the entire data set as we do not have it 
manually annotated. For the purpose of evalua-
tion, we manually annotated 100 long sentences 
(L) and 100 short sentences (S) from the full 
2350 sentence set. All the results are reported on 
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this 200 set of sentences. Set L has sentences that 
each has more than two verb predicates and sev-
eral arguments. The number of words per sen-
tence here is greater than 55.  S; on the other 
hand has sentences with about 40 words each and 
no complex SOV structures. 

The results shown in Table 3 are for all tags 
(verbs+args) that are projected from English onto 
Urdu. In order to understand why the perfor-
mance over L dips, consider the results in Table 
4 that are for verb projections only. Some long 
sentences in English have Urdu translations that 
do not maintain the same structure. For example 
an English phrase – “… might prompt individu-

als to get out of stocks altogether” is written in 
Urdu in a way that the English representation 
would be “what makes individuals to get out of 
stocks is …”. The Urdu equivalent word for 
“prompt” is missing and the associated lemma 
gets assigned to the Urdu equivalent of “get” 
(the next lemma). This also affects the argument 
projections. Another reason is the effect of word 
alignments itself. Clearly longer sentences have 
greater alignment errors. 

All tags8 
100 long 
sentences 

100 short 
sentences 

Actual Tags 1267 372 
Correct Tags 943 325 
Found Tags 1212 353 

L :  Precision 77.8% Recall 74.4% F-Score 76% 
S:  Precision 92% Recall 87.4% F-Score 89.7% 

Table 3: when all tags are considered 
 
Comparing the results of Table 4 to Table 3, 

we see that argument projections affect the re-
call. This is because the projections of arguments 
depend not only on the word alignments but also 
on the verb predicates. Incorrect verb predicates 
affect the argument projections. 

Only lemma 
100 long 
sentences 

100 short 
sentences 

Actual Tags 670 240 
Correct Tags 490 208 
Overall Tags 720 257 
L: Precision 68% Recall 73.1% F-Score 70.45% 

S : Precision 80.9% Recall 86.6% F-Score 83.65% 
Table 4: for verb projections only 

Table 5 summarizes the results obtained when 
only the word alignments are considered to 

                                                 
8 Tags -  lemma (verb predicates) + arguments, Actual tags 
– number of tags in the English set, Found tags – number of 
tags transferred to Urdu, Correct Tags – number of tags 
correctly transferred 

project all tags. But when virtual phrase bounda-
ries in English are also considered, the F-score 
improves by 8% (Table 6). This is because vir-
tual boundaries in a way mark context switch and 
when considered in proximity to the word align-
ments yield better predicate boundaries. 

100 long sentences : only alignments 

Actual Tags 1267 

Correct Tags 617 

Overall Tags 782 

Precision 78.9% Recall 48.7% F-Score 60.2% 
Table 5: with only word alignments  

 
100 long sentences : alignments + virtual boundaries 

Actual Tags 1267 

Correct Tags 792 

Overall Tags 1044 

Precision 75.8% Recall  62.5% F-Score 68.5% 
Table 6: with word alignments and virtual boundaries 

 
100 

Sentences 
ARG

0 
ARG

1 
ARG

2 
ARG

3 
ARG

M 
Long 124 271 67 25 140 

Found 111 203 36 12 114 
P % 89.5 74.9 53.7 48 81.42 

Short 34 47 4 2 19 
Found 30 45 4 2 19 
P % 88.2 95.7 100 100 100 

Table 7: results of argument projections 
Precision (P) on arguments 

 
Table 7 shows the results of argument projec-

tions over the first 4 arguments of PropBank – 
ARG0, ARG1, ARG2 and ARG3 (out of 24 argu-
ments, majority are sparse in our test set) and the 
adjunct tag set ARGM.  

5 Automatic Detection 

The size of SRL annotated corpus generated for 
Urdu is limited with only 2350 sentences. To 
explore the possibilities of augmenting this data 
set, we train verb predicate and argument detec-
tion models. The results show great promise in 
generating large-scale automatic annotations. 

5.1 Verb Predicate Detection 

Verb predicate detection happens in two stag-
es. In the first stage, the predicate boundaries are 
marked using a CRF (Lafferty et al., 2001) based 
sequence labeling approach. The training data for 
the model is generated by annotating the auto-
matically annotated Urdu SRL corpus using BI 
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annotations. E.g. kam B-VG, karne par I-VG. The 
non-verb predicates are labeled “-1”. The model 
uses POS, chunk and lexical information as fea-
tures. We report the results on a set of 77 sen-
tences containing a mix of short and long sen-
tences.  

Number of verb predicates correctly marked 377 
Num of verb predicates found 484 
Actual num of verb predicates 451 

Precision 77.8% Recall 83.5% F-Score 80.54% 
Table 8: CRF results for verb boundaries 

Every verb predicate is associated with a lemma 
mapped from the English VerbNet map file9. E.g. 
the Urdu verb “کم  کرنے  پر” (kam karne par) has 
the lemma “lower”. The second stage includes 
assigning these lemmas. Lemma assignment is 
based on lookups from a VerbNet like map file. 
We have compiled a large set of Urdu verb pre-
dicates by mapping translations found in the au-
tomatically annotated corpus to the VerbNet map 
file. This Urdu verb predicate list also accommo-
dates complex predicates that occur along with 
verbs such as “karna – to do”, “paana – to get”, 
etc. (along with different variations of these 
verbs – karte, kiya, paate etc.). This verb predi-
cate list (manually corrected) consists of 800 en-
tries. Since our gold standard test set is very 
small, the lemma assignment for all verb predi-
cates is 100% (no pb values and hence no 
senses). This list, however, has to be augmented 
further to meet the standards of the English 
VerbNet map file. 

5.2 Argument Detection 

Argument detection (SRL) is done in two steps: 
(1) argument boundary detection (2) argument 
label assignment. We perform tests for step 2 to 
show how well a standard SVM role detection 
model works on the automatically generated Ur-
du data set. For each pair of correct predicate p 
and an argument i we create a feature representa-
tion F p,a  ~ set T of all arguments. To train a mul-

ti-class role-classifier, given the set T of all ar-
guments, T can be rationalized as T arg i

+  (positive 

instances) and T arg i

−  (negative instances) for each 

argument i. In this way, individual ONE-vs-ALL 
(Gildea and Jurafsky, 2002) classifier for each 

                                                 
9 http://verbs.colorado.edu/semlink/semlink1.1/vn-
pb/README.TXT 

argument i is trained. In the testing phrase, given 
an unseen sentence, for each argument F

p,q
 is 

generated and classified by each individual clas-
sifier.  

We created a set of standard SRL features as 
shown in table 9. The results (Tables 10 and 11), 
though not impressive, are promising. We be-
lieve that by increasing the number of samples 
(for each argument) in the training set and intel-
ligently controlling the negative samples, the 
results can be improved significantly. 
Training – 2270 sentences with 7315 argument instances. 
Test – 77 sentences with 496 argument instances. (22 dif-
ferent role types) 

BaseLine 
Features 

(BL) 

phrase-type (syntactic category; NP, PP etc.), 
predicate (in our case, verb group), path (syn-
tactic path from the argument constituent to 
the predicate), head words (argument and the 
predicate respectively), position (whether the 
phrase is before or after the predicate)  

Detailed 
Features 

BL + POS (of the first word in the predicate), 
chunk tag of the predicate, POS (of the first 
word of the constituent argument), head word 
(of the verb group in a complex predicate), 
named entity (whether the argument contains 
any named entity, such as location, person, 
organization etc.) 

Table 9: Features for SRL 
 

Kernel/features Precision Recall F-Score 
LK – BL 71.88 48.25 57.74 
LK – all 73.91 47.55 57.87 
PK – BL 74.19 48.25 58.47 

PK –all (best) 73.47 49.65 59.26 
Table 10: Arg0 performance 

 
Kernel/features Precision Recall F-Score 

LK – BL 69.35 22.87 34.40 
LK – all 69.84 23.4 35.05 
PK – BL 73.77 24.14 36.38 

PK –all (best) 73.8 26.06 38.52 
Table 11: Arg1 Performances 

(PK - polynomial kernel LK – Linear kernel) 

6 Conclusion 

In this work, we develop an alignment system 
that is tailor made to fit the SRL problem scope 
for Urdu. Furthermore, we have shown that de-
spite English being a totally different language, 
resources for Urdu can be generated if the subtle 
grammatical nuances of Urdu are accounted for 
while projecting the annotations. We plan to 
work on argument boundary detection and ex-
plore other features for argument detection. The 
lemma set generated for Urdu is being refined for 
finer granularity. 
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Abstract 

The main task we address in our research 
is classification of text using fine-grained 
attitude labels. The developed @AM sys-
tem relies on the compositionality prin-
ciple and a novel approach based on the 
rules elaborated for semantically distinct 
verb classes. The evaluation of our me-
thod on 1000 sentences, that describe 
personal experiences, showed promising 
results: average accuracy on the fine-
grained level (14 labels) was 62%, on the 
middle level (7 labels) – 71%, and on the 
top level (3 labels) – 88%. 

1 Introduction and Related Work 

With rapidly growing online sources aimed at 
encouraging and stimulating people’s discussions 
concerning personal, public or social issues 
(news, blogs, discussion forums, etc.), there is a 
great need in development of a computational 
tool for the analysis of people’s attitudes. Ac-
cording to the Appraisal Theory (Martin and 
White, 2005), attitude types define the specifics 
of appraisal being expressed: affect (personal 
emotional state), judgment (social or ethical ap-
praisal of other’s behaviour), and appreciation 
(evaluation of phenomena). 

To analyse contextual sentiment of a phrase or 
a sentence, rule-based approaches (Nasukawa 
and Yi, 2003; Moilanen and Pulman, 2007; Sub-
rahmanian and Reforgiato, 2008), a machine-
learning method using not only lexical but also 
syntactic features (Wilson et al., 2005), and a 
model of integration of machine learning ap-
proach with compositional semantics (Choi and 
Cardie, 2008) were proposed. With the aim to 
recognize fine-grained emotions from text on the 

level of distinct sentences, researchers have em-
ployed a keyword spotting technique (Chuang 
and Wu, 2004; Strapparava et al., 2007), a tech-
nique calculating emotion scores using Pointwise 
Mutual Information (PMI) (Kozareva et al., 
2007), an approach inspired by common-sense 
knowledge (Liu et al., 2003), rule-based linguis-
tic approaches (Boucouvalas, 2003; Chaumartin, 
2007), machine-learning methods (Alm, 2008; 
Aman and Szpakowicz, 2008; Strapparava and 
Mihalcea, 2008), and an ensemble based multi-
label classification technique (Bhowmick et al., 
2009). 

Early attempts to focus on distinct attitude 
types in the task of attitude analysis were made 
by Taboada and Grieve (2004), who determined 
a potential value of adjectives for affect, judge-
ment and appreciation by calculating the PMI 
with the pronoun-copular pairs ‘I was (affect)’, 
‘He was (judgement)’, and ‘It was (apprecia-
tion)’, and Whitelaw et al. (2005), who used a 
machine learning technique (SVM) with fine-
grained semantic distinctions in features (attitude 
type, orientation) in combination with “bag of 
words” to classify movie reviews. However, the 
concentration only on adjectives expressing ap-
praisal and their modifiers greatly narrows the 
potential of the Whitelaw et al. (2005) approach. 

In this paper we introduce our system @AM 
(ATtitude Analysis Model), which (1) classifies 
sentences according to the fine-grained attitude 
labels (nine affect categories (Izard, 1971): ‘an-
ger’, ‘disgust’, ‘fear’, ‘guilt’, ‘interest’, ‘joy’, 
‘sadness’, ‘shame’, ‘surprise’; four polarity la-
bels for judgment and appreciation: ‘POS jud’, 
‘NEG jud’, ‘POS app’, ‘NEG app’; and ‘neu-
tral’); (2) assigns the strength of the attitude; and 
(3) determines the level of confidence, with 
which the attitude is expressed. @AM relies on a 
compositionality principle and a novel approach 
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based on the rules elaborated for semantically 
distinct verb classes. 

2 Lexicon for Attitide Analysis 

We built a lexicon for attitude analysis that in-
cludes: (1) attitude-conveying terms; (2) modifi-
ers; (3) “functional” words; and (4) modal opera-
tors. 

2.1 The Core of Lexicon 

As a core of lexicon for attitude analysis, we em-
ploy an Affect database and extended version of 
the SentiFul database developed by Neviar-
ouskaya et al. (2009). The affective features of 
each emotion-related word are encoded using 
nine emotion labels (‘anger’, ‘disgust’, ‘fear’, 
‘guilt’, ‘interest’, ‘joy’, ‘sadness’, ‘shame’, and 
‘surprise’) and corresponding emotion intensities 
that range from 0.0 to 1.0. The original version 
of SentiFul database, which contains sentiment-
conveying adjectives, adverbs, nouns, and verbs 
annotated by sentiment polarity, polarity scores 
and weights, was manually extended using atti-
tude labels. Some examples of annotated atti-
tude-conveying words are listed in Table 1. It is 
important to note here that some words may ex-
press different attitude types (affect, judgment, 
appreciation) depending on context; such lexical 
entries were annotated by all possible categories. 

POS Word Category Intensity 
adjective honorable 

unfriendly 
POS jud 

NEG aff (sadness) 
NEG jud 
NEG app 

0.3 
0.5 
0.5 
0.5 

adverb gleefully POS aff (joy) 0.9 
noun abnormality NEG app 0.25 
verb frighten 

desire 
NEG aff (fear) 

POS aff (interest) 
POS aff (joy) 

0.8 
1.0 
0.5 

Table 1. Examples of attitude-conveying words 
and their annotations. 

2.2 Modifiers and Functional Words 

We collected 138 modifiers that have an impact 
on contextual attitude features of related words, 
phrases, or clauses. They include: 

1. Adverbs of degree (e.g., ‘significantly’, 
‘slightly’ etc.) and affirmation (e.g., ‘absolutely’, 
‘seemingly’) that have an influence on the 
strength of the attitude of related words. Two 
annotators gave coefficients for intensity degree 

strengthening or weakening (from 0.0 to 2.0) to 
each adverb, and the result was averaged (e.g., 
coeff(‘slightly’) = 0.2). 

2. Negation words (e.g., ‘never’, ‘nothing’ 
etc.) reversing the polarity of related statement. 

3. Adverbs of doubt (e.g., ‘scarcely’, 
‘hardly’ etc.) and falseness (e.g., ‘wrongly’ etc.) 
reversing the polarity of related statement. 

4. Prepositions (e.g., ‘without’, ‘despite’ etc.) 
neutralizing the attitude of related words. 

5. Condition operators (e.g., ‘if’, ‘even 
though’ etc.) that neutralize the attitude of related 
words. 
We distinguish two types of “functional” words 
that influence contextual attitude and its strength:  

1. Intensifying adjectives (e.g., ‘rising’, ‘rap-
idly-growing’), nouns (e.g., ‘increase’), and 
verbs (e.g., ‘to grow’, ‘to rocket’) that increase 
the strength of attitude of related words. 

2. Reversing adjectives (e.g., ‘reduced’), 
nouns (e.g., ‘termination), and verbs (e.g., ‘to 
decrease’, ‘to limit’, ‘to diminish’), which re-
verse the prior polarity of related words. 

2.3 Modal Operators 

Consideration of the modal operators in the tasks 
of opinion mining and attitude analysis is very 
important, as they indicate a degree of person’s 
belief in the truth of the proposition, which is 
subjective in nature (Hoye, 1997). Modals are 
distinguished by their confidence level. We col-
lected modal operators of two categories: modal 
verbs (13 verbs) and modal adverbs (61 adverbs). 
Three human annotators assigned the confidence 
level ranging from 0.0 to 1.0 to each modal verb 
and adverb; these ratings were averaged (e.g., 
conf(‘vaguely’) = 0.17, conf(‘arguably’) = 0.63, 
conf(‘would’) = 0.8, conf(‘veritably’) = 1.0). 

3 Compositionality Principle 

Our algorithm for attitude classification is de-
signed based on the compositionality principle, 
according to which we determine the attitudinal 
meaning of a sentence by composing the pieces 
that correspond to lexical units or other linguistic 
constituent types governed by the rules of polari-
ty reversal, aggregation (fusion), propagation, 
domination, neutralization, and intensification, at 
various grammatical levels. 

Polarity reversal means that a phrase or 
statement containing an attitude-conveying 
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term/phrase with prior positive polarity becomes 
negative, and vice versa. The rule of polarity re-
versal is applied in three cases: (1) negation 
word-modifier in relation with an attitude-
conveying statement (e.g., ‘never’ & 
POS(‘succeed’) => NEG(‘never succeed’)); (2) 
adverb of doubt in relation with attitude-
conveying statement (e.g., ‘scarcely’ & 
POS(‘relax’) => NEG(‘scarcely relax’)); (3) 
functional word of reversing type in relation with 
attitude-conveying statement (e.g., adjective ‘re-
duced’ & POS(‘enthusiasm’) => NEG(‘reduced 
enthusiasm’)). In the case of judgment and ap-
preciation, the use of the polarity reversal rule is 
straightforward (‘POS jud’ <=> ‘NEG jud’, 
‘POS app’ <=> ’NEG app’). However, it is not 
trivial to find pairs of opposite emotions in the 
case of a fine-grained classification, except for 
‘joy’ and ‘sadness’. Therefore, we assume that 
(1) the opposite emotion for three positive emo-
tions, i.e. ‘interest’, ‘joy’, and ‘surprise’, is ‘sad-
ness’ (‘POS aff’ => ‘sadness’); and (2) the oppo-
site emotion for six negative emotions, i.e. ‘an-
ger’, ‘disgust’, ‘fear’, ‘guilt’, ‘sadness’, and 
‘shame’, is ‘joy’ (‘NEG aff’ => ‘joy’). 

The rules of aggregation (fusion) are as fol-
lows: (1) if polarities of attitude-conveying terms 
in adjective-noun, noun-noun, adverb-adjective, 
adverb-verb phrases have opposite directions, 
mixed polarity with dominant polarity of a pre-
modifier is assigned to the phrase (e.g., 
POS(‘beautiful’) & NEG(‘fight’) => POS-
neg(‘beautiful fight’); NEG(‘shamelessly’) & 
POS(‘celebrate’) => NEG-pos(‘shamelessly 
celebrate’)); otherwise (2) the resulting polarity 
is based on the equal polarities of terms, and the 
strength of attitude is measured as a maximum 
between polarity scores (intensities) of terms 
(max(score1,score2)).  

The rule of propagation is useful, as proposed 
in (Nasukawa and Yi, 2003), for the task of the 
detection of local sentiments for given subjects. 
“Propagation” verbs propagate the sentiment to-
wards the arguments; “transfer” verbs transmit 
sentiments among the arguments. The rule of 
propagation is applied when a verb of “propaga-
tion” or “transfer” type is used in a phrase/clause 
and sentiment of an argument that has prior neu-
tral polarity needs to be investigated (e.g., 
PROP-POS(‘to admire’) & ‘his behaviour’ => 
POS(‘his behaviour’); ‘Mr. X’ & 

TRANS(‘supports’) & NEG(‘crime business’) 
=> NEG(‘Mr. X’)).  

The rules of domination are as follows: (1) if 
polarities of a verb (this rule is applied only for 
certain classes of verbs) and an object in a clause 
have opposite directions, the polarity of verb is 
prevailing (e.g., NEG(‘to deceive’) & 
POS(‘hopes’) => NEG(‘to deceive hopes’)); (2) 
if compound sentence joints clauses using coor-
dinate connector ‘but’, the attitude features of a 
clause following after the connector are domi-
nant (e.g., ‘NEG(It was hard to climb a mountain 
all night long), but POS(a magnificent view re-
warded the traveler at the morning).’ => 
POS(whole sentence)). 

The rule of neutralization is applied when 
preposition-modifier or condition operator relate 
to the attitude-conveying statement (e.g., ‘de-
spite’ & NEG(‘worries’) => NEUT(‘despite 
worries’)). 

The rule of intensification means strengthen-
ing or weakening of the polarity score (intensity), 
and is applied when: 

1. adverb of degree or affirmation relates to 
attitude-conveying term (e.g., 
Pos_score(‘happy’) < Pos_score(‘extremely hap-
py’)); 

2. adjective or adverb is used in a compara-
tive or superlative form (e.g., Neg_score(‘sad’) < 
Neg_score(‘sadder’) < Neg_score (‘saddest’)). 
Our method is capable of processing sentences of 
different complexity, including simple, com-
pound, complex (with complement and relative 
clauses), and complex-compound sentences. We 
employ Connexor Machinese Syntax parser 
(http://www.connexor.eu/) that returns 
lemmas, parts of speech, dependency functions, 
syntactic function tags, and morphological tags. 
When handling the parser output, we represent 
the sentence as a set of primitive clauses. Each 
clause might include Subject formation, Verb 
formation and Object formation, each of which 
may consist of a main element (subject, verb, or 
object) and its attributives and complements. For 
the processing of complex or compound sen-
tences, we build a so-called “relation matrix”, 
which contains information about dependences 
(e.g., coordination, subordination, condition, 
contingency, etc.) between different clauses in a 
sentence. While applying the compositionality 
principle, we consecutively assign attitude fea-
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tures to words, phrases, formations, clauses, and 
finally, to the whole sentence. 

4 Consideration of the Semantics of 
Verbs 

All sentences must include a verb, because the 
verb tells us what action the subject is perform-
ing and object is receiving. In order to elaborate 
rules for attitude analysis based on the semantics 
of verbs, we investigated VerbNet (Kipper et al., 
2007), the largest on-line verb lexicon that is or-
ganized into verb classes characterized by syn-
tactic and semantic coherence among members 
of a class. Based on the thorough analysis of 270 
first-level classes of VerbNet and their members, 
73 verb classes (1) were found useful for the task 
of attitude analysis, and (2) were further classi-
fied into 22 classes differentiated by the role that 
members play in attitude analysis and by rules 
applied to them. Our classification is shown in 
Table 2. 

For each of our verb classes, we developed set 
of rules that are applied to attitude analysis on 
the phrase/clause-level. Some verb classes (e.g., 
“Psychological state or emotional reaction”, 
“Judgment”, “Bodily state and damage to the 
body”, “Preservation” etc.) include verbs anno-
tated by attitude type, prior polarity orientation, 
and the strength of attitude. The attitude features 
of phrases that involve positively or negatively 
charged verbs from such classes are context-
sensitive and are defined by means of rules de-
signed for each of the class. 

As an example, we provide short description 
and rules elaborated for the subclass “Object-
centered (oriented) emotional state”. 
Features: subject experiences emotions towards 
some stimulus; verb prior polarity: positive or 
negative; context-sensitive. 
Verb-Object rules (subject is ignored): 
1. “Interior perspective” (subject’s inner emotion 
state or attitude): 

S & V+(‘admires’) & O+(‘his brave heart’) 
=> (fusion, max(V_score,O_score)) => ‘POS 
aff’. 

S & V+(‘admires’) & O-(‘mafia leader’) => 
(verb valence dominance, V_score) => ‘POS 
aff’. 

S & V-(‘disdains’) & O+(‘his honesty’) => 
(verb valence dominance, V_score) => ‘NEG 
aff’. 

Verb class (verb samples) 
1 Psychological state or emotional reaction 

1.1 Object-centered (oriented) emotional state (adore)
1.2 Subject-driven change in emotional state (trans.)

(charm, inspire, bother) 
1.3 Subject-driven change in emotional state (intrans.)

(appeal to, grate on) 
2 Judgment 

2.1 Positive judgment (bless, honor) 
2.2 Negative judgment (blame, punish) 

3 Favorable attitude (accept, allow, tolerate) 
4 Adverse (unfavorable) attitude (discourage, forbid) 
5 Favorable or adverse calibratable changes of state 
(grow, decline) 
6 Verbs of removing 

6.1 Verbs of removing with neutral charge (delete) 
6.2 Verbs of removing with negative charge (expel) 
6.3 Verbs of removing with positive charge (evacuate)

7 Negatively charged change of state (break, crush) 
8 Bodily state and damage to the body (sicken, injure) 
9 Aspectual verbs 

9.1 Initiation, continuation of activity, and sustaining 
(begin, continue, maintain) 

9.2 Termination of activity (quit, finish) 
10 Preservation (defend, insure) 
11 Verbs of destruction and killing (damage, poison) 
12 Disappearance (disappear, die) 
13 Limitation and subjugation (confine, restrict) 
14 Assistance (succor, help) 
15 Obtaining (win, earn) 
16 Communication indicator/reinforcement of attitude 
(guess, complain, deny) 
17 Verbs of leaving (abandon, desert) 
18 Changes in social status or condition (canonize) 
19 Success and failure 

19.1 Success (succeed, manage) 
19.2 Failure (fail, flub) 

20 Emotional nonverbal expression (smile, weep) 
21 Social interaction (marry, divorce) 
22 Transmitting verbs (supply, provide) 

Table 2. Verb classes for attitude analysis. 

S & V-(‘disdains’) & O-(‘criminal activities’) 
=> (fusion, max(V_score,O_score)) => ‘NEG 
aff’. 
2. “Exterior perspective” (social/ethical judg-
ment): 

S & V+(‘admires’) & O+(‘his brave heart’) 
=> (fusion, max(V_score,O_score)) => ‘POS 
jud’. 

S & V+(‘admires’) & O-(‘mafia leader’) => 
(verb valence reversal, max(V_score,O_score)) 
=> ‘NEG jud’. 

S & V-(‘disdains’) & O+(‘his honesty’) => 
(verb valence dominance, 
max(V_score,O_score)) => ‘NEG jud’. 

S & V-(‘disdains’) & O-(‘criminal activities’) 
=> (verb valence reversal, 
max(V_score,O_score)) => ‘POS jud’. 
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3. In case of neutral object => attitude type and 
prior polarity of verb, verb score (V_score). 
Verb-PP (prepositional phrase) rules: 
1. In case of negatively charged verb and PP 
starting with ‘from’ => verb dominance:  

S & V-(‘suffers’) & PP-(‘from illness’) => in-
terior: ‘NEG aff’; exterior: ‘NEG jud’. 

S & V-(‘suffers’) & PP+ (‘from love’) => inte-
rior: ‘NEG aff’; exterior: ‘NEG jud’. 
2. In case of positively charged verb and PP 
starting with ‘in’/‘for’ => treat PP the same way 
as object (see above): 

S & V+(‘believes’) & PP-(‘in evil’) => inte-
rior: ‘POS aff’; exterior: ‘NEG jud’. 

S & V+(‘believes’) & PP+(‘in kindness’) => 
interior: ‘POS aff’; exterior: ‘POS jud’. 
In the majority of rules the strength of attitude is 
measured as a maximum between attitude scores 
(for example, the attitude conveyed by ‘to suffer 
from grave illness’ is stronger than that of ‘to 
suffer from slight illness’). 

In contrast to the rules of “Object-centered 
(oriented) emotional state” subclass, which ig-
nore attitude features of a subject in a sentence, 
the rules elaborated for the “Subject-driven 
change in emotional state (trans.)” disregard the 
attitude features of object, as in sentences involv-
ing members of this subclass object experiences 
emotion, and subject causes the emotional state. 
For example (due to limitation of space, here and 
below we provide only some cases): 

S(‘Classical music’) & V+(‘calmed’) & O-
(‘disobedient child’) => interior: ‘POS aff’; exte-
rior: ‘POS app’. 

S-(‘Fatal consequences of GM food intake’) & 
V-(‘frighten’) & O(‘me’) => interior: ‘NEG aff’; 
exterior: ‘NEG app’. 
The Verb-Object rules for the “Judgment” sub-
classes, namely “Positive judgment” and “Nega-
tive judgment”, are very close to those defined 
for the subclass “Object-centered (oriented) 
emotional state”. However, Verb-PP rules have 
some specifics: for both positive and negative 
judgment verbs, we treat PP starting with 
‘for’/‘of’/‘as’ the same way as object in Verb-
Object rules. For example: 

S(‘He’) & V-(‘blamed’) & O+(‘innocent per-
son’) => interior: ‘NEG jud’; exterior: ‘NEG 
jud’. 

S(‘They’) & V-(‘punished’) & O(‘him’) & PP-
(‘for his misdeed’) => interior: ‘NEG jud’; exte-
rior: ‘POS jud’. 
Verbs from classes “Favorable attitude” and 
“Adverse (unfavorable) attitude” have prior neu-
tral polarity and positive or negative reinforce-
ment, correspondingly, that means that they only 
impact on the polarity and strength of non-
neutral phrase (object in a sentence written in 
active voice, or subject in a sentence written in 
passive voice, or PP in case of some verbs). The 
rules are: 
1. If verb belongs to the “Favorable attitude” 
class and the polarity of phrase is not neutral, 
then the attitude score of the phrase is intensified 
(symbol ‘^’ means intensification): 

S(‘They’) & [V pos. reinforcement](‘elected’) 
& O+(‘fair judge’) => ‘POS app’; O_score^. 

S(‘They’) & [V pos. reinforcement](‘elected’) 
& O-(‘corrupt candidate’) => ‘NEG app’; 
O_score^. 
2. If verb belongs to the “Adverse (unfavorable) 
attitude” class and the polarity of phrase is not 
neutral, then the polarity of phrase is reversed 
and score is intensified: 

S(‘They’) & [V neg. reinforce-
ment](‘prevented’) & O-(‘the spread of disease’) 
=> ‘POS app’; O_score^. 

S+(‘His achievements’) & [V neg. reinforce-
ment](‘were overstated’) => ‘NEG app’; 
S_score^. 
Below are examples of processing the sentences 
with verbs from “Verbs of removing” class. 
“Verbs of removing with neutral charge”: 

S(‘The tape-recorder’) & [V neutral 
rem.](‘automatically ejects’) & O-neutral(‘the 
tape’) => neutral. 

S(‘The safety invention’) & [V neutral 
rem.](‘ejected’) & O(‘the pilot’) & PP-(‘from 
burning plane’) => ‘POS app’; PP_score^. 
“Verbs of removing with negative charge”: 

S(‘Manager’) & [V neg. rem.](‘fired’) & O-
(‘careless employee’) & PP(‘from the company’) 
=> ‘POS app’; max(V_score,O_score).  
“Verbs of removing with positive charge”: 

S(‘They’) & [V pos. rem.](‘evacuated’) & 
O(‘children’) & PP-(‘from dangerous place’) => 
‘POS app’; max(V_score,PP_score). 
Along with modal verbs and modal adverbs, 
members of the “Communication indica-
tor/reinforcement of attitude” verb class also in-
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dicate the confidence level or degree of certainty 
concerning given opinion. Features are: subject 
(communicator) expresses statement 
with/without attitude; statement is PP starting 
with ‘of’, ‘on’, ‘against’, ‘about’, ‘concerning’, 
‘regarding’, ‘that’, ‘how’ etc.; ground: positive 
or negative; reinforcement: positive or negative. 
The rules are: 
1. If the polarity of expressed statement is neu-
tral, then the attitude is neutral: 

S(‘Professor’) & [V pos. ground, pos. rein-
forcement, confidence:0.83](‘dwelled’) & PP-
neutral(‘on a question’) => neutral. 
2. If the polarity of expressed statement is not 
neutral and the reinforcement is positive, then the 
score of the statement (PP) is intensified: 

S(‘Jane’) & [V neg. ground, pos. reinforce-
ment, confidence:0.8](‘is complaining’) & PP-
(‘of a headache again’) => ‘NEG app’; 
PP_score^; confidence:0.8. 
3. If the polarity of expressed statement is not 
neutral and reinforcement is negative, then the 
polarity of the statement (PP) is reversed and 
score is intensified: 

S(‘Max’) & [V neg. ground, neg. reinforce-
ment, confidence:0.2](‘doubt’) & PP-{‘that’ 
S+(‘his good fortune’) & [V termination](‘will 
ever end’)} => ‘POS app’; PP_score^; confi-
dence:0.2.  
In the last example, to measure the sentiment of 
PP, we apply rule for the verb ‘end’ from the 
“Termination of activity” class, which reverses 
the non-neutral polarity of subject (in intransitive 
use of verb) or object (in transitive use of verb). 
For example, the polarity of both sentences ‘My 
whole enthusiasm and excitement disappear like 
a bubble touching a hot needle’ and ‘They dis-
continued helping children’ is negative. 

5 Decision on Attitude Label 

The decision on the most appropriate final label 
for the clause, in case @AM annotates it using 
different attitude types according to the words 
with multiple annotations (e.g., see word ‘un-
friendly’ in Table 1) or based on the availability 
of the words conveying different attitude types, 
is made based on the analysis of: 

1) morphological tags of nominal heads and 
their premodifiers in the clause (e.g., first person 
pronoun, third person pronoun, demonstrative 
pronoun, nominative or genitive noun, etc.); 

2) the sequence of hypernymic semantic re-
lations of a particular noun in WordNet (Miller, 
1990), which allows to determine its conceptual 
domain (e.g., “person, human being”, “artifact”, 
“event”, etc.);  

3) the annotations from the Stanford 
Named Entity Recognizer (Finkel et al. 2005) 
that labels PERSON, ORGANIZATION, and 
LOCATION entities.  
For ex., ‘I feel highly unfriendly attitude towards 
me’ conveys emotion (‘NEG aff’: ‘sadness’), 
while ‘The shop assistant’s behavior was really 
unfriendly’ and ‘Plastic bags are environment 
unfriendly’ express judgment (‘NEG jud’) and 
appreciation (‘NEG app’), correspondingly. 

6 Evaluation 

For the experiments, we used our own data set, 
as, to the best of our knowledge, there is no pub-
licly available data set of sentences annotated by 
the fine-grained labels proposed in our work. In 
order to evaluate the performance of our algo-
rithm, we created the data set of sentences ex-
tracted from personal stories about life expe-
riences that were anonymously published on the 
Experience Project website 
(www.experienceproject.com), where 
people share personal experiences, thoughts, 
opinions, feelings, passions, and confessions 
through the network of personal stories. With 
over 4 million experiences accumulated (as of 
February 2010), Experience Project is a perfect 
source for researchers interested in studying dif-
ferent types of attitude expressed through text. 

6.1 Data Set Description 

For our experiment we extracted 1000 sentences1 
from various stories grouped by topics within 13 
different categories, such as “Arts and entertain-
ment”, “Current events”, “Education”, “Family 
and friends”, “Health and wellness”, “Relation-
ships and romance” and others, on the Expe-
rience Project website. Sentences were collected 
from 358 distinct topic groups, such as “I still 
remember September 11”, “I am intelligent but 
airheaded”, “I think bullfighting is cruel”, “I quit 
smoking”, “I am a fashion victim”, “I was 
adopted” and others. 

                                                 
1 This annotated data set is freely available upon request. 

811



We considered three hierarchical levels of atti-
tude labels in our experiment (see Figure 1). 
Three independent annotators labeled the sen-
tences with one of 14 categories from the ALL 
level and a corresponding score (the strength or 
intensity value). These annotations were further 
interpreted using labels from the MID and the 
TOP levels. Fleiss’ Kappa coefficient was used 
as a measure of reliability of human raters’ anno-
tations. The agreement coefficient on 1000 sen-
tences was 0.53 on ALL level, 0.57 on MID level, 
and 0.73 on TOP level. 

Only those sentences, on which at least two 
out of three human raters completely agreed, 
were included in the gold standards for our expe-
riment. Three gold standards were created ac-
cording to the hierarchy of attitude labels. Fleiss’ 
Kappa coefficients are 0.62, 0.63, and 0.74 on 
ALL, MID, and TOP levels, correspondingly. 
Table 3 shows the distributions of labels in the 
gold standards. 

ALL level MID level 
Label Number Label Number 
anger 45 POS aff 233 
disgust 21 NEG aff 332 
fear 54 POS jud 66 
guilt 22 NEG jud 78 
interest 84 POS app 100 
joy 95 NEG app 29 
sadness 133 neutral 87 
shame 18 total 925 
surprise 36  
POS jud 66 TOP level 
NEG jud 78 Label Number 
POS app 100 POS 437 
NEG app 29 NEG 473 
neutral 87 neutral 87 
total 868 total 997 

Table 3. Label distributions in gold standards. 

6.2 Results 

The results of a simple method selecting the atti-
tude label with the maximum intensity from the 
annotations of sentence tokens found in the data-
base were considered as the baseline. After 
processing each sentence from the data set by the 

baseline method and our @AM system, we 
measured averaged accuracy, precision, recall, 
and F-score for each label in ALL, MID, and 
TOP levels. The results are shown in Table 4. 

As seen from the obtained results, our algo-
rithm performed with high accuracy significantly 
surpassing the baselines in all levels of attitude 
hierarchy, thus demonstrating the contribution of 
the sentence parsing and our hand-crafted rules 
to the reliable recognition of attitude from text. 
Two-tailed t-tests with significance level of 0.05 
showed that the differences in accuracy between 
the baseline method and our @AM system are 
statistically significant (p<0.001) in fine-grained 
as well as coarse-grained classifications. 

In the case of fine-grained attitude recognition 
(ALL level), the highest precision was obtained 
for ‘shame’ (0.923) and ‘NEG jud’ (0.889), 
while the highest recall was received for ‘sad-
ness’ (0.917) and ‘joy’ (0.905) emotions at the 
cost of low precision (0.528 and 0.439, corre-
spondingly). The algorithm performed with the 
worst results in recognition of ‘NEG app’ and 
‘neutral’. 

The analysis of a confusion matrix for the 
ALL level revealed the following top confusions 
of our system: (1) ‘anger’, ‘fear’, ‘guilt’, ‘shame’, 
‘NEG jud’, ‘NEG app’ and ‘neutral’ were pre-
dominantly incorrectly predicted as ‘sadness’ 
(for ex., @AM resulted in ‘sadness’ for the sen-
tence ‘I know we have several months left before 
the election, but I am already sick and tired of 
seeing the ads on TV’, while human annotations 
were ‘anger’/‘anger’/‘disgust’); (2) ‘interest’, 
‘POS jud’ and ‘POS app’ were mostly confused 
with ‘joy’ by our algorithm (e.g., @AM classi-
fied the sentence ‘It’s one of those life changing 
artifacts that we must have in order to have hap-
pier, healthier lives’ as ‘joy’(-ful), while human 
annotations were ‘POS app’/‘POS 
app’/‘interest’). 

Our system achieved high precision for all 
categories on the MID level (Table 4), with the 
exception of ‘NEG app’ and ‘neutral’, although 

    

TOP POS NEG neutral
    

MID POS aff POS 
jud 

POS 
app NEG aff NEG 

jud 
NEG 
app neutral

        

ALL interest joy surprise POS 
jud 

POS 
app anger disgust fear guilt sadness shame NEG 

jud 
NEG 
app neutral

Figure 1. Hierarchy of attitude labels. 
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high recall was obtained only in the case of cate-
gories related to affect (‘POS aff’, ‘NEG aff’). 
These results indicate that affect sensing is easier 
than recognition of judgment or appreciation 
from text. TOP level results (Table 4) show that 
our algorithm classifies sentences that convey 
positive or negative sentiment with high accura-
cy (92% and 91%, correspondingly). On the oth-
er hand, ‘neutral’ sentences still pose a challenge. 

The analysis of errors revealed that system re-
quires common sense or additional context to 
deal with sentences like ‘All through my life I’ve 
felt like I’m second fiddle’ (gold standard: ‘sad-
ness’; @AM: ‘neutral’) or ‘For me every minute 
on my horse is alike an hour in heaven!’ (gold 
standard: ‘joy’; @AM: ‘neutral’).  

We also evaluated the system performance 
with regard to attitude intensity estimation. The 
percentage of attitude-conveying sentences (not 
considering neutral ones), on which the result of 
our system conformed to the fine-grained gold 
standard (ALL level), according to the measured 
distance between intensities given by human ra-
ters (averaged values) and those obtained by our 
system is shown in Table 5. As seen from the 
table, our system achieved satisfactory results in 

estimation of the strength of attitude expressed 
through text. 
 

Range of intensity 
difference 

Percent of sen-
tences, % 

[0.0 – 0.2] 55.5 
(0.2 – 0.4] 29.5 
(0.4 – 0.6] 12.2 
(0.6 – 0.8] 2.6 
(0.8 – 1.0] 0.2 

Table 5. Results on intensity. 

7 Conclusions 

In this paper we introduced @AM, which is so 
far, to the best of our knowledge, the only system 
classifying sentences using fine-grained attitude 
types, and extensively dealing with the semantics 
of verbs in attitude analysis. Our composition 
approach broadens the coverage of sentences 
with complex contextual attitude. The evaluation 
results indicate that @AM achieved reliable re-
sults in the task of textual attitude analysis. The 
limitations include dependency on lexicon and 
on accuracy of the parser. The primary objective 
for the future research is to develop a method for 
the extraction of reasons behind the expressed 
attitude. 

Level Label Baseline method @AM 
Accuracy Precision Recall F-score Accuracy Precision Recall F-score 

ALL 

anger 

0.437 

0.742 0.511 0.605 

0.621 

0.818 0.600 0.692 
disgust 0.600 0.857 0.706 0.818 0.857 0.837 
fear 0.727 0.741 0.734 0.768 0.796 0.782 
guilt 0.667 0.364 0.471 0.833 0.455 0.588 
interest 0.380 0.357 0.368 0.772 0.524 0.624 
joy 0.266 0.579 0.364 0.439 0.905 0.591 
sadness 0.454 0.632 0.528 0.528 0.917 0.670 
shame 0.818 0.500 0.621 0.923 0.667 0.774 
surprise 0.625 0.694 0.658 0.750 0.833 0.789 
POS jud 0.429 0.227 0.297 0.824 0.424 0.560 
NEG jud 0.524 0.141 0.222 0.889 0.410 0.561 
POS app 0.349 0.150 0.210 0.755 0.400 0.523 
NEG app 0.250 0.138 0.178 0.529 0.310 0.391 
neutral 0.408 0.483 0.442 0.559 0.437 0.490 

MID 

POS aff 

0.524 

0.464 0.695 0.557 

0.709 

0.668 0.888 0.762 
NEG aff 0.692 0.711 0.701 0.765 0.910 0.831 
POS jud 0.405 0.227 0.291 0.800 0.424 0.554 
NEG jud 0.458 0.141 0.216 0.842 0.410 0.552 
POS app 0.333 0.150 0.207 0.741 0.400 0.519 
NEG app 0.222 0.138 0.170 0.474 0.310 0.375 
neutral 0.378 0.483 0.424 0.514 0.437 0.472 

TOP 
POS 

0.732 
0.745 0.796 0.770 

0.879 
0.918 0.920 0.919 

NEG 0.831 0.719 0.771 0.912 0.922 0.917 
neutral 0.347 0.483 0.404 0.469 0.437 0.452 

Table 4. Results of the evaluation of performance of the baseline method and @AM system. 
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Abstract

We present an unsupervised word seg-
mentation model for machine translation.
The model uses existing monolingual seg-
mentation techniques and models the joint
distribution over source sentence segmen-
tations and alignments to the target sen-
tence. During inference, the monolin-
gual segmentation model and the bilin-
gual word alignment model are coupled
so that the alignments to the target sen-
tence guide the segmentation of the source
sentence. The experiments show improve-
ments on Arabic-English and Chinese-
English translation tasks.

1 Introduction

In statistical machine translation, the smallest unit
is usually the word, defined as a token delimited
by spaces. Given a parallel corpus of source and
target text, the training procedure first builds a
word alignment, then extracts phrase pairs from
this word alignment. However, in some languages
(e.g., Chinese) there are no spaces between words.

The same problem arises when translating be-
tween two very different languages, such as from
a language with rich morphology like Hungarian
or Arabic to a language with poor morphology
like English or Chinese. A single word in a mor-
phologically rich language is often the composi-
tion of several morphemes, which correspond to
separate words in English.1

1We will use the terms word segmentation, morphologi-
cal analysis, and tokenization more or less interchangeably.

Often some preprocessing is applied involving
word segmentation or morphological analysis of
the source and/or target text. Such preprocess-
ing tokenizes the text into morphemes or words,
which linguists consider the smallest meaning-
bearing units of the language. Take as an ex-
ample the Arabic word “fktbwha” and its En-
glish translation “so they wrote it”. The preferred
segmentation of “fktbwha” would be “f-ktb-w-ha
(so-wrote-they-it),” which would allow for a one-
to-one mapping between tokens in the two lan-
guages. However, the translation of the phrase in
Hebrew is “wktbw ath”. Now the best segmen-
tation of the Arabic words would be “fktbw-ha,”
corresponding to the two Hebrew words. This ex-
ample shows that there may not be one correct
segmentation that can be established in a prepro-
cessing step. Rather, tokenization depends on the
language we want to translate into and needs to
be tied in with the alignment process. In short,
we want to find the tokenization yielding the best
alignment, and thereby the best translation sys-
tem.

We propose an unsupervised tokenization
method for machine translation by formulating a
generative Bayesian model to “explain” the bilin-
gual training data. Generation of a sentence pair
is described as follows: first a monolingual to-
kenization model generates the source sentence,
then the alignment model generates the target sen-
tence through the alignments with the source sen-
tence. Breaking this generation process into two
steps provides flexibility to incorporate existing
monolingual morphological segmentation mod-
els such as those of Mochihashi et al. (2009) or
Creutz and Lagus (2007). Using nonparametric

815



models and the Bayesian framework makes it pos-
sible to incorporate linguistic knowledge as prior
distributions and obtain the posterior distribution
through inference techniques such as MCMC or
variational inference.

As new test source sentences do not have trans-
lations which can help to infer the best segmenta-
tion, we decode the source string according to the
posterior distribution from the inference step.

In summary, our segmentation technique con-
sists of the following steps:

• A joint model of segmented source text and
its target translation.

• Inference of the posterior distribution of the
model given the training data.

• A decoding algorithm for segmenting source
text.

• Experiments in translation using the prepro-
cessed source text.

Our experiments show that the proposed seg-
mentation method leads to improvements on
Arabic-English and Chinese-English translation
tasks.

In the next section we will discuss related work.
Section 3 will describe our model in detail. The
inference will be covered in Section 4, and decod-
ing in Section 5. Experiments and results will be
presented in Section 6.

2 Related Work

The problem of segmentation for machine trans-
lation has been studied extensively in recent lit-
erature. Most of the work used some linguistic
knowledge about the source and the target lan-
guages (Nießen and Ney, 2004; Goldwater and
McClosky, 2005). Sadat and Habash (2006) ex-
perimented with a wide range of tokenization
schemes for Arabic-English translation. These
experiments further show that even for a single
language pair, different tokenizations are needed
depending on the training corpus size. The ex-
periments are very expensive to conduct and do
not generalize to other language pairs. Recently,
Dyer (2009) created manually crafted lattices for

a subset of source words as references for seg-
mentation when translating into English, and then
learned the segmentation of the source words to
optimize the translation with respect to these ref-
erences. He showed that the parameters of the
model can be applied to similar languages when
translating into English. However, manually cre-
ating these lattices is time-consuming and requires
a bilingual person with some knowledge of the un-
derlying statistical machine translation system.

There have been some attempts to apply un-
supervised methods for tokenization in machine
translation (Chung and Gildea, 2009; Xu et al.,
2008). The alignment model of Chung and
Gildea (2009) forces every source word to align
with a target word. Xu et al. (2008) mod-
eled the source-to-null alignment as in the source
word to target word model. Their models are
special cases of our proposed model when the
source model2 is a unigram model. Like Xu et
al. (2008), we use Gibbs sampling for inference.
Chung and Gildea (2009) applied efficient dy-
namic programming-based variational inference
algorithms.

We benefit from existing unsupervised mono-
lingual segmentation. The source model uses the
nested Pitman-Yor model as described by Mochi-
hashi et al. (2009). When sampling each potential
word boundary, our inference technique is a bilin-
gual extension of what is described by Goldwater
et al. (2006) for monolingual segmentation.

Nonparametric models have received attention
in machine translation recently. For example,
DeNero et al. (2008) proposed a hierarchical
Dirichlet process model to learn the weights of
phrase pairs to address the degeneration in phrase
extraction. Teh (2006) used a hierarchical Pitman-
Yor process as a smoothing method for language
models.

Recent work on multilingual language learning
successfully used nonparametric models for lan-
guage induction tasks such as grammar induction
(Snyder et al., 2009; Cohen et al., 2010), morpho-
logical segmentation (Goldwater et al., 2006; Sny-
der and Barzilay, 2008), and part-of-speech tag-
ging (Goldwater and Griffiths, 2007; Snyder et al.,

2Note that “source model” here means a model of source
text, not a source model in the noisy channel paradigm.
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2008).

3 Models

We start with the generative process for a source
sentence and its alignment with a target sentence.
Then we describe individual models employed by
this generation scheme.

3.1 Generative Story

A source sentence is a sequence of word tokens,
and each word is either aligned or not aligned. We
focus only on the segmentation problem and not
reordering source words; therefore, the model will
not generate the order of the target word tokens.
A sentence pair and its alignment are captured by
four components:

• a sequence of words in the source sentence,

• a set of null-aligned source tokens,

• a set of null-aligned target tokens, and

• a set of (source word to target word) align-
ment pairs.

We will start with a high-level story of how the
segmentation of the source sentence and the align-
ment are generated.

1. A source language monolingual segmenta-
tion model generates the source sentence.

2. Generate alignments:

(a) Given the sequence of words of the
source sentence already generated in
step 1, the alignment model marks each
source word as either aligned or un-
aligned. If a source word is aligned, the
model also generates the target word.

(b) Unaligned target words are generated.

The model defines the joint probability of a seg-
mented source language sentence and its align-
ment. During inference, the two parts are cou-
pled, so that the alignment will influence which
segmentation is selected. However, there are sev-
eral advantages in breaking the generation process
into two steps.

First of all, in principle the model can incor-
porate any existing probabilistic monolingual seg-
mentation to generate the source sentence. For
example, the source model can be the nested
Pitman-Yor process as described by Mochihashi et
al. (2009), the minimum description length model
presented by Creutz and Lagus (2007), or some-
thing else. Also the source model can incorporate
linguistic knowledge from a rule-based or statisti-
cal morphological disambiguator.

The model generates the alignment after the
source sentence with word boundaries already
generated. Therefore, the alignment model can
be any existing word alignment model (Brown
et al., 1993; Vogel et al., 1996). Even though
the choices of source model or alignment model
can lead to different inference methods, the model
we propose here is highly extensible. Note that
we assume that the alignment consists of at most
one-to-one mappings between source and target
words, with null alignments possible on both
sides.

Another advantage of a separate source model
lies in the segmentation of an unseen test set. In
section 5 we will show how to apply the source
model distribution learned from training data to
find the best segmentation of an unseen test set.

Notation and Parameters

We will use bold font for a sequence or bags
of words and regular font for an individual word.
A source sentence s is a sequence of |s| words
si:

(
s1, . . . , s|s|

)
; the translation of sentence s is

the target sentence t of |t| words
(
t1, . . . , t|t|

)
.

In sentence s the list of unaligned words is snal

and the list of aligned source words is sal. In
the target sentence t the list of unaligned words
is tnal and the list of target words having one-
to-one alignment with source words sal is tal.
The alignment a of s and t is represented by
{〈si, null〉 | si ∈ snal} ∪ {〈si, tai〉 | si ∈ sal; tai ∈
tal} ∪ {〈null, tj〉 | tj ∈ tnal} where ai denotes
the index in t of the word aligned to si.

The probability of a sequence or a set is denoted
by P (.), probability at the word level is p (.). For
example, the probability of sentence s is P (s), the
probability of a word s is p (s), the probability
that the target word t aligns to an aligned source
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word s is p (t |s).
A sentence pair and its alignment are generated

from the following models:

• The source model generates sentence s with
probability P (s).

• The source-to-null alignment model de-
cides independently for each word s
whether it is unaligned with probability
p (null | si) or aligned with probabil-
ity: 1 − p (null | si). The probability
of this step, for all source words, is:
P (snal, sal | s) =

∏
si∈snal

p (null | si) ×∏
si∈sal

(1 − p (null | si)) .

We will also refer to the source-to-null model
as the deletion model, since words in snal are
effectively deleted for the purposes of align-
ment.

• The source-to-target alignment model gen-
erates a bag of target words tal aligned
to the source words sal with probability:
P (tal |sal) =

∏
si∈sal;tai∈tal

p (tai |si). Note
that we do not need to be concerned with
generating a explicitly, since we do not
model word order on the target side.

• The null-to-target alignment model gen-
erates the list of unaligned target words
tnal given aligned target words tal with
P (tnal |tal) as follows:

– Generate the number of unaligned tar-
get words |tnal| given the number of
aligned target words |tal| with probabil-
ity P (|tnal| | |tal|).

– Generate |tnal| unaligned words t ∈
tnal independently, each with probabil-
ity p (t |null).

The resulting null-to-target proba-
bility is therefore: P (tnal | tal) =
P (|tnal| | |tal|)

∏
t∈tnal

p (t |null) .

We also call the null-to-target model the in-
sertion model.

The above generation process defines the joint
probability of source sentence s and its alignment

a as follows:

P (s,a) = P (s)︸︷︷︸
source model

× P (a | s)︸ ︷︷ ︸
alignment model

(1)

P (a | s) = P (tal |sal) × P (tnal |tal) (2)

×
∏

si∈snal

p (null | si) ×
∏

si∈sal

(1 − p (null | si))

3.2 Source Model
Our generative process provides the flexibility of
incorporating different monolingual models into
the probability distribution of a sentence pair.
In particular we use the existing state-of-the-art
nested Pitman-Yor n-gram language model as de-
scribed by Mochihashi et al. (2009). The proba-
bility of s is given by

P (s) = P (|s|)
|s|∏

i=1

p (si |si−n, . . . , si−1) (3)

where the n-gram probability is a hierarchical
Pitman-Yor language model using (n − 1)-gram
as the base distribution.

At the unigram level, the model uses the base
distribution p (s) as the infinite-gram character-
level Pitman-Yor language model.

3.3 Modeling Null-Aligned Source Words
The probability that a source word aligns to null
p (null | s) is defined by a binomial distribution
with Beta prior Beta (αp, α (1 − p)), where α
and p are model parameters. When p → 0 and
α → ∞ the probability p (null | s) converges to 0
forcing each source words align to a target word.
We fixed p = 0.1 and α = 20 in our experiment.

Xu et al. (2008) view the null word as another
target word, hence in their model the probability
that a source word aligns to null can only depend
on itself.

By modeling the source-to-null alignment sep-
arately, our model lets the distribution depend
on the word’s n-gram context as in the source
model. p (null | si−n, . . . , si) stands for the prob-
ability that the word si is not aligned given its con-
text (si−n, . . . , si−1).

The n-gram source-to-null distribution
p (null | si−n, . . . , si) is defined similarly to
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p (null | si) definition above in which the base
distribution p now becomes the (n − 1)-gram:
p (null | si−n+1, . . . , si).3

3.4 Source-Target Alignment Model
The probability p (t |s) that a target word t aligns
to a source word s is a Pitman-Yor process:

t | s ∼ PY (d, α, p0 (t |s))

here d and α are the input parameters, and
p0 (t |s) is the base distribution.

Let |s, ·| denote the number of times s is aligned
to any t in the corpus and let |s, t| denote the num-
ber of times s is aligned to t anywhere in the cor-
pus. And let ty(s) denote the number of different
target words t the word s is aligned to anywhere
in the corpus. In the Chinese Restaurant Process
metaphor, there is one restaurant for each source
word s, the s restaurant has ty(s) tables and total
|s, ·| customers; table t has |s, t| customers.

Then, at a given time in the generative process
for the corpus, we can write the probability that t
is generated by the word s as:

• if |s, t| > 0:

p (t |s) =

|s, t| − d + [α + dty(s)]p0 (t |s)
|s, ·| + α

• if |s, t| = 0:

p (t |s) =
[α + dty(s)]p0 (t |s)

|s, ·| + α

For language pairs with similar character sets
such as English and French, words with similar
surface form are often translations of each other.
The base distribution can be defined based on
the edit distance between two words (Snyder and
Barzilay, 2008).

We are working with diverse language pairs
(Arabic-English and Chinese-English), so we
use the base distribution as the flat distribution
p0 (t |s) = 1

T ; T is the number of distinct target
words in the training set. In our experiment, the
model parameters are α = 20 and d = .5.

3We also might have conditioned this decision on words
following si, since those have all been generated already at
this stage.

3.5 Modeling Null-Aligned Target Words
The null-aligned target words are modeled condi-
tioned on previously generated target words as:

P (tnal |tal) = P (|tnal| | |tal|)
∏

t∈tnal

p (t |null)

This model uses two probability distributions:

• the number of unaligned target words:
P (|tnal| | |tal|), and

• the probability that each word in tnal is gen-
erated by null: p (t |null).

We model the number of unaligned target
words similarly to the distribution in the IBM3
word alignment model (Brown et al., 1993).
IBM3 assumes that each aligned target words gen-
erates a null-aligned target word with probabil-
ity p0 and fails to generate a target word with
probability 1 − p0. So the parameter p0 can
be used to control the number of unaligned tar-
get words. In our experiments, we fix p0 =
.05. Following this assumption, the probability of
|tnal| unaligned target words generated from |tal|
words is: P (|tnal| | |tal|) =

( |tal|
|tnal|

)
p

|tnal|
0 (1 −

p0)
|tal|−|tnal|.

The probability that a target word t aligns to
null, p (t |null), also has a Pitman-Yor process
prior. The base distribution of the model is similar
to the source-to-target model’s base distribution
which is the flat distribution over target words.

4 Inference

We have defined a probabilistic generative model
to describe how a corpus of alignments and seg-
mentations can be generated jointly. In this sec-
tion we discuss how to obtain the posterior distri-
butions of the missing alignments and segmenta-
tions given the training corpus, using Gibbs sam-
pling.

Suppose we are provided a morphological
disambiguator for the source language such as
MADA morphology tokenization toolkit (Sadat
and Habash, 2006) for Arabic.4 The morpho-
logical disambiguator segments a source word to

4MADA provides several segmentation schemes; among
them the MADA-D3 scheme seeks to separate all mor-
phemes of each word.
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morphemes of smallest meaning-bearing units of
the source language. Therefore, a target word is
equivalent to one or several morphemes. Given
a morphological disambiguation toolkit, we use
its output to bias our inference by not consider-
ing word boundaries after every character but only
considering potential word boundaries as a subset
of the morpheme boundaries set. In this way, the
inference uses the morphological disambiguation
toolkit to limit its search space.

The inference starts with an initial segmenta-
tion of the source corpus and also its alignment
to the target corpus. The Gibbs sampler consid-
ers one potential word boundary at a time. There
are two hypotheses at any given boundary posi-
tion of a sentence pair (s, t): the merge hypothe-
sis stands for no word boundary and the resulting
source sentence smerge has a word s spanning over
the sample point; the split hypothesis indicates the
resulting source sentence ssplit has a word bound-
ary at the sample point separating two words s1s2.
Similar to Goldwater et al. (2006) for monolingual
segmentation, the sampler randomly chooses the
boundary according to the relative probabilities of
the merge hypothesis and the split hypothesis.

The model consists of source and alignment
model variables; given the training corpora size of
a machine translation system, the number of vari-
ables is large. So if the Gibbs sampler samples
both source variables and alignment variables, the
inference requires many iterations until the sam-
pler mixes. Xu et al. (2008) fixed this by repeat-
edly applying GIZA++ word alignment after each
sampling iteration through the training corpora.

Our inference technique is not precisely Gibbs
sampling. Rather than sampling the alignment or
attempting to collapse it out (by summing over
all possible alignments when calculating the rel-
ative probabilities of the merge and split hypothe-
ses), we seek the best alignment for each hypoth-
esis. In other words, for each hypothesis, we per-
form a local search for a high-probability align-
ment of the merged word or split words, given
the rest of alignment for the sentence. Up to one
word may be displaced and realigned. This “local-
best” alignment is used to score the hypothesis,
and after sampling merge or split, we keep that
best alignment.

This inference technique is motivated by run-
time demands, but we do not yet know of a the-
oretical justification for combining random steps
with maximization over some variables. A more
complete analysis is left to future work.

5 Decoding for Unseen Test Sentences

Section 4 described how to get the model’s pos-
terior distribution and the segmentation and align-
ment of the training data under the model. We are
left with the problem of decoding or finding the
segmentation of test sentences where the transla-
tions are not available. This is needed when we
want to translate new sentences. Here, tokeniza-
tion is performed as a preprocessing step, decou-
pled from the subsequent translation steps.

The decoding step uses the model’s posterior
distribution for the training data to segment un-
seen source sentences. Because of the clear sep-
aration of the source model and the alignment
model, the source model distribution learned from
the Gibbs sampling directly represents the distri-
bution over the source language and can therefore
also handle the segmentation of unknown words
in new test sentences. Only the source model is
used in preprocessing.

The best segmentation s∗ of a string of charac-
ters c =

(
c1, . . . , c|c|

)
according to the n-gram

source model is:

s∗ = argmax
s from c

p (|s|)
i=|s|∏

i=1

p (si |si−n, . . . , si−1)

We use a stochastic finite-state machine for de-
coding. This is possible by composition of the fol-
lowing two finite state machines:

• Acceptor Ac. The string of characters c is
represented as an finite state acceptor ma-
chine where any path through the machine
represents an unweighted segmentation of c.

• Source model weighted finite state trans-
ducer Lc. Knight and Al-Onaizan (1998)
show how to build an n-gram language
model by a weighted finite state machine.
The states of the transducer are (n − 1)-
gram history, the edges are words from the
language. The arc si coming from state
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(si−n, . . . , si−1) to state (si−n+1, . . . , si) has
weight p (si |si−n, . . . , si−1).

The best segmentation s∗ is given as s∗ =
BestPath(Ac ◦ Lc).

6 Experiments

This section presents experimental results on
Arabic-English and Chinese-English translation
tasks using the proposed segmentation technique.

6.1 Arabic-English

As a training set we use the BTEC corpus dis-
tributed by the International Workshop on Spo-
ken Language Translation (IWSLT) (Matthias and
Chiori, 2005). The corpus is a collection of
conversation transcripts from the travel domain.
The “Supplied Data” track consists of nearly 20K
Arabic-English sentence pairs. The development
set consists of 506 sentences from the IWSLT04
evaluation test set and the unseen set consists of
500 sentences from the IWSLT05 evaluation test
set. Both development set and test set have 16 ref-
erences per Arabic sentence.

6.2 Chinese-English

The training set for Chinese-English translation
task is also distributed by the IWSLT evaluation
campaign. It consists of 67K Chinese-English
sentence pairs. The development set and the test
set each have 489 Chinese sentences and each sen-
tence has 7 English references.

6.3 Results

We will report the translation results where the
preprocessing of the source text are our unigram,
bigram, and trigram source models and source-to-
null model.

The MCMC inference algorithm starts with an
initial segmentation of the source text into full
word forms. For Chinese, we use the original
word segmentation as distributed by IWSLT. To
get an initial alignment, we generate the IBM4
Viterbi alignments in both directions using the
GIZA++ toolkit (Och and Ney, 2003) and com-
bine them using the “grow-diag-final-and” heuris-
tic. The output of combining GIZA++ align-
ment for a sentence pair is a sequence of si-tj

entries where i is an index of the source sen-
tence and j is an index of the target sentence.
As our model allows only one-to-one mappings
between the words in the source and target sen-
tences, we remove si-tj from the sequence if ei-
ther the source word si or target word tj is al-
ready in a previous entry of the combined align-
ment sequence. The resulting alignment is our ini-
tial alignment for the inference.

We also apply the MADA morphology seg-
mentation toolkit (Habash and Rambow, 2005) to
preprocess the Arabic corpus. We use the D3
scheme (each Arabic word is segmented into mor-
phemes in sequence [CONJ+ [PART+ [Al+ BASE
+PRON]]]), mark the morpheme boundaries, and
then combine the morphemes again to have words
in their original full word form. During inference,
we only sample over these morpheme boundaries
as potential word boundaries. In this way, we
limit the search space, allowing only segmenta-
tions consistent with MADA-D3.

The inference samples 150 iterations through
the whole training set and uses the posterior prob-
ability distribution from the last iteration for de-
coding. The decoding process is then applied
to the entire training set as well as to the devel-
opment and test sets to generate a consistent to-
kenization across all three data sets. We used
the OpenFST toolkit (Allauzen et al., 2007) for
finite-state machine implementation and opera-
tions. The output of the decoding is the pre-
processed data for translation. We use the open
source Moses phrase-based MT system (Koehn et
al., 2007) to test the impact of the preprocessing
technique on translation quality.5

6.3.1 Arabic-English Translation Results
We consider the Arabic-English setting. We

use two baselines: original full word form
and MADA-D3 tokenization scheme for Arabic-
English translation. Table 1 compares the trans-
lation results of our segmentation methods with
these baselines. Our segmentation method shows
improvement over the two baselines on both the
development and test sets. According to Sadat
and Habash (2006), the MADA-D3 scheme per-

5The Moses translation alignment is the output of
GIZA++, not from our MCMC inference.
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Dev. Test
Original 59.21 54.00
MADA-D3 58.28 54.92
Unigram 59.44 56.18
Bigram 58.88 56.18
Trigram 58.76 56.82

Table 1: Arabic-English translation results
(BLEU).

forms best for their Arabic-English translation es-
pecially for small and moderate data sizes. In our
experiments, we see an improvement when using
the MADA-D3 preprocessing over using the orig-
inal Arabic corpus on the unseen test set, but not
on the development set.

The Gibbs sampler only samples on the mor-
phology boundary points of MADA-D3, so the
improvement resulting from our segmentation
technique does not come from removing unknown
words. It is due to a better matching between
the source and target sentences by integrating seg-
mentation and alignment. We therefore expect the
same impact on a larger training data set in future
experiments.

6.3.2 Chinese-English Translation Results

Dev. Test
Whole word 23.75 29.02
Character 23.39 27.74
Unigram 24.90 28.97
Trigram 23.98 28.20

Table 2: Chinese-English translation result in
BLEU score metric.

We next consider the Chinese-English setting.
The translation performance using our word seg-
mentation technique is shown in Table 2. There
are two baselines for Chinese-English translation:
(a) the source text in the full word form distributed
by the IWSLT evaluation and (b) no segmentation
of the source text, which is equivalent to interpret-
ing each Chinese character as a single word.

Taking development and test sets into account,
the best Chinese-English translation system re-
sults from our unigram model. It is significantly

better than other systems on the development set
and performs almost equally well with the IWSLT
segmentation on the test set. Note that the seg-
mentation distributed by IWSLT is a manual seg-
mentation for the translation task.

Chung and Gildea (2009) and Xu et al. (2008)
also showed improvement over a simple mono-
lingual segmentation for Chinese-English trans-
lation. Our character-based translation result is
comparable to their monolingual segmentations.
Both trigram and unigram translation results out-
perform the character-based translation.

We also observe that there are no additional
gains for Chinese-English translation when using
a higher n-gram model. Our Gibbs sampler has
the advantage that the samples are guaranteed to
converge eventually to the model’s posterior dis-
tributions, but in each step the modification to the
current hypothesis is small and local. In itera-
tions 100–150, the average number of boundary
changes for the unigram model is 14K boundaries
versus only 1.5K boundary changes for the tri-
gram model. With 150 iterations, the inference
output of trigram model might not yet represent
its posterior distribution. We leave a more de-
tailed investigation of convergence behavior to fu-
ture work.

Conclusion and Future Work

We presented an unsupervised segmentation
method for machine translation and presented
experiments for Arabic-English and Chinese-
English translation tasks. The model can incor-
porate existing monolingual segmentation mod-
els and seeks to learn a segmenter appropriate for
a particular translation task (target language and
dataset).
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Abstract

This paper describes a search procedure
to discover optimal feature sets for depen-
dency parsers. The search applies to the
shift–reduce algorithm and the feature sets
are extracted from the parser configura-
tion. The initial feature is limited to the
first word in the input queue. Then, the
procedure uses a set of rules founded on
the assumption that topological neighbors
of significant features in the dependency
graph may also have a significant contri-
bution. The search can be fully automated
and the level of greediness adjusted with
the number of features examined at each
iteration of the discovery procedure.

Using our automated feature discovery
on two corpora, the Swedish corpus in
CoNLL-X and the English corpus in
CoNLL 2008, and a single parser system,
we could reach results comparable or bet-
ter than the best scores reported in these
evaluations. The CoNLL 2008 test set
contains, in addition to a Wall Street Jour-
nal (WSJ) section, an out-of-domain sam-
ple from the Brown corpus. With sets of
15 features, we obtained a labeled attach-
ment score of 84.21 for Swedish, 88.11 on
the WSJ test set, and 81.33 on the Brown
test set.

1 Introduction

The selection of relevant feature sets is crucial
to the performance of dependency parsers and
this process is still in large part manual. More-

over, feature sets are specific to the languages be-
ing analyzed and a set optimal for, say, English
can yield poor results in Chinese. With depen-
dency parsers being applied today to dozens of
languages, this makes the parametrization of a
parser both a tedious and time-consuming opera-
tion. Incidentally, the advent of machine-learning
methods seems to have shifted the tuning steps in
parsing from polishing up grammar rules to the
optimization of feature sets. And as with the writ-
ing of a grammar, the selection of features is a
challenging task that often requires a good deal of
effort and inspiration.

Most automatic procedures to build feature sets
resort to greedy algorithms. Forward selection
constructs a set by adding incrementally features
from a predetermined superset while backward
elimination removes them from the superset (At-
tardi et al., 2007). Both methods are sometimes
combined (Nivre et al., 2006b). The selection pro-
cedures evaluate the relevance of a candidate fea-
ture in a set by its impact on the overall parsing
score: Does this candidate improve or decrease
the performance of the set?

Greedy search, although it simplifies the design
of feature sets, shows a major drawback as it starts
from a closed superset of what are believed to be
the relevant features. There is a broad consen-
sus on a common feature set including the words
close to the top of the stack or the beginning of the
queue, for the shift–reduce algorithm, but no clear
idea on the limits of this set.

In this paper, we describe an automatic discov-
ery procedure that is not bounded by any prior
knowledge of a set of potentially relevant features.
It applies to the shift–reduce algorithm and the ini-
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tial feature consists solely of the first word of the
queue. The search explores nodes along axes of
the parser’s data structures and the partially built
graph using proximity rules to uncover sequences
of relevant, efficient features. Using this proce-
dure on the Swedish corpus in CoNLL-X and the
English corpus in CoNLL 2008, we built feature
sets that enabled us to reach a labeled attachment
score of 84.21 for Swedish, 88.11 on the Wall
Street Journal section of CoNLL 2008, and 81.33
on the Brown part of it with a set cardinality of 15.

2 Transition-based Parsing

Transition-based methods (Covington, 2001;
Nivre, 2003; Yamada and Matsumoto, 2003;
Zhang and Clark, 2009) have become a popular
approach in multilingual dependency parsing be-
cause of their speed and performance. Transition-
based methods share common properties and
build a dependency graph from a sequence of ac-
tions, where each action is determined using a fea-
ture function. In a data-driven context, the func-
tion is typically implemented as a classifier and
the features are extracted from the partially built
graph and the parser’s data structures, most often
a queue and a stack.

2.1 Parser Implementation

In this study, we built a parser using Nivre’s al-
gorithm (Nivre, 2003). The parser complexity is
linear and parsing completes in at most 2n+1 op-
erations, where n is the length of the sentence. Ta-
ble 1 shows the transitions and actions to construct
a dependency graph.

Given a sentence to parse, we used a classifier-
based guide to predict the transition sequence to
apply. At each step, the guide extracts features
from the parser configuration and uses them as in-
put to a classifier to predict the next transition. Be-
fore training the classification models, we projec-
tivized the corpus sentences (Kunze, 1967; Nivre
and Nilsson, 2005). We did not attempt to recover
nonprojective sentences after parsing.

2.2 Training and Parsing Procedure

We extracted the features using a gold-standard
parsing of the training set. We organized the clas-
sification, and hence the feature extraction, as a

Action Parser configuration
Init. 〈nil,W, /0〉
End 〈S,nil,G〉
LeftArc 〈n|S,n′|Q,G〉 →

〈S,n′|Q,G∪{〈n′,n〉}〉
RightArc 〈n|S,n′|Q,G〉 →

〈n′|n|S,Q,G∪{〈n,n′〉}〉
Reduce 〈n|S,Q,G〉 → 〈S,Q,G〉
Shift 〈S,n|Q,G〉 → 〈n|S,Q,G〉

Table 1: Parser transitions (Nivre, 2003). W is
the input, G, the graph, S, the stack, and Q, the
queue. The triple 〈S,Q,G〉 represents the parser
configuration and n, n ′, and n′′ are lexical tokens.
〈n′,n〉 represents an arc from n′ to n.

two-step process. The first step determines the ac-
tion among LeftArc, RightArc, Reduce, and Shift;
the second one, the grammatical function, if the
action is either a left arc or a right arc.

Once the features are extracted, we train the
corresponding models that we apply to the test
corpus to predict the actions and the arc labels.

3 Feature Discovery

We designed an automatic procedure to discover
and select features that is guided by the structure
of the graph being constructed. The search al-
gorithm is based on the assumption that if a fea-
ture makes a significant contribution to the parsing
performance, then one or more of its topological
neighbors in the dependency graph may also be
significant. The initial state, from which we de-
rive the initial feature, consists of the first word in
the queue. There is no other prior knowledge on
the features.

3.1 Node Attributes

In the discovery procedure, we considered the
nodes of four data structures: the queue, the stack,
the sentence, and the graph being constructed.
We extracted three attributes (or fields) from each
node: two static ones, the lexical value of the
node and its part of speech, and a dynamic one
evaluated at parse time: the dependency label of
the arc linking the node to its head, if it exists.
We denoted the attributes of node w, respectively,
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LEX(w), POS(w), and DEP(w). These attributes
are used as input by most dependency parsers,
whatever the language being parsed.

3.2 Search Axes

The feature search covers three different axes: the
parser’s data structures – the queue and the stack
–, the graph being constructed, and the sentence.
Given a feature set at step n of the discovery pro-
cedure, we defined a successor function that gen-
erates the set of topological neighbors of all the
members in the feature set along these three axes.
For a particular feature:

The data structure axis consists of the nodes in
the stack and the queue. The immediate
neighbors of a node in the stack are the ad-
jacent nodes above and below. In the queue,
these are the adjacent nodes before and af-
ter it. The top node on the stack and the
next node in the queue have a special con-
nection, since they are the ones used by the
parser when creating an arc. Therefore, we
considered them as immediate neighbors to
each other. For a node that is neither in the
stack, nor in the queue, there is no connec-
tion along this axis.

The graph axes traverse the partially con-
structed graph horizontally and vertically.
The horizontal axis corresponds to the
sibling nodes connected by a common head
(Figure 1). The immediate neighbors of a
node are its nearest siblings to the left and
to the right. The vertical axis corresponds
to the head and child nodes. The immediate
neighbors are the head node as well as the
leftmost and rightmost child nodes. There is
no connection for nodes not yet part of the
graph.

The sentence axis traverses the nodes in the or-
der they occur in the original sentence. The
immediate neighbors of a node are the previ-
ous and next words in the sentence.

4 Representing Features and Their
Neighbors

We represented features with a parameter format
partly inspired by MaltParser (Nivre et al., 2006a).

Head

Left sibling

CN

Right sibling

Leftmost child Rightmost child

Vertical axis

Horizontal axis

Figure 1: The vertical and horizontal axes, respec-
tively in light and dark gray, relative to CN.

Each parameter consists of two parts. The first
one represents a node in a data structure (STACK
or QUEUE) and an attribute:

The nodes are identified using a zero-based in-
dex. Thus STACK1 designates the second
node on the stack.

The attribute of a node is one of part of speech
(POS), lexical value (LEX), or dependency
label (DEP), as for instance LEX(QUEUE0)
that corresponds to the lexical value of the
first token in the queue.

The second part of the parameter is an optional
navigation path that allows to find other destina-
tion nodes in the graph. It consists of a sequence
of instructions to move from the start node to the
destination node. The list of possible instructions
are:

• h: head of the current node;

• lc/rc: leftmost/rightmost child of the node;

• pw/ f w: previous/following word of the
node in the original sentence.

An example of a feature obtained using the nav-
igation part is POS(STACK1 lc pw), which is in-
terpreted as: start from STACK1. Then, using the
instructions lc and pw, move to the left child of the
start node and to the previous word of this child in
the sentence. The requested feature is the part of
speech of the destination node.
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5 Initial State and Successor Function

The feature discovery is an iterative procedure that
grows the feature set with one new feature at each
iteration. We called generation such an iteration,
where generation 1 consists of a single node. We
denoted FeatSeti = { f1, f2, ..., fi} the feature set
obtained at generation i.

Although the features of a classifier can be
viewed as a set, we also considered them as a tu-
ple, where Feati = 〈 f1, f2, ..., fi〉 is the i-tuple at
generation i and fk, the individual feature discov-
ered at generation k with 1 � k � i. This enables
us to keep the order in which the individual fea-
tures are obtained during the search.

5.1 Initial State

We start the feature search with the empty set, /0,
that, by convention, has one neighbor: the first
node in the queue QUEUE0. We chose this node
because this is the only one which is certain to
exist all along the parsing process. Intuitively,
this is also obvious that QUEUE0 plays a signifi-
cant role when deciding a parsing action. We de-
fined the successor function of the empty set as:
SUCC( /0) = {POS(QUEUE0),LEX(QUEUE0)}.

5.2 Successors of a Node

The successors of a node consist of itself and all
its topological neighbors along the three axes with
their three possible attributes: part of speech, lex-
ical value, and dependency label. For a particular
feature in FeatSet, the generation of its successors
is carried out through the following steps:

1. Interpret the feature with its possible naviga-
tion path and identify the destination node n.

2. Find all existing immediate neighboring
nodes of n along the three search axes.

3. Assign the set of attributes – POS, LEX , and
DEP – to n and its neighboring nodes.

If at any step the requested node does not exist,
the feature evaluates to NOTHING.

5.3 Rules to Generate Neighbors

The generation of all the neighbors of the features
in FeatSet may create duplicates as a same node
can sometimes be reached from multiple paths.

For instance, if we move to the leftmost child of a
node and then to the head of this child, we return
to the original node.

To compute the successor function, we built a
set of rules shown in Table 2. It corresponds to
a subset of the rules described in the axis search
(Sect. 3.2) so that it omits the neighbors of a node
that would unavoidably create redundancies. The
third column in Table 2 shows the rules to gener-
ate the neighbors of POS(QUEUE0). They corre-
spond to the rows:

PL. This stands for the POS and LEX attributes
of the node. We only add LEX(QUEUE0)
as we already have POS(QUEUE0).

PLD lc and PLD rc. POS, LEX , and DEP of the
node’s leftmost and rightmost children.

PLD pw. POS, LEX , and DEP of the previous
word in the original string. The following
word is the same as the next node in the
queue, which is added in the next step. For
that reason, following word is not added.

PL QUEUE1. POS and LEX of QUEUE1.

PLD STACK0. POS, LEX , and DEP of STACK0.
This rule connects the queue to the top node
of the stack.

Table 3 summarizes the results of the rule appli-
cation and shows the complete list of successors
of POS(QUEUE0). In this way, the search for a
node’s neighbors along the axes is reduced to one
direction, either left or right, or up or down, that
will depend on the topological relation that intro-
duced the node in the feature set.

6 Feature Selection Algorithm

At each generation, we compute the Cartesian
product of the current feature tuple Feati and the
set defined by its neighbors. We define the set of
candidate tuples CandFeati+1 at generation i + 1
as:

CandFeati+1 = {Feati}×SUCC(Feati),

where we have Card(CandFeati+1) =
Card(SUCC(Feati)).

The members of CandFeati+1 are ranked ac-
cording to their parsing score on the development
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Data structures Navigation paths
STACK0 STACKn,n > 0 QUEUE0 QUEUEn,n > 0 h lc, rc ls rs pw f w
PLD PLD PL PL h h h
PLD h PLD h lc lc lc lc lc
PLD lc PLD lc PLD lc rc rc rc rc rc
PLD rc PLD rc PLD rc ls ls ls ls ls
PLD ls PLD ls rs rs rs rs rs
PLD rs PLD rs pw pw pw pw pw
PLD pw PLD pw PLD pw fw fw fw fw fw
PLD fw PLD fw
PLD STACK1 PLD STACKn+1 PL QUEUE1 PL QUEUEn+1
PL QUEUE0 PLD STACK0

Table 2: Rules to compute the successors of a node. For each node category given in row 2, the
procedure adds the features in the column headed by the category. PLD stands for the POS, LEX ,
and DEP attributes. In the right-hand side of the table, the category corresponds to the last instruction
of the navigation path, if it exists, for instance pw in the feature POS(STACK1 lc pw). We read the
six successors of this node in the fifth column headed by pw: STACK1 lc pw h, STACK1 lc pw lc,
STACK1 lc pw rc, STACK1 lc pw ls, STACK1 lc pw rs, and STACK1 lc pw pw. We then apply all the
attributes to these destination nodes to generate the features.

Initial feature POS QUEUE 0
Successors LEX QUEUE 0

PLD QUEUE 0 lc
PLD QUEUE 0 rc
PLD QUEUE 0 pw
PL QUEUE 1
PLD STACK 0

Table 3: Features generated by the successor func-
tion SUCC({POS(QUEUE0)}). PLD stands for
the three attributes POS, LEX , and DEP of the
node; PL for POS and LEX .

set and when applying a greedy best-first search,
Feati+1 is assigned with the tuple yielding the
highest score:

Feati+1← eval best(CandFeati+1).

The procedure is repeated with the immediate
neighbors of Feati+1 until the improvement of the
score is below a certain threshold.

We extended this greedy version of the discov-
ery with a beam search that retains the N-best
successors from the candidate set. In our exper-
iments, we used beam widths of 4 and 8.

7 Experimental Setup

In a first experiment, we used the Swedish cor-
pus of the CoNLL-X shared task (Buchholz and
Marsi, 2006). In a second experiment, we applied
the feature discovery procedure to the English cor-
pus from CoNLL 2008 (Surdeanu et al., 2008), a
dependency corpus converted from the Penn Tree-
bank and the Brown corpus. In both experiments,
we used the LIBSVM package (Chang and Lin,
2001) with a quadratic kernel, γ = 0.2, C = 0.4,
and ε = 0.1. These parameters are identical to
Nivre et al. (2006b) to enable a comparison of the
scores.

We evaluated the feature candidates on a de-
velopment set using the labeled and unlabeled at-
tachment scores (LAS and UAS) that we com-
puted with the eval.pl script from CoNLL-X.
As there was no development set for the Swedish
corpus, we created one by picking out every 10th
sentence from the training set. The training was
then carried out on the remaining part of the set.

8 Feature Discovery on a Swedish
Corpus

In a first run, the search was optimized for the
UAS. In a second one, we optimized the LAS. We
also report the results we obtained subsequently
on the CoNLL-X test set as an indicator of how
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well the training generalized.

8.1 The First and Second Generations

Table 4 shows the feature performance at the first
generation sorted by UAS. The first row shows the
two initial feature candidates, 〈POS(QUEUE0)〉
and 〈LEX(QUEUE0)〉. The third row shows
the score produced by the initial features alone.
The next rows show the unlabeled and labeled
attachment scores with feature pairs combining
one of the initial features and the one listed in
the row. The combination of POS(QUEUE0)
and POS(STACK0) yielded the best UAS: 74.02.
The second feature improves the performance of
POS(QUEUE0) by more than 30 points from
43.49.

For each generation, we applied a beam
search. We kept the eight best pairs as start-
ing states for the second generation and we
added their neighboring nodes. Table 5 shows
the eight best results out of 38 for the pair
〈POS(QUEUE0),POS(STACK0)〉.

Parent state: 〈POS(QUEUE0),POS(STACK0)〉
Dev set Test set

UAS LAS UAS LAS Successors
79.50 65.34 79.07 65.86 P QUEUE 1
78.73 66.98 76.04 64.51 L STACK 0 fw
77.42 63.08 74.63 61.86 L QUEUE 1
77.06 64.54 75.28 62.90 L QUEUE 0 pw
76.83 66.01 73.61 63.77 L QUEUE 0
76.63 63.62 74.75 63.17 P STACK 0 fw
76.44 64.24 74.09 62.02 L STACK 0
76.39 63.12 73.99 61.16 L QUEUE 0 lc

Table 5: Ranking the successors of
〈POS(QUEUE0),POS(STACK0)〉 on the
Swedish corpus. Out of the 38 successors,
we show the eight that yielded the best results. P
stands for POS, L for LEX , and D for DEP.

8.2 Optimizing the Unlabeled Attachement
Score

We iterated the process over a total of 16 gener-
ations. Table 6, left-hand side, shows the list of
the best scores for each generation. The scores on
the development set increased steadily until gen-

eration 13, then reached a plateau, and declined
around generation 15. The test set closely fol-
lowed the development set with values about 1%
lower. On this set, we reached a peak performance
at generation 12, after which the results decreased.

Table 6, right-hand side, shows the features pro-
ducing the final score in their order of inclusion
in the feature set. As we applied a beam search,
a feature listed at generation i does not necessary
correspond to the highest score for this generation,
but belongs to the feature tuple producing the best
result at generation 16.

8.3 Optimizing the Labeled Attachement
Score

We also applied the feature discovery with a
search optimized for the labeled attachment score.
This time, we reduced the beam width used in the
search from 8 to 4 as we noticed that the candi-
dates between ranks 5 and 8 never contributed to
the best scoring feature set for any generation.

We observed a score curve similar to that of the
UAS-optimized search. The train set followed the
development set with increasing values for each
generation but 1-2% lower. The optimal value was
obtained at generation 15 with 84.21% for the test
set. Then, the score for the test set decreased.

9 Feature Discovery on a Corpus of
English

The training and development sets of the CoNLL
2008 corpus contain text from the Wall Street
Journal exclusively. The test set contains text
from the Brown corpus as well as from the Wall
Street Journal. Table 7 shows the results after 16
generations. We used a beam width of 4 and the
tests were optimized for the unlabeled attachment
score. As for Swedish, we reached the best scores
around generation 14-15. The results on the in-
domain test set peaked at 90.89 and exceeded the
results on the development set. As expected, the
results for the out-of-domain corpus were lower,
87.50, however the drop was limited to 3.4.

10 Discussion and Conclusion

The results we attained with feature set sizes as
small as 15 are competitive or better than figures
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Parent state 〈POS(QUEUE0)〉 〈LEX(QUEUE0)〉
UAS LAS Successors UAS LAS Successors
43.49 26.45 None 42.76 23.56 None

74.02 59.67 POS STACK 0 65.86 52.18 POS STACK 0
67.77 54.50 LEX STACK 0 58.59 45.51 LEX STACK 0
58.37 41.83 POS QUEUE 0 pw 51.98 37.70 POS QUEUE 0 pw
55.28 38.49 LEX QUEUE 0 pw 50.44 29.71 POS QUEUE 1
51.53 30.43 POS QUEUE 1 50.38 35.24 LEX QUEUE 0 pw
51.05 32.66 LEX QUEUE 0 lc 49.37 32.27 POS QUEUE 0
49.71 31.54 POS QUEUE 0 lc 48.91 27.77 LEX QUEUE 1
49.49 29.18 LEX QUEUE 1 48.66 29.91 LEX QUEUE 0 lc
49.37 32.27 LEX QUEUE 0 47.25 28.92 LEX QUEUE 0 rc
48.68 29.34 DEP STACK 0 47.09 28.65 POS QUEUE 0 lc
48.47 30.84 LEX QUEUE 0 rc 46.68 27.08 DEP QUEUE 0 lc
46.77 26.86 DEP QUEUE 0 lc 45.69 27.83 POS QUEUE 0 rc
46.40 29.95 POS QUEUE 0 rc 44.77 26.17 DEP STACK 0
42.27 25.21 DEP QUEUE 0 pw 44.43 26.47 DEP QUEUE 0 rc
41.04 26.56 DEP QUEUE 0 rc 41.87 23.04 DEP QUEUE 0 pw

Table 4: Results of the beam search on the Swedish corpus at the first generation with the two initial
feature candidates, 〈POS(QUEUE0)〉 and 〈LEX(QUEUE0)〉, respectively on the left- and right-hand
side of the table. The third row shows the score produced by the initial features alone and the next rows,
the figures for the candidate pairs combining the initial feature and the successor listed in the row. The
eight best combinations shown in bold are selected for the next generation.

Generation Dev set Test set Features
UAS LAS UAS LAS

1 43.49 26.45 45.93 30.19 POS QUEUE 0
2 74.02 59.67 71.60 58.37 POS STACK 0
3 79.50 65.34 79.07 65.86 POS QUEUE 1
4 83.58 71.76 82.75 70.98 LEX STACK 0 fw
5 85.96 76.03 84.82 74.75 LEX STACK 0
6 87.23 77.32 86.34 76.52 LEX QUEUE 0 lc
7 88.42 80.00 87.67 78.99 POS STACK 1
8 89.43 81.56 88.09 80.26 LEX QUEUE 1
9 89.84 83.20 88.69 82.33 LEX QUEUE 0
10 90.23 83.89 89.17 83.31 DEP STACK 0 lc
11 90.49 84.31 89.58 83.85 POS STACK 0 fw
12 90.73 84.47 89.66 83.83 LEX STACK 0 fw ls
13 90.81 84.60 89.52 83.75 LEX STACK 0 fw ls lc
14 90.81 84.70 89.32 83.73 POS STACK 1 h
15 90.85 84.67 89.13 83.21 LEX STACK 1 rs
16 90.84 84.68 88.65 82.75 POS STACK 0 fw ls rc

Table 6: Best results for each generation on the Swedish corpus, optimized for UAS. Figures in bold
designate the best scores. The right-hand side of the table shows the feature sequence producing the
best result at generation 16.
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Generation Dev set Test set WSJ Test set Brown Features
UAS LAS UAS LAS UAS LAS

1 45.25 33.77 45.82 34.49 52.12 40.70 POS QUEUE 0
2 64.42 55.64 64.71 56.44 71.29 62.41 LEX STACK 0
3 78.62 68.77 78.99 70.30 78.67 65.17 POS QUEUE 1
4 81.83 76.67 82.46 77.82 80.57 72.95 LEX STACK 0 fw
5 84.43 79.78 84.89 80.88 84.03 76.99 POS STACK 0
6 85.95 81.60 86.61 82.93 84.55 77.80 DEP QUEUE 0 lc
7 86.95 82.73 87.73 84.09 85.26 78.48 LEX STACK 1
8 88.03 83.62 88.52 84.74 85.66 78.73 LEX QUEUE 1
9 88.61 84.97 89.15 86.20 86.29 79.86 LEX QUEUE 0
10 89.09 85.43 89.47 86.60 86.43 80.02 POS QUEUE 2
11 89.54 85.87 90.25 87.40 87.00 80.75 POS STACK 0 pw
12 89.95 86.21 90.63 87.77 86.87 80.46 POS QUEUE 3
13 90.26 86.56 90.64 87.80 87.35 80.86 POS STACK 1 pw
14 90.54 86.81 90.71 87.88 87.50 81.30 POS QUEUE 0 pw
15 90.61 86.94 90.89 88.11 87.47 81.33 LEX STACK 0 lc
16 90.65 87.00 90.88 88.09 87.42 81.28 POS STACK 0 pw ls

Table 7: Best results for each generation. English corpus. Selection optimized for UAS.

reported by state-of-the-art transition-based sys-
tems. We reached a UAS of 89.66 on the CoNLL-
X Swedish corpus. On the same corpus, the top
scores reported in the shared task were slightly
lower: 89.54 and 89.50. Our best LAS was 84.21,
and the two best scores in CoNLL-X were 84.58
and 82.55. Our results for the English corpus from
CoNLL 2008 were optimized for an unlabeled at-
tachment score and we obtained 90.89 for the in-
domain test set and 87.50 for the out-of-domain
one. Our best LAS were 88.11 and 81.33. Official
results in CoNLL 2008 only reported the labeled
attachment scores, respectively 90.13 and 82.811.

We believe these results remarkable. We used a
single-parser system as opposed to ensemble sys-
tems and the results on the Brown corpus show
an excellent resilience and robustness on out-of-
domain data. The automatic discovery produced
results matching or exceeding comparable sys-
tems, although no prior knowledge of the lan-
guage being analyzed was used and no feature set
was provided to the parser.

Although, a systematic search requires no in-
tuitive guessing, it still consumes a considerable

1Results are not exactly comparable as we used the
CoNLL-X evaluation script that gives slightly higher figures.

machine time. Due to the learning algorithm we
use, SVM, training a model takes between 1 and
130 hours depending on the size of the corpus.
The number of models to train at each generation
corresponds to the number of feature candidates
times the beam width. The first generation con-
tains about 15 feature candidates per feature set
and since features are only added, the number of
candidates can grow to 100 at generation 10.

We believe there is a margin for improvement
both in the parsing scores and in the time needed
to determine the feature sets. Our scores in Swed-
ish were obtained with models trained on 90% of
the training set. They could probably be slightly
improved if they had been trained on a com-
plete set. In our experiments, we used three at-
tributes: the part of speech, lexical value, and de-
pendency label of the node. These attributes could
be extended to lemmas and grammatical features.
SVMs yield a high performance, but they are slow
to train. Logistic regression with, for instance,
the LIBLINEAR package (Fan et al., 2008) would
certainly reduce the exploration time.
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Abstract

We evaluate two dependency parsers,
MSTParser and MaltParser, with respect
to their capacity to recover unbounded de-
pendencies in English, a type of evalu-
ation that has been applied to grammar-
based parsers and statistical phrase struc-
ture parsers but not to dependency parsers.
The evaluation shows that when combined
with simple post-processing heuristics,
the parsers correctly recall unbounded
dependencies roughly 50% of the time,
which is only slightly worse than two
grammar-based parsers specifically de-
signed to cope with such dependencies.

1 Introduction

Though syntactic parsers for English are re-
ported to have accuracies over 90% on the Wall
Street Journal (WSJ) section of the Penn Tree-
bank (PTB) (McDonald et al., 2005; Sagae and
Lavie, 2006; Huang, 2008; Carreras et al., 2008),
broad-coverage parsing is still far from being a
solved problem. In particular, metrics like attach-
ment score for dependency parsers (Buchholz and
Marsi, 2006) and Parseval for constituency parsers
(Black et al., 1991) suffer from being an aver-
age over a highly skewed distribution of differ-
ent grammatical constructions. As a result, in-
frequent yet semantically important construction
types could be parsed with accuracies far below
what one might expect.

This shortcoming of aggregate parsing met-
rics was highlighted in a recent study by Rimell
et al. (2009), introducing a new parser evalua-
tion corpus containing around 700 sentences an-
notated with unbounded dependencies in seven
different grammatical constructions. This corpus
was used to evaluate five state-of-the-art parsers

for English, focusing on grammar-based and sta-
tistical phrase structure parsers. For example, in
the sentence By Monday, they hope to have a
sheaf of documents both sides can trust., parsers
should recognize that there is a dependency be-
tween trust and documents, an instance of object
extraction out of a (reduced) relative clause. In the
evaluation, the recall of state-of-the-art parsers on
this kind of dependency varies from a high of 65%
to a low of 1%. When averaging over the seven
constructions in the corpus, none of the parsers
had an accuracy higher than 61%.

In this paper, we extend the evaluation of
Rimell et al. (2009) to two dependency parsers,
MSTParser (McDonald, 2006) and MaltParser
(Nivre et al., 2006a), trained on data from the
PTB, converted to Stanford typed dependencies
(de Marneffe et al., 2006), and combined with a
simple post-processor to extract unbounded de-
pendencies from the basic dependency tree. Ex-
tending the evaluation to dependency parsers is of
interest because it sheds light on whether highly
tuned grammars or computationally expensive
parsing formalisms are necessary for extracting
complex linguistic phenomena in practice. Unlike
the best performing grammar-based parsers stud-
ied in Rimell et al. (2009), neither MSTParser nor
MaltParser was developed specifically as a parser
for English, and neither has any special mecha-
nism for dealing with unbounded dependencies.
Dependency parsers are also often asymptotically
faster than grammar-based or constituent parsers,
e.g., MaltParser parses sentences in linear time.

Our evaluation ultimately shows that the re-
call of MSTParser and MaltParser on unbounded
dependencies is much lower than the average
(un)labeled attachment score for each system.
Nevertheless, the two dependency parsers are
found to perform only slightly worse than the best
grammar-based parsers evaluated in Rimell et al.
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Figure 1: Examples of seven unbounded dependency constructions (a–g). Arcs drawn below each sentence represent the
dependencies scored in the evaluation, while the tree above each sentence is the Stanford basic dependency representation,
with solid arcs indicating crucial dependencies (cf. Section 4). All examples are from the development sets.

(2009) and considerably better than the other sta-
tistical parsers in that evaluation. Interestingly,
though the two systems have similar accuracies
overall, there is a clear distinction between the
kinds of errors each system makes, which we ar-
gue is consistent with observations by McDonald
and Nivre (2007).

2 Unbounded Dependency Evaluation

An unbounded dependency involves a word or
phrase interpreted at a distance from its surface
position, where an unlimited number of clause
boundaries may in principle intervene. The
unbounded dependency corpus of Rimell et al.
(2009) includes seven grammatical constructions:
object extraction from a relative clause (ObRC),
object extraction from a reduced relative clause
(ObRed), subject extraction from a relative clause
(SbRC), free relatives (Free), object questions
(ObQ), right node raising (RNR), and subject ex-
traction from an embedded clause (SbEm), all
chosen for being relatively frequent and easy to
identify in PTB trees. Examples of the con-
structions can be seen in Figure 1. The evalu-
ation set contains 80 sentences per construction
(which may translate into more than 80 depen-
dencies, since sentences containing coordinations
may have more than one gold-standard depen-
dency), while the development set contains be-
tween 13 and 37 sentences per construction. The
data for ObQ sentences was obtained from various
years of TREC, and for the rest of the construc-

tions from the WSJ (0-1 and 22-24) and Brown
sections of the PTB.

Each sentence is annotated with one or more
gold-standard dependency relations representing
the relevant unbounded dependency. The gold-
standard dependencies are shown as arcs below
the sentences in Figure 1. The format of the de-
pendencies in the corpus is loosely based on the
Stanford typed dependency scheme, although the
evaluation procedure permits alternative represen-
tations and does not require that the parser out-
put match the gold-standard exactly, as long as the
“spirit” of the construction is correct.

The ability to recover unbounded dependencies
is important because they frequently form part of
the basic predicate-argument structure of a sen-
tence. Subject and object dependencies in par-
ticular are crucial for a number of tasks, includ-
ing information extraction and question answer-
ing. Moreover, Rimell et al. (2009) show that,
although individual types of unbounded depen-
dencies may be rare, the unbounded dependency
types in the corpus, considered as a class, occur in
as many as 10% of sentences in the PTB.

In Rimell et al. (2009), five state-of-the-art
parsers were evaluated for their recall on the gold-
standard dependencies. Three of the parsers were
based on grammars automatically extracted from
the PTB: the C&C CCG parser (Clark and Curran,
2007), the Enju HPSG parser (Miyao and Tsujii,
2005), and the Stanford parser (Klein and Man-
ning, 2003). The two remaining systems were the
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RASP parser (Briscoe et al., 2006), using a man-
ually constructed grammar and a statistical parse
selection component, and the DCU post-processor
of PTB parsers (Cahill et al., 2004) using the out-
put of the Charniak and Johnson reranking parser
(Charniak and Johnson, 2005). Because of the
wide variation in parser output representations, a
mostly manual evaluation was performed to en-
sure that each parser got credit for the construc-
tions it recovered correctly. The parsers were run
essentially “out of the box”, meaning that the de-
velopment set was used to confirm input and out-
put formats, but no real tuning was performed. In
addition, since a separate question model is avail-
able for C&C, this was also evaluated on ObQ
sentences. The best overall performers were C&C
and Enju, which is unsurprising since they are
deep parsers based on grammar formalisms de-
signed to recover just such dependencies. The
DCU post-processor performed somewhat worse
than expected, often identifying the existence of
an unbounded dependency but failing to iden-
tify the grammatical class (subject, object, etc.).
RASP and Stanford, although not designed to re-
cover such dependencies, nevertheless recovered
a subset of them. Performance of the parsers also
varied widely across the different constructions.

3 Dependency Parsers

In this paper we repeat the study of Rimell et al.
(2009) for two dependency parsers, with the goal
of evaluating how parsers based on dependency
grammars perform on unbounded dependencies.

MSTParser1 is a freely available implementa-
tion of the parsing models described in McDon-
ald (2006). According to the categorization of
parsers in Kübler et al. (2008) it is a graph-based
parsing system in that core parsing algorithms can
be equated to finding directed maximum span-
ning trees (either projective or non-projective)
from a dense graph representation of the sentence.
Graph-based parsers typically rely on global train-
ing and inference algorithms, where the goal is to
learn models in which the weight/probability of
correct trees is higher than that of incorrect trees.
At inference time a global search is run to find the

1http://mstparser.sourceforge.net

highest weighted dependency tree. Unfortunately,
global inference and learning for graph-based de-
pendency parsing is typically NP-hard (McDonald
and Satta, 2007). As a result, graph-based parsers
(including MSTParser) often limit the scope of
their features to a small number of adjacent arcs
(usually two) and/or resort to approximate infer-
ence (McDonald and Pereira, 2006).

MaltParser2 is a freely available implementa-
tion of the parsing models described in Nivre et
al. (2006a) and Nivre et al. (2006b). MaltParser is
categorized as a transition-based parsing system,
characterized by parsing algorithms that produce
dependency trees by transitioning through abstract
state machines (Kübler et al., 2008). Transition-
based parsers learn models that predict the next
state given the current state of the system as well
as features over the history of parsing decisions
and the input sentence. At inference time, the
parser starts in an initial state, then greedily moves
to subsequent states – based on the predictions of
the model – until a termination state is reached.
Transition-based parsing is highly efficient, with
run-times often linear in sentence length. Further-
more, transition-based parsers can easily incorpo-
rate arbitrary non-local features, since the current
parse structure is fixed by the state. However, the
greedy nature of these systems can lead to error
propagation if early predictions place the parser
in incorrect states.

McDonald and Nivre (2007) compared the ac-
curacy of MSTParser and MaltParser along a
number of structural and linguistic dimensions.
They observed that, though the two parsers ex-
hibit indistinguishable accuracies overall, MST-
Parser tends to outperform MaltParser on longer
dependencies as well as those dependencies closer
to the root of the tree (e.g., verb, conjunction and
preposition dependencies), whereas MaltParser
performs better on short dependencies and those
further from the root (e.g., pronouns and noun de-
pendencies). Since long dependencies and those
near to the root are typically the last constructed
in transition-based parsing systems, it was con-
cluded that MaltParser does suffer from some
form of error propagation. On the other hand, the

2http://www.maltparser.org
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richer feature representations of MaltParser led to
improved performance in cases where error prop-
agation has not occurred. However, that study did
not investigate unbounded dependencies.

4 Methodology

In this section, we describe the methodological
setup for the evaluation, including parser training,
post-processing, and evaluation.3

4.1 Parser Training

One important difference between MSTParser and
MaltParser, on the one hand, and the best perform-
ing parsers evaluated in Rimell et al. (2009), on
the other, is that the former were never developed
specifically as parsers for English. Instead, they
are best understood as data-driven parser gener-
ators, that is, tools for generating a parser given
a training set of sentences annotated with de-
pendency structures. Over the years, both sys-
tems have been applied to a wide range of lan-
guages (see, e.g., McDonald et al. (2006), Mc-
Donald (2006), Nivre et al. (2006b), Hall et al.
(2007), Nivre et al. (2007)), but they come with
no language-specific enhancements and are not
equipped specifically to deal with unbounded de-
pendencies.

Since the dependency representation used in
the evaluation corpus is based on the Stanford
typed dependency scheme (de Marneffe et al.,
2006), we opted for using the WSJ section of
the PTB, converted to Stanford dependencies, as
our primary source of training data. Thus, both
parsers were trained on section 2–21 of the WSJ
data, which we converted to Stanford dependen-
cies using the Stanford parser (Klein and Man-
ning, 2003). The Stanford scheme comes in sev-
eral varieties, but because both parsers require the
dependency structure for each sentence to be a
tree, we had to use the so-called basic variety (de
Marneffe et al., 2006).

It is well known that questions are very rare
in the WSJ data, and Rimell et al. (2009) found
that parsers trained only on WSJ data generally
performed badly on the questions included in the

3To ensure replicability, we provide all experimental
settings, post-processing scripts and additional information
about the evaluation at http://stp.ling.uu.se/∼nivre/exp/.

evaluation corpus, while the C&C parser equipped
with a model trained on a combination of WSJ
and question data had much better performance.
To investigate whether the performance of MST-
Parser and MaltParser on questions could also be
improved by adding more questions to the train-
ing data, we trained one variant of each parser
using data that was extended with 3924 ques-
tions taken from QuestionBank (QB) (Judge et al.,
2006).4 Since the QB sentences are annotated in
PTB style, it was possible to use the same conver-
sion procedure as for the WSJ data. However, it is
clear that the conversion did not always produce
adequate dependency structures for the questions,
an observation that we will return to in the error
analysis below.

In comparison to the five parsers evaluated in
Rimell et al. (2009), it is worth noting that MST-
Parser and MaltParser were trained on the same
basic data as four of the five, but with a differ-
ent kind of syntactic representation – dependency
trees instead of phrase structure trees or theory-
specific representations from CCG and HPSG. It
is especially interesting to compare MSTParser
and MaltParser to the Stanford parser, which es-
sentially produces the same kind of dependency
structures as output but uses the original phrase
structure trees from the PTB as input to training.

For our experiments we used MSTParser with
the same parsing algorithms and features as re-
ported in McDonald et al. (2006). However, un-
like that work we used an atomic maximum en-
tropy model as the second stage arc predictor as
opposed to the more time consuming sequence la-
beler. McDonald et al. (2006) showed that there is
negligible accuracy loss when using atomic rather
than structured labeling. For MaltParser we used
the projective Stack algorithm (Nivre, 2009) with
default settings and a slightly enriched feature
model. All parsing was projective because the
Stanford dependency trees are strictly projective.

4QB contains 4000 questions, but we removed all ques-
tions that also occurred in the test or development set of
Rimell et al. (2009), who sampled their questions from the
same TREC QA test sets.
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4.2 Post-Processing
All the development and test sets in the corpus
of Rimell et al. (2009) were parsed using MST-
Parser and MaltParser after part-of-speech tagging
the input using SVMTool (Giménez and Màrquez,
2004) trained on section 2–21 of the WSJ data in
Stanford basic dependency format. The Stanford
parser has an internal module that converts the
basic dependency representation to the collapsed
representation, which explicitly represents addi-
tional dependencies, including unbounded depen-
dencies, that can be inferred from the basic rep-
resentation (de Marneffe et al., 2006). We per-
formed a similar conversion using our own tool.

Broadly speaking, there are three ways in which
unbounded dependencies can be inferred from the
Stanford basic dependency trees, which we will
refer to as simple, complex, and indirect. In the
simple case, the dependency coincides with a sin-
gle, direct dependency relation in the tree. This
is the case, for example, in Figure 1d–e, where
all that is required is that the parser identifies
the dependency relation from a governor to an
argument (dobj(see, What), dobj(have,
effect)), which we call the Arg relation; no
post-processing is needed.

In the complex case, the dependency is repre-
sented by a path of direct dependencies in the tree,
as exemplified in Figure 1a. In this case, it is
not enough that the parser correctly identifies the
Arg relation dobj(carries, that); it must
also find the dependency rcmod(fragment,
carries). We call this the Link relation, be-
cause it links the argument role inside the relative
clause to an element outside the clause. Other ex-
amples of the complex case are found in Figure 1c
and in Figure 1f.

In the indirect case, finally, the dependency
cannot be defined by a path of labeled depen-
dencies, whether simple or complex, but must
be inferred from a larger context of the tree us-
ing heuristics. Consider Figure 1b, where there
is a Link relation (rcmod(things, do)), but
no corresponding Arg relation inside the relative
clause (because there is no overt relative pro-
noun). However, given the other dependencies,
we can infer with high probability that the im-
plicit relation is dobj. Another example of the

indirect case is in Figure 1g. Our post-processing
tool performs more heuristic inference for the in-
direct case than the Stanford parser does (cf. Sec-
tion 4.3).

In order to handle the complex and indirect
cases, our post-processor is triggered by the oc-
currence of a Link relation (rcmod or conj) and
first tries to add dependencies that are directly im-
plied by a single Arg relation (relations involving
relative pronouns for rcmod, shared heads and
dependents for conj). If there is no overt rela-
tive pronoun, or the function of the relative pro-
noun is underspecified, the post-processor relies
on the obliqueness hierarchy subj < dobj <
pobj and simply picks the first “missing func-
tion”, unless it finds a clausal complement (indi-
cated by the labels ccomp and xcomp), in which
case it descends to the lower clause and restarts
the search there.

4.3 Parser Evaluation
The evaluation was performed using the same cri-
teria as in Rimell et al. (2009). A dependency
was considered correctly recovered if the gold-
standard head and dependent were correct and
the label was an “acceptable match” to the gold-
standard label, indicating the grammatical func-
tion of the extracted element at least to the level
of subject, passive subject, object, or adjunct.

The evaluation in Rimell et al. (2009) took
into account a wide variety of parser output for-
mats, some of which differed significantly from
the gold-standard. Since MSTParser and Malt-
Parser produced Stanford dependencies for this
experiment, evaluation required less manual ex-
amination than for some of the other parsers, as
was also the case for the output of the Stanford
parser in the original evaluation. However, a man-
ual evaluation was still performed in order to re-
solve questionable cases.

5 Results

The results are shown in Table 1, where the ac-
curacy for each construction is the percentage of
gold-standard dependencies recovered correctly.
The Avg column represents a macroaverage, i.e.
the average of the individual scores on the seven
constructions, while the WAvg column represents
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Parser ObRC ObRed SbRC Free ObQ RNR SbEm Avg WAvg
MST 34.1 47.3 78.9 65.5 13.8 45.4 37.6 46.1 63.4
Malt 40.7 50.5 84.2 70.2 16.2 39.7 23.5 46.4 66.9
MST-Q 41.2 50.0
Malt-Q 31.2 48.5

Table 1: Parser accuracy on the unbounded dependency corpus.

Parser ObRC ObRed SbRC Free ObQ RNR SbEm Avg WAvg
C&C 59.3 62.6 80.0 72.6 81.2 49.4 22.4 61.1 69.9
Enju 47.3 65.9 82.1 76.2 32.5 47.1 32.9 54.9 70.9
MST 34.1 47.3 78.9 65.5 41.2 45.4 37.6 50.0 63.4
Malt 40.7 50.5 84.2 70.2 31.2 39.7 23.5 48.5 66.9
DCU 23.1 41.8 56.8 46.4 27.5 40.8 5.9 34.6 47.0
RASP 16.5 1.1 53.7 17.9 27.5 34.5 15.3 23.8 34.1
Stanford 22.0 1.1 74.7 64.3 41.2 45.4 10.6 37.0 50.3

Table 2: Parser accuracy on the unbounded dependency corpus. The ObQ score for C&C, MSTParser, and MaltParser is for
a model trained with additional questions (without this C&C scored 27.5; MSTParser and MaltParser as in Table 1).

a weighted macroaverage, where the construc-
tions are weighted proportionally to their relative
frequency in the PTB. WAvg excludes ObQ sen-
tences, since frequency statistics were not avail-
able for this construction in Rimell et al. (2009).

Our first observation is that the accuracies for
both systems are considerably below the ∼90%
unlabeled and ∼88% labeled attachment scores
for English that have been reported previously
(McDonald and Pereira, 2006; Hall et al., 2006).
Comparing the two parsers, we see that Malt-
Parser is more accurate on dependencies in rela-
tive clause constructions (ObRC, ObRed, SbRC,
and Free), where argument relations tend to be
relatively local, while MSTParser is more accu-
rate on dependencies in RNR and SbEm, which
involve more distant relations. Without the ad-
ditional QB training data, the average scores for
the two parsers are indistinguishable, but MST-
Parser appears to have been better able to take
advantage of the question training, since MST-Q
performs better than Malt-Q on ObQ sentences.
On the weighted average MaltParser scores 3.5
points higher, because the constructions on which
it outperforms MSTParser are more frequent in
the PTB, and because WAvg excludes ObQ, where
MSTParser is more accurate.

Table 2 shows the results for MSTParser and
MaltParser in the context of the other parsers eval-
uated in Rimell et al. (2009).5 For the parsers

5The average scores reported differ slightly from those in

which have a model trained on questions, namely
C&C, MSTParser, and MaltParser, the figure
shown for ObQ sentences is that of the question
model. It can be seen that MSTParser and Malt-
Parser perform below C&C and Enju, but above
the other parsers, and that MSTParser achieves the
highest score on SbEm sentences and MaltParser
on SbRC sentences. It should be noted, however,
that Table 2 does not represent a direct compar-
ison across all parsers, since most of the other
parsers would have benefited from heuristic post-
processing of the kind implemented here for MST-
Parser and MaltParser. This is especially true for
RASP, where the grammar explicitly leaves some
types of attachment decisions for post-processing.
For DCU, improved labeling heuristics would sig-
nificantly improve performance. It is instructive to
compare the dependency parsers to the Stanford
parser, which uses the same output representation
and has been used to prepare the training data for
our experiments. Stanford has very low recall on
ObRed and SbEm, the categories where heuristic
inference plays the largest role, but mirrors MST-
Parser for most other categories.

6 Error Analysis

We now proceed to a more detailed error analy-
sis, based on the development sets, and classify

Rimell et al. (2009), where a microaverage (i.e., average over
all dependencies in the corpus, regardless of construction)
was reported.
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the errors made by the parsers into three cate-
gories: A global error is one where the parser
completely fails to build the relevant clausal struc-
ture – the relative clause in ObRC, ObRed, SbRC,
Free, SbEmb; the interrogative clause in ObQ; and
the clause headed by the higher conjunct in RNR
– often as a result of surrounding parsing errors.
When a global error occurs, it is usually mean-
ingless to further classify the error, which means
that this category excludes the other two. An Arg
error is one where the parser has constructed the
relevant clausal structure but fails to find the Arg
relation – in the simple and complex cases – or the
set of surrounding Arg relations needed to infer
an implicit Arg relation – in the indirect case (cf.
Section 4.2). A Link error is one where the parser
fails to find the crucial Link relation – rcmod
in ObRC, ObRed, SbRC, SbEmb; conj in RNR
(cf. Section 4.2). Link errors are not relevant for
Free and ObQ, where all the crucial relations are
clause-internal.

Table 3 shows the frequency of different error
types for MSTParser (first) and MaltParser (sec-
ond) in the seven development sets. First of all,
we can see that the overall error distribution is
very similar for the two parsers, which is proba-
bly due to the fact that they have been trained on
exactly the same data with exactly the same an-
notation (unlike the five parsers previously eval-
uated). However, there is a tendency for MST-
Parser to make fewer Link errors, especially in
the relative clause categories ObRC, ObRed and
SbRC, which is compatible with the observation
from the test results that MSTParser does better
on more global dependencies, while MaltParser
has an advantage on more local dependencies, al-
though this is not evident from the statistics from
the relatively small development set.

Comparing the different grammatical construc-
tions, we see that Link errors dominate for the rel-
ative clause categories ObRC, ObRed and SbRC,
where the parsers make very few errors with
respect to the internal structure of the relative
clauses (in fact, no errors at all for MaltParser
on SbRC). This is different for SbEm, where the
analysis of the argument structure is more com-
plex, both because there are (at least) two clauses
involved and because the unbounded dependency

Type G
lo

ba
l

A
rg

Li
nk

A
+L

Er
ro

rs

#
D

ep
s

ObRC 0/1 1/1 7/11 5/3 13/16 20
ObRed 0/1 0/1 6/7 3/4 9/13 23
SbRC 2/1 1/0 7/13 0/0 10/14 43
Free 2/1 3/5 – – 5/6 22
ObQ 4/7 13/13 – – 17/20 25
RNR 6/4 4/6 0/0 4/5 14/15 28
SbEm 3/4 3/2 0/0 3/3 9/9 13

Table 3: Distribution of error types in the development
sets; frequencies for MSTParser listed first and MaltParser
second. The columns Arg and Link give frequencies for
Arg/Link errors occurring without the other error type, while
A+L give frequencies for joint Arg and Link errors.

can only be inferred indirectly from the basic de-
pendency representation (cf. Section 4.2). An-
other category where Arg errors are frequent is
RNR, where all such errors consist in attaching
the relevant dependent to the second conjunct in-
stead of to the first.6 Thus, in the example in Fig-
ure 1f, both parsers found the conj relation be-
tween puzzled and angered but attached by to the
second verb.

Global errors are most frequent for RNR, prob-
ably indicating that coordinate structures are diffi-
cult to parse in general, and for ObQ (especially
for MaltParser), probably indicating that ques-
tions are not well represented in the training set
even after the addition of QB data.7 As noted
in Section 4.1, this may be partly due to the fact
that conversion to Stanford dependencies did not
seem to work as well for QB as for the WSJ data.
Another problem is that the part-of-speech tagger
used was trained on WSJ data only and did not
perform as well on the ObQ data. Uses of What as
a determiner were consistently mistagged as pro-
nouns, which led to errors in parsing. Thus, for
the example in Figure 1e, both parsers produced
the correct analysis except that, because of the tag-
ging error, they treated What rather than effect as
the head of the wh-phrase, which counts as an er-
ror in the evaluation.

In order to get a closer look specifically at the
Arg errors, Table 4 gives the confusion matrix

6In the Stanford scheme, an argument or adjunct must be
attached to the first conjunct in a coordination to indicate that
it belongs to both conjuncts.

7Parsers trained without QB had twice as many global
errors.
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Sb Ob POb EmSb EmOb Other Total
Sb – 0/0 0/0 0/0 0/0 2/1 2/1
Ob 2/3 – 0/0 0/1 0/0 4/2 6/6
POb 2/0 7/5 – 0/0 0/0 5/8 14/13
EmSb 1/1 4/2 0/0 – 0/0 1/2 6/5
EmOb 0/0 3/1 0/0 0/0 – 1/6 4/7
Total 5/4 14/8 0/0 0/1 0/0 13/19 32/32

Table 4: Confusion matrix for Arg errors (excluding RNR
and using parsers trained on QB for ObQ); frequencies for
MSTParser listed first and MaltParser second. The column
Other covers errors where the function is left unspecified or
the argument is attached to the wrong head.

for such errors, showing which grammatical func-
tions are mistaken for each other, with an extra
category Other for cases where the function is left
unspecified by the parser or the error is an attach-
ment error rather than a labeling error (and ex-
cluding the RNR category because of the special
nature of the Arg errors in this category). The
results again confirm that the two parsers make
very few errors on subjects and objects clause-
internally. The few cases where an object is
mistaken as a subject occur in ObQ, where both
parsers perform rather poorly in general. By con-
trast, there are many more errors on prepositional
objects and on embedded subjects and objects. We
believe an important part of the explanation for
this pattern is to be found in the Stanford depen-
dency representation, where subjects and objects
are marked as such but all other functions real-
ized by wh elements are left unspecified (using the
generic rel dependency), which means that the re-
covery of these functions currently has to rely on
heuristic rules as described in Section 4.2. Finally,
we think it is possible to observe the tendency for
MaltParser to be more accurate at local labeling
decisions – reflected in fewer cross-label confu-
sions – and for MSTParser to perform better on
more distant attachment decisions – reflected in
fewer errors in the Other category (and in fewer
Link errors).

7 Conclusion

In conclusion, the capacity of MSTParser and
MaltParser to recover unbounded dependencies is
very similar on the macro and weighted macro
level, but there is a clear distinction in their
strengths – constructions involving more distant

dependencies such as ObQ, RNR and SbEm for
MSTParser and constructions with more locally
defined configurations such as ObRC, ObRed,
SbRC and Free for MaltParser. This is a pattern
that has been observed in previous evaluations of
the parsers and can be explained by the global
learning and inference strategy of MSTParser and
the richer feature space of MaltParser (McDonald
and Nivre, 2007).

Perhaps more interestingly, the accuracies of
MSTParser and MaltParser are only slightly be-
low the best performing systems in Rimell et al.
(2009) – C&C and Enju. This is true even though
MSTParser and MaltParser have not been engi-
neered specifically for English and lack special
mechanisms for handling unbounded dependen-
cies, beyond the simple post-processing heuristic
used to extract them from the output trees. Thus,
it is reasonable to speculate that the addition of
such mechanisms could lead to computationally
lightweight parsers with the ability to extract un-
bounded dependencies with high accuracy.
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Abstract
This paper proposes a co-training style
algorithm called Co-STAR that acquires
hyponymy relations simultaneously from
structured and unstructured text. In Co-
STAR, two independent processes for hy-
ponymy relation acquisition – one han-
dling structured text and the other han-
dling unstructured text – collaborate by re-
peatedly exchanging the knowledge they
acquired about hyponymy relations. Un-
like conventional co-training, the two pro-
cesses in Co-STAR are applied to dif-
ferent source texts and training data.
We show the effectiveness of this al-
gorithm through experiments on large-
scale hyponymy-relation acquisition from
Japanese Wikipedia and Web texts. We
also show that Co-STAR is robust against
noisy training data.

1 Introduction

Acquiring semantic knowledge, especially se-
mantic relations between lexical terms, is re-
garded as a crucial step in developing high-level
natural language applications. This paper pro-
poses Co-STAR (a Co-training STyle Algorithm
for hyponymy Relation acquisition from struc-
tured and unstructured text). Similar to co-
training (Blum and Mitchell, 1998), two hy-
ponymy relation extractors in Co-STAR, one for
structured and the other for unstructured text, it-
eratively collaborate to boost each other’s perfor-
mance.

Many algorithms have been developed to auto-
matically acquire semantic relations from struc-
tured and unstructured text. Because term pairs
are encoded in structured and unstructured text in
different styles, different kinds of evidence have
been used for semantic relation acquisition:

Evidence from unstructured text: lexico-
syntactic patterns and distributional similar-
ity (Ando et al., 2004; Hearst, 1992; Pantel
et al., 2009; Snow et al., 2006; De Saeger et
al., 2009; Van Durme and Pasca, 2008);

Evidence from structured text: topic hierarchy,
layout structure of documents, and HTML
tags (Oh et al., 2009; Ravi and Pasca, 2008;
Sumida and Torisawa, 2008; Shinzato and
Torisawa, 2004).

Recently, researchers have used both structured
and unstructured text for semantic-relation acqui-
sition, with the aim of exploiting such different
kinds of evidence at the same time. They ei-
ther tried to improve semantic relation acquisition
by putting the different evidence together into a
single classifier (Pennacchiotti and Pantel, 2009)
or to improve the coverage of semantic relations
by combining and ranking the semantic relations
obtained from two source texts (Talukdar et al.,
2008).

In this paper we propose an algorithm called
Co-STAR. The main contributions of this work
can be summarized as follows.

• Co-STAR is a semi-supervised learning
method composed of two parallel and iter-
ative processes over structured and unstruc-
tured text. It was inspired by bilingual co-
training, which is a framework for hyponymy
relation acquisition from source texts in two
languages (Oh et al., 2009). Like bilingual
co-training, two processes in Co-STAR op-
erate independently on structured text and
unstructured text. These two processes are
trained in a supervised manner with their
initial training data and then each of them
tries to enlarge the existing training data of
the other by iteratively exchanging what they
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have learned (more precisely, by transfer-
ring reliable classification results on com-
mon instances to one another) (see Section
4 for comparison Co-STAR and bilingual
co-training). Unlike the ensemble semantic
framework (Pennacchiotti and Pantel, 2009),
Co-STAR does not have a single “master”
classifier or ranker to integrate the differ-
ent evidence found in structured and unstruc-
tured text. We experimentally show that, at
least in our setting, Co-STAR works better
than a single “master” classifier.

• Common relation instances found in both
structured and unstructured text act as a
communication channel between the two ac-
quisition processes. Each process in Co-
STAR classifies common relation instances
and then transfers its high-confidence classi-
fication results to training data of the other
process (as shown in Fig. 1), in order to im-
prove classification results of the other pro-
cess. Moreover, the efficiency of this ex-
change can be boosted by increasing the
“bandwidth” of this channel. For this pur-
pose each separate acquisition process auto-
matically generates a set of relation instances
that are likely to be negative. In our experi-
ments, we show that the above idea proved
highly effective.

• Finally, the acquisition algorithm we propose
is robust against noisy training data. We
show this by training one classifier in Co-
STAR with manually labeled data and train-
ing the other with automatically generated
but noisy training data. We found that Co-
STAR performs well in this setting. This is-
sue is discussed in Section 6.

This paper is organized as follows. Sections 2
and 3 precisely describe our algorithm. Section 4
describes related work. Sections 5 and 6 describe
our experiments and present their results. Conclu-
sions are drawn in Section 7.

2 Co-STAR

Co-STAR consists of two processes that simul-
taneously but independently extract and classify

Structured	  Texts	 Unstructured	  Texts	

Itera0on
	

Training	  Data	  
for	  Structured	  Texts	

Classifier	 Classifier	
Training	 Training	

Enlarged	  	  
Training	  Data	  
for	  Structured	  Text	

Enlarged	  	  
Training	  Data	  

for	  Unstructured	  Texts	

Training	  Data	  
For	  Unstructured	  Texts	

Classifier	Classifier	

Further	  Enlarged	  
Training	  Data	  
for	  Structured	  Texts	

Further	  Enlarged	  
Training	  Data	  

for	  Unstructured	  Texts	

Training	

Training	 Training	

Training	

…..	 …..	Common	  
instances	
Transferring	  
reliable	  

classifica0on	  
results	  of	  
classifiers	

Transferring	  
reliable	  

classifica0on	  
results	  of	  
classifiers	

Figure 1: Concept of Co-STAR.

hyponymy relation instances from structured and
unstructured text. The core of Co-STAR is the
collaboration between the two processes, which
continually exchange and compare their acquired
knowledge on hyponymy relations. This collabo-
ration is made possible through common instances
shared by both processes. These common in-
stances are classified separately by each process,
but high-confidence classification results by one
process can be transferred as new training data to
the other.

2.1 Common Instances

Let S and U represent a source (i.e. corpus)
of structured and unstructured text, respectively.
In this paper, we use the hierarchical layout of
Wikipedia articles and the Wikipedia category
system as structured text S (see Section 3.1), and
a corpus of ordinary Web pages as unstructured
text U . Let XS and XU denote a set of hyponymy
relation candidates extracted from S and U , re-
spectively. XS is extracted from the hierarchi-
cal layout of Wikipedia articles (Oh et al., 2009)
and XU is extracted by lexico-syntactic patterns
for hyponymy relations (i.e., hyponym such as hy-
ponymy) (Ando et al., 2004) (see Section 3 for a
detailed explanation)

We define two types of common instances,
called “genuine” common instances (G) and “vir-
tual” common instances (V ). The set of common
instances is denoted by Y = G ∪ V . Genuine
common instances are hyponymy relation candi-
dates found in both S and U (G = XS ∩XU ). On
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the other hand, term pairs are obtained as virtual
common instances when:

• 1) they are extracted as hyponymy relation
candidates in either S or U and;

• 2) they do not seem to be a hyponymy rela-
tion in the other text

The first condition corresponds to XS ⊕ XU .
Term pairs satisfying the second condition are de-
fined as RS and RU , where RS ∩ XS = φ and
RU ∩XU = φ.
RS contains term pairs that are found in the

Wikipedia category system but neither term ap-
pears as ancestor of the other1. For example, (nu-
trition,protein) and (viruses,viral disease), respec-
tively, hold a category-article relation, where nu-
trition is not ancestor of viruses and vice versa in
the Wikipedia category system. Here, term pairs,
such as (nutrition, viruses) and (viral disease, nu-
trition), can be ones in RS .
RU is a set of term pairs extracted from U

when:

• they are not hyponymy relation candidates in
XU and;

• they regularly co-occur in the same sentence
as arguments of the same verb (e.g., A cause
B or A is made by B);

As a result, term pairs in RU are thought as hold-
ing some other semantic relations (e.g., A and B
in “A cause B” may hold a cause/effect relation)
than hyponymy relation. Finally, virtual common
instances are defined as:

• V = (XS ⊕XU ) ∩ (RS ∪RU )

The virtual common instances, from the view-
point of either S or U , are unlikely to hold a hy-
ponymy relation even if they are extracted as hy-
ponymy relation candidates in the other text. Thus
many virtual common instances would be a nega-
tive example for hyponymy relation acquisition.
On the other hand, genuine common instances
(hyponymy relation candidates found in both S

1A term pair often holds a hyponymy relation if one term
in the term pair is a parent of the other in the Wikipedia cat-
egory system (Suchanek et al., 2007).

and U ) are more likely to hold a hyponymy re-
lation than virtual common instances.

In summary, genuine and virtual common in-
stances can be used as different ground for collab-
oration as well as broader collaboration channel
between the two processes than genuine common
instances used alone.

2.2 Algorithm

We assume that classifier c assigns class label
cl ∈ {yes, no} (“yes” (hyponymy relation) or
“no” (not a hyponymy relation)) to instances in
x ∈ X with confidence value r ∈ R+, a non-
negative real number. We denote the classifica-
tion result by classifier c as c(x) = (x, cl, r). We
used support vector machines (SVMs) in our ex-
periments and the absolute value of the distance
between a sample and the hyperplane determined
by the SVMs as confidence value r.

1: Input: Common instances (Y = G ∪ V ) and
the initial training data (L0

S and L0
U )

2: Output: Two classifiers (cnS and cnU )
3: i = 0
4: repeat
5: ciS := LEARN(Li

S)
6: ciU := LEARN(Li

U )
7: CRi

S := {ciS(y)|y ∈ Y , y /∈ Li
S ∪ Li

U}
8: CRi

U := {ciU (y)|y ∈ Y , y /∈ Li
S ∪ Li

U}
9: for each (y, clS , rS) ∈ TopN(CRi

S) and
(y, clU , rU ) ∈ CRi

U do
10: if (rS > α and rU < β)

or (rS > α and clS = clU ) then
11: L

(i+1)
U := L

(i+1)
U ∪ {(y, clS)}

12: end if
13: end for
14: for each (y, clU , rU ) ∈ TopN(CRi

U ) and
(y, clS , rS) ∈ CRi

S do
15: if (rU > α and rS < β)

or (rU > α and clS = clU ) then
16: L

(i+1)
S := L

(i+1)
S ∪ {(y, clU )}

17: end if
18: end for
19: i = i+ 1
20: until stop condition is met

Figure 2: Co-STAR algorithm
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The Co-STAR algorithm is given in Fig. 2. The
algorithm is interpreted as an iterative procedure
1) to train classifiers (ciU , ciS) with the existing
training data (Li

S and Li
U ) and 2) to select new

training instances from the common instances to
be added to existing training data. These are re-
peated until stop condition is met.

In the initial stage, two classifiers c0S and c0U
are trained with manually prepared labeled in-
stances (or training data) L0

S and L0
U , respec-

tively. The learning procedure is denoted by
c = LEARN(L) in lines 5–6, where c is a re-
sulting classifier. Then ciS and ciU are applied
to classify common instances in Y (lines 7–8).
We denote CRi

S as a set of the classification re-
sults of ciS for common instances, which are not
included in the current training data Li

S ∪ Li
U .

Lines 9–13 describe a way of selecting instances
in CRi

S to be added to the existing training data
in U . During the selection, ciS acts as a teacher
and ciU as a student. TopN(CRi

S) is a set of
ciS(y) = (y, clS , rS), whose rS is the top-N high-
est in CRi

S . (In our experiments, N = 900.) The
teacher instructs his student the class label of y if
the teacher can decide the class label of y with a
certain level of confidence (rS > α) and the stu-
dent satisfies one of the following two conditions:

• the student agrees with the teacher on class
label of y (clS = clU ) or

• the student’s confidence in classifying y is
low (rU < β)

rU < β enables the teacher to instruct his student
in spite of their disagreement over a class label.
If one of the two conditions is satisfied, (y, clS)
is added to existing labeled instances L(i+1)

U . The
roles are reversed in lines 14–18, so that ciU be-
comes the teacher and ciS the student.

The iteration stops if the change in the differ-
ence between the two classifiers is stable enough.
The stability is estimated by d(ciS , c

i
U ) in Eq. (1),

where σi represents the change in the average
difference between the confidence values of the
two classifiers in classifying common instances.
We terminate the iteration if d(ciS , c

i
U ) is smaller

than 0.001 in three consecutive rounds (Wang and

Zhou, 2007).

d(ciS , c
i
U ) = |σi − σ(i−1)|/|σ(i−1)| (1)

3 Hyponymy Relation Acquisition

In this section we explain how each process ex-
tracts hyponymy relations from its respective text
source either Wikipedia or Web pages. Each pro-
cess extracts hyponymy relation candidates (de-
noted by (hyper,hypo) in this section). Because
there are many non-hyponymy relations in these
candidates2, we classify hyponymy relation can-
didates into correct hyponymy relation or not. We
used SVMs (Vapnik, 1995) for the classification
in this paper.

3.1 Acquisition from Wikipedia

(a) Layout structure

Range

Siberian tiger

Bengal tiger

Subspecies

Taxonomy

Tiger

Malayan tiger

(b) Tree structure

Figure 3: Example borrowed from Oh et al.
(2009): Layout and tree structures of Wikipedia
article TIGER

We follow the method in Oh et al. (2009) for
acquiring hyponymy relations from the Japanese
Wikipedia. Every article is transformed into a tree
structure as shown in Fig. 3, based on the items in
its hierarchical layout including title, (sub)section
headings, and list items. Candidate relations are
extracted from this tree structure by regarding a
node as a hypernym candidate and all of its subor-
dinate nodes as potential hyponyms of the hyper-
nym candidate (e.g., (TIGER, TAXONOMY) and
(TIGER, SIBERIAN TIGER) from Fig. 3). We ob-
tained 1.9×107 Japanese hyponymy relation can-
didates from Wikipedia.

2Only 25–30% of candidates was true hyponymy relation
in our experiments.
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Type Description
Feature from Wikipedia Lexical Morphemes and POS of hyper and hypo; hyper and hypo themselves
(“WikiFeature”) Structure Distance between hyper and hypo in a tree structure;

Lexical patterns for article or section names, where listed items often appear;
Frequently used section headings in Wikipedia (e.g., “Reference”);
Layout item type (e.g., section or list); Tree node type (e.g., root or leaf);
Parent and children nodes of hyper and hypo

Infobox Attribute type and its value obtained from Wikipedia infoboxes
Feature from Web texts Lexical Morphemes and POS of hyper and hypo; hyper and hypo themselves
(“WebFeature”) Pattern Lexico-syntactic patterns applied to hyper and hypo;

PMI score between pattern and hyponymy relation candidate (hyper,hypo)
Collocation PMI score between hyper and hypo
Noun Class Noun classes relevant to hyper and hypo

Table 1: Feature sets (WikiFeature and WebFeature): hyper and hypo represent hypernym and hyponym
parts of hyponymy relation candidates, respectively.

As features for classification we used lex-
ical, structure, and infobox information from
Wikipedia (WikiFeature), as shown in Table 1.
Because they are the same feature sets as those
used in Oh et al. (2009), here we just give a brief
overview of the feature sets. Lexical features3

are used to recognize the lexical evidence for
hyponymy relations encoded in hyper and hypo.
For example, the common head morpheme tiger
in (TIGER, BENGAL TIGER) can be used as the
lexical evidence. Such information is provided
along with the words/morphemes and the parts of
speech of hyper and hypo, which can be multi-
word/morpheme nouns.

Structure features provide evidence found in
layout or tree structures for hyponymy relations.
For example, hyponymy relations (TIGER, BEN-
GAL TIGER) and (TIGER,MALAYAN TIGER) can
be obtained from tree structure “(root node, chil-
dren nodes of Subspecies)” in Fig 3.

3.2 Acquisition from Web Texts
As the target for hyponymy relation acquisition
from the Web, we used 5 × 107 pages from
the TSUBAKI corpus (Shinzato et al., 2008),
a 108 page Japanese Web corpus that was de-
pendency parsed with KNP (Kurohashi-Nagao
Parser) (Kurohashi and Kawahara, 2005). Hy-
ponymy relation candidates are extracted from the
corpus based on the lexico-syntactic patterns such
as “hypo nado hyper (hyper such as hypo)” and
“hypo to iu hyper (hyper called hypo)” (Ando

3MeCab (http://mecab.sourceforge.net/)
was used to provide the lexical features.

et al., 2004). We extracted 6 × 106 Japanese
hyponymy relation candidates from the Japanese
Web texts. Features (WebFeature) used for classi-
fication are summarized in Table 1. Similar to the
hyponymy relation acquisition from Wikipedia,
lexical features are used to recognize the lexical
evidence for hyponymy relations.

Lexico-syntactic patterns for hyponymy rela-
tion show different coverage and accuracy in hy-
ponymy relation acquisition (Ando et al., 2004).
Further if multiple lexico-syntactic patterns sup-
port acquisition of hyponymy relation candidates,
these candidates are more likely to be actual hy-
ponymy relations. The pattern feature of hy-
ponymy relation candidates is used for these ev-
idence.

We use PMI (point-wise mutual information)
of hyponymy relation candidate (hyper, hypo) as
a collocation feature (Pantel and Ravichandran,
2004), where we assume that hyper and hypo in
candidates would frequently co-occur in the same
sentence if they hold a hyponymy relation.

Semantic noun classes have been regarded as
useful information in semantic relation acquisi-
tion (De Saeger et al., 2009). EM-based clus-
tering (Kazama and Torisawa, 2008) is used for
obtaining 500 semantic noun classes4 from 5 ×
105 nouns (including single-word and multi-word
ones) and their 4× 108 dependency relations with
5 × 105 verbs and other nouns in our target Web

4Because EM clustering provides a probability distri-
bution over noun class nc, we obtain discrete classes of
each noun n with a probability threshold p(nc|n) ≥
0.2 (De Saeger et al., 2009).
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Co-training Bilingual co-training Co-STAR
(Blum and Mitchell, 1998) (Oh et al., 2009) (Proposed method)

Instance space Same Different Almost different
Feature space Split by human decision Split by languages Split by source texts
Common instances Genuine-common Genuine-common Genuine-common and

(or All unlabeled) instances instances (Translatable) virtual-common instances

Table 2: Differences among co-training, bilingual co-training, and Co-STAR

corpus. For example, noun class C311 includes
biological or chemical substances such as tatou
(polysaccharide) and yuukikagoubutsu (organic
compounds). Noun classes (i.e., C311) relevant to
hyper and hypo, respectively, are used as a noun
class feature.

4 Related Work

There are two frameworks, which are most rele-
vant to our work – bilingual co-training and en-
semble semantics.

The main difference between bilingual co-
training and Co-STAR lies in an instance space.
In bilingual co-training, instances are in different
spaces divided by languages while, in Co-STAR,
many instances are in different spaces divided by
their source texts. Table 2 shows differences be-
tween co-training, bilingual co-training and Co-
STAR.

Ensemble semantics is a relation acquisition
framework, where semantic relation candidates
are extracted from multiple sources and a single
ranker ranks or classifies the candidates in the fi-
nal step (Pennacchiotti and Pantel, 2009). In en-
semble semantics, one ranker is in charge of rank-
ing all candidates extracted from multiple sources;
while one classifier classifies candidates extracted
from one source in Co-STAR.

5 Experiments

We used the July version of Japanese Wikipedia
(jawiki-20090701) as structured text. We ran-
domly selected 24,000 hyponymy relation candi-
dates from those identified in Wikipedia and man-
ually checked them. 20,000 of these samples were
used as training data for our initial classifier, the
rest was equally divided into development and test
data for Wikipedia. They are called “WikiSet.”
As unstructured text, we used 5 × 107 Japanese
Web pages in the TSUBAKI corpus (Shinzato et

al., 2008). Here, we manually checked 9,500
hyponymy relation candidates selected randomly
from Web texts. 7,500 of these were used as train-
ing data. The rest was split into development and
test data. We named this data “WebSet”.

In both classifiers, the development data was
used to select the optimal parameters, and the test
data was used to evaluate our system. We used
TinySVM (TinySVM, 2002) with a polynomial
kernel of degree 2 as a classifier. α (the threshold
value indicating high confidence), β (the thresh-
old value indicating low confidence), and TopN
(the maximum number of training instances to be
added to the existing training data in each iter-
ation) were selected through experiments on the
development set. The combination of α = 1,
β = 0.3, and TopN=900 showed the best perfor-
mance and was used in the following experiments.
Evaluation was done by precision (P ), recall (R),
and F-measure (F ).

5.1 Results

We compare six systems. Three of these, B1–B3,
show the effect of different feature sets (“Wik-
iFeature” and “WebFeature” in Table 1) and dif-
ferent training data. We trained two separate clas-
sifiers in B1 and B2, while we integrated feature
sets and training data for training a single classi-
fier in B3. The classifiers in these three systems
are trained with manually prepared training data
(“WikiSet” and “WebSet”). For the purpose of our
experiment, we consider B3 as the closest possible
approximation of the ensemble semantics frame-
work (Pennacchiotti and Pantel, 2009).

• B1 consists of two completely independent
classifiers. Both S and U classifiers are
trained and tested on their own feature and
data sets (respectively “WikiSet + WikiFea-
ture” and “WebSet + WebFeature”).
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• B2 is the same as B1, except that both clas-
sifiers are trained with all available training
data — WikiSet and WebSet are combined
(27,500 training instances in total). However,
each classifier only uses its own feature set
(WikiFeature or WebFeature)5.

• B3 adds a master classifier to B1. This third
classifier is trained on the complete 27,500
training instances (same as B2) using all
available features from Table 1, including
each instance’s SVM scores obtained from
the two B1 classifiers6. The verdict of the
master classifier is considered to be the final
classification result.

The other three systems, BICO, Co-B, and Co-
STAR (our proposed method), are for compari-
son between bilingual co-training (Oh et al., 2009)
(BICO) and variants of Co-STAR (Co-B and Co-
STAR). Especially, we prepared Co-B and Co-
STAR to show the effect of different configura-
tions of common instances on the Co-STAR al-
gorithm. We use both B1 and B2 as the initial
classifiers of Co-B and Co-STAR. We notate Co-
B and Co-STAR without ‘∗’ when B1 is used as
their initial classifier and those with ‘∗’ when B2
is used.

• BICO implements the bilingual co-training
algorithm of (Oh et al., 2009), in which
two processes collaboratively acquire hy-
ponymy relations in two different languages.
For BICO, we prepared 20,000 English and
20,000 Japanese training samples (Japanese
ones are the same as training data in the
WikiSet) by hand.

• Co-B is a variant of Co-STAR that uses only
the genuine-common instances as common
instances (67,000 instances)7, to demonstrate

5Note that training instances from WebSet (or WikiSet)
can have WikiFeature (or WebFeature) if they also appear
in Wikipedia (or Web corpus). But they can always have
lexical feature, the common feature set between WikiFeature
and WebFeature.

6SVM scores are assigned to the instances in training data
in a 10-fold cross validation manner.

7Co-B can be considered as conventional co-
training (Blum and Mitchell, 1998) in the sense that
two classifiers collaborate through actual common instances.

the effectiveness of the virtual common in-
stances.

• Co-STAR is our proposed method, which
uses both genuine-common and virtual-
common instances (643,000 instances in to-
tal).

WebSet WikiSet
P R F P R F

B1 84.3 65.2 73.5 87.8 74.7 80.7
B2 83.4 69.6 75.9 87.4 79.5 83.2
B3 82.2 72.0 76.8 86.1 77.7 81.7
BICO N/A N/A N/A 84.5 81.8 83.1
Co-B 86.2 63.5 73.2 89.7 74.1 81.2
Co-B∗ 85.5 69.9 77.0 89.6 76.5 82.5
Co-STAR 85.9 76.0 80.6 88.0 81.8 84.8
Co-STAR∗ 83.3 80.7 82.0 87.6 81.8 84.6

Table 3: Comparison of different systems

Table 3 summarizes the result. Features for
common instances in Co-B and Co-STAR are pre-
pared in the same way as training data in B2, so
that both classifiers can classify the common in-
stances with their trained feature sets.

Comparison between B1–B3 shows that B2 and
B3 outperform B1 in F-measure. More train-
ing data used in B2–B3 (27,500 instances for
both WebSet and WikiSet) results in higher per-
formance than that of B1 (7,500 and 20,000 in-
stances used separately). We think that the lexical
features, assigned regardless of source text to in-
stances in B2–B3, are mainly responsible for the
performance gain over B1, as they are the least
domain-dependent type of features. B2–B3 are
composed of different number of classifiers, each
of which is trained with different feature sets and
training instances. Despite this difference, B2 and
B3 showed similar performance in F-measure.

Co-STAR outperformed the algorithm similar
to the ensemble semantics framework (B3), al-
though we admit that a more extensive com-
parison is desirable. Further Co-STAR outper-
formed BICO. While the manual cost for build-
ing the initial training data used in Co-STAR
and BICO is hard to quantify, Co-STAR achieves
better performance with fewer training data in
total (27,500 instances) than BICO (40,000 in-
stances). The difference in performance between
Co-B and Co-STAR shows the effectiveness of
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the automatically generated virtual-common in-
stances. From these comparison, we can see that
virtual-common instances coupled with genuine-
common instances can be leveraged to enable
more effective collaboration between the two clas-
sifiers in Co-STAR.

As a result, our proposed method outperforms
the others in F-measure by 1.4–8.5%. We ob-
tained 4.3 × 105 hyponymy relations from Web
texts and 4.6× 106 ones from Wikipedia8.

6 Co-STAR with Automatically
Generated Training Data

For Co-STAR, we need two sets of manually pre-
pared training data, one for structured text and the
other for unstructured text. As in any other su-
pervised system, the cost of preparing the training
data is an important issue. We therefore investi-
gated whether Co-STAR can be trained for a lower
cost by generating more of its training data auto-
matically.

We automatically built training data for Web
texts by using definition sentences9 and category
names in the Wikipedia articles, while we stuck to
manually prepared training data for Wikipedia. To
obtain hypernyms from Wikipedia article names,
we used definition-specific lexico-syntactic pat-
terns such as “hyponym is hypernym” and “hy-
ponym is a type of hypernym” (Kazama and Tori-
sawa, 2007; Sumida and Torisawa, 2008). Then,
we extracted hyponymy relations consisting of
pairs of Wikipedia category names and their mem-
ber articles when the Wikipedia category name
and the hypernym obtained from the definition
of the Wikipedia article shared the same head
word. Next, we selected a subset of the extracted
hyponymy relations that are also hyponymy re-
lation candidates in Web texts, as positive in-
stances for hyponymy relation acquisition from
Web text. We obtained around 15,000 positive in-
stances in this way. Negative instances were cho-
sen from virtual-common instances, which also
originated from the Wikipedia category system
and hyponymy relation candidates in Web texts

8We obtained them with 90% precision by setting the
SVM score threshold to 0.23 for Web texts and 0.1 for
Wikipedia.

9The first sentences of Wikipedia articles.

(around 293,000 instances).
The automatically built training data was noisy

and its size was much bigger than manually pre-
pared training data in WebSet. Thus 7,500 in-
stances as training data (the same number of man-
ually built training data in WebSet) were ran-
domly chosen from the positive and negative in-
stances with a positive:negative ratio of 1:410.

WebSet WikiSet
P R F P R F

B1 81.0 47.6 60.0 87.8 74.7 80.7
B2 80.0 55.4 65.5 87.1 79.5 83.1
B3 82.0 33.7 47.8 87.1 75.6 81.0
Co-STAR 82.2 60.8 69.9 87.3 80.7 83.8
Co-STAR∗ 79.2 69.6 74.1 87.0 81.8 84.4

Table 4: Results with automatically generated
training data

With the automatically built training data for
Web texts and manually prepared training data for
Wikipedia, we evaluated B1–B3 and Co-STAR,
which are the same systems in Table 3. The results
in Table 4 are encouraging. Co-STAR was robust
even when faced with noisy training data. Further
Co-STAR showed better performance than B1–
B3, although its performance in Table 4 dropped a
bit compared to Table 3. This result shows that we
can reduce the cost of manually preparing training
data for Co-STAR with only small loss of the per-
formance.

7 Conclusion

This paper proposed Co-STAR, an algorithm for
hyponymy relation acquisition from structured
and unstructured text. In Co-STAR, two indepen-
dent processes of hyponymy relation acquisition
from structured texts and unstructured texts, col-
laborate in an iterative manner through common
instances. To improve this collaboration, we in-
troduced virtual-common instances.

Through a series of experiments, we showed
that Co-STAR outperforms baseline systems and
virtual-common instances can be leveraged to
achieve better performance. We also showed that
Co-STAR is robust against noisy training data,
which requires less human effort to prepare it.

10We select the ratio by testing different ratio from 1:2 to
1:5 with our development data in WebSet and B1.
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Abstract

This paper presents a simple and effi-
cient algorithm for approximate dictio-
nary matching designed for similarity
measures such as cosine, Dice, Jaccard,
and overlap coefficients. We propose this
algorithm, called CPMerge, for the τ -
overlap join of inverted lists. First we
show that this task is solvable exactly by
a τ -overlap join. Given inverted lists re-
trieved for a query, the algorithm collects
fewer candidate strings and prunes un-
likely candidates to efficiently find strings
that satisfy the constraint of the τ -overlap
join. We conducted experiments of ap-
proximate dictionary matching on three
large-scale datasets that include person
names, biomedical names, and general
English words. The algorithm exhib-
ited scalable performance on the datasets.
For example, it retrieved strings in 1.1
ms from the string collection of Google
Web1T unigrams (with cosine similarity
and threshold 0.7).

1 Introduction

Languages are sufficiently flexible to be able to
express the same meaning through different dic-
tion. At the same time, inconsistency of surface
expressions has persisted as a serious problem in
natural language processing. For example, in the
biomedical domain, cardiovascular disorder can
be described using various expressions: cardio-
vascular diseases, cardiovascular system disor-
der, and disorder of the cardiovascular system. It

is a nontrivial task to find the entry from these sur-
face expressions appearing in text.

This paper addresses approximate dictionary
matching, which consists of finding all strings in
a string collection V such that they have similar-
ity that is no smaller than a threshold α with a
query string x. This task has a broad range of ap-
plications, including spelling correction, flexible
dictionary look-up, record linkage, and duplicate
detection (Henzinger, 2006; Manku et al., 2007).

Formally, the task obtains a subset Yx,α ⊆ V ,

Yx,α = {y ∈ V
∣∣ sim(x, y) ≥ α}, (1)

where sim(x, y) presents the similarity between x
and y. A naı̈ve solution to this task is to com-
pute similarity values |V | times, i.e., between x
and every string y ∈ V . However, this solution
is impractical when the number of strings |V | is
huge (e.g., more than one million).

In this paper, we present a simple and effi-
cient algorithm for approximate dictionary match-
ing designed for similarity measures such as co-
sine, Dice, Jaccard, and overlap coefficients. Our
main contributions are twofold.

1. We show that the problem of approximate
dictionary matching is solved exactly by a
τ -overlap join (Sarawagi and Kirpal, 2004)
of inverted lists. Then we present CPMerge,
which is a simple and efficient algorithm for
the τ -overlap join. In addition, the algorithm
is easily implemented.

2. We demonstrate the efficiency of the al-
gorithm on three large-scale datasets with
person names, biomedical concept names,
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and general English words. We com-
pare the algorithm with state-of-the-art al-
gorithms, including Locality Sensitive Hash-
ing (Ravichandran et al., 2005; Andoni and
Indyk, 2008) and DivideSkip (Li et al.,
2008). The proposed algorithm retrieves
strings the most rapidly, e.g., in 1.1 ms from
Google Web1T unigrams (with cosine simi-
larity and threshold 0.7).

2 Proposed Method

2.1 Necessary and sufficient conditions

In this paper, we assume that the features of a
string are represented arbitrarily by a set. Al-
though it is important to design a string represen-
tation for an accurate similarity measure, we do
not address this problem: our emphasis is not on
designing a better representation for string simi-
larity but on establishing an efficient algorithm.

The most popular representation is given by n-
grams: all substrings of size n in a string. We
use trigrams throughout this paper as an example
of string representation. For example, the string
“methyl sulphone” is expressed by 17 elements
of letter trigrams1, {‘$$m’, ‘$me’, ‘met’,
‘eth’, ‘thy’, ‘hyl’, ‘yl ’, ‘l s’, ‘ su’,
‘sul’, ‘ulp’, ‘lph’, ‘pho’, ‘hon’,
‘one’, ‘ne$’, ‘e$$’}. We insert two $s be-
fore and after the string to denote the start or end
of the string. In general, a string x consisting of
|X| letters yields (|x| + n − 1) elements of n-
grams. We call |x| and |X| the length and size,
respectively, of the string x.

Let X and Y denote the feature sets of the
strings x and y, respectively. The cosine similarity
between the two strings x and y is,

cosine(X,Y ) =
|X ∩ Y |√
|X||Y |

. (2)

By integrating this definition with Equation 1, we
obtain the necessary and sufficient condition for

1In practice, we attach ordinal numbers to n-grams to rep-
resent multiple occurrences of n-grams in a string (Chaud-
huri et al., 2006). For example, the string “prepress”, which
contains two occurrences of the trigram ‘pre’, yields
the set {‘$$p’#1, ‘$pr’#1, ‘pre’#1, ‘rep’#1,
‘epr’#1, ‘pre’#2, ‘res’#1, ‘ess’#1, ‘ss$’#1,
‘s$$’#1}.

Table 1: Conditions for each similarity measure
Measure min |Y | max |Y | τ(= min |X ∩ Y |)
Dice α

2−α |X| 2−α
α
|X| 1

2
α(|X|+ |Y |)

Jaccard α|X| |X|/α α(|X|+|Y |)
1+α

Cosine α2|X| |X|/α2 α
√
|X||Y |

Overlap — — αmin{|X|, |Y |}

approximate dictionary matching,
⌈
α
√
|X||Y |

⌉
≤ |X ∩ Y | ≤ min{|X|, |Y |}.

(3)

This inequality states that two strings x and y must
have at least τ =

⌈
α
√
|X||Y |

⌉
features in com-

mon. When ignoring |X∩Y | in the inequality, we
have an inequality about |X| and |Y |,

⌈
α2|X|

⌉
≤ |Y | ≤

⌊ |X|
α2

⌋
(4)

This inequality presents the search range for re-
trieving similar strings; that is, we can ignore
strings whose feature size is out of this range.
Other derivations are also applicable to similar-
ity measures, including Dice, Jaccard, and overlap
coefficients. Table 1 summarizes the conditions
for these similarity measures.

We explain one usage of these conditions. Let
query string x = “methyl sulphone” and thresh-
old for approximate dictionary matching α = 0.7
with cosine similarity. Representing the strings
with letter trigrams, we have the size of x, |X| =
17. The inequality 4 gives the search range of |Y |
of the retrieved strings, 9 ≤ |Y | ≤ 34. Presum-
ing that we are searching for strings of |Y | = 16,
we obtain the necessary and sufficient condition
for the approximate dictionary matching from the
inequality 3, τ = 12 ≤ |X ∩ Y |. Thus, we need
to search for strings that have at least 12 letter tri-
grams that overlap with X . When considering a
string y = “methyl sulfone”, which is a spelling
variant of y (ph → f), we confirm that the string
is a solution for approximate dictionary matching
because |X∩Y | = 13 (≥ τ ). Here, the actual sim-
ilarity is cosine(X,Y ) = 13/

√
17× 16 = 0.788

(≥ α).

2.2 Data structure and algorithm
Algorithm 1 presents the pseudocode of the ap-
proximate dictionary matching based on Table 1.
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Input: V : collection of strings
Input: x: query string
Input: α: threshold for the similarity
Output: Y: list of strings similar to the query

X ← string to feature(x);1
Y ←[];2
for l← min y(|X|, α) to max y(|X|, α) do3

τ ← min overlap(|X|, l, α);4
R← overlapjoin(X , τ , V , l);5
foreach r ∈ R do append r to Y;6

end7
return Y;8

Algorithm 1: Approximate dictionary
matching.

Given a query string x, a collection of strings V ,
and a similarity threshold α, the algorithm com-
putes the size range (line 3) given by Table 1.
For each size l in the range, the algorithm com-
putes the minimum number of overlaps τ (line 4).
The function overlapjoin (line 5) finds sim-
ilar strings by solving the following problem (τ -
overlap join): given a list of features of the query
string X and the minimum number of overlaps τ ,
enumerate strings of size l in the collection V such
that they have at least τ feature overlaps with X .

To solve this problem efficiently, we build an
inverted index that stores a mapping from the fea-
tures to their originating strings. Then, we can
perform the τ -overlap join by finding strings that
appear at least τ times in the inverted lists re-
trieved for the query features X .

Algorithm 2 portrays a naı̈ve solution for the
τ -overlap join (AllScan algorithm). In this algo-
rithm, function get(V , l, q) returns the inverted
list of strings (of size l) for the feature q. In
short, this algorithm scans strings in the inverted
lists retrieved for the query features X , counts the
frequency of occurrences of every string in the
inverted lists, and returns the strings whose fre-
quency of occurrences is no smaller than τ .

This algorithm is inefficient in that it scans
all strings in the inverted lists. The number of
scanned strings is large, especially when some
query features appear frequently in the strings,
e.g., ‘s$$’ (words ending with ‘s’) and ‘pre’
(words with substring ‘pre’). To make matters
worse, such features are too common for charac-
terizing string similarity. The AllScan algorithm

Input: X: array of features of the query string
Input: τ : minimum number of overlaps
Input: V : collection of strings
Input: l: size of target strings
Output: R: list of strings similar to the query

M ← {};1
R← [];2
foreach q ∈ X do3

foreach i ∈ get(V , l, q) do4
M [i]←M [i] + 1;5
if τ ≤M [i] then6

append i to R;7
end8

end9
end10
return R;11

Algorithm 2: AllScan algorithm.

is able to maintain numerous candidate strings in
M , but most candidates are not likely to qualified
because they have few overlaps with X .

To reduce the number of the candidate strings,
we refer to signature-based algorithms (Arasu et
al., 2006; Chaudhuri et al., 2006):

Property 1 Let there be a set (of size h) X and a
set (of any size) Y . Consider any subset Z ⊆ X of
size (h− τ +1). If |X ∩Y | ≥ τ , then Z ∩Y 6= φ.

We explain one usage of this property. Let query
string x = “methyl sulphone” and its trigram set
X be features (therefore, |X| = h = 17). Pre-
suming that we seek strings whose trigrams are
size 16 and have 12 overlaps withX , then string y
must have at least one overlap with any subset of
size 6 (= 17 − 12 + 1) of X . We call the subset
signatures. The property leads to an algorithmic
design by which we obtain a small set of candi-
date strings from the inverted lists for signatures,
(|X| − τ + 1) features in X , and verify whether
each candidate string satisfies the τ overlap with
the remaining (τ − 1) n-grams.

Algorithm 3 presents the pseudocode employ-
ing this idea. In line 1, we arrange the features in
X in ascending order of the number of strings in
their inverted lists. We denote the k-th element in
the ordered features as Xk (k ∈ {0, ..., |X| − 1}),
where the index number begins with 0. Based on
this notation,X0 andX|X|−1 are the most uncom-
mon and the most common features in X , respec-
tively.

In lines 2–7, we use (|X| − τ + 1) features
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Input: X: array of features of the query string
Input: τ : minimum number of overlaps
Input: V : collection of strings
Input: l: size of target strings
Output: R: list of strings similar to the query

sort elements in X by order of |get(V , l, Xk)|;1
M ← {};2
for k ← 0 to (|X| − τ) do3

foreach s ∈ get(V , l, Xk) do4
M [s]←M [s] + 1;5

end6
end7
R← [];8
for k ← (|X| − τ + 1) to (|X| − 1) do9

foreach s ∈M do10
if bsearch(get(V , l, Xk), s) then11

M [s]←M [s] + 1;12
end13
if τ ≤M [s] then14

append s to R;15
remove s from M ;16

else if M [s] + (|X| − k − 1) < τ then17
remove s from M ;18

end19
end20

end21
return R;22

Algorithm 3: CPMerge algorithm.

X0, ..., X|X|−τ to generate a compact set of can-
didate strings. The algorithm stores the occur-
rence count of each string s in M [s]. In lines 9–
21, we increment the occurrence counts if each
of X|X|−τ+1, ..., X|X|−1 inverted lists contain the
candidate strings. For each string s in the candi-
dates (line 10), we perform a binary search on the
inverted list (line 11), and increment the overlap
count if the string s exists (line 12). If the overlap
counter of the string reaches τ (line 14), then we
append the string s to the result list R and remove
s from the candidate list (lines 15–16). We prune
a candidate string (lines 17–18) if the candidate is
found to be unreachable for τ overlaps even if it
appears in all of the unexamined inverted lists.

3 Experiments

We report the experimental results of approximate
dictionary matching on large-scale datasets with
person names, biomedical names, and general En-
glish words. We implemented various systems of
approximate dictionary matching.

• Proposed: CPMerge algorithm.

• Naive: Naı̈ve algorithm that computes the
cosine similarity |V | times for every query.
• AllScan: AllScan algorithm.
• Signature: CPMerge algorithm without

pruning; this is equivalent to Algorithm 3
without lines 17–18.
• DivideSkip: our implementation of the algo-

rithm (Li et al., 2008)2.
• Locality Sensitive Hashing (LSH) (Andoni

and Indyk, 2008): This baseline system fol-
lows the design of previous work (Ravichan-
dran et al., 2005). This system approxi-
mately solves Equation 1 by finding dictio-
nary entries whose LSH values are within
the (bit-wise) hamming distance of θ from
the LSH value of a query string. To adapt
the method to approximate dictionary match-
ing, we used a 64-bit LSH function com-
puted with letter trigrams. By design, this
method does not find an exact solution to
Equation 1; in other words, the method can
miss dictionary entries that are actually sim-
ilar to the query strings. This system has
three parameters, θ, q (number of bit permu-
tations), and B (search width), to control the
tradeoff between retrieval speed and recall3.
Generally speaking, increasing these param-
eters improves the recall, but slows down the
speed. We determined θ = 24 and q = 24
experimentally4, and measured the perfor-
mance when B ∈ {16, 32, 64}.

The systems, excluding LSH, share the same
implementation of Algorithm 1 so that we can
specifically examine the differences of the algo-
rithms for τ -overlap join. The C++ source code of
the system used for this experiment is available5.
We ran all experiments on an application server
running Debian GNU/Linux 4.0 with Intel Xeon
5140 CPU (2.33 GHz) and 8 GB main memory.

2We tuned parameter values µ ∈ {0.01, 0.02, 0.04, 0.1,
0.2, 0.4, 1, 2, 4, 10, 20, 40, 100} for each dataset. We se-
lected the parameter with the fastest response.

3We followed the notation of the original pa-
per (Ravichandran et al., 2005) here. Refer to the original
paper for definitions of the parameters θ, q, and B.

4q was set to 24 so that the arrays of shuffled hash values
are stored in memory. We chose θ = 24 from {8, 16, 24} be-
cause it showed a good balance between accuracy and speed.

5
http://www.chokkan.org/software/simstring/
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3.1 Datasets
We used three large datasets with person names
(IMDB actors), general English words (Google
Web1T), and biomedical names (UMLS).

• IMDB actors: This dataset comprises actor
names extracted from the IMDB database6.
We used all actor names (1,098,022 strings;
18 MB) from the file actors.list.gz.
The average number of letter trigrams in the
strings is 17.2. The total number of trigrams
is 42,180. The system generated index files
of 83 MB in 56.6 s.
• Google Web1T unigrams: This dataset con-

sists of English word unigrams included in
the Google Web1T corpus (LDC2006T13).
We used all word unigrams (13,588,391
strings; 121 MB) in the corpus after remov-
ing the frequency information. The aver-
age number of letter trigrams in the strings
is 10.3. The total number of trigrams is
301,459. The system generated index files
of 601 MB in 551.7 s.
• UMLS: This dataset consists of English

names and descriptions of biomedical con-
cepts included in the Unified Medical Lan-
guage System (UMLS). We extracted all
English concept names (5,216,323 strings;
212 MB) from MRCONSO.RRF.aa.gz and
MRCONSO.RRF.ab.gz in UMLS Release
2009AA. The average number of letter tri-
grams in the strings is 43.6. The total number
of trigrams is 171,596. The system generated
index files of 1.1 GB in 1216.8 s.

For each dataset, we prepared 1,000 query
strings by sampling strings randomly from the
dataset. To simulate the situation where query
strings are not only identical but also similar to
dictionary entries, we introduced random noise
to the strings. In this experiment, one-third of
the query strings are unchanged from the original
(sampled) strings, one-third of the query strings
have one letter changed, and one-third of the
query strings have two letters changed. When
changing a letter, we randomly chose a letter po-
sition from a uniform distribution, and replaced

6
ftp://ftp.fu-berlin.de/misc/movies/database/

the letter at the position with an ASCII letter ran-
domly chosen from a uniform distribution.

3.2 Results

To examine the scalability of each system, we
controlled the number of strings to be indexed
from 10%–100%, and issued 1,000 queries. Fig-
ure 1 portrays the average response time for re-
trieving strings whose cosine similarity values are
no smaller than 0.7. Although LSH (B=16) seems
to be the fastest in the graph, this system missed
many true positives7; the recall scores of approx-
imate dictionary matching were 15.4% (IMDB),
13.7% (Web1T), and 1.5% (UMLS). Increasing
the parameterB improves the recall at the expense
of the response time. LSH (B=64)8. It not only
ran slower than the proposed method, but also
suffered from low recall scores, 25.8% (IMDB),
18.7% (Web1T), and 7.1% (UMLS). LSH was
useful only when we required a quick response
much more than recall.

The other systems were guaranteed to find
the exact solution (100% recall). The proposed
algorithm was the fastest of all exact systems
on all datasets: the response times per query
(100% index size) were 1.07 ms (IMDB), 1.10 ms
(Web1T), and 20.37 ms (UMLS). The response
times of the Naı̈ve algorithm were too slow, 32.8 s
(IMDB), 236.5 s (Web1T), and 416.3 s (UMLS).

The proposed algorithm achieved substantial
improvements over the AllScan algorithm: the
proposed method was 65.3 times (IMDB), 227.5
times (Web1T), and 13.7 times (UMLS) faster
than the Naı̈ve algorithm. We observed that the
Signature algorithm, which is Algorithm 3 with-
out lines 17–18, did not perform well: The Sig-
nature algorithm was 1.8 times slower (IMDB),
2.1 times faster (Web1T), and 135.0 times slower
(UMLS) than the AllScan algorithm. These re-
sults indicate that it is imperative to minimize the
number of candidates to reduce the number of
binary-search operations. The proposed algorithm
was 11.1–13.4 times faster than DivideSkip.

Figure 2 presents the average response time

7Solving Equation 1, all systems are expected to retrieve
the exact set of strings retrieved by the Naı̈ve algorithm.

8The response time of LSH (B=64) on the IMDB dataset
was 29.72 ms (100% index size).
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Figure 1: Average response time for processing a query (cosine similarity; α = 0.7).
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Figure 2: Average response time for processing a query.

of the proposed algorithm for different similarity
measures and threshold values. When the similar-
ity threshold is lowered, the algorithm runs slower
because the number of retrieved strings |Y| in-
creases exponentially. The Dice coefficient and
cosine similarity produced similar curves.

Table 2 summarizes the run-time statistics of
the proposed method for each dataset (with co-
sine similarity and threshold 0.7). Using the
IMDB dataset, the proposed method searched for
strings whose size was between 8.74 and 34.06;
it retrieved 4.63 strings per query string. The
proposed algorithm scanned 279.7 strings in 4.6
inverted lists to obtain 232.5 candidate strings.
The algorithm performed a binary search on 4.3
inverted lists containing 7,561.8 strings in all.
In contrast, the AllScan algorithm had to scan
16,155.1 strings in 17.7 inverted lists and con-
sidered 9,788.7 candidate strings, and found only
4.63 similar strings.

This table clearly demonstrates three key con-
tributions of the proposed algorithm for efficient

approximate dictionary matching. First, the pro-
posed algorithm scanned far fewer strings than did
the AllScan algorithm. For example, to obtain
candidate strings in the IMDB dataset, the pro-
posed algorithm scanned 279.7 strings, whereas
the AllScan algorithm scanned 16,155.1 strings.
Therefore, the algorithm examined only 1.1%–
3.5% of the strings in the entire inverted lists in
the three datasets. Second, the proposed algo-
rithm considered far fewer candidates than did
the AllScan algorithm: the number of candidate
strings considered by the algorithm was 1.2%–
6.6% of those considered by the AllScan algo-
rithm. Finally, the proposed algorithm read fewer
inverted lists than did the AllScan algorithm. The
proposed algorithm actually read 8.9 (IMDB), 6.0
(Web1T), and 31.7 (UMLS) inverted lists during
the experiments9. These values indicate that the
proposed algorithm can solve τ -overlap join prob-
lems by checking only 50.3% (IMDB), 53.6%
(Web1T), and 51.9% of the total inverted lists re-

9These values are 4.6 + 4.3, 3.1 + 2.9, and 14.3 + 17.4.
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Table 2: Run-time statistics of the proposed algorithm for each dataset
Averaged item IMDB Web1T UMLS Description
min |y| 8.74 5.35 21.87 minimum size of trigrams of target strings
max |y| 34.06 20.46 88.48 maximum size of trigrams of target strings
τ 14.13 9.09 47.77 minimum number of overlaps required/sufficient per query
|Y| 4.63 3.22 111.79 number of retrieved strings per query
Total — averaged for each query and target size:
# inverted lists 17.7 11.2 61.1 number of inverted lists retrieved for a query
# strings 16 155.1 52 557.6 49 561.4 number of strings in the inverted list
# unique strings 9 788.7 44 834.6 17 457.5 number of unique strings in the inverted list
Candidate stage — averaged for each query and target size:
# inverted lists 4.6 3.1 14.3 number of inverted lists scanned for generating candidates
# strings 279.7 552.7 1 756.3 number of strings scanned for generating candidates
# candidates 232.5 523.7 1 149.7 number of candidates generated for a query
Validation stage — averaged for each query and target size:
# inverted lists 4.3 2.9 17.4 number of inverted lists examined by binary search for a query
# strings 7 561.8 19 843.6 20 443.7 number of strings targeted by binary search

trieved for queries.

4 Related Work

Numerous studies have addressed approximate
dictionary matching. The most popular configu-
ration uses n-grams as a string representation and
the edit distance as a similarity measure. Gra-
vano et al. (1998; 2001) presented various filter-
ing strategies, e.g., count filtering, position fil-
tering, and length filtering, to reduce the num-
ber of candidates. Kim et al. (2005) proposed
two-level n-gram inverted indices (n-Gram/2L) to
eliminate the redundancy of position information
in n-gram indices. Li et al. (2007) explored the
use of variable-length grams (VGRAMs) for im-
proving the query performance. Lee et al. (2007)
extended n-grams to include wild cards and de-
veloped algorithms based on a replacement semi-
lattice. Xiao et al. (2008) proposed the Ed-Join
algorithm, which utilizes mismatching n-grams.

Several studies addressed different paradigms
for approximate dictionary matching. Bocek et
al. (2007) presented the Fast Similarity Search
(FastSS), an enhancement of the neighborhood
generation algorithms, in which multiple variants
of each string record are stored in a database.
Wang et al. (2009) further improved the technique
of neighborhood generation by introducing parti-
tioning and prefix pruning. Huynh et al. (2006)
developed a solution to the k-mismatch problem
in compressed suffix arrays. Liu et al. (2008)
stored string records in a trie, and proposed a
framework called TITAN. These studies are spe-

cialized for the edit distance measure.
A few studies addressed approximate dictio-

nary matching for similarity measures such as
cosine and Jaccard similarities. Chaudhuri et
al. (2006) proposed the SSJoin operator for sim-
ilarity joins with several measures including the
edit distance and Jaccard similarity. This algo-
rithm first generates signatures for strings, finds
all pairs of strings whose signatures overlap,
and finally outputs the subset of these candi-
date pairs that satisfy the similarity predicate.
Arasu et al. (2006) addressed signature schemes,
i.e., methodologies for obtaining signatures from
strings. They also presented an implementation of
the SSJoin operator in SQL. Although we did not
implement this algorithm in SQL, it is equivalent
to the Signature algorithm in Section 3.

Sarawagi and Kirpal (2004) proposed the Mer-
geOpt algorithm for the τ -overlap join to approx-
imate string matching with overlap, Jaccard, and
cosine measures. This algorithm splits inverted
lists for a given query A into two groups, S and
L, maintains a heap to collect candidate strings on
S, and performs a binary search on L to verify the
condition of the τ -overlap join for each candidate
string. Their subsequent work includes an effi-
cient algorithm for the top-k search of the overlap
join (Chandel et al., 2006).

Li et al. (2008) extended this algorithm to the
SkipMerge and DivideSkip algorithms. The Skip-
Merge algorithm uses a heap to compute the τ -
overlap join on entire inverted lists A, but has
an additional mechanism to increment the fron-
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tier pointers of inverted lists efficiently based on
the strings popped most recently from the heap.
Consequently, SkipMerge can reduce the number
of strings that are pushed to the heap. Similarly
to the MergeOpt algorithm, DivideSkip splits in-
verted lists A into two groups S and L, but it ap-
plies SkipMerge to S. In Section 3, we reported
the performance of DivideSkip.

Charikar (2002) presented the Locality Sen-
sitive Hash (LSH) function (Andoni and Indyk,
2008), which preserves the property of cosine
similarity. The essence of this function is to map
strings into N -bit hash values where the bitwise
hamming distance between the hash values of two
strings approximately corresponds to the angle of
the two strings. Ravichandran et al. (2005) ap-
plied LSH to the task of noun clustering. Adapting
this algorithm to approximate dictionary match-
ing, we discussed its performance in Section 3.

Several researchers have presented refined sim-
ilarity measures for strings (Winkler, 1999; Cohen
et al., 2003; Bergsma and Kondrak, 2007; Davis et
al., 2007). Although these studies are sometimes
regarded as a research topic of approximate dic-
tionary matching, they assume that two strings for
the target of similarity computation are given; in
other words, it is out of their scope to find strings
in a large collection that are similar to a given
string. Thus, it is a reasonable approach for an ap-
proximate dictionary matching to quickly collect
candidate strings with a loose similarity threshold,
and for a refined similarity measure to scrutinize
each candidate string for the target application.

5 Conclusions

We present a simple and efficient algorithm for
approximate dictionary matching with the co-
sine, Dice, Jaccard, and overlap measures. We
conducted experiments of approximate dictio-
nary matching on large-scale datasets with person
names, biomedical names, and general English
words. Even though the algorithm is very sim-
ple, our experimental results showed that the pro-
posed algorithm executed very quickly. We also
confirmed that the proposed method drastically re-
duced the number of candidate strings considered
during approximate dictionary matching. We be-
lieve that this study will advance practical NLP

applications for which the execution time of ap-
proximate dictionary matching is critical.

An advantage of the proposed algorithm over
existing algorithms (e.g., MergeSkip) is that it
does not need to read all the inverted lists retrieved
by query n-grams. We observed that the proposed
algorithm solved τ -overlap joins by checking ap-
proximately half of the inverted lists (with cosine
similarity and threshold α = 0.7). This charac-
teristic is well suited to processing compressed
inverted lists because the algorithm needs to de-
compress only half of the inverted lists. It is nat-
ural to extend this study to compressing and de-
compressing inverted lists for reducing disk space
and for improving query performance (Behm et
al., 2009).
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Abstract

During face-to-face conversation, people
naturally integrate speech, gestures and
higher level language interpretations to
predict the right time to start talking or
to give backchannel feedback. In this
paper we introduce a new model called
Latent Mixture of Discriminative Experts
which addresses some of the key issues
with multimodal language processing: (1)
temporal synchrony/asynchrony between
modalities, (2) micro dynamics and (3) in-
tegration of different levels of interpreta-
tion. We present an empirical evaluation
on listener nonverbal feedback prediction
(e.g., head nod), based on observable be-
haviors of the speaker. We confirm the im-
portance of combining four types of mul-
timodal features: lexical, syntactic struc-
ture, eye gaze, and prosody. We show
that our Latent Mixture of Discriminative
Experts model outperforms previous ap-
proaches based on Conditional Random
Fields (CRFs) and Latent-Dynamic CRFs.

1 Introduction

Face-to-face communication is highly interactive.
Even when only one person speaks at a time,
other participants exchange information continu-
ously amongst themselves and with the speaker
through gestures, gaze and prosody. These differ-
ent channels contain complementary information
essential to interpretation and understanding of
human behaviors (Oviatt, 1999). Psycholinguistic
studies also suggest that gesture and speech come
from a single underlying mental process, and they
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Figure 1: Example of multimodal prediction
model: listener nonverbal backchannel prediction
based on speaker’s speech and eye gaze. As the
speaker says the word her, which is the end of the
clause (her is also the object of the verb bother-
ing), and lowers the pitch while looking back at
the listener and eventually pausing, the listener
is then very likely to head nod (i.e., nonverbal
backchannel).

are related both temporally and semantically (Mc-
Neill, 1992; Cassell and Stone, 1999; Kendon,
2004).

A good example of such complementarity is
how people naturally integrate speech, gestures
and higher level language to predict when to give
backchannel feedback. Building computational
models of such a predictive process is challeng-
ing since it involves micro dynamics and temporal
relationship between cues from different modali-
ties (Quek, 2003). Figure 1 shows an example of
backchannel prediction where a listener head nod
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is more likely. For example, a temporal sequence
from the speaker where he/she reaches the end of
segment (syntactic feature) with a low pitch and
looks at the listener before pausing is a good op-
portunity for the listener to give nonverbal feed-
back (e.g., head nod). These prediction models
have broad applicability, including the improve-
ment of nonverbal behavior recognition, the syn-
thesis of natural animations for robots and virtual
humans, the training of cultural-specific nonver-
bal behaviors, and the diagnoses of social disor-
ders (e.g., autism spectrum disorder).

In this paper we introduce a new model
called Latent Mixture of Discriminative Experts
(LMDE) which addresses some of the key issues
with multimodal language processing: (1) tempo-
ral synchrony/asynchrony between modalities, (2)
micro dynamics and (3) integration of different
levels of interpretation. We present an empirical
evaluation on nonverbal feedback prediction (e.g.,
head nod) confirming the importance of combin-
ing different types of multimodal features. We
show that our LMDE model outperforms previ-
ous approaches based Conditional Random Fields
(CRFs) and Latent-Dynamic CRFs.

2 Related Work

Earlier work in multimodal language processing
focused on multimodal dialogue systems where
the gestures and speech may be constrained (John-
ston, 1998; Jurafsky et al., 1998). Most of
the research in multimodal language processing
over the past decade fits within two main trends
that have emerged: (1) recognition of individ-
ual multimodal actions such as speech and ges-
tures (e.g, (Eisenstein et al., 2008; Frampton et
al., 2009; Gravano et al., 2007)), and (2) recog-
nition/summarization of the social interaction be-
tween more than one participants (e.g., meeting
analysis (Heylen and op den Akker, 2007; Moore,
2007; Murray and Carenini, 2009; Jovanovic et
al., 2006)).

The work described in this paper can be seen
from a third intermediate category where multi-
modal cues from one person is used to predict
the social behavior of another participant. This
type of predictive models has been mostly stud-
ied in the context of embodied conversational

agents (Nakano et al., 2003; Nakano et al., 2007).
In particular, backchannel feedback (the nods and
paraverbals such as “uh-hu” and “mm-hmm” that
listeners produce as someone is speaking) has re-
ceived considerable interest due to its pervasive-
ness across languages and conversational contexts
and this paper addresses the problem of how to
predict and generate this important class of dyadic
nonverbal behavior.

Several researchers have developed models to
predict when backchannel should happen. In gen-
eral, these results are difficult to compare as they
utilize different corpora and present varying eval-
uation metrics. Ward and Tsukahara (2000) pro-
pose a unimodal approach where backchannels
are associated with a region of low pitch last-
ing 110ms during speech. Models were pro-
duced manually through an analysis of English
and Japanese conversational data. Nishimura
et al. (2007) present a unimodal decision-tree
approach for producing backchannels based on
prosodic features. Cathcart et al. (2003) propose a
unimodal model based on pause duration and tri-
gram part-of-speech frequency. The model was
constructed by identifying, from the HCRC Map
Task Corpus (Anderson et al., 1991), trigrams
ending with a backchannel. Fujie et al. (2004)
used Hidden Markov Models to perform head nod
recognition. In their paper, they combined head
gesture detection with prosodic low-level features
from the same person to determine strongly pos-
itive, weak positive and negative responses to
yes/no type utterances.

In recent years, great research has shown the
strength of latent variable models for natural lan-
guage processing (Blunsom et al., 2008). One of
the most relevant works is that of Eisenstein and
Davis (2007), which presents a latent conditional
model for fusion of multiple modalities (speech
and gestures). One of the key difference of our
work is that we are explicitly modeling the mi-
cro dynamics and temporal relationship between
modalities.

3 Multimodal Prediction Models

Human face-to-face communication is a little like
a dance, in that participants continuously adjust
their behaviors based on verbal and nonverbal dis-
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plays and signals. A topic of central interest in
modeling such behaviors is the patterning of in-
terlocutor actions and interactions, moment-by-
moment, and one of the key challenges is iden-
tifying the patterns that best predict specific ac-
tions. Thus we are interested in developing pre-
dictive models of communication dynamics that
integrate previous and current actions from all in-
terlocutors to anticipate the most likely next ac-
tions of one or all interlocutors. Humans are good
at this: they have an amazing ability to predict, at
a micro-level, the actions of an interlocutor (Bave-
las et al., 2000); and we know that better predic-
tions can correlate with more empathy and better
outcomes (Goldberg, 2005; Fuchs, 1987).

With turn-taking being perhaps the best-known
example, we now know a fair amount about some
aspects of communication dynamics, but much
less about others. However, recent advances in
machine learning and experimental methods, and
recent findings from a variety of perspectives, in-
cluding conversation analysis, social signal pro-
cessing, adaptation, corpus analysis and model-
ing, perceptual experiments, and dialog systems-
building and experimentation, mean that the time
is ripe to start working towards more comprehen-
sive predictive models.

The study of multimodal prediction models
bring a new series of research challenges:

MULTIMODAL ASYNCHRONY While speech
and gestures seem to come from a single under-
lying mental process (McNeill, 1992), they not
always happen at the same time, making it hard
for earlier multimodal fusion approaches based
on synchrony. A multimodal prediction model
needs to be able to learn automatically the tempo-
ral relationship (and relative importance) between
modalities.

MICRO DYNAMICS The dynamic between mul-
timodal signals should be taken at a micro level
since many of the interactions between speech and
gesture happen at the sub-gesture level or sub-
word level (Quek, 2003). Typical word-based
sampling may not be sufficient and instead a
higher sampling rate should be used.

LIMITED ANNOTATED DATA Given the time re-
quirement to correctly annotate multimodal data,

Figure 2: Latent Mixture of Discriminative Ex-
perts: a new dynamic model for multimodal fu-
sion. In this graphical model, xj represents the
jth multimodal observation, hj is a hidden state
assigned to xj , and yj the class label of xj . Gray
circles are latent variables. The micro dynamics
and multimodal temporal relationships are auto-
matically learned by the hidden states hj during
the learning phase.

most multimodal datasets contain only a limited
number of labeled examples. Since many ma-
chine learning algorithms rely on a large training
corpus, effective training of a predictive model on
multimodal datasets is challenging.

4 Latent Mixture of Discriminative
Experts

In this paper we present a multimodal fusion al-
gorithm, called Latent Mixture of Discriminative
Experts (shown in Figure 2), that addresses the
three challenges discussed in the previous section.
The hidden states of LMDE automatically learn
the temporal asynchrony between modalities. By
using a constant sample rate of 30Hz in our ex-
periments, we can model the micro dynamics of
speech and prosody (e.g., change of intonation
in the middle of a word). And finally, by train-
ing separate experts for each modalities, we im-
prove the prediction performance even with lim-
ited datasets.

The task of our LMDE model is to learn a map-
ping between a sequence of multimodal observa-
tions x = {x1, x2, ..., xm} and a sequence of la-
bels y = {y1, y2, ..., ym}. Each yj is a class la-
bel for the jth frame of a video sequence and is a
member of a set Y of possible class labels, for ex-
ample, Y = {head-nod,other-gesture}.
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Each frame observation xj is represented by a fea-
ture vector ϕ(xj) ∈ Rd, for example, the prosodic
features at each sample. For each sequence, we
also assume a vector of “sub-structure” variables
h = {h1, h2, ..., hm}. These variables are not ob-
served in the training examples and will therefore
form a set of hidden variables in the model.

Following Morency et al. (2007), we define our
LMDE model as follows:

P (y | x, θ) =
∑

h

P (y | h, x, θ)P (h | x, θ) (1)

where θ is the model parameters that is to be esti-
mated from training data.

To keep training and inference tractable,
Morency et al. (2007) restrict the model to have
disjoint sets of hidden states associated with each
class label. Each hj is a member of a set Hyj

of possible hidden states for the class label yj .
H, the set of all possible hidden states, is defined
to be the union of all Hy sets. Since sequences
which have any hj /∈ Hyj will by definition have
P (y | h, x, θ) = 0, latent conditional model be-
comes:

P (y | x, θ) =
∑

h:∀hj∈Hyj

P (h | x, θ). (2)

What differentiates our LMDE model from the
original work of Morency et al. is the definition of
P (h|x, θ):

P (h| x, θ) =

exp

( ∑
l θl · Tl(h, x)+∑
α θα · Pα(y|x, λα)

)

Z(x, θ)
,

(3)
where Z is the partition function and Pα(y|x) is

the conditional distribution of the expert indexed
by α. The expert conditional distributions are de-
fined Pα(y|x, λα) using the usual conditional ran-
dom field formulation:

Pα(y| x, λα) =
exp (

∑
k λα,k · Fα,k(y, x))

Zα(x, λα)
, (4)

Fα,k is defined as

Fα,k(y, x) =

m∑

j=1

fα,k(yj−1, yj , x, j),

and each feature function fα,k(yj−1, yj , x, j) is
either a state function sk(yj , x, j) or a transition
function tk(yj−1, yj , x, j). State functions sk de-
pend on a single hidden variable in the model
while transition functions tk can depend on pairs
of hidden variables. Tl(h, x), defined in Equa-
tion 3, is a special case, summing only over
the transition feature functions tl(hl−1, hl, x, l).
Each expert α contains a different subset of
fα,k(yj−1, yj , x, j). These feature functions are
defined in Section 5.2.

4.1 Learning Model Parameters
Given a training set consisting of n labeled se-
quences (xi,yi) for i = 1...n, training is done in
a two step process. First each expert α is trained
following (Kumar and Herbert., 2003; Lafferty et
al., 2001) objective function to learn the parame-
ter λ∗

α:

L(λα) =

n∑

i=1

log Pα(yi | xi, λα) − 1

2σ2
||λα||2

(5)
The first term in Eq. 5 is the conditional log-
likelihood of the training data. The second term
is the log of a Gaussian prior with variance σ2,
i.e., P (λα) ∼ exp

(
1

2σ2 ||λα||2
)
.

Then the marginal probabilities Pα(yj =
a | y, x, λ∗

α), are computed using belief prop-
agation and used as input for Equation 3. The
optimal parameter θ∗ was learned using the log-
likelyhood of the conditional probability defined
in Equation 2 (i.e., no regularization).

4.2 Inference
For testing, given a new test sequence x, we want
to estimate the most probable sequence of labels
y∗ that maximizes our LMDE model:

y∗ = arg max
y

∑

h:∀hi∈Hyi

P (h | x, θ∗) (6)

5 Experimental Setup

We evaluate our Latent Mixture of Discrimina-
tive Experts on the multimodal task of predicting
listener nonverbal backchannel (i.e., head nods).
Backchannel feedback (the nods and paraverbals
such as “uh-hu” and “mm-hmm” that listeners
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produce as some is speaking) has received con-
siderable interest due to its pervasiveness across
languages and conversational contexts.

5.1 Dataset

We are using the RAPPORT dataset from (Maat-
man et al., 2005), which contains 47 dyadic inter-
actions between a speaker and a listener. Data is
drawn from a study of face-to-face narrative dis-
course (“quasi-monologic” storytelling). In this
dataset, participants in groups of two were told
they were participating in a study to evaluate a
communicative technology. Subjects were ran-
domly assigned the role of speaker and listener.
The speaker viewed a short segment of a video
clip taken from the Edge Training Systems, Inc.
Sexual Harassment Awareness video. After the
speaker finished viewing the video, the listener
was led back into the computer room, where the
speaker was instructed to retell the stories por-
trayed in the clips to the listener. The listener
was asked to not talk during the story retelling.
Elicited stories were approximately two minutes
in length on average. Participants sat approxi-
mately 8 feet apart. Video sequences were manu-
ally annotated to determine the ground truth head
nod labels. A total of 587 head nods occured over
all video sequences.

5.2 Multimodal Features

This section describes the different multimodal
features used to create our five experts.

PROSODY Prosody refers to the rhythm, pitch and
intonation of speech. Several studies have demon-
strated that listener feedback is correlated with a
speaker’s prosody (Nishimura et al., 2007; Ward
and Tsukahara, 2000; Cathcart et al., 2003). For
example, Ward and Tsukahara (2000) show that
short listener backchannels (listener utterances
like “ok” or “uh-huh” given during a speaker’s ut-
terance) are associated with a lowering of pitch
over some interval. Listener feedback often fol-
lows speaker pauses or filled pauses such as
“um” (see (Cathcart et al., 2003)). Using openS-
MILE (Eyben et al., 2009) toolbox, we extract the
following prosodic features, including standard
linguistic annotations and the prosodic features
suggested by Ward and Tsukhara: downslopes in

pitch continuing for at least 40ms, regions of pitch
lower than the 26th percentile continuing for at
least 110ms (i.e., lowness), drop or rise in energy
of speech (i.e., energy edge), Fast drop or rise in
energy of speech (i.e., energy fast edge), vowel
volume (i.e., vowels are usually spoken softer)
and Pause in speech (i.e., no speech).

VISUAL GESTURES Gestures performed by the
speaker are often correlated with listener feed-
back (Burgoon et al., 1995). Eye gaze, in particu-
lar, has often been implicated as eliciting listener
feedback. Thus, we manually annotate the follow-
ing contextual feature: speaker looking at the lis-
tener.

LEXICAL Some studies have suggested an asso-
ciation between lexical features and listener feed-
back (Cathcart et al., 2003). Using the transcrip-
tions, we included all individual words (i.e., uni-
grams) spoken by the speaker during the interac-
tions.

SYNTACTIC STRUCTURE Finally, we attempt
to capture syntactic information that may pro-
vide relevant cues by extracting four types of fea-
tures from a syntactic dependency structure cor-
responding to the utterance. The syntactic struc-
ture is produced automatically using a CRF part-
of-speech (POS) tagger and a data-driven left-to-
right shift-reduce dependency parser (Sagae and
Tsujii, 2007), both trained on POS tags and de-
pendency trees extracted from the Switchboard
section of the Penn Treebank (Marcus et al.,
1994), converted to dependency trees using the
Penn2Malt tool1. The four syntactic features are:

• Part-of-speech tags for each word (e.g. noun,
verb, etc.), taken from the output of the POS
tagger

• Grammatical function for each word (e.g.
subject, object, etc.), taken directly from the
dependency labels produced by the parser

• Part-of-speech of the syntactic head of each
word, taken from the dependency links pro-
duced by the parser

• Distance and direction from each word to its
syntactic head, computed from the depen-
dency links produced by the parser

1http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html
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Figure 3: Baseline Models: a) Conditional Random Fields (CRF), b) Latent Dynamic Conditional
Random Fields(LDCRF), c) CRF Mixture of Experts (no latent variable)

Although our current method for extracting
these features requires that the entire utterance
be available for processing, this provides us with
a first step towards integrating information about
syntactic structure in multimodal prediction mod-
els. Many of these features could in principle be
computed incrementally with only a slight degra-
dation in accuracy, with the exception of features
that require dependency links where a word’s syn-
tactic head is to the right of the word itself. We
leave an investigation that examines only syntac-
tic features that can be produced incrementally in
real time as future work.

5.3 Baseline Models

INDIVIDUAL EXPERTS Our first baseline model
consists of a set of CRF chain models, each
trained with different set of multimodel features
(as described in the previous section). In other
words, only visual, prosodic, lexical or syntactic
features are used to train a single CRF expert. In
one CRF chain model, each gesture class corre-
sponds to a state label. (See Figure 3a).

MULTIMODAL CLASSIFIERS (EARLY FUSION)
Our second baseline consists of two models: CRF
and LDCRF (Morency et al., 2007). To train these
models, we concatenate all multimodal features
(lexical, syntactic, prosodic and visual) in one in-
put vector. Graphical representation of these base-
line models are given in Figure 3.

CRF MIXTURE OF EXPERTS To show the im-
portance of latent variable in our LMDE model,
we trained a CRF-based mixture of discriminative
experts. This model is similar to the Logarithmic
Opinion Pool (LOP) CRF suggested by Smith et
al. (2005). The training is performed in two steps.
A graphical representation of a CRF Mixture of

experts is given in the last graph of Figure 3.

5.4 Methodology

We performed held-out testing by randomly se-
lecting a subset of 11 interactions (out of 47) for
the test set. The training set contains the remain-
ing 36 dyadic interactions. All models in this pa-
per were evaluated with the same training and test
sets. Validation of all model parameters (regular-
ization term and number of hidden states) was per-
formed using a 3-fold cross-validation strategy on
the training set. The regularization term was vali-
dated with values 10k, k = −1..3. Three different
number of hidden states were tested for the LMDE
models: 2, 3 and 4.

The performance is measured by using the F-
measure. This is the weighted harmonic mean
of precision and recall. Precision is the proba-
bility that predicted backchannels correspond to
actual listener behavior. Recall is the probabil-
ity that a backchannel produced by a listener in
our test set was predicted by the model. We use
the same weight for both precision and recall, so-
called F1. During validation we find all the peaks
(i.e., local maxima) from the marginal probabil-
ities. These backchannel hypotheses are filtered
using the optimal threshold from the validation
set. A backchannel (i.e., head nod) is predicted
correctly if a peak happens during an actual lis-
tener backchannel with high enough probability.
The same evaluation measurement is applied to all
models.

The training of all CRFs and LDCRFs were
done using the hCRF library2. The LMDE model
was implemented in Matlab3 based on the hCRF

2http://sourceforge.net/projects/hrcf/
3The source code is available at:

http://projects.ict.usc.edu/multicomp/.
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Table 1: Comparison of individual experts with
our Latent Mixture of Discriminative Experts
(LMDE).

Expert Precision Recall f1
Lexical 0.1647 0.3305 0.2198
Prosody 0.1396 0.9112 0.2421
Syntactic 0.1833 0.4663 0.2632
POS 0.1935 0.4514 0.2709
Eye Gaze 0.1573 0.1741 0.1653
LMDE 0.2295 0.5677 0.3268
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Figure 4: Comparison of individual experts with
our LMDE model.

library.

6 Results and Discussion

In this section we present the results of our empiri-
cal evaluation designed to test the three main char-
acteristics of the LMDE model: (1) integration of
multiple sources of information, (2) late fusion ap-
proach and (3) latent variable which models the
hidden dynamic between experts. We also present
an analysis of the output probabilities from the
LMDE model and individual experts.

INDIVIDUAL EXPERTS We trained one individ-
ual expert for each feature types: visual, prosodic,
lexical and syntactic features (both part-of speech
and syntactic structure). Precision, recall and F1

values for each individual expert and our LMDE
model are shown in Table 1 and Figure 4.

Pairwise two-tailed t-test comparison between
our LMDE model and individual experts shows a

Table 2: Comparison of our Latent Mixture of
Discriminative Experts (LMDE) with two early
fusion technique (CRF vs LDCRF) and the CRF
Mixture of Experts (Smith et al., 2005).

model Precision Recall f1
LMDE 0.2295 0.5677 0.3268
Early CRF 0.13958 0.9245 0.2425
Early LDCRF 0.1826 0.2484 0.2105
Mixture CRF 0.1502 0.2712 0.1934

significant difference for Lexical, Prosody, Syn-
tactic and Eye gaze, with respective p-values of
0.0037, 0.0379, 0.0400 and 0.0233. Even though
some experts may not perform well individually
(e.g., eye gaze), they can bring important informa-
tion once merged with others. Table 1 shows that
our LMDE model was able to take advantage of
the complementary information from each expert.

LATE FUSION We compare our approach with
two early fusion models: CRF and Latent-
dynamic CRF (see Figure 3). Table 2 summarizes
the results. The CRF model learns direct weights
between input features and the gesture labels. The
LDCRF is able to model more complex dynam-
ics between input features with the latent variable.
We can see that our LMDE model outperforms
both early fusion approaches because of its late
fusion approach. Pairwise two-tailed t-test analy-
sis gives p-values of 0.0481 and 0.0748, for CRF
and LDCRF respectively.

LATENT VARIABLE The CRF Mixture of Ex-
perts (2005) directly merges the expert outputs
while our model uses a latent variable to model the
hidden dynamic between experts (see Figure 3).
Table 2 summarizes the results. Pairwise two-
tailed t-test comparison between these two mod-
els shows a significant difference with a p-value
of 0.0062. This result is important since it shows
that our LMDE model does learn the hidden inter-
action between experts.

MODEL ANALYSIS To understand the multi-
modal integration which happens at the latent
variable level in our LMDE model, Figure 5
shows the output probabilities for all five individ-
ual experts as well as our model. The strength of
the latent variable is to enable different weigting
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Figure 5: Output probabilities from LMDE and individual experts for two different sub-sequences. The
gray areas in the graph corresponds to ground truth backchannel feedbacks of the listener.

of the experts at different point in time.
By analyzing the sequence (a), we observe that

both the POS and Syntactic experts learned that
when no words are present (i.e., pause) there is
a high likelihood of backchennel feedback from
the listener (shown at 5.6s and 10.3s). These two
experts are highly weighted (by one of the hid-
den state) during this part of the sequence. Also,
both the Lexical and POS experts learned that the
word ”‘that”’ (and its part-of-speech) are impor-
tant but since the speaker is not looking at the
listener when saying it, the output from LMDE
model is low (see Figure 5, Sequence (a), 7.7s).

By analyzing sequence (b), we see that the Lex-
ical and POS experts learned the importance of the
”‘and”’ at 15.6s and 20.5s. More importantly, we
can see at 17.0s and 18.7s that the influence of
the POS and Syntactic experts have been reduced
in the LMDE output probability. This difference
of weighting shows that a different hidden state is
active during Sequence (b).

7 Conclusion

In this paper we introduced a new model
called Latent Mixture of Discriminative Experts
(LMDE) for learning predictive models of human
communication behaviors. Many of the interac-
tions between speech and gesture happen at the

sub-gesture or sub-word level. LMDE learns au-
tomatically the temporal relationship between dif-
ferent modalities. Since, we train separate experts
for each modality, LMDE is capable of improv-
ing the prediction performance even with limited
datasets.

We evaluated our model on the task of non-
verbal feedback prediction (e.g., head nod). Our
experiments confirm the importance of combin-
ing the four types of multimodal features: lexical,
syntactic structure, eye gaze, and prosody. LMDE
is a generic model that can be applied to a wide
range of problems. As future work, we are plan-
ning to test our model on dialog act classification
and multimodal behavior recognition tasks.
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Abstract 

Text summarization solves the problem 
of extracting important information from 
huge amount of text data. There are vari-
ous methods in the literature that aim to 
find out well-formed summaries. One of 
the most commonly used methods is the 
Latent Semantic Analysis (LSA). In this 
paper, different LSA based summariza-
tion algorithms are explained and two 
new LSA based summarization algo-
rithms are proposed. The algorithms are 
evaluated on Turkish documents, and 
their performances are compared using 
their ROUGE-L scores. One of our algo-
rithms produces the best scores. 

1 Introduction 

The exponential growth in text documents brings 
the problem of finding out whether a text docu-
ment meets the needs of a user or not. In order to 
solve this problem, text summarization systems 
which extract brief information from a given text 
are created. By just looking at the summary of a 
document, a user can decide whether the docu-
ment is of interest to him/her without looking at 
the whole document. 

The aim of a text summarization system is to 
generate a summary for a given document such 
that the generated summary contains all neces-
sary information in the text, and it does not in-
clude redundant information. Summaries can 
have different forms (Hahn and Mani, 2000). 
Extractive summarization systems collect impor-
tant sentences from the input text in order to 
generate summaries. Abstractive summarization 
systems do not collect sentences from the input 

text, but they try to capture the main concepts in 
the text, and generate new sentences to represent 
these main concepts. Abstractive summarization 
approach is similar to the way that human sum-
marizers follow. Since creating abstractive 
summaries is a more complex task, most of 
automatic text summarization systems are ex-
tractive summarization systems. 

Summarization methods can be categorized 
according to what they generate and how they 
generate it (Hovy and Lin, 1999). A summary 
can be extracted from a single document or from 
multiple documents. If a summary is generated 
from a single document, it is known as single-
document summarization. On the other hand, if a 
single summary is generated from multiple 
documents on the same subject, this is known as 
multi-document summarization. Summaries are 
also categorized as generic summaries and 
query-based summaries. Generic summarization 
systems generate summaries containing main 
topics of documents. In query-based summariza-
tion, the generated summaries contain the sen-
tences that are related to the given queries.  

Extractive summarization systems determine 
the important sentences of the text in order to 
put them into the summary. The important sen-
tences of the text are the sentences that represent 
the main topics of the text. Summarization sys-
tems use different approaches to determine the 
important sentences (Hahn and Mani, 2000; 
Hovy and Lin, 1999). Some of them look surface 
clues such as the position of the sentence and the 
words that are contained in the sentence. Some 
summarization systems use more semantic ori-
ented analysis such as lexical chains in order to 
determine the important sentences. Lately, an 
algebraic method known as Latent Semantic 
Analysis (LSA) is used in the determination of 
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the important sentences, and successful results 
are obtained (Gong and Liu, 2001).  

In this paper, we present a generic extractive 
Turkish text summarization system based on 
LSA. We applied the known text summarization 
approaches based on LSA in order to extract the 
summaries of Turkish texts. One of the main 
contributions of this paper is the introduction of 
two new summarization methods based on LSA. 
One of our methods produced much better re-
sults than the results of the other known methods.  

The rest of the paper is organized as follows. 
Section 2 presents the related work in summari-
zation. Section 3 explains the LSA approach in 
detail. Then, the existing algorithms that use dif-
ferent LSA approaches are presented (Gong and 
Liu, 2001; Steinberger and Jezek 2004; Murray 
et al., 2005), and two new algorithms are pro-
posed in Section 4. Section 5 presents the 
evaluation results of these algorithms, and Sec-
tion 6 presents the concluding remarks. 

2 Related Work 

Text summarization is an active research area 
of natural language processing. Its aim is to ex-
tract short representative information from input 
documents. Since the 1950s, various methods 
are proposed and evaluated. The first studies 
conducted on text summaries use simple features 
like terms from keywords/key phrases, terms 
from user queries, frequency of words, and posi-
tion of words/sentences (Luhn, 1958).  

The use of statistical methods is another ap-
proach used for summary extraction. The most 
well known project that uses statistical approach 
is the SUMMARIST (Hovy and Lin, 1999). In 
this project, natural language processing meth-
ods are used together with the concept relevance 
information. The concept relevance information 
is extracted from dictionaries and WordNet.  

Text connectivity is another approach used for 
summarization. The most well-known algorithm 
that uses text connectivity is the lexical chains 
method (Barzilay and Elhadad, 1997; Ercan and 
Cicekli, 2008). In lexical chains method, Word-
Net and dictionaries are used to determine se-
mantic relations between words where semanti-
cally related words construct lexical chains. 
Lexical chains are used in the determination of 
the important sentences of the text. 

TextRank (Mihalcea and Tarau, 2004) is a 
summarization algorithm which is based on 
graphs, where nodes are sentences and edges 
represent similarity between sentences. The 
similarity value is decided by using the overlap-
ping terms. Cluster Lexrank (Qazvinian and 
Radev, 2008) is another graph-based summariza-
tion algorithm, and it tries to find important sen-
tences in a graph in which nodes are sentences 
and edges are similarities.  

In recent years, algebraic methods are used 
for text summarization. Most well-known alge-
braic algorithm is Latent Semantic Analysis 
(LSA) (Landauer et al., 1998). This algorithm 
finds similarity of sentences and similarity of 
words using an algebraic method, namely Singu-
lar Value Decomposition (SVD). Besides text 
summarization, the LSA algorithm is also used 
for document clustering and information filter-
ing. 

3 Latent Semantic Analysis 

Latent Semantic Analysis (LSA) is an algebraic-
statistical method that extracts meaning of words 
and similarity of sentences using the information 
about the usage of the words in the context. It 
keeps information about which words are used 
in a sentence, while preserving information of 
common words among sentences. The more 
common words between sentences mean that 
those sentences are more semantically related. 

LSA method can represent the meaning of 
words and the meaning of sentences simultane-
ously. It averages the meaning of words that a 
sentence contains to find out the meaning of that 
sentence. It represents the meaning of words by 
averaging the meaning of sentences that contain 
this word. 

LSA method uses Singular Value Decomposi-
tion (SVD) for finding out semantically similar 
words and sentences. SVD is a method that 
models relationships among words and sen-
tences. It has the capability of noise reduction, 
which leads to an improvement in accuracy.  

LSA has three main limitations. The first limi-
tation is that it uses only the information in the 
input text, and it does not use the information of 
world knowledge. The second limitation is that it 
does not use the information of word order, syn-
tactic relations, or morphologies. Such informa-
tion is used for finding out the meaning of words 

870



and texts. The third limitation is that the per-
formance of the algorithm decreases with large 
and inhomogeneous data. The decrease in per-
formance is observed since SVD which is a very 
complex algorithm is used for finding out the 
similarities.  

All summarization methods based on LSA use 
three main steps. These steps are as follows: 
1. Input Matrix Creation: A matrix which 

represents the input text is created. The col-
umns of the matrix represent the sentences of 
the input text and the rows represent the 
words. The cells are filled out to represent the 
importance of words in sentences using dif-
ferent approaches, whose details are de-
scribed in the rest of this section. The created 
matrix is sparse.  

2. Singular Value Decomposition (SVD): Singu-
lar value decomposition is a mathematical 
method which models the relationships 
among terms and sentences. It decomposes 
the input matrix into three other matrices as 
follows:  

   A = U ∑ VT  
 where A is the input matrix with dimensions 

m x n, U is an m x n matrix which represents 
the description of the original rows of the in-
put matrix as a vector of extracted concepts, 
∑ is an n x n diagonal matrix containing scal-
ing values sorted in descending order, and V 
is an m x n matrix which represents the de-
scription of the original columns of input ma-
trix as a vector of the extracted concepts. 

3. Sentence Selection:  Different algorithms are 
proposed to select sentences from the input 
text for summarization using the results of 
SVD. The details of these algorithms are de-
scribed in Section 4. 
The creation of the input matrix is important 

for summarization, since it affects the resulting 
matrices of SVD. There are some ways to reduce 
the row size of the input matrix, such as elimi-
nating words seen in stop words list, or using the 
root words only. There are also different ap-
proaches to fill out the input matrix cell values, 
and each of them affects the performance of the 
summarization system differently. These ap-
proaches are as follows:  

1. Number of Occurrence: The cell is filled with 
the frequency of the word in the sentence. 

2. Binary Representation of Number of Occur-
rence: If the word is seen in the sentence, the 
cell is filled with 1; otherwise it is filled with 
0. 

3. TF-IDF (Term Frequency–Inverse Document 
Frequency): The cell is filled with TF-IDF 
value of the word. This method evaluates the 
importance of words in a sentence. The im-
portance of a word is high if it is frequent in 
the sentence, but less frequent in the docu-
ment. TF-IDF is equal to TF*IDF, and TF 
and IDF are computed as follows: 

   tf (i,j) = n(i,j)  /  ∑k n(k,j) 
 where n(i,j) is the number of occurrences of 

the considered word i in sentence j, and    ∑k 
n(k,j) is the sum of number of occurrences of 
all words in sentence j. 

   idf (i) = log( |D| / di) 
 where |D| is the total number of sentences in 

the input text, and di is the number of sen-
tences where the word i appears 

4. Log Entropy: The cell is filled with log-
entropy value of the word, and it is computed 
as follows. 

sum = ∑j p(i,j) log2(p(i,j)) 
global(i) = 1 + (sum / log2(n)) 
local(i,j)= log2(1 + f(i,j)) 
log-entropy = global*local 

 where p(i,j) is the probability of word i that is 
appeared in sentence j, f(i,j) is the number of 
times word i appeared in sentence j, and n is 
the number of sentences in the document. 

5. Root Type: If the root type of the word is 
noun, the related cell is filled with the fre-
quency of the word in the sentence; otherwise 
the cell is filled with 0. 

6. Modified TF-IDF: First the matrix is filled 
with TF-IDF values. Then, the average TF-
IDF values in each row are calculated. If the 
value in the cell is less than or equal to the 
average value, the cell value is set to 0. This 
is our new approach which is proposed to 
eliminate the noise from the input matrix. 
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4 Text Summarization 

The algorithms in the literature that use LSA for 
text summarization perform the first two steps of 
LSA algorithm in the same way. They differ in 
the way they fill out the input matrix cells. 

4.1 Sentence Selection Algorithms in Lit-
erature 

4.1.1. Gong & Liu (Gong and Liu, 2001) 
After performing the first two steps of the LSA 
algorithm, Gong & Liu summarization algorithm 
uses VT matrix for sentence selection. The col-
umns of VT matrix represent the sentences of the 
input matrix and the rows of it represent the 
concepts that are obtained from SVD method. 
The most important concept in the text is placed 
in the first row, and the row order indicates the 
importance of concepts. Cells of this matrix give 
information about how much the sentence is re-
lated to the given concept. A higher cell value 
means the sentence is more related to the con-
cept.  

In Gong & Liu summarization algorithm, the 
first concept is chosen, and then the sentence 
most related to this concept is chosen as a part of 
the resulting summary. Then the second concept 
is chosen, and the same step is executed. This 
repetition of choosing a concept and the sen-
tence most related to that concept is continued 
until a predefined number of sentences are ex-
tracted as a part of the summary. In Figure 1, an 
example VT matrix is given. First, the concept 
con0 is chosen, and then the sentence sent1 is 
chosen, since it has the highest cell value in that 
row. 

There are some disadvantages of this algo-
rithm, which are defined by Steinberger and 
Jezek (2004). First, the reduced dimension size 
has to be the same as the summary length. This 
approach may lead to the extraction of sentences 
from less significant concepts. Second, there 
exist some sentences that are related to the cho-
sen concept somehow, but do not have the high-
est cell value in the row of that concept. These 
kinds of sentences cannot be included in the re-
sulting summary by this algorithm. Third, all 
chosen concepts are thought to be in the same 
importance level, but some of those concepts 
may not be so important in the input text. 

 

 sent0 sent1 sent2 sent3 sent4 
con0 0,557 0,691 0,241 0,110 0,432
con1 0,345 0,674 0,742 0,212 0,567
con2 0,732 0,232 0,435 0,157 0,246
con3 0,628 0,836 0,783 0,265 0,343

Figure 1. Gong & Liu approach: From each row 
of VT matrix which represents a concept, the sen-
tence with the highest score is selected. This is 
repeated until a predefined number of sentences 
are collected. 
 

4.1.2.   Steinberger & Jezek (Steinberger and 
Jezek 2004)  
As in the Gong & Liu summarization algorithm, 
the first two steps of LSA algorithm are exe-
cuted before selecting sentences to be a part of 
the resulting summary. For sentence selection, 
both V and ∑ matrixes are used.  

The sentence selection step of this algorithm 
starts with the calculation of the length of each 
sentence vector which is represented by a row in 
V matrix. In order to find the length of a sen-
tence vector, only concepts whose indexes are 
less than or equal to the number of dimension in 
the new space is used. The dimension of a new 
space is given as a parameter to the algorithm. 
The concepts which are highly related to the text 
are given more importance by using the values 
in ∑ matrix as a multiplication parameter. If the 
dimension of the new space is n, the length of 
the sentence i is calculated as follows: 

 ∑
=

Σ=
n

j
jjjii Vlength

1
*  

After the calculation of sentence lengths, the 
longest sentences are chosen as a part of the re-
sulting summary. In Figure 2, an example V ma-
trix is given, and the dimension of the new space 
is assumed to be 3. The lengths of the sentences 
are calculated using the first three concepts. 
Since the sentence sent2 has the highest length, 
it is extracted first as a part of the summary. 

The aim of this algorithm is to get rid of the 
disadvantages of Gong & Liu summarization 
algorithm, by choosing sentences which are re-
lated to all important concepts and at the same 
time choosing more than one sentence from an 
important topic. 
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 con0 con1 con2 con3 length
sent0 0,846 0,334 0,231 0,210 0,432 
sent1 0,455 0,235 0,432 0,342 0,543 
sent2 0,562 0,632 0,735 0,857 0,723 
sent3 0,378 0,186 0,248 0,545 0,235 

Figure 2. Steinberger & Jezek approach: For 
each row of V matrix, the lengths of sentences 
using n concepts are calculated. The value n is 
given as an input parameter. ∑ matrix values are 
also used as importance parameters in the length 
calculations. 

 
 sent0 sent1 sent2 sent3 sent4 
con0 0,557 0,691 0,241 0,110 0,432
con1 0,345 0,674 0,742 0,212 0,567
con2 0,732 0,232 0,435 0,157 0,246
con3 0,628 0,836 0,783 0,265 0,343

Figure 3. Murray & Renals & Carletta ap-
proach: From each row of VT matrix, concepts, 
one or more sentences with the higher scores are 
selected. The number of sentences to be selected 
is decided by using ∑ matrix. 

4.1.3.   Murray & Renals & Carletta (Murray 
et al., 2005)  
The first two steps of the LSA algorithm are 
executed, as in the previous algorithms before 
the construction of the summary. VT and ∑ ma-
trices are used for sentence selection. 

In this approach, one or more sentences are 
collected from the topmost concepts in VT ma-
trix. The number of sentences to be selected de-
pends on the values in the ∑ matrix. The number 
of sentences to be collected for each topic is de-
termined by getting the percentage of the related 
singular value over the sum of all singular val-
ues, which are represented in the ∑ matrix. In 
Figure 3, an example VT matrix is given. Let’s 
choose two sentences from con0, and one sen-
tence from con1. Thus, the sentences sent1 and 
sent0 are selected from con0, and sent2 is se-
lected from con1 as a part of the summary. 

This approach tries to solve the problems of 
Gong & Liu’s approach. The reduced dimension 
has not to be same as the number of sentences in 
the resulting summary. Also, more than one sen-
tence can be chosen even they do not have the 
highest cell value in the row of the related con-
cept. 

4.2 Proposed Sentence Selection Algo-
rithms 

The analysis of input documents indicates that 
some sentences, especially the ones in the intro-
duction and conclusion parts of the documents, 
belong to more than one main topic. In order to 
observe whether these sentences are important or 
they cause noise in matrices of LSA, we propose 
a new method, named as Cross. 

Another concern about matrices in LSA is that 
the concepts that are found after the SVD step 
may represent main topics or subtopics. So, it is 
important to determine whether the found con-
cepts are main topics or subtopics. This causes 
the ambiguity that whether these concepts are 
subtopics of another main topic, or all the con-
cepts are main topics of the input document. We 
propose another new method, named as Topic, in 
order to distinguish main topics from subtopics 
and make sentence selections from main topics. 

4.2.1.   Cross Method 
In this approach, the first two steps of LSA are 
executed in the same way as the other ap-
proaches. As in the Steinberger and Jezek ap-
proach, the VT matrix is used for sentence selec-
tion. The proposed approach, however, preproc-
esses the VT matrix before selecting the sen-
tences. First, an average sentence score is calcu-
lated for each concept which is represented by a 
row of VT matrix. If the value of a cell in that 
row is less than the calculated average score of 
that row, the score in the cell is set to zero. The 
main idea is that there can be sentences such that 
they are not the core sentences representing the 
topic, but they are related to the topic in some 
way. The preprocessing step removes the overall 
effect of such sentences.  

After preprocessing, the steps of Steinberger 
and Jezek approach are followed with a modifi-
cation. In our Cross approach, first the cell val-
ues are multiplied with the values in the ∑ ma-
trix, and the total lengths of sentence vectors, 
which are represented by the columns of the VT 

matrix, are calculated. Then, the longest sen-
tence vectors are collected as a part of the result-
ing summary. 

In Figure 4, an example VT matrix is given. 
First, the average scores of all concepts are cal-
culated, and the cells whose values are less than 
the average value of their row are set to zero. 
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The boldface numbers are below row averages 
in Figure 4, and they are set to zero before the 
calculation of the length scores of sentences. 
Then, the length score of each sentence is calcu-
lated by adding up the concept scores of sen-
tences in the updated matrix. In the end, the sen-
tence sent1 is chosen for the summary as the 
first sentence, since it has the highest length 
score. 

 
 sent0 sent1 sent2 sent3 average

con0 0,557 0,691 0,241 0,110 0,399 
con1 0,345 0,674 0,742 0,212 0,493 
con2 0,732 0,232 0,435 0,157 0,389 
con3 0,628 0,436 0,783 0,865 0,678 
con4 0,557 0,691 0,241 0,710 0,549 

length 1,846 2,056 1,960 1,575  

Figure 4. Cross approach: For each row of VT 

matrix, the cell values are set to zero if they are 
less than the row average. Then, the cell values 
are multiplied with the values in the ∑ matrix, 
and the lengths of sentence vectors are found, by 
summing up all concept values in columns of VT 

matrix, which represent the sentences. 

4.2.2. Topic Method 
The first two steps of LSA algorithm are exe-
cuted as in the other approaches. For sentence 
selection, the VT matrix is used. In the proposed 
approach, the main idea is to decide whether the 
concepts that are extracted from the matrix VT 

are really main topics of the input text, or they 
are subtopics. After deciding the main topics 
which may be a group of subtopics, the sen-
tences are collected as a part of the summary 
from the main topics.  

In the proposed algorithm, a preprocessing 
step is executed, as in the Cross approach. First, 
for each concept which is represented by a row 
of VT matrix, the average sentence score is cal-
culated and the values less than this score are set 
to zero. So, a sentence that is not highly related 
to a concept is removed from the concept in the 
VT matrix. Then, the main topics are found. In 
order to find out the main topics, a concept x 
concept matrix is created by summing up the cell 
values that are common between the concepts. 
After this step, the strength values of the con-
cepts are calculated. For this calculation, each 
concept is thought as a node, and the similarity 

values in concept x concept matrix are consid-
ered as edge scores. The strength value of each 
concept is calculated by summing up the values 
in each row in concept x concept matrix. The 
topics with the highest strength values are cho-
sen as the main topic of the input text. 
 

 sent0 sent1 sent2 sent3 average
con0 0,557 0,691 0,241 0,110 0,399 
con1 0,345 0,674 0,742 0,212 0,493 
con2 0,732 0,232 0,435 0,157 0,389 
con3 0,628 0,436 0,783 0,865 0,678 
con4 0,557 0,691 0,241 0,710 0,549 

 
 con0 con1 con2 con3 con4 strength

con0 1,248 1,365 1,289 0 2,496 6,398
con1 1,365 1,416 1,177 1,525 1,365 6,848
con2 1,289 1,177 0,732 1,218 1,289 5,705
con3 0 1,525 1,218 1,648 1,575 5,966
con4 2,496 1,365 1,289 1,575 1,958 8,683

 
 sent0 sent1 sent2 sent3 

con0 0,557 0.691 0 0 
con1 0 0,674 0,742 0 
con2 0,732 0 0,435 0 
con3 0 0 0,783 0,865 
con4 0,557 0.691 0 0,710 

Figure 5. Topic approach: From each row of VT 

matrix, concepts, the values are set to zero if 
they are less than the row average. Then concept 
x concept similarity matrix is created, and the 
strength values of concepts are calculated, which 
show how strong the concepts are related to the 
other concepts. Then the concept whose strength 
value is highest is chosen, and the sentence with 
the highest score from that concept is collected. 
The sentence selection s repeated until a prede-
fined number of sentences is collected. 

After the above steps, sentence selection is 
performed in a similar manner to Gong and Liu 
approach. For each main topic selected, the sen-
tence with the highest score is chosen. This se-
lection is done until predefined numbers of sen-
tences are collected. 

In Figure 5, an example VT matrix is given. 
First, the average scores of each concept is cal-
culated and shown in the last column of the ma-
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trix. The cell values that are less than the row 
average value (boldface numbers in Figure 5) 
are set to zero. Then, a concept x concept matrix 
is created by filling a cell with the summation of 
the cell values that are common between those 
two concepts.  The strength values of the con-
cepts are calculated by summing up the concept 
values, and the strength values are shown in the 
last column of the related matrix. A higher 
strength value indicates that the concept is much 
more related to the other concepts, and it is one 
of the main topics of the input text. After finding 
out the main topic which is the concept con4 in 
this example, the sentence with the highest cell 
value which is sentence sent3 is chosen as a part 
of the summary. 

5 Evaluation 

Two different sets of scientific articles in Turk-
ish are used for the evaluation our summariza-
tion approach. The articles are chosen from dif-
ferent areas, such as medicine, sociology, psy-
chology, having fifty articles in each set. The 
second data set has longer articles than the first 
data set. The abstracts of these articles, which 
are human-generated summaries, are used for 
comparison. The sentences in the abstracts may 
not match with the sentences in the input text. 
The statistics about these data sets are given in 
Table 1. 

 
 DS1 DS2 

Number of documents 50 50 
Sentences per document 89,7 147,3 
Words per document 2302,2 3435 
Words per sentence 25,6 23,3 

Table 1. Statistics of datasets 

Evaluation of summaries is an active research 
area. Judgment of human evaluators is a com-
mon approach for the evaluation, but it is very 
time consuming and may not be objective. An-
other approach that is used for summarization 
evaluation is to use the ROUGE evaluation ap-
proach (Lin and Hovy, 2003), which is based on 
n-gram co-occurrence, longest common subse-
quence and weighted longest common subse-
quence between the ideal summary and the ex-
tracted summary. Although we obtained all 
ROUGE results (ROUGE-1, ROUGE-2, 

ROUGE-3, ROUGE-W and ROUGE-L) in our 
evaluations, we only report ROUGE-L results in 
this paper. The discussions that are made de-
pending on our ROUGE-L results are also appli-
cable to other ROUGE results. Different LSA 
approaches are executed using different matrix 
creation methods.  

 
 G&L S&J MRC Cross Topic
frequency 0,236 0,250 0,244 0,302 0,244
binary 0,272 0,275  0,274  0,313 0,274 
tf-idf 0,200 0,218 0,213 0,304 0,213
logentropy 0,230 0,250 0,235  0,302  0,235 
root type 0,283 0,282  0,289  0,320  0,289 
mod. tf-idf 0,195 0,221  0,223  0,290  0,223 

Table 2. ROUGE-L scores for the data set DS1  

In Table 2, it can be observed that the Cross 
method has the highest ROUGE scores for all 
matrix creation techniques. The Topic method 
has the same results with Murray & Renals & 
Carletta approach, and it is better than the Gong 
& Liu approach. 

Table 2 indicates that all algorithms give their 
best results when the input matrix is created us-
ing the root type of words. Binary and log-
entropy approaches also produced good results. 
Modified tf-idf approach, which is proposed in 
this paper, did not work well for this data set. 
The modified tf-idf approach lacks performance 
because it removes some of the sentences/words 
from the input matrix, assuming that they cause 
noise. The documents in the data set DS1 are 
shorter documents, and most of words/sentences 
in shorter documents are important and should 
be kept.  

Table 3 indicates that the best F-score is 
achieved for all when the log-entropy method is 
used for matrix creation. Modified tf-idf ap-
proach is in the third rank for all algorithms. We 
can also observe that, creating matrix according 
to the root types of words did not work well for 
this data set. 

Given the evaluation results it can be said that 
Cross method, which is proposed in this paper, 
is a promising approach. Also Cross approach is 
not affected from the method of matrix creation. 
It produces good results when it is compared 
against an abstractive summary which is created 
by a human summarizer. 
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 G&L S&J MRC Cross Topic
frequency 0,256 0,251 0,259 0,264 0,259 
binary 0,191 0,220 0,189 0,274 0,189 
tf-idf 0,230 0,235 0,227 0,266 0,227 
logentropy 0,267 0,245 0,268 0,267 0,268 
root type 0,194 0,222 0,197 0,263 0,197 
mod. tf-idf 0,234 0,239 0,232 0,268 0,232 

Table 3. ROUGE-L scores for the data set DS2  

6 Conclusion 

The growth of text based resources brings the 
problem of getting the information matching 
needs of user. In order to solve this problem, text 
summarization methods are proposed and evalu-
ated. The research on summarization started 
with the extraction of simple features and im-
proved to use different methods, such as lexical 
chains, statistical approaches, graph based ap-
proaches, and algebraic solutions. One of the 
algebraic-statistical approaches is Latent Seman-
tic Analysis method. 

In this study, text summarization methods 
which use Latent Semantic Analysis are ex-
plained. Besides well-known Latent Semantic 
Analysis approaches of Gong & Liu, Steinberger 
& Jezek and Murray & Renals & Carletta, two 
new approaches, namely Cross and Topic, are 
proposed. 

Two approaches explained in this paper are 
evaluated using two different datasets that are in 
Turkish. The comparison of these approaches is 
done using the ROUGE-L F-measure score. The 
results show that the Cross method is better than 
all other approaches. Another important result of 
this approach is that it is not affected by differ-
ent input matrix creation methods.  

In future work, the proposed approaches will 
be improved and evaluated in English texts as 
well. Also, ideas that are used in other methods, 
such as graph based approaches, will be used 
together with the proposed approaches to im-
prove the performance of summarization. 
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Abstract

Although much work in NLP has focused
on simply determining what a document
means, we also must know whether or not
to believe it. Fact-finding algorithms at-
tempt to identify the “truth” among com-
peting claims in a corpus, but fail to
take advantage of the user’s prior knowl-
edge and presume that truth itself is uni-
versal and objective rather than subjec-
tive. We introduce a framework for incor-
porating prior knowledge into any fact-
finding algorithm, expressing both gen-
eral “common-sense” reasoning and spe-
cific facts already known to the user as
first-order logic and translating this into
a tractable linear program. As our results
show, this approach scales well to even
large problems, both reducing error and
allowing the system to determine truth re-
spective to the user rather than the major-
ity. Additionally, we introduce three new
fact-finding algorithms capable of outper-
forming existing fact-finders in many of
our experiments.

1 Introduction

Although establishing the trustworthiness of the
information presented to us has always been a
challenge, the advent of the Information Age and
the Internet has made it more critical. Blogs,
wikis, message boards and other collaborative
media have eliminated the high entry barrier–
and, with it, the enforced journalistic standards–of
older, established media such as newspapers and
television, and even these sometimes loosen their
fact-checking in the face of increased competitive
pressure. Consequently, we find that corpora de-
rived from these sources now offer far more nu-
merous views of far more questionable veracity.

If one author claims Mumbai is the largest city in
the world, and another claims it is Seoul, who do
we believe? One or both authors could be inten-
tionally lying, honestly mistaken or, alternatively,
of different viewpoints of what constitutes a “city”
(the city proper? The metropolitan area?) Truth is
not objective: there may be many valid definitions
of “city”, but we should believe the claim that ac-
cords with our user’s viewpoint. Note that the user
may be another computational system rather than
a human (e.g. building a knowledge base of city
sizes for question answering), and often neither
the user’s nor the information source’s perspective
will be explicit (e.g. an author will not fully elabo-
rate “the largest city by metropolitan area bounded
by...”) but will instead be implied (e.g. a user’s
statement that “I already know the population of
city A is X, city B is Y...” implies that his defini-
tion of a city accords with these figures).

The most basic approach is to take a vote: if
multiple claims are mutually exclusive of each
other, select the one asserted by the most sources.
In our experiments, sources will be the authors
of the document containing the claim, but other
sources could be publishers/websites (when no
authorship is given), an algorithm that outputs
claims, etc. Although sometimes competitive, we
found voting to be generally lackluster. A class of
algorithms called fact-finders are often a dramatic
improvement, but are incapable of taking advan-
tage of the user’s prior knowledge. Our framework
translates prior knowledge (expressed as first-
order logic) into a linear program that constrains
the claim beliefs produced by a fact-finder, en-
suring that our belief state is consistent with both
common sense (“cities usually grow”) and known
facts (“Los Angeles is more populous than Wi-
chita”). While in the past first-order logic has been
translated to NP-hard integer linear programs, we
use polynomial-time-solvable linear programs, al-
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lowing us to readily scale to large problems with
extensive prior knowledge, as demonstrated by
our experiments.

We next discuss related work, followed by
a more in-depth description of the fact-finding
algorithms used in our experiments, includ-
ing three novel, high-performing algorithms:
Average·Log, Investment, and PooledInvestment.
We then present the framework’s mechanics and
the translation of first-order logic into a linear pro-
gram. Finally, we present our experimental setup
and results over three domains chosen to illustrate
different aspects of the framework, demonstrating
that both our new fact-finders and our framework
offer performance improvements over the current
state of the art.

2 Related Work

The broader field of trust can be split into three ar-
eas of interest1: theoretical, reputation-based, and
information-based.

2.1 Theoretical
Marsh (1994) observes that trust can be global
(e.g. eBay’s feedback scores), personal (each per-
son has their own trust values), or situational (per-
sonal and specific to a context). Fact-finding algo-
rithms are based on global trust, while our frame-
work establishes personal trust by exploiting the
user’s individual prior knowledge.

Probabilistic logics have been explored as an
alternate method of reasoning about trust. Man-
chala (1998) utilizes fuzzy logic (Novak et al.,
1999), an extension of propositional logic permit-
ting [0,1] belief over propositions. Yu and Singh
(2003) employs Dempster-Shafer theory (Shafer,
1976), with belief triples (mass, belief, and plausi-
bility) over sets of possibilities to permit the mod-
eling of ignorance, while Josang et al. (2006) uses
the related subjective logic (Josang, 1997). While
our belief in a claim is decidedly Bayesian (the
probability that the claim is true), “unknowns”
(discussed later) allow us to reason about igno-
rance as subjective logic and Dempster-Shafer do,
but with less complexity.

1Following the division proposed by Artz and Gil (2007);
see also (Sabater and Sierra, 2005) for a survey from a dif-
ferent perspective.

2.2 Reputation-based
Reputation-based systems determine an entity’s
trust or standing among peers via transitive rec-
ommendations, as PageRank (Brin and Page,
1998) does among web pages, Advogato (Levien,
2008) does among people, and Eigentrust (Kam-
var et al., 2003) does among peers in a net-
work. Some, such as Hubs and Authorities (Klein-
berg, 1999), are readily adapted to fact-finding, as
demonstrated later.

2.3 Information-Based
Information-based approaches utilize content
(rather than peer recommendations) to compute
trust, and are often specialized for a particular do-
main. For example, (Zeng et al., 2006) and Wik-
itrust (Adler and de Alfaro, 2007) determine trust
in a wiki’s text passages from sequences of revi-
sions but lack the claim-level granularity and gen-
eral applicability of fact-finders.

Given a large set of sources making conflicting
claims, fact-finders determine “the truth” by iter-
atively updating their parameters, calculating be-
lief in facts based on the trust in their sources, and
the trust in sources based on belief in their facts.
TruthFinder (Yin et al., 2008) is a straightforward
implementation of this idea. AccuVote (Dong et
al., 2009a; Dong et al., 2009b) improves on this
by using calculated source dependence (where
one source derives its information from another)
to give higher credibility to independent sources.
(Galland et al., 2010)’s 3-Estimates algorithm in-
corporates the estimated “hardness” of a fact, such
that knowing the answer to an easy question earns
less trust than to a hard one. Except for AccuVote
(whose model of repeated source-to-source copy-
ing is inapplicable to our experimental domains)
we experimented over all of these algorithms.

3 Fact-Finding

We have a set of sources S each asserting a set of
claims Cs, with C =

⋃
s∈S Cs. Each claim c ∈ C

belongs to a mutual exclusion set Mc ⊆ C, a set
of claims (including c) that are mutually exclusive
with one another; for example, “John was born
in 1960” and “John was born in 1965” are mutu-
ally exclusive because a person cannot be born in
more than one year. If c is not mutually exclusive
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to any other claims, then Mc = {c}. Assuming
there exists exactly one true claim c in each mu-
tual exclusion set M , our goal is to predict c for
each M , with accuracy measured by the number
of successful predictions divided by the number
of mutual exclusion sets, ignoring trivially cor-
rect claims that are the sole members of their mu-
tual exclusion set. To this end, fact-finding algo-
rithms iterate to find the trustworthiness of each
source T i(s) at iteration i in terms of the belief
in its claims in the previous iteration Bi−1(Cs),
and belief in each claim Bi(c) in terms of T i(Sc),
where Sc = {s : s ∈ S, c ∈ Cs} is the set of
all sources asserting c. Note that “trustworthiness”
and “belief” as used within a fact-finding algo-
rithm typically do not have meaningful semantics
(i.e. they are not [0, 1] Bayesian probabilities). It-
eration continues until convergence or some pre-
defined stop criteria.

3.1 Priors

Except for 3-Estimates (where the priors are dic-
tated by the algorithm itself), every fact-finder
requires priors for B0(C). For each fact-finder
we chose from B0

voted(c) = |Sc|/
∑

d∈Mc
|Sd|,

B0
uniform(c) = 1/|Mc|, and B0

fixed(c) = 0.5.

3.2 Algorithms

3.2.1 Sums (Hubs and Authorities)
Hubs and Authorities (Kleinberg, 1999) gives

each page a hub score and an authority score,
where its hub score is the sum of the authority of
linked pages and its authority is the sum of the
hub scores of pages linking to it. This is adapted
to fact-finding by viewing sources as hubs (with
0 authority) and claims as authorities (with 0 hub
score):

T i(s) =
∑

c∈Cs

Bi−1(c) Bi(c) =
∑

s∈Sc

T i(s)

We normalize to prevent T i(s) and Bi(c) from
growing unbounded (dividing by maxs T

i(s) and
maxcB

i(c), respectively), a technique also used
with the Investment and Average·Log algorithms
(discussed next); this avoids numerical overflow.
B0

fixed priors are used.

3.2.2 Average·Log
Computing T (s) as an average of belief in

its claims overestimates the trustworthiness of
a source with relatively few claims; certainly a
source with 90% accuracy over a hundred ex-
amples is more trustworthy than a source with
90% accuracy over ten. However, summing the
belief in claims allows a source with 10% accu-
racy to obtain a high trustworthiness score by sim-
ply making many claims. Average·Log attempts
a compromise, while still using Sums’ Bi update
rule and B0

fixed priors.

T i(s) = log |Cs| ·
∑

c∈Cs
Bi−1(c)

|Cs|
3.2.3 Investment

In the Investment algorithm, sources “in-
vest” their trustworthiness uniformly among their
claims. The belief in each claim then grows ac-
cording to a non-linear function G, and a source’s
trustworthiness is calculated as the sum of the be-
liefs in their claims, weighted by the proportion
of trust previously contributed to each (relative to
the other investors). Since claims with higher-trust
sources get higher belief, these claims become rel-
atively more believed and their sources become
more trusted. We used G(x) = xg with g = 1.2 in
our experiments, together with B0

voted priors.

T i(s) =
∑

c∈Cs

Bi−1(c) · T i−1(s)

|Cs| ·
∑

r∈Sc

T i−1(r)
|Cr|

Bi(c) = G
(∑

s∈Sc

T i(s)

|Cs|

)

3.2.4 PooledInvestment
Like Investment, sources uniformly invest their

trustworthiness in claims and obtain correspond-
ing returns, so T i(s) remains the same, but now
after the belief in the claims of mutual exclusion
set M have grown according to G, they are lin-
early scaled such that the total belief of the claims
in M remains the same as it was before apply-
ing G(x) = xg, with g = 1.4 and B0

uniform

priors used in our experiments. Given H i(c) =∑
s∈Sc

T i(s)
|Cs| , we have:

Bi(c) = H i(c) · G(H i(c))∑
d∈Mc

G(H i(d))
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3.3 TruthFinder
TruthFinder (Yin et al., 2008) is pseudoprobabilis-
tic: the basic version of the algorithm below cal-
culates the “probability” of a claim by assuming
that each source’s trustworthiness is the proba-
bility of it being correct and then averages claim
beliefs to obtain trustworthiness scores. We also
used the “full”, more complex TruthFinder, omit-
ted here for brevity. B0

uniform priors are used for
both.

T i(s) =

∑
c∈Cs

Bi−1(c)

|Cs|
Bi(c) = 1−

∏

s∈Sc

(
1− T i(s)

)

3.3.1 3-Estimates
3-Estimates (Galland et al., 2010), also omit-

ted for brevity, differs from the other fact-finders
by adding a third set of parameters to capture the
“difficulty” of a claim, such that correctly assert-
ing a difficult claim confers more trustworthiness
than asserting an easy one; knowing the exact pop-
ulation of a city is harder than knowing the popu-
lation of Mars (presumably 0) and we should not
trust a source merely because they provide what is
already common knowledge.

4 The Framework

To apply prior knowledge to a fact-finding algo-
rithm, we translate the user’s prior knowledge into
a linear program. We then iterate the following un-
til convergence or other stopping criteria:

1. Compute T i(s) for all s ∈ S

2. Compute Bi(c) for all c ∈ C

3. “Correct” beliefs Bi(C) with the LP

4.1 Propositional Linear Programming
To translate prior knowledge into a linear pro-
gram, we first propositionalize our first-order
formulae into propositional logic (Russell and
Norvig, 2003). For example, assume we know that
Tom is older than John and a person has exactly
one age (∃x,yAge(Tom, x)∧Age(John, y)∧x >
y) ∧ (∀x,y,zAge(x, y) ∧ y 6= z ⇒ ¬Age(x, z)),
and our system is considering the follow-
ing claims: Age(Tom, 30), Age(Tom, 40),

Age(John, 25), Age(John, 35). Our proposi-
tional clauses (after removing redundancies) are
then Age(Tom, 30) ⇒ Age(John, 25) ∧
(Age(Tom, 30) ⊕ Age(Tom, 40)) ∧
(Age(John, 25)⊕Age(John, 35)).

Each claim c will be represented by a propo-
sition, and ultimately a [0, 1] variable in the
linear program corresponding, informally, to
P (c).2 Propositionalized constraints have previ-
ously been used with integer linear programming
(ILP) using binary {0, 1} values corresponding
to {false, true}, to find an (exact) consistent
truth assignment minimizing some cost and solve
a global inference problem, e.g. (Roth and Yih,
2004; Roth and Yih, 2007). However, proposi-
tional linear programming has two significant ad-
vantages:

1. ILP is “winner take all”, shifting all belief to
one claim in each mutual exclusion set (even
when other claims are nearly as plausible)
and finding the single most believable con-
sistent binary assignment; we instead wish to
find a distribution of belief over the claims
that is consistent with our prior knowledge
and as close as possible to the distribution
produced by the fact-finder.

2. Linear programs can be solved in polynomial
time (e.g. by interior point methods (Kar-
markar, 1984)), but ILP is NP-hard.

To create our constraints, we first convert our
propositional formula into conjunctive normal
form. Then, for each disjunctive clause consisting
of a set P of positive literals (claims) and a set
N of negations of literals, we add the constraint∑

c∈P cv +
∑

c∈N (1− cv) ≥ 1, where cv de-
notes the [0, 1] variable corresponding to each c.
The left-hand side is the union bound of at least
one of the claims being true (or false, in the case
of negated literals); if this bound is at least 1, the
constraint is satisfied. This optimism can dilute
the strength of our constraints by ignoring poten-
tial dependence among claims: x ⇒ y, x ∨ y im-
plies y is true, but since we demand only yv ≥ xv
and xv + yv ≥ 1 we accept any yv ≥ 0.5 where

2This is a slight mischaracterization, since our linear con-
straints only approximate intersections and unions of events
(where each event is “claim c is true”), and we will be satis-
fying them subject to a linear cost function.
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yv ≥ xv ≥ 1 − yv. However, when the claims
are mutually exclusive, the union bound is exact; a
common constraint is of the form q ⇒ r1∨r2∨. . .,
where the r literals are mutually exclusive, which
translates exactly to r1v + r2v + . . . ≥ qv. Fi-
nally, observe that mutual exclusion amongst n
claims c1, c2, . . ., cn can be compactly written as
c1v + c2v + . . .+ cnv = 1.

4.2 The Cost Function

Having seen how first-order logic can be con-
verted to linear constraints, we now consider the
cost function, a distance between the new distri-
bution of belief satisfying our constraints and the
original distribution produced by the fact-finder.

First we determine the number of “votes” re-
ceived by each claim c, computed as ωc =
ω(B(c)), which should scale linearly with the cer-
tainty of the fact-finder’s belief in c. Recall that
the semantics of the belief score are particular
to the fact-finder, so different fact-finders require
different vote functions. TruthFinder has pseudo-
probabilistic [0,1] beliefs, so we use ωinv(x) =
min((1 − x)-1,minv) with minv = 1010 limiting
the maximum number of votes possible; we as-
sume 1/0 = ∞. ωinv intuitively scales with “er-
ror”: a belief of 0.99 receives ten times the votes
of 0.9 and has a tenth the error (0.01 vs. 0.1).
For the remainder of the fact-finders whose beliefs
are already “linear”, we use the identity function
ωidn(x) = x.

The most obvious choice for the cost func-
tion might be to minimize “frustrated votes”:∑

c∈C ωc(1 − cv). Unfortunately, this results in
the linear solver generally assigning 1 to the vari-
able in each mutual exclusion set with the most
votes and 0 to all others (except when constraints
prevent this), shifting all belief to the highest-vote
claim and yielding poor performance. Instead, we
wish to satisfy the constraints while keeping each
cv close to ωc/ωMc , where ωMc =

∑
d∈Mc

ωd,
and so shift belief among claims as little as possi-
ble. We use a weighted Manhattan distance called
VoteDistance, where the cost for increasing the
belief in a claim is proportional to the number of
votes against it, and the cost for decreasing belief

is proportional to the number of votes for it:

∑

c∈C
max

(
(ωMc − ωc) · (cv − ωc/ωMc),

ωc · (ωc/ωMc − cv)

)

Thus, the belief distribution found by our LP
will be the one that satisfies the constraints while
simultaneously minimizing the number of votes
frustrated by the change from the original dis-
tribution. Note that for any linear expressions e
and f we can implement max(e, f) in the objec-
tive function by replacing it with a new [−∞,∞]
helper variable x and adding the linear constraints
x ≥ e and x ≥ f .

4.3 From Values to Votes to Belief
Solving the LP gives us [0, 1] values for each vari-
able cv, but we need to calculate an updated belief
B(c). We propose two methods for this:

Vote Conservation: B(c) = ω−1(cv · ωMc)

Vote Loss: B(c) = ω−1(min(ωc, cv · ωMc))

ω−1 is an inverse of the vote function:
ω−1idn(x) = x and ω−1inv(x) = 1 − (1 + y)−1. Vote
Conservation reallocates votes such that the total
number of votes in each mutual exclusion set, ωM ,
remains the same after the redistribution. How-
ever, if the constraints force c to lose votes, should
we believe the other claims in Mc more? Under
Vote Loss, a claim can only lose votes, ensuring
that if other claims in Mc become less believable,
c does not itself become more believable relative
to claims in other mutual exclusion sets. We found
Vote Loss just slightly better on average and used
it for all reported results.

4.4 “Unknown” Augmentation
Augmenting our data with “Unknown” claims en-
sures that every LP is feasible and can be used
to model our ignorance given a lack of suffi-
cient information or conflicting constraints. An
Unknown claim UM is added to every mutual ex-
clusion set M (but invisible to the fact-finder) and
represents our belief that none of the claims in
M are sufficiently supported. Now we can write
the mutual exclusion constraint for M as UM +∑

c∈M cv = 1. When propositionalizing FOL, if
a disjunctive clause contains a non-negated literal
for a claim c, then we add ∨UMc to the clause.
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For example, Age(John, 35) ⇒ Age(Tom, 40)
becomes Age(John, 35) ⇒ Age(Tom, 40) ∨
Age(Tom,Unknown). The only exception is
when the clause contains claims from only one
mutual exclusion set (e.g. “I know Sam is 50
or 60”), and so the LP can only be infeasible
if the user directly asserts a contradiction (e.g.
“Sam is 50 and Sam is 60”). The Unknown it-
self has a fixed number of votes that cannot be
lost; this effectively “smooths” our belief in the
claims and imposes a floor for believability. If
Age(Kim, 30) has 5 votes, Age(Kim, 35) has
3 votes, and Age(Kim,Unknown) is fixed at 6
votes, we hold that Kim’s age is unknown due to
lack of evidence. The number of votes that should
be given to each Unknown for this purpose de-
pends, of course, on the particular fact-finder and
ω function used; in our experiments, we are not
concerned with establishing ignorance and thus
assign 0 votes.

5 Experiments

Experiments were conducted over three domains
(city population, basic biographies, and Ameri-
can vs. British spelling) with four datasets, all
using the VoteDistance cost function and Vote
Loss vote redistribution. We fixed the number of
iterations of the framework (calculating T i(S),
Bi(S) and then solving the LP) at 20, which
was found sufficient for all fact-finders. To eval-
uate accuracy, after the final iteration we look
at each mutual exclusion set M and predict the
highest-belief claim c ∈ M (or, if uM had the
highest belief, the second-highest claim), break-
ing ties randomly, and check that it is the true
claim tM . We omit any M that does not contain
a true claim (all known claims are false) and any
M that is trivially correct (containing only one
claim other than uM ). All results are shown in
Table 1. Vote is the baseline, choosing either the
claim occurring in the most Wikipedia revisions
(in the Pop dataset) or claimed by the most sources
(for all other datasets). Sum is Sums (Hubs and
Authorities), 3Est is 3-Estimates, TFs is simpli-
fied TruthFinder, TFc is “full” TruthFinder, A·L is
Average·Log, Inv1.2 is Investment with g = 1.2,
and Pool1.4 is PooledInvestment with g = 1.4.

5.1 IBT vs. L+I
We can enforce our prior knowledge against the
beliefs produced by the fact-finder in each itera-
tion, or we can apply these constraints just once,
after running the fact-finder for 20 iterations with-
out interference. By analogy to (Punyakanok et
al., 2005), we refer to these approaches as infer-
ence based training (IBT) and learning + inference
(L+I), respectively. Our results show that while
L+I does better when prior knowledge is not en-
tirely correct (e.g. “Growth” in the city popula-
tion domain), generally performance is compara-
ble when the effect of the constraints is mild, but
IBT can outperform when prior knowledge is vital
(as in the spelling domain) by allowing the fact-
finder to learn from the provided corrections.

5.2 Wikipedia Infoboxes
To focus on the performance of the framework,
we (like previous fact-finding work) naively as-
sume that our data are accurately extracted, but we
also require large corpora. Wikipedia Infoboxes
(Wu and Weld, 2007) are a semi-structured source
covering many domains with readily available au-
thorship, and we produced our city population and
basic biographic datasets from the most recent
full-history dump of the English Wikipedia (taken
January 2008). However, attribution is difficult: if
an author edits the page but not the claim within
the infobox, is the author implicitly agreeing with
(and asserting) the claim? The best performance
was achieved by being strict for City Population
data, counting only the direct editing of a claim,
and lax for Biography data, counting any edit.
We hypothesize this is because editors may lack
specific knowledge about a city’s population (and
thus fail to correct an erroneous value) but incor-
rect birth or death dates are more noticeable.

5.3 Results
5.3.1 City Population

We collected infoboxes for settlements
(Geobox, Infobox Settlement, Infobox City, etc.)
to obtain 44,761 populations claims qualified
by year (e.g. pop(Denver, 598707, 2008)), with
4,107 authors total. We took as our “truth”
U.S. census data, which gave us 308 non-
trivial true facts to test against. Our “common
sense” knowledge is that population grows
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Table 1: Experimental Results (∅ indicates no prior knowledge; all values are percent accuracy)
Some results are omitted here (see text). A·L, Inv1.2, Pool1.4 are our novel algorithms

Dataset Prior Knowledge Vote Sum 3Est TFs TFc A·L Inv1.2 Pool1.4

Pop ∅ 81.49 81.82 81.49 82.79 84.42 80.84 87.99 80.19
Pop GrowthIBT 82.79 79.87 77.92 82.79 86.36 80.52 85.39 79.87
Pop GrowthL+I 82.79 79.55 77.92 83.44 85.39 80.52 89.29 80.84
Pop Larger2500IBT 85.39 85.06 80.52 86.04 87.34 84.74 89.29 84.09
Pop Larger2500L+I 85.39 85.06 80.52 86.69 86.69 84.42 89.94 84.09

SynPop ∅ 73.45 87.76 84.87 56.12 87.07 90.23 89.41 90.00
SynPop Pop±8%IBT 88.31 95.46 92.16 96.42 95.46 96.15 95.46 96.42
SynPop Pop±8%L+I 88.31 94.77 92.43 82.39 95.32 95.59 96.29 96.01

Bio ∅ 89.80 89.53 89.80 73.04 90.09 89.24 88.34 90.01
Bio CSIBT 89.20 89.61 89.20 72.44 89.91 89.35 88.60 90.20
Bio CSL+I 89.20 89.61 89.20 57.10 90.09 89.35 88.49 90.24
Bio CS+DecadesIBT 90.58 90.88 90.58 80.30 91.25 90.91 90.02 91.32
Bio CS+DecadesL+I 90.58 90.91 90.58 69.27 90.95 90.91 90.09 91.17

Spell ∅ 13.54 9.37 11.96 41.93 7.93 10.23 9.36 9.65
Spell Words100IBT 13.69 9.02 12.72 44.28 8.05 9.98 11.11 8.86
Spell Words100L+I 13.69 8.86 12.08 46.54 8.05 9.98 9.34 7.89
Spell CS+Words100IBT 35.10 31.88 35.10 56.52 29.79 32.85 73.59 80.68
Spell CS+Words100L+I 35.10 31.72 34.62 55.39 22.06 32.21 30.92 29.95

over time (“Growth” in table 1); therefore,
∀v,w,x,y,zpop(v, w, y) ∧ pop(v, x, z) ∧ y < z ⇒
x > w. Of course, this often does not hold
true: cities can shrink, but performance was
nevertheless superior to no prior knowledge
whatsoever. The L+I approach does appreciably
better because it avoids forcing these sometimes-
incorrect constraints onto the claim beliefs while
the fact-finder iterates (which would propagate
the resulting mistakes), instead applying them
only at the end where they can correct more errors
than they create. The sparsity of the data plays
a role–only a fraction of cities have population
claims for multiple years, and those that do are
typically larger cities where the correct claim is
asserted by an overwhelming majority, greatly
limiting the potential benefit of our Growth
constraints. We also considered prior knowledge
of the relative sizes of some cities, randomly
selecting 2500 pairs of them (a, b), where a
was more populous than b in year t, asserting
∀x,ypop(a, x, t) ∧ pop(b, y, t) ⇒ x > y. This
“Larger” prior knowledge proved more effective
than our oft-mistaken Growth constraint, with
modest improvement to the highest-performing
Investment fact-finder, and InvestmentL+I

reaches 90.91% with 10,000 such pairs.

5.3.2 Synthetic City Population

What if attribution were certain and the data
more dense? To this end we created a synthetic
dataset. We chose 100 random (real) cities and
created 100 authors whose individual accuracy
a was drawn uniformly from [0, 1]. Between 1
and 10 claims (also determined uniformly) were
made about each city in each year from 2000
to 2008 by randomly-selected authors. For each
city with true population p and year, four incor-
rect claims were created with populations selected
uniformly from [0.5p, 1.5p], each author claiming
p with probability a and otherwise asserting one
of the four incorrect claims. Our common-sense
knowledge was that population did not change
by more than 8% per year (also tried on the
Wikipedia dataset but with virtually no effect).
Like “Growth”, “Pop±8%” does not always hold,
but a change of more than 8% is much rarer than a
shrinking city. These constraints greatly improved
results, although we note this would diminish if
inaccurate claims had less variance around the
true population.
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5.3.3 Basic Biographies
We scanned infoboxes to find 129,847 claimed

birth dates, 34,201 death dates, 10,418 parent-
child pairs, and 9,792 spouses. To get “true” birth
and death dates, we extracted data from sev-
eral online repositories (after satisfying ourselves
that they were independent and not derived from
Wikipedia!), eliminating any date these sources
disagreed upon, and ultimately obtained a total
of 2,685 dates to test against. Our common sense
(“CS”) knowledge was: nobody dies before they
are born, people are infertile before the age of 7,
nobody lives past 125, all spouses have overlap-
ping lifetimes, no child is born more than a year
after a parent’s (father’s) death, nobody has more
than two parents, and nobody is born or dies after
2008 (the “present day”, the year of the Wikipedia
dump). Applying this knowledge roughly halved
convergence times, but had little effect on the re-
sults due to data sparsity similar to that seen in
the population data–while we know many birth-
days and some death dates, relatively few biogra-
phies had parent-child and spouse claims. To this
we also added knowledge of the decade (but not
the exact date) in which 15,145 people were born
(“CS+Decades”). Although common sense alone
does not notably improve results, it does very well
in conjunction with specific knowledge.

5.3.4 American vs. British Spelling
Prior knowledge allows us to find a truth that

conforms with the user’s viewpoint, even if that
viewpoint differs from the norm. After obtaining
a list of words with spellings that differed be-
tween American and British English (e.g. ”color”
vs. ”colour”), we examined the British National
Corpus as well as Washington Post and Reuters
news articles, taking the source’s (the article au-
thor’s) use of a disputed word as a claim that
his spelling was correct. Our goal was to find the
“true” British spellings that conformed to a British
viewpoint, but American spellings predominate
by far. Consequently, without prior knowledge the
fact-finders do very poorly against our test set of
694 British words, predicting American spelling
instead in accordance with the great majority of
authors (note that accuracy from an American
perspective is 1−“British” accuracy). Next we
assumed that the user already knew the correct

spelling of 100 random words (removing these
from the test set, of course), but with little ef-
fect. Finally, we added our common sense (“CS”)
knowledge: if a spelling a is correct and of length
≥ 4, then if a is a substring of b, a⇔ b (e.g. colour
⇔ colourful). Furthermore, while we do not know
a priori whether a spelling is American or British,
we do know if e and f are different spellings
of the same word, and, if two such spellings
have a chain of implication between them, we
can break all links in this chain (while some
American spellings will still be linked to British
spellings, this removes most such errors). Interest-
ingly, common sense alone actually hurts results
(e.g. PooledInvestment (IBT) gets 6.2%), as it es-
sentially makes the fact-finders more adept at find-
ing the predominant American spellings! How-
ever, when some correct spellings are known, re-
sults improve greatly and demonstrate IBT’s abil-
ity to spread strong prior knowledge, easily sur-
passing L+I. Results improve further with more
known spellings (PooledInvestment gets 84.86%
with CS+Words200IBT ).

6 Conclusion

We have introduced a new framework for in-
corporating prior knowledge into a fact-finding
system, along with several new high-performing
fact-finding algorithms (Investment, PooledIn-
vestment, and Average·Log). While the bene-
fits of prior knowledge were most dramatic in
the Spelling domain, we saw gains from both
“common sense” and specific knowledge in all
experiments–even the difficult Biography domain
saw faster convergence with common sense alone
and notably higher results when specific knowl-
edge was added. We find that while prior knowl-
edge is helpful in reducing error, when the user’s
viewpoint disagrees with the norm it becomes ab-
solutely essential and, formulated as a linear pro-
gram, it need not be the computational burden that
might otherwise be expected.
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Abstract

We use web-scale N-grams in a base NP
parser that correctly analyzes 95.4% of the
base NPs in natural text. Web-scale data
improves performance. That is, there is no
data like more data. Performance scales
log-linearly with the number of parame-
ters in the model (the number of unique
N-grams). The web-scale N-grams are
particularly helpful in harder cases, such
as NPs that contain conjunctions.

1 Introduction

Noun phrases (NPs) provide an index to the
world’s information. About 70% of web queries
are NPs (Barr et al., 2008). A robust NP parser
could help search engines improve retrieval per-
formance on multi-word NP queries (Zhai, 1997).
For example, by knowing the correct parse of
“washed (baby carrots),” a search engine could
ensure that returned pages (and advertisements)
concern clean carrots rather than clean babies. NP
structure is also helpful for query expansion and
substitution (Jones et al., 2006).

This paper is concerned with base NP pars-
ing. We are given a base NP string as input,
and the task is to produce a parse tree as output.
Base NPs are NPs that do not contain embedded
noun phrases. These are sometimes called NP
chunks, or core/non-recursive NPs (Church, 1988;
Ramshaw and Marcus, 1995). Correctly parsing
(or, equivalently, bracketing) base NPs is chal-
lenging because the same part-of-speech (POS)
sequence can be parsed differently depending on

the specific words involved. For example, “retired
(science teacher)” and “(social science) teacher”
have different structures even though they have
identical POS sequences.

Lexical statistics are therefore needed in order
to parse the above examples, and they must be
computed over a lot of text to avoid sparsity. All
of our lexical statistics are derived from a new
and improved web-scale N-gram corpus (Lin et
al., 2010), which we call Google V2.

Despite the importance of base NPs, most
sentence parsers do not parse base NPs, since
the main training corpus for parsers, the Penn
Treebank (PTB) (Marcus et al., 1994), leaves a
flat structure for base NPs. Recent annotations
by Vadas and Curran (2007a) added NP structure
to the PTB. We use these annotations (described
in Section 3) for our experiments.

NP parsers usually focus on bracketing three-
word noun compounds. Parsing three-word noun
compounds is a fairly artificial task; we show that
sequences of three nouns make up less than 1%
of the three-word-or-longer base NPs in natural
text. As the NP length increases, the number of
possible binary trees (parses) increases with the
Catalan numbers (Church and Patil, 1982). NPs of
length three have just two possible parses (chance
is 50%), while NPs of length six already have
forty-two possible parses (chance is 2%). Long
NPs therefore provide much more opportunity to
improve performance over the baseline. In Table
1 (Section 7), we show the distribution of base NP
length in the PTB. While most NPs are of length
three, NP length has a long tail.
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The three-word noun compound assumption
also restricts research to the case in which all
words are nouns, while base NPs also contain de-
terminers, possessives, adjectives, and conjunc-
tions. Conjunctions and their scopes are particu-
larly challenging. For example, in the NP, “French
television and movie producers,” a parser should
conjoin “(television) and (movie),” as opposed to
“(French television) and (movie),” “( French tele-
vision) and (movie producers)” or “( television)
and (movie producers).”

To resolve these issues, we train a classifier
which uses contextual information from the entire
NP and lexical statistics derived from the web-
scale N-gram corpus to predict if a given span
is a constituent. Our parser then uses this clas-
sifier to produce a score for every possible NP-
internal bracketing and creates a chart of bracket-
ing scores. This chart can be used as features in a
full sentence parser or parsed directly with a chart
parser. Our parses are highly accurate, creating a
strong new standard for this task.

Finally, we present experiments that investigate
the effects of N-gram frequency cutoffs and vari-
ous sources of N-gram data. We show an interest-
ing relationship between accuracy and the number
of unique N-gram types in the data.

2 Related Work

2.1 Three-Word Noun Compounds

The most commonly used data for NP parsing is
from Lauer (1995), who extracted 244 three-word
noun compounds from the Grolier encyclopedia.
When there are only three words, this task reduces
to a binary decision:

• Left Branching: * [retired science] teacher

• Right Branching:retired [science teacher]

In Lauer (1995)’s set of noun compounds, two-
thirds are left branching.

The main approach to these three-word noun
compounds has been to compute association
statistics between pairs of words and then choose
the bracketing that corresponds to the more highly
associated pair. The two main models are the
adjacency model(Marcus, 1980; Liberman and
Sproat, 1992; Pustejovsky et al., 1993; Resnik,

1993) and thedependency model(Lauer, 1995).
Under the adjacency model, the bracketing deci-
sion is made by comparing the associations be-
tween words one and two versus words two and
three (i.e. comparingretired scienceversussci-
ence teacher). In contrast, the dependency model
compares the associations between one and two
versus one and three (retired scienceversusretired
teacher). Lauer (1995) compares the two models
and finds the dependency model to be more accu-
rate.

Nakov and Hearst (2005) compute the associ-
ation scores using frequencies, conditional proba-
bilities, χ2, and mutual information, for both pairs
of words and for linguistically-motivated para-
phrases. Lapata and Keller (2005) found that us-
ing web-scale data for associations is better than
using the (smaller) 100M-word British National
Corpus.

2.2 Longer NPs

Focusing on only the three word case misses a
large opportunity for base NP parsing. NPs longer
than three words commonly occur, making up
29% of our test set. In addition, a chance baseline
does exponentially worse as the length of the NP
increases. These longer NPs are therefore a major
opportunity to improve overall base NP parsing.

Since in the general case, NP parsing can no
longer be thought of as a single binary classifica-
tion problem, different strategies are required.

Barker (1998) reduces the task of parsing
longer NPs to making sequential three-word de-
cisions, moving a sliding window along the NP.
The window is first moved from right-to-left, in-
serting right bracketings, and then again from left-
to-right, finalizing left bracketings. While Barker
(1998) assumes that these three-word decisions
can be made in isolation, this is not always valid.1

Vadas and Curran (2007b) employ Barker’s algo-
rithm, but use a supervised classifier to make the
sequential bracketing decisions. Because these
approaches rely on a sequence of binary decisions,

1E.g., although the right-most three words are identical
in 1) “soap opera stars and television producers,” and 2)
“movie and television producers,” the initial right-bracketing
decision for “and television producers” should be different
in each.
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early mistakes can cascade and lead to a chain of
incorrect bracketings.

Our approach differs from previous work in NP
parsing; rather than greedily inserting brackets as
in Barker’s algorithm, we use dynamic program-
ming to find the global maximum-scoring parse.
In addition, unlike previous approaches that have
used local features to make local decisions, we use
the full NP to score each potential bracketing.

A related line of research aims tosegment
longer phrases that are queried on Internet search
engines (Bergsma and Wang, 2007; Guo et al.,
2008; Tan and Peng, 2008). Bergsma and Wang
(2007) focus on NP queries of length four or
greater. They use supervised learning to make
segmentation decisions, with features derived
from the noun compound bracketing literature.
Evaluating the benefits ofparsing NP queries,
rather than simply segmenting them, is a natural
application of our system.

3 Annotated Data

Our training and testing data are derived from re-
cent annotations by Vadas and Curran (2007a).
The original PTB left a flat structure for base noun
phrases. For example, “retired science teacher,”
would be represented as:
(NP (JJ retired) (NN science) (NN teacher))

Vadas and Curran (2007a) annotated NP-internal
structure by adding annotations whenever there is
a left-bracketing. If no annotations were added,
right-branching is assumed. The inter-annotator
agreement for exactly matching the brackets on an
NP was 98.5%.

This data provides a valuable new resource for
parsing research, but little work has so far made
use of it. Vadas and Curran (2007b) perform
some preliminary experiments on NP bracketing,
but use gold standard part-of-speech and named-
entity annotations as features in their classifier.
Our work establishes a strong and realistic stan-
dard on this data; our results will serve as a basis
for further research on this topic.

4 Unlabeled N-gram Data

All of our N-gram features described in Sec-
tion 6.1 rely on probabilities derived from unla-
beled data. To use the largest amount of data

possible, we exploit web-scale N-gram corpora.
N-gram counts are an efficient way to compress
large amounts of data (such as all the text on the
web) into a manageable size. An N-gram corpus
records how often each unique sequence of words
occurs. Co-occurrence probabilities can be calcu-
lated directly from the N-gram counts. To keep
the size manageable, N-grams that occur with a
frequency below a particular threshold can be fil-
tered.

The corpus we use isGoogle V2 (Lin et al.,
2010): a new N-gram corpus with N-grams of
length 1-5 that we created from the same 1 tril-
lion word snapshot of the web as Google N-grams
Version 1 (Brants and Franz, 2006), but with sev-
eral enhancements. Duplicate sentences are re-
moved, as well as “sentences” which are probably
noise (indicated by having a large proportion of
non-alphanumeric characters, being very long, or
being very short). Removing duplicate sentences
is especially important because automatically-
generated websites, boilerplate text, and legal dis-
claimers skew the source web data, with sentences
that may have only been authored once occurring
millions of times. We use the suffix array tools
described in Lin et al. (2010) to quickly extract
N-gram counts.

5 Base NP Parsing Approach

Our goal is to take a base NP string as input and
produce a parse tree as output. In practice, it
would be most useful if the NP parse could be
integrated into a sentence parser. Previous NP
parsers are difficult to apply in practice.2 Work
in prepositional phrase attachment that assumes
gold-standard knowledge of the competing attach-
ment sites has been criticized as unrealistic (At-
terer and Schütze, 2007).

Our system can easily be integrated into full
parsers. Its input can be identified quickly and
reliably and its output is compatible with down-
stream parsers.

2For example, Vadas and Curran (2007b) report results on
NP parsing, but these results include NPs containing preposi-
tional or adverbial phrases (confirmed by personal communi-
cation). Practical application of their system would therefore
require resolving prepositional phrase attachment as a pre-
processing step.
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Our parser’s input is base NPs, which can be
identified with very high accuracy. Kudo and Mat-
sumoto (2001) report 95.8% NP chunking accu-
racy on PTB data.

Once provided with an NP, our system uses a
supervised classifier to predict the probability of
a particular contiguous subsequence (span) of the
NP being a constituent, given the entire NP as con-
text. This probability can be inserted into the chart
that a standard chart parser would use.

For example, the base NP “French television
and movie producers” would be decomposed into
nine different classification problems, scoring the
following potential bracketings:

(French television) and movie producers
French (television and) movie producers
(French television and) movie producers...

French television and (movie producers)

In Section 6, we detail the set of statistical and
structural features used by the classifier.

The output of our classifier can be easily used
as a feature in a full-sentence structured prediction
parser, as in Taskar et al. (2004). Alternatively,
our work could be integrated into a full-sentence
parser by using our feature representations di-
rectly in a discriminative CFG parser (Finkel et
al., 2008), or in a parse re-ranker (Ratnaparkhi et
al., 1994; Collins and Koo, 2005; Charniak and
Johnson, 2005).

While our main objective is to use web-scale
lexical statistics to create an accurate classifier for
base NP-internal constituents, we do produce a
parse tree for evaluation purposes. The probabil-
ity of a parse tree is defined as the product of the
probabilities of all the spans (constituents) in the
tree. The most probable tree is computed with the
CYK algorithm.

6 Features

Over the course of development experiments, we
discovered that the more position-specific our fea-
tures were, the more effectively we could parse
NPs. We define a word’s position as its distance
from the right of the full NP, as the semantic head
of NPs is most often the right-most word. Ulti-
mately, we decided to conjoin each feature with

the position of the proposed bracketing. Since
the features for differing proposed bracketings are
now disjoint, this is equivalent to scoring bracket-
ings with different classifiers, with each classifier
chosen according to the bracketing position. We
now outline the feature types that are common,
but weighted differently, in each proposed brack-
eting’s feature set.

6.1 N-gram Features

All of the features described in this section require
estimates of the probability of specific words or
sequences of words. All probabilities are com-
puted usingGoogle V2 (Section 4).

6.1.1 PMI

Recall that the adjacency model for the three-
word task uses the associations of the two pairs of
adjacent words, while the dependency model uses
the associations of the two pairs of attachment
sites for the initial noun. We generalize the ad-
jacency and dependency models by including the
pointwise mutual information (Church and Hanks,
1990) betweenall pairs of words in the NP:

PMI(x, y) = log
p(“x y” )

p(“x” )p(“y” )
(1)

For NPs of lengthn, for each proposed bracket-
ing, we include separate features for the PMI be-
tween all

(n
2

)
pairs of words in the NP. For NPs in-

cluding conjunctions, we include additional PMI
features (Section 6.1.2).

Since these features are also tied to the pro-
posed bracketing positions (as explained above),
this allows us to learn relationships between var-
ious associations within the NP and each poten-
tial bracketing. For example, consider a proposed
bracketing from word4 to word5. We learn that
a high association of words inside a bracketing
(here, a high association between word4 and word
5) indicates a bracketing is likely, while a high
association between words that cross a proposed
bracketing (e.g., a high association between word
3 and word4) indicates the bracketing is unlikely.

The value of these features is the PMI, if it is
defined. If the PMI is undefined, we include one
of two binary features:
p(“x y” ) = 0 or p(“x” ) ∨ p(“y” ) = 0.
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We illustrate the PMI features with an example.
In deciding whether (movie producers) is a rea-
sonable bracketing within “French television and
movie producers,” the classifier weighs features
for all of:

PMI(French, television)
PMI(French, and)
. . .

PMI(television, producers)
PMI(and, producers)
PMI(movie, producers)

6.1.2 Conjunctions

Properly handling NPs containing conjunc-
tions (NP+conj) requires special statistical fea-
tures. For example,television and movie are
commonly conjoined, but the relevant statistics
that suggest placing brackets around the phrase
“ television and movie” are not provided by the
above PMI features (i.e., this is not clear from
PMI(television, and), PMI(television, movie), nor
PMI(and, movie)). Rather, we want to know if the
full phrase “television and movie” is common.

We thus have additional NP+conj features that
consider the PMI association across the wordand:

PMIand(x, y) = log
p(“x and y” )

p(“x and” )p(“and y” )
(2)

When PMIand between a pair of words is high,
they are likely to be the constituents of a conjunc-
tion.

Let NP=(w1 . . . wi−1, ‘and’, wi+1 . . . wn) be
an NP+conj. We include the PMIand features be-
tweenwi−1 and allw ∈ wi+1 . . . wn. In the exam-
ple “French television and movie producers,” we
would include features PMIand(television, movie)
and PMIand(television, producers).

In essence, we are assumingwi−1 is the head
of one of the items being conjoined, and we score
the likelihood of each of the words to the right
of the and being the head for the other item. In
our running example, the conjunction has narrow
scope, and PMIand(television, movie) is greater
than PMIand(television, producers), indicating to
our classifier that (television and movie) is a good
bracketing. In other examples the conjunction will
join heads that are further apart, as in((French TV)

and (British radio)) stars, where both of the fol-
lowing hold:

PMIand(TV, radio) > PMIand(TV, British)
PMIand(TV, radio) > PMIand(TV, stars)

6.2 Lexical

We include a binary feature to indicate the pres-
ence of a particular word at each position in the
NP. We learn that, for instance, the wordInc. in
names tends to occur outside of brackets.

6.3 Shape

Previous work on NP bracketing has used gold-
standard named entity tags (Vadas and Curran,
2007b) as features. We did not want to use any
gold-standard features in our experiments, how-
ever NER information is helpful in separating pre-
modifiers from names, i.e.(news reporter) (Wal-
ter Cronkite).

As an expedient way to get both NER informa-
tion and useful information from hyphenated ad-
jectives, abbreviations, and other punctuation, we
normalize each string using the following regular
expressions:

[A-Z]+ → A [a-z]+ → a
We use this normalized string as an indicator

feature. E.g. the word “Saudi-born” will fire the
binary feature “Aa-a.”

6.4 Position

We also include the position of the proposed
bracketing as a feature. This represents the prior
of a particular bracketing, regardless of the actual
words.

7 Experiments

7.1 Experimental Details

We use Vadas and Curran (2007a)’s annotations
(Section 3) to create training, development and
testing data for base NPs, using standard splits of
the Penn Treebank (Table 1). We consider all non-
trivial base NPs, i.e., those longer than two words.

For training, we expand each NP in our train-
ing set into independent examples corresponding
to all the possible internal NP-bracketings, and
represent these examples as feature vectors (Sec-
tion 5). Each example is positively labeled if it is
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Data Set Train Dev Test Chance
PTB Section 2-22 24 23
Length=3 41353 1428 2498 50%
Length=4 12067 445 673 20%
Length=5 3930 148 236 7%
Length=6 1272 34 81 2%
Length>6 616 29 34 < 1%
Total NPs 59238 2084 3522

Table 1: Breakdown of the PTB base NPs used in
our experiments. Chance = 1/Catalan(length).

Features All NPs NP+conj NP-conj
All features 95.4 89.7 95.7
-N-grams 94.0 84.0 94.5
-lexical 92.2 87.4 92.5
-shape 94.9 89.7 95.2
-position 95.3 89.7 95.6
Right

72.6 58.3 73.5
bracketing

Table 2: Accuracy (%) of base NPs parsing; abla-
tion of different feature classes.

consistent with the gold-standard bracketing, oth-
erwise it is a negative example.

We train using LIBLINEAR, an efficient linear
Support Vector Machine (SVM).3 We use an L2-
loss function, and optimize the regularization pa-
rameter on the development set (reaching an opti-
mum atC=1). We converted the SVM output to
probabilities.4 Perhaps surprisingly, since SVMs
are not probabilistic, performance on the devel-
opment set with these SVM-derived probabilities
was higher than using probabilities from the LIB-
LINEAR logistic regression solver.

At test time, we again expand the NPs and cal-
culate the probability of each constituent, insert-
ing the score into a chart. We run the CYK algo-
rithm to find the most probable parse of the entire
NP according to the chart. Our evaluation metric
is Accuracy: the proportion of times our proposed
parse of the NP exactly matches the gold standard.

8 Results

8.1 Base NPs

Our method improves substantially over the base-
line of assuming a completely right-branching
structure, 95.4% versus 72.6% (Table 2). The ac-
curacy of the constituency classifier itself (before
the CYK parser is used) is 96.1%.

The lexical features are most important, but all
feature classes are somewhat helpful. In particu-
lar, including N-gram PMI features significantly
improves the accuracy, from 94.0% to 95.4%.5

Correctly parsing more than 19 base NPs out of 20
is an exceptional level of accuracy, and provides a
strong new standard on this task. The most com-
parable result is by Vadas and Curran (2007b),
who achieved 93.0% accuracy on a different set of
PTB noun phrases (see footnote 2), but their clas-
sifier used features based on gold-standard part-
of-speech and named-entity information.

Exact match is a tough metric for parsing, and
the difficulty increases as the length of the NP
increases (because there are more decisions to
make correctly). At three word NPs, our accu-
racy is 98.5%; by six word NPs, our accuracy
drops to 79.0% (Figure 1). Our method’s accu-
racy decreases as the length of the NP increases,
but much less rapidly than a right-bracketing or
chance baseline.

8.2 Base NPs with Conjunctions

N-gram PMI features help more on NP+conj than
on those that do not contain conjunctions (NP-
conj) (Table 2). N-gram PMI features are the most
important features for NP+conj, increasing accu-
racy from 84.0% to 89.7%, a 36% relative reduc-
tion in error.

8.3 Effect of Thresholding N-gram data

We now address two important related questions:
1) how does our parser perform as the amount
of unlabeled auxiliary data varies, and 2) what
is the effect of thresholding an N-gram corpus?
The second question is of widespread relevance as

3www.csie.ntu.edu.tw/ ˜ cjlin/liblinear/
4Following instructions inhttp://www.csie.ntu.

edu.tw/ ˜ cjlin/liblinear/FAQ.html
5McNemar’s test,p < 0.05
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Figure 1: Accuracy (log scale) over different NP
lengths, of our method, the right-bracketing base-
line, and chance (1/Catalan(length)).

thresholded N-gram corpora are now widely used
in NLP. Without thresholds, web-scale N-gram
data can be unmanageable.

While we cannot lower the threshold after cre-
ating the N-gram corpus, we can raise it, filtering
more N-grams, and then measure the relationship
between threshold and performance.

Threshold Unique N-grams Accuracy
10 4,145,972,000 95.4%
100 391,344,991 95.3%
1,000 39,368,488 95.2%
10,000 3,924,478 94.8%
100,000 386,639 94.8%
1,000,000 37,567 94.4%
10,000,000 3,317 94.0%

Table 3: There is no data like more data. Accuracy
improves with the number of parameters (unique
N-grams).

We repeat the parsing experiments while in-
cluding in our PMI features only N-grams with
a count≥10 (the whole data set),≥100, ≥1000,
. . ., ≥107. All other features (lexical, shape, posi-
tion) remain unchanged. The N-gram data almost
perfectly exhibits Zipf’s power law: raising the
threshold by a factor of ten decreases the number
of unique N-grams by a factor of ten (Table 3).
The improvement in accuracy scales log-linearly
with the number of unique N-grams. From a prac-
tical standpoint, we see a trade-off between stor-

Corpus # of tokens τ # of types
NEWS 3.2 B 1 3.7 B
Google V1 1,024.9 B 40 3.4 B
Google V2 207.4 B 10 4.1 B

Table 4: N-gram data, with total number of words
(tokens) in the original corpus (in billions, B), fre-
quency threshold used to filter the data,τ , and to-
tal number of unique N-grams (types) remaining
in the data after thresholding.

age and accuracy. There are consistent improve-
ments in accuracy from lowering the threshold
and increasing the amount of auxiliary data. If for
some application it is necessary to reduce storage
by several orders of magnitude, then one can eas-
ily estimate the resulting impact on performance.

We repeat the thresholding experiments using
two other N-gram sources:

NEWS: N-gram data created from a large set
of news articles including the Reuters and Giga-
word (Graff, 2003) corpora, not thresholded.

Google V1: The original web-scale N-gram
corpus (Section 4).

Details of these sources are given in Table 4.
For a given number of unique N-grams, using

any of the three sources does about the same (Fig-
ure 2). It does not matter that the source corpus
for Google V1 is about five times larger than the
source corpus for Google V2, which in turn is
sixty-five times larger than NEWS (Table 4). Ac-
curacies increase linearly with the log of the num-
ber oftypesin the auxiliary data set.

Google V1 is the one data source for which
the relationship between accuracy and number of
N-grams is not monotonic. After about 100 mil-
lion unique N-grams, performance starts decreas-
ing. This drop shows the need for Google V2.
Since Google V1 contains duplicated web pages
and sentences, mistakes that should be rare can
appear to be quite frequent. Google V2, which
comes from the same snapshot of the web as
Google V1, but has only unique sentences, does
not show this drop.

We regard the results in Figure 2 as a compan-
ion to Banko and Brill (2001)’s work on expo-
nentially increasing the amount of labeled train-
ing data. Here we see that varying the amount of
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Figure 2: There is no data like more data. Ac-
curacy improves with the number of parameters
(unique N-grams). This trend holds across three
different sources of N-grams.

unlabeleddata can cause an equally predictable
improvement in classification performance, with-
out the cost of labeling data.

Suzuki and Isozaki (2008) also found a log-
linear relationship between unlabeled data (up to
a billion words) and performance on three NLP
tasks. We have shown that this trend continues
well beyond Gigaword-sized corpora. Brants et
al. (2007) also found that more unlabeled data (in
the form of input to a language model) leads to
improvements in BLEU scores for machine trans-
lation.

Adding noun phrase parsing to the list of prob-
lems for which there is a “bigger is better” rela-
tionship between performance and unlabeled data
shows the wide applicability of this principle. As
both the amount of text on the web and the power
of computer architecture continue to grow expo-
nentially, collecting and exploiting web-scale aux-
iliary data in the form of N-gram corpora should
allow us to achieve gains in performance linear in
time, without any human annotation, research, or
engineering effort.

9 Conclusion

We used web-scale N-grams to produce a new
standard in performance of base NP parsing:
95.4%. The web-scale N-grams substantially im-
prove performance, particularly in long NPs that
include conjunctions. There is no data like more

data. Performance improves log-linearly with the
number of parameters (unique N-grams). One can
increase performance with larger models, e.g., in-
creasing the size of the unlabeled corpora, or by
decreasing the frequency threshold. Alternatively,
one can decrease storage costs with smaller mod-
els, e.g., decreasing the size of the unlabeled cor-
pora, or by increasing the frequency threshold. Ei-
ther way, the log-linear relationship between accu-
racy and model size makes it easy to estimate the
trade-off between performance and storage costs.
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Abstract

This paper presents an approach to sum-
marize single scientific papers, by extract-
ing its contributions from the set of cita-
tion sentences written in other papers. Our
methodology is based on extracting sig-
nificant keyphrases from the set of cita-
tion sentences and using these keyphrases
to build the summary. Comparisons show
how this methodology excels at the task
of single paper summarization, and how it
out-performs other multi-document sum-
marization methods.

1 Introduction

In recent years statistical physicists and computer
scientists have shown great interest in analyzing
complex adaptive systems. The study of such sys-
tems can provide valuable insight on the behav-
ioral aspects of the involved agents with potential
applications in economics and science. One such
aspect is to understand what motivates people to
provide then+1st review of an artifact given that
they are unlikely to add something significant that
has not already been said or emphasized. Cita-
tions are part of such complex systems where ar-
ticles use citations as a way to mention different
contributions of other papers, resulting in a col-
lective system.

The focus of this work is on the corpora cre-
ated based on citation sentences. A citation sen-
tence is a sentence in an article containing a ci-
tation and can contain zero or morenuggets(i.e.,
non-overlapping contributions) about the cited ar-
ticle. For example the following sentences are a

few citation sentences that appeared in the NLP
literature in past that talk about Resnik’s work.

The STRAND system(Resnik, 1999), for example, uses
structural markup informationfrom the pages, without
looking at their content, to attempt to align them.

Resnik (1999) addressed the issue of
language identificationfor finding Web pages in
the languages of interest.

Mining the Web for bilingual text(Resnik, 1999) is not
likely to provide sufficient quantities of high quality
data..

The set of citations is important to analyze be-
cause human summarizers have put their effort
collectively but independently to read the target
article and cite its important contributions. This
has been shown in other work too (Elkiss et al.,
2008; Nanba et al., 2004; Qazvinian and Radev,
2008; Mei and Zhai, 2008; Mohammad et al.,
2009). In this work, we introduce a technique
to summarize the set of citation sentences and
cover the major contributions of the target paper.
Our methodology first finds the set of keyphrases
that represent important information units (i.e.,
nuggets), and then finds the best set ofk sentences
to cover more, and more important nuggets.

Our results confirm the effectiveness of the
method and show that it outperforms other state
of the art summarization techniques. Moreover,
as shown in the paper, this method does not need
to calculate the full cosine similarity matrix for a
document cluster, which is the most time consum-
ing part of the mentioned baseline methods.

1.1 Related Work

Previous work has used citations to produce sum-
maries of scientific work (Qazvinian and Radev,
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2008; Mei and Zhai, 2008; Elkiss et al., 2008).
Other work (Bradshaw, 2003; Bradshaw, 2002)
benefits from citations to determine the content of
articles and introduce “Reference Directed Index-
ing” to improve the results of a search engine.

In other work, (Nanba and Okumura, 1999) an-
alyze citation sentences and automatically cate-
gorize citations into three groups using 160 pre-
defined phrase-based rules to support a system for
writing a survey. Previous research has shown
the importance of the citation summaries in un-
derstanding what a paper contributes. In partic-
ular, (Elkiss et al., 2008) performed a large-scale
study on citation summaries and their importance.
Results from this experiment confirmed that the
“Self Cohesion” (Elkiss et al., 2008) of a citation
summary of an article is consistently higher than
the that of its abstract and that citations contain
additional information that does not appear in ab-
stracts.

Kan et al. (2002) use annotated bibliographies
to cover certain aspects of summarization and sug-
gest using metadata and critical document features
as well as the prominent content-based features to
summarize documents. Kupiec et al. (1995) use
a statistical method and show how extracts can
be used to create summaries but use no annotated
metadata in summarization.

Siddharthan and Teufel describe a new task to
decide the scientific attribution of an article (Sid-
dharthan and Teufel, 2007) and show high hu-
man agreement as well as an improvement in the
performance of Argumentative Zoning (Teufel,
2005). Argumentative Zoning is a rhetorical clas-
sification task, in which sentences are labeled as
one of Own, Other, Background, Textual, Aim,
Basis, Contrast according to their role in the au-
thor’s argument. These all show the importance
of citation summaries and the vast area for new
work to analyze them to produce a summary for a
given topic.

The Maximal Marginal Relevance (MMR)
summarization method, which is based on a
greedy algorithm, is described in (Carbonell and
Goldstein, 1998). MMR uses the full similarity
matrix to choose the sentences that are the least
similar to the sentences already selected for the
summary. We selected this method as one of our

Fact Occurrences
f1: “ Supervised Learning” 5
f2: “ instance/concept relations” 3
f3: “Part-of-Speech tagging” 3
f4: “filtering QA results” 2
f5: “lexico-semantic information” 2
f6: “hyponym relations” 2

Table 2: Nuggets of P03-1001 extracted by anno-
tators.

baseline methods, which we have explained in
more details in Section 4.

2 Data
In order to evaluate our method, we use the ACL
Anthology Network (AAN), which is a collec-
tion of papers from the Computational Linguistics
journal and proceedings from ACL conferences
and workshops and includes more than13, 000 pa-
pers (Radev et al., 2009). We use 25 manually an-
notated papers from (Qazvinian and Radev, 2008),
which are highly cited articles in AAN. Table 1
shows the ACL ID, title, and the number of cita-
tion sentences for these papers.

The annotation guidelines asked a number of
annotators to read the citation summary of each
paper and extract a list of the main contribu-
tions of that paper. Each item on the list is a
non-overlapping contribution (nugget) perceived
by reading the citation summary. The annota-
tion strictly instructed the annotators to focus on
the citing sentences to do the task and not their
own background on the topic. Then, extracted
nuggets are reviewed and those nuggets that have
only been mentioned by 1 annotator are removed.
Finally, the union of the rest is used as a set of
nuggets representing each paper.

Table 2 lists the nuggets extracted by annotators
for P03-1001.

3 Methodology

Our methodology assumes that each citation sen-
tence covers 0 or more nuggets about the cited
papers, and tries to pick sentences that maximize
nugget coverage with respect to summary length.

These nuggets are essentially represented using
keyphrases. Therefore, we try to extract signifi-
cant keyphrases in order to represent nuggets each
sentence contains. Here, the keyphrases are ex-
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ACL-ID Title # citations
N03-1017 Statistical Phrase-Based Translation 180
P02-1006 Learning Surface Text Patterns For A Question Answering System 74
P05-1012 On-line Large-Margin Training Of Dependency Parsers 71
C96-1058 Three New Probabilistic Models For Dependency Parsing: An Exploration 66
P05-1033 A Hierarchical Phrase-Based Model For Statistical MachineTranslation 65
P97-1003 Three Generative, Lexicalized Models For Statistical Parsing 55
P99-1065 A Statistical Parser For Czech 54
J04-4002 The Alignment Template Approach To Statistical Machine Translation 50
D03-1017 Towards Answering Opinion Questions: Separating Facts From Opinions ... 42
P05-1013 Pseudo-Projective Dependency Parsing 40
W00-0403 Centroid-Based Summarization Of Multiple Documents: Sentence Extraction, ... 31
P03-1001 Offline Strategies For Online Question Answering: Answering Questions Before They Are Asked 27
N04-1033 Improvements In Phrase-Based Statistical Machine Translation 24
A00-2024 Cut And Paste Based Text Summarization 20
W00-0603 A Rule-Based Question Answering System For Reading Comprehension Tests 19
A00-1043 Sentence Reduction For Automatic Text Summarization 19
C00-1072 The Automated Acquisition Of Topic Signatures For Text Summarization 19
W05-1203 Measuring The Semantic Similarity Of Texts 17
W03-0510 The Potential And Limitations Of Automatic Sentence Extraction For Summarization 15
W03-0301 An Evaluation Exercise For Word Alignment 14
A00-1023 A Question Answering System Supported By Information Extraction 13
D04-9907 Scaling Web-Based Acquisition Of Entailment Relations 12
P05-1014 The Distributional Inclusion Hypotheses And Lexical Entailment 10
H05-1047 A Semantic Approach To Recognizing Textual Entailment 8
H05-1079 Recognising Textual Entailment With Logical Inference 9

Table 1: List of papers chosen from AAN for evaluation together with the number of sentences citing
each.

unique all max freq
unigrams 229,631 7,746,792 437,308
bigrams 2,256,385 7,746,791 73,957
3-grams 5,125,249 7,746,790 3,600
4-grams 6,713,568 7,746,789 2,408

Table 3: Statistics on the abstract corpus in AAN
used as the background data

pressed usingN -grams, and thus these building
units are the key elements to our summarization.
For each citation sentencedi, our method first ex-
tracts a set of important keyphrases,Di, and then
tries to find sentences that have a larger number of
important and non-redundant keyphrases. In order
to take the first step, we extract statistically sig-
nificantly frequentN -grams (up toN = 4) from
each citing sentence and use them as the set of
representative keyphrases for that citing sentence.

3.1 Automatic Keyphrase Extraction

A list of keyphrases for each citation sentence can
be generated by extractingN -grams that occur
significantly frequently in that sentence compared
to a large corpus of suchN -grams. Our method
for such an extraction is inspired by the previ-
ous work by Tomokiyo and Hurst (Tomokiyo and
Hurst, 2003).

A language model,M, is a statistical model
that assigns probabilities to a sequence ofN -
grams. Every language model is a probability dis-
tribution over allN -grams and thus the probabili-
ties of allN -grams of the same length sum up to
1. In order to extract keyphrases from a text us-
ing statistical significance we need two language
models. The first model is referred to as theBack-
ground Model (BM) and is built using a large
text corpus. Here we build the BM using the text
of all the paper abstracts provided in AAN1. The
second language model is called theForeground
Model (FM) and is the model built on the text
from which keyphrases are being extracted. In
this work, the set of all citation sentences that cite
a particular target paper are used to build a fore-
ground language model.

Let gi be anN -gram of sizei andCM(gi) de-
note the count ofgi in the modelM. First, we ex-
tract the counts of eachN -grams in both the back-
ground (BM) and the foreground corpora (FM).

1http://chernobog.si.umich.edu/clair/anthology/index.cgi
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MBM =
X

gi∈{BM∪FM}
1

NBM =
X

gi∈{BM∪FM}
CBM(gi)

NFM =
X

gi∈FM
CFM(gi)

p̂FM(gi) = CFM(gi)/NFM

p̂BM(gi) = (CBM(gi) + 1)/(MBM + NBM)

The last equation is also known as Laplace
smoothing (Manning and Schutze, 2002) and han-
dles theN -grams in the foreground corpus that
have a 0 occurrence frequency in the background
corpus. Next, we extractN -grams from the fore-
ground corpus that have significant frequencies
compared to the frequency of the sameN -grams
in the background model and its individual terms
in the foreground model.

To measure how randomly a set of consecu-
tive terms are forming anN -gram, Tomokiyo and
Hurst (Tomokiyo and Hurst, 2003) use pointwise
divergence. In particular, for anN -gram of sizei,
gi = (w1w2 · · ·wi),

δgi(FMi‖FM1) = p̂FM(gi) log(
p̂FM(gi)

Qi
j=1 p̂FM(wj)

)

This equation shows the extent to which the
terms forming gi have occurred together ran-
domly. In other words, it indicates the extent of in-
formation that we lose by assuming independence
of each word by applying the unigram model, in-
stead of theN -gram model.

In addition, to measure how randomly a se-
quence of words appear in the foreground model
with respect to the background model, we use
pointwise divergence as well. Here, pointwise di-
vergence defines how much information we lose
by assuming thatgi is drawn from the background
model instead of the foreground model:

δgi(FMi‖BMi) = p̂FM(gi) log(
p̂FM(gi)

p̂BM(gi)
)

(Corley and Mihalcea, 2005) applied or uti-
lized lexical based word overlap measures.
{overlap measures, word overlap, lexical
based, utilized lexical}

Table 4: Example: citation sentence for W05-
1203 written by D06-1621, and its extracted bi-
grams.

We set the criteria of choosing a sequence of
words as significant to be whether it has posi-
tive pointwise divergence with respect to both the
background model, and individual terms of the
foreground model. In other words we extract allgi

from FM for which the both properties are posi-
tive:

δgi(FMi‖BMi) > 0

δgi(FMi‖FM1) ≥ 0

The equality condition in the second equation
is specifically set to handle unigrams, in which
p̂FM(gi) =

∏i
j=1 p̂FM(wj).

In order to handle the text corpora and build-
ing the language models, we have used the CMU-
Cambridge Language Model toolkit (Clarkson
and Rosenfeld, 1997). We use the set of cita-
tion sentences for each paper to build foreground
language models. Furthermore, we employ this
tool and make the background model using nearly
11,000 abstracts from AAN. Table 3 summarizes
some of the statistics about the background data.

Once keyphrases (significantN -grams) of each
sentence are extracted, we remove allN -grams in
which more than half of the terms are stopwords.
For instance, we remove all stopword unigrams,
if any, and all bigrams with at least one stop-
word in them. For 3-grams and 4-grams we use
a threshold of 2 and 3 stopwords respectively. Af-
ter that, the set of remainingN -grams is used to
represent each sentence and to build summaries.
Table 4 shows an example of a citation sentence
from D06-1621 citing W05-1203 (Corley and Mi-
halcea, 2005), and its extracted bigrams.

3.2 Sentence Selection

After extracting the set of keyphrases for each sen-
tence,di, the sentence is represented using its set
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of N -grams, denoted byDi. Then, the goal is
to pick sentences (sets) for each paper that cover
more important and non-redundant keyphrases.
Essentially, keyphrases that have been repeated in
more sentences are more important and could rep-
resent more important nuggets. Therefore, sen-
tences that contain more frequent keyphrases are
more important. Based on this intuition we define
the reward of building a summary comprising a
set of keyphrasesS as

f(S) = |S ∩A|

where A is the set of all keyphrases from sen-
tences not in the summary.

The set functionf has three main properties.
First, it is non-negative. Second, it is mono-
tone (i.e., For every setv we havef(S + v) ≥
f(S)). Third, f is sub-modular. The submodular-
ity means that for a setv and two setsS ⊆ T we
have

f(S + v)− f(S) ≥ f(T + v)− f(T )

Intuitively, this property implies that adding a set
v to S will increase the reward at least as much
as it would to a larger setT . In the summariza-
tion setting, this means that adding a sentence to
a smaller summary will increase the reward of the
summary at least as much as adding it to a larger
summary that subsumes it. The following theorem
formalizes this and is followed by a proof.

Theorem 1 The reward functionf is submodular.

Proof
We start by defining a gain functionG of adding
sentence (set)Di to Sk−1 whereSk−1 is the set
of keyphrases in a summary built usingk− 1 sen-
tences, andDi is a candidate sentence to be added:

G(Di,Sk−1) = f(Sk−1 ∪Di)− f(Sk−1)

Simple investigation through a Venn diagram
proof shows thatG can be re-written as

G(Di,Sk−1) = |Di ∩ (∪j 6=iDj)− Sk−1|

Let’s denoteDi∩ (∪j 6=iDj) by∩i. The follow-
ing equations prove the theorem.

Sk−1 ⊆ Sk

S ′
k−1 ⊇ S ′

k

∩i ∩ S ′
k−1 ⊇ ∩i ∩ S ′

k

∩i − Sk−1 ⊇ ∩i − Sk

| ∩i −Sk−1| ≥ | ∩i −Sk|
G(Di, Sk−1) ≥ G(Di, Sk)

f(Sk−1 ∪ Di) − f(Sk−1) ≥ f(Sk ∪ Di) − f(Sk)

Here,S ′
k is the set of allN -grams in the vo-

cabulary that are not present inSk. The gain of
adding a sentence,Di, to an empty summary is a
non-negative value.

G(Di,S0) = C ≥ 0

By induction, we will get

G(Di,S0) ≥ G(Di,S1) ≥ · · · ≥ G(Di,Sk) ≥ 0

2

Theorem 1 implies the general case of submodu-
larity:

∀m, n, 0 ≤ m ≤ n ≤ |D| ⇒ G(Di, Sm) ≥ G(Di, Sn)

Maximizing this submodular function is an NP-
hard problem (Khuller et al., 1999). A common
way to solve this maximization problem is to start
with an empty set, and in each iteration pick a set
that maximizes the gain. It has been shown be-
fore in (Kulik et al., 2009) that iff is a submod-
ular, nondecreasing set function andf(∅) = 0,
then such a greedy algorithm finds a setS, whose
gain is at least as high as(1 − 1/e) of the best
possible solution. Therefore, we can optimize the
keyphrase coverage as described in Algorithm 1.

4 Experimental Setup

We use the annotated data described in Section 2.
In summary, the annotation consisted of two parts:
nugget extraction and nugget distribution analy-
sis. Five annotators were employed to annotate
the sentences in each of the 25 citation summaries
and write down the nuggets (non-overlapping con-
tributions) of the target paper. Then using these
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Summary generated using bigram-based keyphrases
ID Sentence
P06-1048:1 Ziff-Davis Corpus Most previous work (Jing 2000; Knight andMarcu 2002; Riezler et al 2003; Nguyen et al 2004a; Turner andCharniak 2005;

McDonald 2006) has relied on automatically constructed parallel corpora for training and evaluation purposes.
J05-4004:18 Between these two extremes, there has been a relatively modest amount of work in sentence simplification (Chandrasekar,Doran, and Bangalore

1996; Mahesh 1997; Carroll et al 1998; Grefenstette 1998; Jing 2000; Knight and Marcu 2002) and document compression (Daume III and Marcu
2002; Daume III and Marcu 2004; Zajic, Dorr, and Schwartz 2004) in which words, phrases, and sentences are selected in an extraction process.

A00-2024:9 The evaluation of sentence reduction (see (Jing, 2000) for details) used a corpus of 500 sentences and their reduced forms in human-written abstracts.
N03-1026:17 To overcome this problem, linguistic parsing and generation systems are used in the sentence condensation approaches of Knight and Marcu (2000)

and Jing (2000).
P06-2019:5 Jing (2000) was perhaps the first to tackle the sentence compression problem.

Table 5: Bigram-based summary generated for A00-1043.

Algorithm 1 The greedy algorithm for summary
generation

k ← the number of sentences in the summary
Di ← keyphrases indi

S ← ∅
for l = 1 tok do

sl ← arg maxDi∈D |Di ∩ (∪j 6=iDj)|
S ← S ∪ sl

for j = 1 to |D| do
Dj ← Dj − sl

end for
end for
return S

nugget sets, each sentence was annotated with the
nuggets it contains. This results in a sentence-
fact matrix that helps with the evaluation of the
summary. The summarization goal and the intu-
ition behind the summarizing system is to select a
few (5 in our experiments) sentences and cover as
many nuggets as possible. Each sentence in a cita-
tion summary may contain 0 or more nuggets and
not all nuggets are mentioned an equal number of
times. Covering some nuggets (contributions) is
therefore more important than others and should
be weighted highly.

To capture this property, the pyramid score
seems the best evaluation metric to use. We use
the pyramid evaluation method (Nenkova and Pas-
sonneau, 2004) at the sentence level to evaluate
the summary created for each set. We benefit
from the list of annotated nuggets provided by the
annotators as the ground truth of the summariza-
tion evaluation. These annotations give the list of
nuggets covered by each sentence in each citation
summary, which are equivalent to thesummariza-
tion content unit (SCU)as described in (Nenkova

and Passonneau, 2004).
The pyramid score for a summary is calculated

as follows. Assume a pyramid that hasn tiers,Ti,
where tierTi > Tj if i > j (i.e., Ti is not below
Tj , and that if a nugget appears in more sentences,
it falls in a higher tier.). TierTi contains nuggets
that appeared ini sentences, and thus has weight
i. Suppose|Ti| shows the number of nuggets in
tier Ti, andQi is the size of a subset ofTi whose
members appear in the summary. Further suppose
Q shows the sum of the weights of the facts that
are covered by the summary.Q =

∑n
i=1 i×Qi.

In addition, the optimal pyramid score for a sum-
mary withX facts, is

Max =
n

X

i=j+1

i × |Ti| + j × (X −
n

X

i=j+1

|Ti|)

wherej = maxi(
∑n

t=i |Tt| ≥ X). The pyra-
mid score for a summary is then calculated as fol-
lows.

P =
Q

Max
This score ranges from 0 to 1, and a high
score shows the summary contains more heavily
weighted facts.

4.1 Baselines and Gold Standards

To evaluate the quality of the summaries gen-
erated by the greedy algorithm, we compare its
pyramid score in each of the 25 citation sum-
maries with those of a gold standard, a random
summary, and four other methods. The gold stan-
dards are summaries created manually using 5
sentences. The 5 sentences are manually selected
in a way to cover as many nuggets as possible with
higher priority for the nuggets with higher fre-
quencies. We also created random summaries us-
ing Mead (Radev et al., 2004). These summaries
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are basically a random selection of 5 sentences
from the pool of sentences in the citation sum-
mary. Generally we expect the summaries cre-
ated by the greedy method to be significantly bet-
ter than random ones.

In addition to the gold and random summaries,
we also used 4 baseline state of the art sum-
marizers: LexRank, the clustering C-RR and
C-LexRank, and Maximal Marginal Relevance
(MMR). LexRank (Erkan and Radev, 2004) works
based on a random walk on the cosine similar-
ity of sentences and prints out the most frequently
visited sentences. Said differently, LexRank first
builds a network in which nodes are sentences and
edges are cosine similarity values. It then uses the
eigenvalue centralities to find the most central sen-
tences. For each set, the top 5 sentences on the list
are chosen for the summary.

The clustering methods, C-RR and C-LexRank,
work by clustering the cosine similarity network
of sentences. In such a network, nodes are sen-
tences and edges are cosine similarity of node
pairs. Clustering would intuitively put nodes with
similar nuggets in the same clusters as they are
more similar to each other. The C-RR method as
described in (Qazvinian and Radev, 2008) uses a
round-robin fashion to pick sentences from each
cluster, assuming that the clustering will put the
sentences with similar facts into the same clus-
ters. Unlike C-RR, C-LexRank uses LexRank to
find the most salient sentences in each cluster, and
prints out the most central nodes of each cluster as
summary sentences.

Finally, MMR uses the full cosine similarity
matrix and greedily chooses sentences that are the
least similar to those already selected for the sum-
mary (Carbonell and Goldstein, 1998). In partic-
ular,

MMR = arg min
di∈D−A

[
max
dj∈A

Sim(di, dj)
]

whereA is the set of sentences in the summary,
initially set to A = ∅. This method is different
from ours in that it chooses the least similar sen-
tence to the summary in each iteration.

4.2 Results and Discussion

As mentioned before, we use the text of the ab-
stracts of all the papers in AAN as the back-

ground, and each citation set as a separate fore-
ground corpus. For each citation set, we use the
method described in Section 3.1 to extract signif-
icantN -grams of each sentence. We then use the
keyphrase set representation of each sentence to
build the summaries using Algorithm 1. For each
of the 25 citation summaries, we build 4 differ-
ent summaries using unigrams, bigrams, 3-grams,
and 4-grams respectively. Table 5 shows a 5-
sentence summary created using algorithm 1 for
the paper A00-1043 (Jing, 2000).

The pyramid scores for different methods are
reported in Figure 1 together with the scores
of gold standards, manually created to cover as
many nuggets as possible in 5 sentences, as
well as summary evaluations of the 4 baseline
methods described above. This Figure shows
how the keyphrase based summarization method
when employingN -grams of size 3 or smaller,
outperforms other baseline systems significantly.
More importantly, Figure 1 also indicates that this
method shows more stable results and low varia-
tion in summary quality when keyphrases of size 3
or smaller are employed. In contrast, MMR shows
high variation in summary qualities making sum-
maries that obtain pyramid scores as low as 0.15.

Another important advantage of this method is
that we do not need to calculate the cosine simi-
larity of the pairs of sentences, which would add a
running time ofO(|D|2|V |) in the number of doc-
uments,|D|, and the size of the vocabulary|V | to
the algorithm.

5 Conclusion and Future Work

This paper presents a summarization methodol-
ogy that employs keyphrase extraction to find im-
portant contributions of scientific articles. The
summarization is based on citation sentences and
picks sentences to cover nuggets (represented by
keyphrases) or contributions of the target papers.
In this setting the best summary would have as few
sentences and at the same time as many nuggets
as possible. In this work, we use pointwise KL-
divergence to extract statistically significantN -
grams and use them to represent nuggets. We
then apply a new set function for the task of sum-
marizing scientific articles. We have proved that
this function is submodular and concluded that a
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Figure 1: Evaluation Results (summaries with 5 sentences):The median pyramid score over 25 datasets
using different methods.

greedy algorithm will result in a near-optimum set
of covered nuggets using only 5 sentences. Our
experiments in this paper confirm that the sum-
maries created based on the presented algorithm
are better than randomly generated summary, and
also outperform other state of the art summariza-
tion methods in most cases. Moreover, we show
how this method generates more stable summaries
with lower variation in summary quality whenN -
grams of size 3 or smaller are employed.

A future direction for this work is to perform
post-processing on the summaries and re-generate
sentences that cover the extracted nuggets. How-
ever, the ultimate goal is to eventually develop
systems that can produce summaries of entire
research areas, summaries that will enable re-
searchers to easily and quickly switch between
fields of research.

One future study that will help us generate
better summaries is to understand how nuggets
are generated by authors. In fact, modeling the
nugget coverage behavior of paper authors will
help us identify more important nuggets and dis-
cover some aspects of the paper that would oth-

erwise be too difficult by just reading the paper
itself.
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Abstract

In practical applications, decoding speed
is very important. Modern structured
learning technique adopts template based
method to extract millions of features.
Complicated templates bring about abun-
dant features which lead to higher accu-
racy but more feature extraction time. We
propose Two Dimensional Trie (2D Trie),
a novel efficient feature indexing structure
which takes advantage of relationship be-
tween templates: feature strings generated
by a template are prefixes of the features
from its extended templates. We apply
our technique to Maximum Spanning Tree
dependency parsing. Experimental results
on Chinese Tree Bank corpus show that
our 2D Trie is about 5 times faster than
traditional Trie structure, making parsing
speed 4.3 times faster.

1 Introduction

In practical applications, decoding speed is very
important. Modern structured learning technique
adopts template based method to generate mil-
lions of features. Such as shallow parsing (Sha
and Pereira, 2003), named entity recognition
(Kazama and Torisawa, ), dependency parsing
(McDonald et al., 2005), etc.

The problem arises when the number of tem-
plates increases, more features generated, mak-
ing the extraction step time consuming. Espe-
cially for maximum spanning tree (MST) depen-
dency parsing, since feature extraction requires
quadratic time even using a first order model. Ac-
cording to Bohnet’s report (Bohnet, 2009), a fast

Feature Generation

Template:
p .word+p .pos0 0

Feature:
lucky/ADJ

Index:
3228~3233

Feature
Retrieval

Parse Tree

Build lattice, inference etc.

Figure 1: Flow chart of dependency parsing.
p0.word, p0.pos denotes the word and POS tag
of parent node respectively. Indexes correspond
to the features conjoined with dependency types,
e.g., lucky/ADJ/OBJ, lucky/ADJ/NMOD, etc.

feature extraction beside of a fast parsing algo-
rithm is important for the parsing and training
speed. He takes 3 measures for a 40X speedup,
despite the same inference algorithm. One impor-
tant measure is to store the feature vectors in file
to skip feature extraction, otherwise it will be the
bottleneck.

Now we quickly review the feature extraction
stage of structured learning. Typically, it consists
of 2 steps. First, features represented by strings
are generated using templates. Then a feature in-
dexing structure searches feature indexes to get
corresponding feature weights. Figure 1 shows
the flow chart of MST parsing, where p0.word,
p0.pos denote the word and POS tag of parent
node respectively.

We conduct a simple experiment to investi-
gate decoding time of MSTParser, a state-of-the-
art java implementation of dependency parsing 1.
Chinese Tree Bank 6 (CTB6) corpus (Palmer and

1http://sourceforge.net/projects/mstparser
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Step Feature Index Other Total
Generation Retrieval

Time 300.27 61.66 59.48 421.41

Table 1: Time spent of each step (seconds) of
MSTParser on CTB6 standard test data (2660 sen-
tences). Details of the hardware and corpus are
described in section 5

Xue, 2009) with standard train/development/test
split is used for evaluation. Experimental results
are shown in Table 1. The observation is that time
spent of inference is trivial compared with feature
extraction. Thus, speeding up feature extraction is
critical especially when large template set is used
for high accuracy.

General indexing structure such as Hash and
Trie does not consider the relationships between
templates, therefore they could not speed up fea-
ture generation, and are not completely efficient
for searching feature indexes. For example, fea-
ture string s1 generated by template “p0.word”
is prefix of feature s2 from template “p0.word +
c0.word” (word pair of parent and child), hence
index of s1 could be used for searching s2. Fur-
ther more, if s1 is not in the feature set, then s2
must be absent, its generation can be skipped.

We propose Two Dimensional Trie (2D Trie),
a novel efficient feature indexing structure which
takes advantage of relationship between tem-
plates. We apply our technique to Maximum
Spanning Tree dependency parsing. Experimental
results on CTB6 corpus show that our 2D Trie is
about 5 times faster than traditional Trie structure,
making parsing speed 4.3 times faster.

The paper is structured as follows: in section 2,
we describe template tree which represents rela-
tionship between templates; in section 3, we de-
scribe our new 2D Trie structure; in section 4, we
analyze the complexity of the proposed method
and general string indexing structures for parsing;
experimental results are shown in section 5; we
conclude the work in section 6.

2 Template tree

2.1 Formulation of template

A template is a set of template units which are
manually designed: T = {t1, . . . , tm}. For con-

Unit Meaning
p−i/pi the ith node left/right to parent node
c−i/ci the ith node left/right to child node
r−i/ri the ith node left/right to root node
n.word word of node n
n.pos POS tag of node n

n.length word length of node n
|l conjoin current feature with linear distance

between child node and parent node
|d conjoin current feature with direction of de-

pendency (left/right)

Table 2: Template units appearing in this paper

venience, we use another formulation: T = t1 +
. . .+tm. All template units appearing in this paper
are described in Table 2, most of them are widely
used. For example, “T = p0.word + c0.word|l ”
denotes the word pair of parent and child nodes,
conjoined with their distance.

2.2 Template tree

In the rest of the paper, for simplicity, let si be a
feature string generated by template Ti.

We define the relationship between templates:
T1 is the ancestor of T2 if and only T1 ⊂ T2, and
T2 is called the descendant of T1. Recall that,
feature string s1 is prefix of feature s2. Suppose
T3 ⊂ T1 ⊂ T2, obviously, the most efficient way
to look up indexes of s1, s2, s3 is to search s3 first,
then use its index id3 to search s1, and finally use
id1 to search s2. Hence the relationship between
T2 and T3 can be neglected.

Therefore we define direct ancestor of T1: T2

is a direct ancestor of T1 if T2 ⊂ T1, and there is
no template T ′ such that T2 ⊂ T ′ ⊂ T1. Corre-
spondingly, T1 is called the direct descendant of
T2.

Template graph G = (V,E) is a directed graph
that represents the relationship between templates,
where V = {T1, . . . , Tn} is the template set, E =
{e1, . . . , eN} is the edge set. Edge from Ti to Tj

exists, if and only if Ti is the direct ancestor of
Tj . For templates having no ancestor, we add an
empty template as their common direct ancestor,
which is also the root of the graph.

The left part of Figure 2 shows a template
graph for templates T1 =p0.word, T2 =p0.pos ,
T3 =p0.word + p0.pos. In this example, T3 has 2
direct ancestors, but in fact s3 has only one prefix
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p .word0

p .word + p pos0 0.

root

p .word0

root

p .pos0

p .pos0 p .pos0

Figure 2: Left graph shows template graph for
T1 =p0.word, T2 =p0.pos , T3 =p0.word +
p0.pos. Right graph shows the corresponding tem-
plate tree, where each vertex saves the subset of
template units that do not belong to its father

which depends on the order of template units in
generation step. If s3 = s1 + s2, then its prefix is
s1, otherwise its prefix is s2. In this paper, we sim-
ply use the breadth-first tree of the graph for dis-
ambiguation, which is called template tree. The
only direct ancestor T1 of T2 in the tree is called
father of T2, and T2 is a child of T1. The right
part of Figure 2 shows the corresponding template
tree, where each vertex saves the subset of tem-
plate units that do not belong to its father.

2.3 Virtual vertex

Consider the template tree in the left part of Figure
3, red vertex and blue vertex are partially over-
lapped, their intersection is p0.word, if string s
from template T =p0.word is absent in feature set,
then both nodes can be neglected. For efficiently
pruning candidate templates, each vertex in tem-
plate tree is restricted to have exactly one template
unit (except root). Another important reason for
such restriction will be given in the next section.

To this end, virtual vertexes are created for
multi-unit vertexes. For efficient pruning, the new
virtual vertex should extract the most common
template unit. A natural goal is to minimize the
creation number. Here we use a simple greedy
strategy, for the vertexes sharing a common fa-
ther, the most frequent common unit is extracted
as new vertex. Virtual vertexes are iteratively cre-
ated in this way until all vertexes have one unit.
The final template tree is shown in the right part of
Figure 3, newly created virtual vertexes are shown
in dashed circle.

root

p .word+p .word

+p .word
-1 0

1

p .word

+p pos
0

0.

c .word

+c pos
0

0.

root

p .word0

p .pos0

p .word-1

p .word1

c .word0

c .pos0

Figure 3: Templates that are partially overlapped:
Tred ∩ Tblue =p0.word, virtual vertexes shown in
dashed circle are created to extract the common
unit

root

p .word0

p .pos0

parse tag

VV NN... ... ... ...

.........

Level 0

Level 1

Level 2 VV ...

Figure 4: 2D Trie for single template, alphabets at
level 1 and level 2 are the word set, POS tag set
respectively

3 2D Trie

3.1 Single template case
Trie stores strings over a fixed alphabet, in our
case, feature strings are stored over several alpha-
bets, such as word list, POS tag list, etc. which are
extracted from training corpus.

To illustrate 2D Trie clearly, we first consider a
simple case, where only one template used. The
template tree degenerates to a sequence, we could
use a Trie like structure for feature indexing, the
only difference from traditional Trie is that nodes
at different levels could have different alphabets.
One example is shown in Figure 4. There are 3
feature strings from template “p0.word + p0.pos”:
{parse/VV, tag/VV, tag/VV}. Alphabets at level
1 and level 2 are the word set, POS tag set re-
spectively, which are determined by correspond-
ing template vertexes.

As mentioned before, each vertex in template
tree has exactly one template unit, therefore, at
each level, we look up an index of a word or POS
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Figure 5: Look up indexes of words and POS tags
beforehand.

tag in sentence, not their combinations. Hence the
number of alphabets is limited, and all the indexes
could be searched beforehand for reuse, as shown
in Figure 5, the token table is converted to a in-
dex table. For example, when generating features
at position i of a sentence, template “r0.word +
r1.word” requires index of i+1th word in the sen-
tence, which could be reused for generation at po-
sition i+ 1.

3.2 General case
Generally, for vertex in template tree with K chil-
dren, children of corresponding Trie node are ar-
ranged in a matrix of K rows and L columns, L
is the size of corresponding alphabet. If the vertex
is not virtual, i.e., it generates features, one more
row is added at the bottom to store feature indexes.
Figure 6 shows the 2D Trie for a general template
tree.

3.3 Feature extraction
When extracting features for a pair of nodes in a
sentence, template tree and 2D Trie are visited in
breath first traversal order. Each time, an alpha-
bet and a token index j from index table are se-
lected according to current vertex. For example,
POS tag set and the index of the POS tag of par-
ent node are selected as alphabet and token index
respectively for vertex “p0.pos”. Then children in
the jth column of the Trie node are visited, valid
children and corresponding template vertexes are
saved for further retrieval or generate feature in-
dexes if the child is at the bottom and current Trie
node is not virtual. Two queues are maintained to

been

...

...

...

...

...

...

VBN

p .word+p .pos

→been/VBN
0 0...

...

...

...

p .word→been0... ...

root

root

p .word0

p .pos0 c .word0

had

...

...

...

p .word→had0 ...

VBD

p .word+p .pos

→had/VBD
0 0...

...

...

...

He

p .word+w .word

had/He
0 0

→
...

...

nmod vmodobj sub

Feature index array

-1 -13327 2510

nmod vmodobj sub

-1 7821-1 -1

...

...

...

...

...

...

...

... been

p .word+w .word

→had/been
0 0 ...

...

invalid

Figure 6: 2D trie for a general template tree.
Dashed boxes are keys of columns, which are not
stored in the structure

save the valid children and Trie nodes. Details of
feature extraction algorithm are described in Al-
gorithm 1.

3.4 Implementation

When feature set is very large, space complexity
of 2D Trie is expensive. Therefore, we use Double
Array Trie structure (Aoe, 1989) for implementa-
tion. Since children of 2D Trie node are arranged
in a matrix, not an array, so each element of the
base array has a list of bases, not one base in stan-
dard structure. For children that store features,
corresponding bases are feature indexes. One ex-
ample is shown in Figure 7. The root node has
3 bases that point to three rows of the child ma-
trix of vertex “p0.word” respectively. Number of
bases in each element need not to be stored, since
it can be obtained from template vertex in extrac-
tion procedure.

Building algorithm is similarly to Double Array
Trie, when inserting a Trie node, each row of the
child matrix is independently insert into base and
check arrays using brute force strategy. The inser-
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Figure 7: Build base array for 2D Trie in Figure 6. String in the box represents the key of the child.
Blank boxes are the invalid children. The root node has 3 bases that point to three rows of the child
matrix of vertex “p0.word” respectively

Algorithm 1 Feature extraction using 2D Trie
Input: 2D Trie that stores features, template
tree, template graph, a table storing token in-
dexes, parent and child positions
Output: Feature index set S of dependency
from parent to child.
Create template vertex queue Q1 and Trie
node queue Q2. Push roots of template tree
and Trie into Q1, Q2 respectively. S = ∅
while Q1 is not empty, do

Pop a template vertex T from Q1 and a Trie
node N from Q2. Get token index j from
index table according to T .
for i = 1 to child number of T

if child of N at row i column j is valid,
push it into Q2 and push the ith child
of T into Q1.

else
remove decedents of ith child of T
from template tree

end if
end for
if T is not virtual and the last child of N in
column j is valid

Enumerate dependency types, add
valid feature indexes to S

end if
end while
Return S.

tion repeats recursively until all features stored.

4 Complexity analysis

Let

• |T | = number of templates

• |t| = number of template units

• |V | = number of vertexes in template tree,
i.e, |t|+ number of virtual vertexes

• |F | = number of features

• l = length of sentence

• |f | = average length of feature strings

The procedure of 2D Trie for feature extraction
consists of 2 steps: tokens in string table are
mapped to their indexes, then Algorithm 1 is car-
ried out for all node pairs of sentence. In the first
step, we use double array Trie for efficient map-
ping. In fact, time spent is trivial compared with
step 2 even by binary search. The main time spent
of Algorithm 1 is the traversal of the whole tem-
plate tree, in the worst case, no vertexes removed,
so the time complexity of a sentence is l2|V |,
which is proportional to |V |. In other words, mini-
mizing the number of virtual vertexes is important
for efficiency.

For other indexing structures, feature genera-
tion is a primary step of retrieval. For each node
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Structure Generation Retrieval
2D Trie l2|V |

Hash / Trie l2|t| l2|f ||T |
Binary Search l2|t| l2|T | log |F |

Table 3: Time complexity of different indexing
structures.

pair of sentence, |t| template units are processed,
including concatenations of tokens and split sym-
bols (split tokens in feature strings), boundary
check ( e.g, p−1.word is out of boundary for be-
ginning node of sentence). Thus the generation
requires l2|t| processes. Notice that, time spent of
each process varies on the length of tokens.

For feature string s with length |s|, if perfect
hashing technique is adopted for index retrieval, it
takes |s| calculations to get hash value and a string
comparison to check the string at the calculated
position. So the time complexity is proportional to
|s|, which is the same as Trie. Hence the total time
for a sentence is l2|f ||T |. If binary search is used
instead, log |F | string comparisons are required,
complexity for a sentence is l2|T | log |F |.

Time complexity of these structures is summa-
rized in Table 3.

5 Experiments

5.1 Experimental settings
We use Chinese Tree Bank 6.0 corpus for evalua-
tion. The constituency structures are converted to
dependency trees by Penn2Malt 2 toolkit and the
standard training/development/test split is used.
257 sentences that failed in the conversion were
removed, yielding 23316 sentences for training,
2060 sentences for development and 2660 sen-
tences for testing respectively.

Since all the dependency trees are projective,
a first order projective MST parser is naturally
adopted. Online Passive Aggressive algorithm
(Crammer et al., 2006) is used for fast training, 2
parameters, i.e, iteration number and C, are tuned
on development data. The quality of the parser is
measured by the labeled attachment score (LAS),
i.e., the percentage of tokens with correct head and
dependency type.

2http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html

Group IDs #Temp. #Vert. #Feat. LAS
1 1-2 72 91 3.23M 79.55%
2 1-3 128 155 10.4M 81.38%
3 1-4 240 275 25.0M 81.97%
4 1-5 332 367 34.8M 82.44%

Table 5: Parsing accuracy and number of tem-
plates, vertexes in template tree, features in decod-
ing stage (zero weighted features are excluded) of
each group.

We compare the proposed structure with Trie
and binary search. We do not compare with per-
fect hashing, because it has the same complex-
ity as Trie, and is often used for large data base
retrieval, since it requires only one IO opera-
tion. For easy comparison, all feature indexing
structures and the parser are implemented with
C++. All experiments are carried out on a 64bit
linux platform (CPU: Intel(R) Xeon(R) E5405,
2.00GHz, Memory: 16G Bytes). For each tem-
plate set, we run the parser five times on test data
and the averaged parsing time is reported.

5.2 Parsing speed comparison
To investigate the scalability of our method, rich
templates are designed to generate large feature
sets, as shown in Table 4. All templates are orga-
nized into 4 groups. Each row of Table 5 shows
the details of a group, including parsing accu-
racy and number of templates, vertexes in tem-
plate tree, and features in decoding stage (zero
weighted features are excluded).

There is a rough trend that parsing accuracy
increases as more templates used. Though such
trend is not completely correct, the clear conclu-
sion is that, abundant templates are necessary for
accurate parsing.

Though algorithm described in section 2.3 for
minimizing the number of virtual vertexes is
heuristic, empirical results are satisfactory, num-
ber of newly created vertexes is only 10% as orig-
inal templates. The reason is that complex tem-
plates are often extended from simple ones, their
differences are often one or two template units.

Results of parsing time comparison are shown
in Table 6. We can see that though time com-
plexity of dynamic programming is cubic, pars-
ing time of all systems is consistently dominated
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ID Templates
1 pi.word pi.pos pi.word+pi.pos

ci.word ci.pos ci.word+ci.pos (|i| ≤ 2)
pi.length pi.length+pi.pos
ci.length ci.length+ci.pos (|i| ≤ 1)
p0.length+c0.length|ld p0.length+c0.length+c0.pos|ld p0.length+p0.pos+c0.length|ld
p0.length+p0.pos+c0.pos|ld p0.pos+c0.length+c0.pos|ld p0.length+p0.pos+c0.length+c0.pos|ld
pi.length+pj .length+ck.length+cm.length|ld (|i|+ |j|+ |k|+ |m| ≤ 2)
r0.word r−1.word+r0.word r0.word+r1.word
r0.pos r−1.pos+r0.pos r0.pos+r1.pos

2 pi.pos+cj .pos|d pi.word+cj .word|d pi.pos+cj .word+cj .pos|d
pi.word+pi.pos+cj .pos|d pi.word+pi.pos+cj .word|d pi.word+cj .word+cj .pos|d
pi.word+pi.pos+cj .word+cj .pos|d (|i|+ |j| = 0)

Conjoin templates in the row above with |l
3 Similar with 2 |i|+ |j| = 1
4 Similar with 2 |i|+ |j| = 2
5 pi.word + pj .word + ck.word|d pi.word + cj .word + ck.word|d

pi.pos + pj .pos + ck.pos|d pi.pos + cj .pos + ck.pos|d (|i|+ |j|+ |k| ≤ 2)
Conjoin templates in the row above with |l

pi.word + pj .word + pk.word + cm.word|d pi.word + pj .word + ck.word + cm.word|d
pi.word + cj .word + ck.word + cm.word|d
pi.pos + pj .pos + pk.pos + cm.pos|d pi.pos + pj .pos + ck.pos + cm.pos|d
pi.pos + cj .pos + ck.pos + cm.pos|d (|i|+ |j|+ |k|+ |m| ≤ 2)

Conjoin templates in the row above with |l

Table 4: Templates used in Chinese dependency parsing.

by feature extraction. When efficient indexing
structure adopted, i.e, Trie or Hash, time index re-
trieval is greatly reduced, about 4-5 times faster
than binary search. However, general structures
search features independently, their results could
not guide feature generation. Hence, feature gen-
eration is still time consuming. The reason is that
processing each template unit includes a series of
steps, much slower than one integer comparison
in Trie search.

On the other hand, 2D Trie greatly reduces the
number of feature generations by pruning the tem-
plate graph. In fact, no string concatenation oc-
curs when using 2D Trie, since all tokens are con-
verted to indexes beforehand. The improvement
is significant, 2D Trie is about 5 times faster than
Trie on the largest feature set, yielding 13.4 sen-
tences per second parsing speed, about 4.3 times
faster.

Space requirement of 2D Trie is about 2.1 times
as binary search, and 1.7 times as Trie. One possi-
ble reason is that column number of 2D Trie (e.g.
size of words) is much larger than standard double
array Trie, which has only 256 children, i.e, range
of a byte. Therefore, inserting a 2D Trie node is
more strict, yielding sparser double arrays.

5.3 Comparison against state-of-the-art

Recent works on dependency parsing speedup
mainly focus on inference, such as expected
linear time non-projective dependency parsing
(Nivre, 2009), integer linear programming (ILP)
for higher order non-projective parsing (Martins
et al., 2009). They achieve 0.632 seconds per sen-
tence over several languages. On the other hand,
Goldberg and Elhadad proposed splitSVM (Gold-
berg and Elhadad, 2008) for fast low-degree poly-
nomial kernel classifiers, and applied it to transi-
tion based parsing (Nivre, 2003). They achieve
53 sentences per second parsing speed on En-
glish corpus, which is faster than our results, since
transition based parsing is linear time, while for
graph based method, complexity of feature ex-
traction is quadratic. Xavier Lluı́s et al. (Lluı́s
et al., 2009) achieve 8.07 seconds per sentence
speed on CoNLL09 (Hajič et al., 2009) Chinese
Tree Bank test data with a second order graphic
model. Bernd Bohnet (Bohnet, 2009) also uses
second order model, and achieves 610 minutes on
CoNLL09 English data (2399 sentences, 15.3 sec-
ond per sentence). Although direct comparison
of parsing time is difficult due to the differences
in data, models, hardware and implementations,
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Group Structure Total Generation Retrieval Other Memory sent/sec
Trie 87.39 63.67 10.33 13.39 402M 30.44

1 Binary Search 127.84 62.68 51.52 13.64 340M 20.81
2D Trie 39.74 26.29 13.45 700M 66.94

Trie 264.21 205.19 39.74 19.28 1.3G 10.07
2 Binary Search 430.23 212.50 198.72 19.01 1.2G 6.18

2D Trie 72.81 53.95 18.86 2.5G 36.53

Trie 620.29 486.40 105.96 27.93 3.2G 4.29
3 Binary Search 982.41 484.62 469.44 28.35 2.9G 2.71

2D Trie 146.83 119.56 27.27 5.9G 18.12

Trie 854.04 677.32 139.70 37.02 4.9G 3.11
4 Binary Search 1328.49 680.36 609.70 38.43 4.1G 2.00

2D Trie 198.31 160.38 37.93 8.6G 13.41

Table 6: Parsing time of 2660 sentences (seconds) on a 64bit linux platform (CPU: Intel(R) Xeon(R)
E5405, 2.00GHz, Memory: 16G Bytes). Title “Generation” and “Retrieval” are short for feature gen-
eration and feature index retrieval steps respectively.

System sec/sent
(Martins et al., 2009) 0.63

(Goldberg and Elhadad, 2008) 0.019
(Lluı́s et al., 2009) 8.07

(Bohnet, 2009) 15.3
(Galley and Manning, 2009) 15.6

ours group1 0.015
ours group2 0.027
ours group3 0.055
ours group4 0.075

Table 7: Comparison against state of the art, di-
rect comparison of parsing time is difficult due to
the differences in data, models, hardware and im-
plementations.

these results demonstrate that our structure can
actually result in a very fast implementation of a
parser. Moreover, our work is orthogonal to oth-
ers, and could be used for other learning tasks.

6 Conclusion

We proposed 2D Trie, a novel feature indexing
structure for fast template based feature extrac-
tion. The key insight is that feature strings gener-
ated by a template are prefixes of the features from
its extended templates, hence indexes of searched
features can be reused for further extraction. We
applied 2D Trie to dependency parsing task, ex-
perimental results on CTB corpus demonstrate the
advantages of our technique, about 5 times faster

than traditional Trie structure, yielding parsing
speed 4.3 times faster, while using only 1.7 times
as much memory.
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Abstract

The problem addressed in this paper is to
predict a user’s numeric rating in a prod-
uct review from the text of the review. Un-
igram and n-gram representations of text
are common choices in opinion mining.
However, unigrams cannot capture impor-
tant expressions like “could have been bet-
ter”, which are essential for prediction
models of ratings. N-grams of words, on
the other hand, capture such phrases, but
typically occur too sparsely in the train-
ing set and thus fail to yield robust pre-
dictors. This paper overcomes the limita-
tions of these two models, by introducing
a novel kind of bag-of-opinions represen-
tation, where an opinion, within a review,
consists of three components: a root word,
a set of modifier words from the same sen-
tence, and one or more negation words.
Each opinion is assigned a numeric score
which is learned, by ridge regression,
from a large, domain-independent cor-
pus of reviews. For the actual test case
of a domain-dependent review, the re-
view’s rating is predicted by aggregat-
ing the scores of all opinions in the re-
view and combining it with a domain-
dependent unigram model. The paper
presents a constrained ridge regression al-
gorithm for learning opinion scores. Ex-
periments show that the bag-of-opinions
method outperforms prior state-of-the-art
techniques for review rating prediction.

1 Introduction

1.1 Motivation
Opinion mining and sentiment analysis has be-
come a hot research area (Pang and Lee, 2008).
There is ample work on analyzing the sentiments
of online-review communities where users com-
ment on products (movies, books, consumer elec-
tronics, etc.), implicitly expressing their opinion
polarities (positive, negative, neutral), and also
provide numeric ratings of products (Titov and
McDonald, 2008b; Lerman et al., 2009; Hu and
Liu, 2004; Titov and McDonald, 2008a; Pang
and Lee, 2005; Popescu and Etzioni, 2005a). Al-
though ratings are more informative than polari-
ties, most prior work focused on classifying text
fragments (phrases, sentences, entire reviews) by
polarity. However, a product receiving mostly 5-
star reviews exhibits better customer purchase be-
havior compared to a product with mostly 4-star
reviews. In this paper we address the learning and
prediction of numerical ratings from review texts,
and we model this as a metric regression problem
over an appropriately defined feature space.

Formally, the input is a set of rated documents
(i.e., reviews), {xi, yi}Ni=1, where xi is a sequence
of word-level unigrams (w1, ..., wl) and yi ∈ R is
a rating. The goal is to learn a function f(x) that
maps the word vector x into a numerical rating ŷ,
which indicates both the polarity and strength of
the opinions expressed in a document.

Numerical review rating prediction is harder
than classifying by polarity. Consider the follow-
ing example from Amazon book reviews:

The organization of the book is hard to follow
and the chapter titles are not very helpful, so go-
ing back and trying to find information is quite
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difficult.
We note that there are many subjective words

(hard, helpful, difficult) modified by opinion mod-
ifiers such as (very, quite) and negation words like
(not). For rating prediction, considering opin-
ion modifiers is crucial; very helpful is a much
stronger sentiment than helpful. Negation words
also need attention. As pointed out by Liu and
Seneff (2009) we cannot simply reverse the polar-
ity. For example, if we assign a higher positive
score to very helpful than to helpful, simply re-
versing the sign of the scores would incorrectly
suggest that not helpful is less negative than not
very helpful.

The widely used unigram (bag-of-words)
model (Pang and Lee, 2005; Snyder and Barzilay,
2007; Goldberg and Zhu, 2006; Ganu et al., 2009)
cannot properly capture phrase patterns. Con-
sider the following example: not so helpful vs.
not so bad. In a unigram-based regression model
each unigram gets a weight indicating its polarity
and strength. High positive/negative weights are
strongly positive/negative clues. It is reasonable
to assign a positive weight to helpful and a nega-
tive weight to bad. The fundamental problem of
unigrams arises when assigning a weight to not.
If not had a strongly negative weight, the posi-
tive weight of helpful would be strongly reduced
while the negative weight of bad would be ampli-
fied (by combining weights). This clearly fails to
capture the true intentions of the opinion phrases.
The same problem holds for so, which is an inten-
sifier that should keep the same sign as the word
it modifies. We refer to this limitation of the uni-
gram model as polarity incoherence.

A promising way of overcoming this weakness
is to include n-grams, generalizing the bag-of-
words model into a bag-of-phrases model (Bac-
cianella et al., 2009; Pang and Lee, 2008). How-
ever, regression models over the feature space
of all n-grams (for either fixed maximal n or
variable-length phrases) are computationally ex-
pensive in their training phase. Moreover and
most importantly for our setting, including n-
grams in the model results in a very high dimen-
sional feature space: many features will then oc-
cur only very rarely in the training data. There-
fore, it is difficult if not impossible to reliably

learn n-gram weights from limited-size training
sets. We refer to this problem as the n-gram spar-
sity bottleneck. In our experiments we inves-
tigate the effect of using bigrams and variable-
length ngrams for improving review rating predic-
tion.

1.2 Contribution

To overcome the above limitations of unigram and
n-gram features, we have developed a novel kind
of bag-of-opinions model, which exploits domain-
independent corpora of opinions (e.g., all Amazon
reviews), but is finally applied for learning predic-
tors on domain-specific reviews (e.g., movies as
rated in IMDB or Rottentomatoes). A document
is represented as a bag of opinions each of which
has three components: a root word, a set of modi-
fier words and one or more negation words. In the
phrase not very helpful, the opinion root is help-
ful, one (of potentially many) opinion modifier(s)
is very, and a negation word is not. We enforce po-
larity coherence by the design of a learnable func-
tion that assigns a score to an opinion.

Our approach generalizes the cumulative linear
offset model (CLO) presented in (Liu and Seneff,
2009). The CLO model makes several restrictive
assumptions, most notably, that all opinion scores
within one document are the same as the overall
document rating. This assumption does not hold
in practice, not even in reviews with extremely
positive/negative ratings. For example, in a 5-
star Amazon review the phrases most impressive
book and it helps explain should receive different
scores. Otherwise, the later transfer step to dif-
ferent domains would yield poor predictions. Due
to this restriction, CLO works well on particular
types of reviews that have pro/con entries listing
characteristic major opinions about the object un-
der review. For settings with individual reviews
whose texts do not exhibit any specific structure,
the CLO model faces its limitations.

In our bag-of-opinions method, we address the
learning of opinion scores as a constrained ridge
regression problem. We consider the opinion
scores in a given review to be drawn from an
unknown probability distribution (so they do not
have to be the same within a document). We es-
timate the review rating based on a set of statis-
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tics (e.g., expectation, variance, etc.) derived from
the scores of opinions in a document. Thus, our
method has a sound statistical foundation and can
be applied to arbitrary reviews with mixed opin-
ion polarities and strengths. We avoid the n-gram
sparsity problem by the limited-size structured
feature space of (root,modifiers,negators) opin-
ions.

We treat domain-independent and domain-
dependent opinions differently in our system. In
the first step we learn a bag-of-opinions model on
a large dataset of online reviews to obtain scores
for domain-independent opinions. Since the po-
larity of opinions is not bound to a topic, one
can learn opinion scores from a pooled corpus
of reviews for various categories, e.g., movies,
books, etc., and then use these scored opinions
for predicting the ratings of reviews belonging
to a particular category. In order to also capture
domain-dependent information (possibly comple-
mentary to the opinion lexicon used for learn-
ing domain-independent opinions), we combine
the bag-of-opinions model with an unigram model
trained on the domain-dependent corpus. Since
domain-dependent training is typically limited,
we model it using unigram models rather than
bag-of-opinions. By combining the two models,
even if an opinion does not occur in the domain-
dependent training set but it occurs in a test re-
view, we can still accurately predict the review rat-
ing based on the globally learned opinion score. In
some sense our combined learning scheme is sim-
ilar to smoothing in standard learning techniques,
where the estimate based on a limited training
set is smoothed using a large background corpus
(Zhai and Lafferty, 2004).

In summary, the contributions of this paper are
the following:

1. We introduce the bag-of-opinions model, for
capturing the influence of n-grams, but in a
structured way with root words, modifiers,
and negators, to avoid the explosion of the
feature space caused by explicit n-gram mod-
els.

2. We develop a constrained ridge regression
method for learning scores of opinions from

domain-independent corpora of rated re-
views.

3. For transferring the regression model to
newly given domain-dependent applications,
we derive a set of statistics over opinion
scores in documents and use these as fea-
tures, together with standard unigrams, for
predicting the rating of a review.

4. Our experiments with Amazon reviews from
different categories (books, movies, music)
show that the bag-of-opinions method out-
performs prior state-of-the-art techniques.

2 Bag-of-Opinions Model

In this section we first introduce the bag-of-
opinions model, followed by the method for
learning (domain-independent) model parameters.
Then we show how we annotate opinions and how
we adapt the model to domain-dependent data.

2.1 Model Representation

We model each document as a bag-of-opinions
{opk}Kk=1, where the number of opinionsK varies
among documents. Each opinion opk consists
of an opinion root wr, r ∈ SR, a set of opin-
ion modifiers {wm}Mm=1, m ∈ SM and a set of
negation words {wz}Zz=1, z ∈ SZ , where the sets
SR, SM , SZ are component index sets of opinion
roots, opinion modifiers and negation words re-
spectively. The union of these sets forms a global
component index set S ∈ Nd, where d is the di-
mension of the index space. The opinion root de-
termines the prior polarity of the opinion. Modi-
fiers intensify or weaken the strength of the prior
polarity. Negation words strongly reduce or re-
verse the prior polarity. For each opinion, the
set of negation words consists of at most a nega-
tion valence shifter like not (Kennedy and Inkpen,
2006) and its intensifiers like capitalization of the
valence shifter. Each opinion component is asso-
ciated with a score. We assemble the scores of
opinion elements into an opinion-score by using
a score function. For example, in the opinion not
very helpful, the opinion root helpful determines
the prior polarity positive say with a score 0.9, the
modifier very intensifies the polarity say with a
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score 0.5. The prior polarity is further strongly re-
duced by the negation word not with e.g., a score
-1.2. Then we sum up the scores to get a score of
0.2 for the opinion not very helpful.

Formally, we define the function score(op) as
a linear function of opinion components, which
takes the form

score(op) = sign(r)βrxr

+
M∑

m=1

sign(r)βmxm

+
Z∑

z=1

sign(r)βzxz (1)

where {xz, xm, xr} are binary variables denoting
the presence or absence of negation words, modi-
fiers and opinion root. {βz, βm, βr} are weights of
each opinion elements. sign(r) : wr → {−1, 1}
is the opinion polarity function of the opinion root
wr. It assigns a value 1/-1 if an opinion root is
positive/negative. Due to the semantics of opin-
ion elements, we have constraints that βr ≥ 0
and βz ≤ 0. The sign of βm is determined in the
learning phase, since we have no prior knowledge
whether it intensifies or weakens the prior polar-
ity.

Since a document is modeled as a bag-of-
opinions, we can simply consider the expec-
tation of opinion scores as the document rat-
ing. If we assume the scores are uniformly dis-
tributed, the prediction function is then f(x) =
1
K

∑K
k=1 score(opk) which assigns the average of

opinion scores to the document x.

2.2 Learning Regression Parameters
We assume that we can identify the opinion roots
and negation words from a subjectivity lexicon. In
this work we use MPQA (Wilson et al., 2005). In
addition, the lexicon provides the prior polarity of
the opinion roots. In the training phase, we are
given a set of documents with ratings {xi, yi}Ni=1,
and our goal is to find an optimal function f∗

whose predictions {ŷi}Ni=1 are as close as possi-
bile to the original ratings {yi}Ni=1. Formally, we
aim to minimize the following loss function:

L =
1

2N

N∑

i=1

(f(xi)− yi)2 (2)

where f(xi) is modeled as the average score of
opinions in review xi.

First, we rewrite score(op) as the dot
product 〈β,p〉 between a weight vector
β = [βz,βm, βr] and a feature vector
p = [sign(r)xz, sign(r)xm, sign(r)xr].
In order to normalize the vectors, we
rewrite the weight and feature vectors in
the d dimensional vector space of all root
words, modifiers and negation words. Then
β = [..,βz, 0, ..,βm, 0, .., βr, 0..] ∈ Rd and p =
[sign(r)xz, 0, .., sign(r)xm, 0, .., sign(r)xr, ...] ∈
Rd. The function f(xi) can then be written as
the dot product 〈β,vi〉, where vi =

1
Ki

∑Ki
k=1 pk,

with Ki the number of opinions in review xi.
By using this feature representation, the learning
problem is equivalent to:

min
β

L(β) =
1

2N

N∑

i=1

(〈β,vi〉+ β0 − yi)2

s.t.

βz ≤ 0 z ∈ SZ
βr ≥ 0 r ∈ SR (3)

where β ∈ Rd, β = [βz,βm,βr]. β0 is the inter-
cept of the regression function, which is estimated
as the mean of the ratings in the training set. We
define a new variable ỹi = yi − β0.

In order to avoid overfitting, we add an l2 norm
regularizer to the loss function with the parameter
λ > 0.

LR(β) =
1

2N

N∑

i=1

(〈β,vi〉 − ỹi)2 +
λ

2
‖ β ‖22

s.t.

βz ≤ 0 z ∈ SZ
βr ≥ 0 r ∈ SR (4)

We solve the above optimization problem by Al-
gorithm 1 using coordinate descent. The proce-
dure starts with β0 = 0, β0 ∈ Rd. Then it up-
dates iteratively every coordinate of the vector β
until convergence. Algorithm 1 updates every co-
ordinate βj , j ∈ {1, 2, ..., d} of β by solving the
following one-variable sub-problem:

minlj≤βj≤cjLR(β1, ..., βj , ..., βd)
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where lj and cj denote the lower and upper
bounds of βj . If j ∈ SZ , lj = −∞ and cj = 0.
If j ∈ SR, lj = 0 and cj = ∞. Otherwise both
bounds are infinity.

According to (Luo and Tseng, 1992), the solu-
tion of this one-variable sub-problem is

β̂j = max{lj ,min{cj , gj}}

where

gj =
1
N

∑N
i=1 vij(ỹi −

∑
l 6=j βlvl)

1
N

∑N
i=1 v

2
ij + λ

Here gj is the close form solution of standard
ridge regression at coordinate j (for details see
(Friedman et al., 2008)). We prove the conver-
gence of Algorithm 1, by the following theorem
using techniques in (Luo and Tseng, 1992).
Theorem 1 A sequence of β generated by Algo-
rithm 1 globally converges to an optimal solution
β∗ ∈ χ∗ of problem (4), where χ∗ is the set of
optimal solutions.
Proof: Luo and Tseng (1992) show that coordi-
nate descent for constrained quadratic functions
in the following form converges to one of its global
optimal solutions.

minβ h(β) = 〈β,Qβ〉/2 + 〈q,β〉
s.t. ETβ ≥ b

where Q is a d×d symmetric positive-definite ma-
trix, E is a d× d matrix having no zero column, q
is a d-vector and b is a d-vector.

We rewrite LR in matrix form as

1

2N
(ỹ −Vβ)T (ỹ −Vβ) +

λ

2
βTβ

=
1

2N
(Vβ)T (Vβ) +

λ

2
βTβ − 1

2N
((Vβ)T ỹ

− 1

2N
ỹT (Vβ)) +

1

2N
ỹT ỹ

= 〈β,Qβ〉/2 + 〈q,β〉+ constant

where

Q = BTB,B =

[ √
1
NV√
λId×d

]
,q =

−1
N

(VT ỹ)

where Id×d is the identity matrix. Because λ >
0, all columns of B are linearly independent. As
Q = BTB and symmetric, Q is positive definite.

We define E as a d × d diagonal matrix with
all entries on the main diagonal equal to 1 except
eii = −1, i ∈ SZ and b is a d-vector with all
entries equal to −∞ except bi = 0, for i ∈ SZ or
i ∈ SR.

Because the almost cyclic rule is applied to
generate the sequence {βt}, the algorithm con-
verges to a solution β∗ ∈ χ∗.

Algorithm 1 Constrained Ridge Regression
1: Input: λ and {vn, ỹn}Nn=1

2: Output: optimal β
3: repeat
4: for j = 1, ..., d do

5: gj =
1
N

PN
i=1 vij(ỹi−

P
l 6=j βlvl)

1
N

PN
i=1 v

2
ij+λ

6:

β̂j =





0, if j ∈ SR and gj < 0
0, if j ∈ SZ and gj > 0
gj , else

7: end for
8: until Convergence condition is satisfied

2.3 Annotating Opinions

The MPQA lexicon contains separate lexicons for
subjectivity clues, intensifiers and valence shifters
(Wilson et al., 2005), which are used for identify-
ing opinion roots, modifiers and negation words.
Opinion roots are identified as the positive and
negative subjectivity clues in the subjectivity lex-
icon. In the same manner, intensifiers and va-
lence shifters of the type {negation, shiftneg} are
mapped to modifiers and negation words. Other
modifier candidates are adverbs, conjunctions and
modal verbs around opinion roots. We consider
non-words modifiers as well, e.g., punctuations,
capitalization and repetition of opinion roots. If
the opinion root is a noun, adjectives are also in-
cluded into modifier sets.

The automatic opinion annotation starts with
locating the continous subjectivity clue sequence.
Once we find such a sequence and at least one
of the subjectivity clue is positive or negative, we
search to the left up to 4 words for negation words
and modifier candidates, and stop if encountering
another opinion root. Similarly, we search to the
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right up to 3 unigrams for modifiers and stop if
we find negation words or any other opinion roots.
The prior polarity of the subjectivity sequence is
determined by the polarity of the last subjectivity
clue with either positive or negative polarity in the
sequence. The other subjectivity clues in the same
sequence are treated as modifiers.

2.4 Adaptation to Domain-Dependent Data

The adaptation of the learned (domain-
independent) opinion scores to the target
domain and the integration of domain-dependent
unigrams is done in a second ridge-regression
task. Note that this is a simpler problem than
typical domain-adaptation, since we already know
from the sentiment lexicon which are the domain-
independent features. Additionally, its relatively
easy to obtain a large mixed-domain corpus for
reliable estimation of domain-independent opin-
ion scores (e.g., use all Amazon product reviews).
Furthermore, we need a domain-adaptation step
since domain-dependent and domain-independent
data have generally different rating distributions.
The differences are mainly reflected in the
intercept of the regression function (estimated
as the mean of the ratings). This means that
we need to scale the positive/negative mean of
the opinion scores differently before using it
for prediction on domain-dependent reviews.
Moreover, other statistics further characterize the
opinion score distribution. We use the variance
of opinion scores to capture the reliability of
the mean, multiplied by the negative sign of the
mean to show how much it strengthens/weakens
the estimation of the mean. The mean score of
the dominant polarity (major exp) is also used
to reduce the influence of outliers. Because
positive and negative means should be scaled
differently, we represent positive and negative
values of the mean and major exp as 4 different
features. Together with variance, they are the 5
statistics of the opinion score distribution. The
second learning step on opinion score statistics
and domain-dependent unigrams as features,
re-weights the importance of domain-independent
and domain-dependent information according to
the target domain bias.

3 Experimental Setup

We performed experiments on three target do-
mains of Amazon reviews: books, movies
(DVDs), and music (CDs). For each domain,
we use ca. 8000 Amazon reviews for evalua-
tion; an additional set of ca. 4000 reviews are
withheld for parameter tuning (regularization pa-
rameter, etc.). For learning weights for domain-
independent opinions, we use a mixed-domain
corpus of ca. 350,000 reviews from Amazon
(electronics, books, dvds, etc.); this data is dis-
joint from the test sets and contains no reviews
from the music domain. In order to learn un-
biased scores, we select about the same number
of positive and negative reviews (where reviews
with more/less than 3 stars are regarded as posi-
tive/negative). The regularization parameters used
for this corpus are tuned on withheld data with ca.
6000 thematically mixed reviews.1.

We compare our method, subsequently referred
to as CRR-BoO (Constrained Ridge Regression
for Bag-of-Opinions), to a number of alternative
state-of-the-art methods. These competitors are
varied along two dimensions: 1) feature space,
and 2) training set. Along the first dimension,
we consider a) unigrams coined uni, b) unigrams
and bigrams together, coined uni+bi, c) variable-
length n-grams coined n-gram, d) the opinion
model by (Liu and Seneff, 2009) coined CLO (cu-
mulative linear offset model). As learning pro-
cedure, we use ridge regression for a), b), and
d), and bounded cyclic regression, coined BCR,
for c). Along the second - orthogonal - di-
mension, we consider 3 different training sets:
i) domain-dependent training set coined DD, ii)
the large mixed-domain training set coined MD,
iii) domain-dependent training set and the large
mixed-domain training set coined DD+MD. For
the DD+MD training set, we apply our two stage
approach for CRR-BoO and CLO, i.e., we use
the mixed-domain corpus for learning the opinion
scores in the first stage, and integrate unigrams
from DD in a second domain-adaptation stage.
We train the remaining feature models directly on
the combination of the whole mixed-domain cor-

1All datasets are available from
http://www.mpi-inf.mpg.de/∼lqu
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feature models uni uni+bi n-gram CLO CRR-BoO

DD
book 1.004 0.961 0.997 1.469 0.942
dvd 1.062 1.018 1.054 1.554 0.946
music 0.686 0.672 0.683 0.870 0.638

MD
book 1.696 1.446 1.643 1.714 1.427
dvd 1.919 1.703 1.858 1.890 1.565
music 2.395 2.160 2.340 2.301 1.731

DD+MD
book 1.649 1.403 1.611 1.032 0.884
dvd 1.592 1.389 1.533 1.086 0.928
music 1.471 1.281 1.398 0.698 0.627

Table 1: Mean squared error for rating prediction methods on Amazon reviews.

pus and the training part of DD.
The CLO model is adapted as follows. Since

bags-of-opinions generalize CLO, adjectives and
adverbs are mapped to opinion roots and modi-
fiers, respectively; negation words are treated the
same as CLO. Subsequently we use our regression
technique. As Amazon reviews do not contain pro
and con entries, we learn from the entire review.

For BCR, we adapt the variable-length n-grams
method of (Ifrim et al., 2008) to elastic-net-
regression (Friedman et al., 2008) in order to ob-
tain a fast regularized regression algorithm for
variable-length n-grams. We search for signifi-
cant n-grams by incremental expansion in back-
ward direction (e.g., expand bad to not bad). BCR
pursues a dense solution for unigrams and a sparse
solution for n-grams. Further details on the BCR
learning algorithm will be found on a subsequent
technical report.

As for the regression techniques, we show
only results with ridge regression (for all fea-
ture and training options except BCR). It outper-
formed ε-support vector regression (SVR) of lib-
svm (Chang and Lin, 2001), lasso (Tibshirani,
1996), and elastic net (Zou and Hastie, 2005) in
our experiments.

4 Results and Discussion

Table 1 shows the mean square error (MSE) from
each of the three domain-specific test sets. The er-
ror is defined as MSE = 1

N

∑N
i=1(f(xi) − yi)2.

The right most two columns of the table show re-
sults for the full-fledge two-stage learning for our
method and CLO, with domain-dependent weight

learning and the domain adaptation step. The
other models are trained directly on the given
training sets. For the DD and DD+MD train-
ing sets, we use five-fold cross-validation on the
domain-specific sets. For the MD training set, we
take the domain-specific test sets as hold-out data
for evaluation.

Table 1 clearly shows that our CRR-BoO
method outperforms all alternative methods by a
significant margin. Most noteworthy is the mu-
sic domain, which is not covered by the mixed-
domain corpus. As expected, unigrams only per-
form poorly, and adding bigrams leads only to
marginal improvements. BCR pursues a dense
solution for unigrams and a sparse solution for
variable-length n-grams, but due to the sparsity
of occurence of long n-grams, it filters out many
interesting-but-infrequent ngrams and therefore
performs worse than the dense solution of the
uni+bi model. The CLO method of (Liu and Sen-
eff, 2009) shows unexpectedly poor performance.
Its main limitation is the assumption that opinion
scores are identical within one document. This
does not hold in documents with mixed opinion
polarities. It also results in conflicts for opinion
components that occur in both positive and nega-
tive documents. In contrast, CRR-BoO naturally
captures the mixture of opinions as a bag of pos-
itive/negative scores. We only require that the
mean of opinion scores equals the overall docu-
ment rating.

The right most column of Table 1 shows that
our method can be improved by learning opinion
scores from the large mixed-domain corpus. How-
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opinion score
good 0.18
recommend 1.64
most difficult -1.66
but it gets very good! 2.37
would highly recommend 2.73
would not recommend -1.93

Table 2: Example opinions learned from the Ama-
zon mixed-domain corpus.

ever, the high error rates of the models learned di-
rectly on the MD corpus show that direct training
on the mixed-domain data can introduce a signifi-
cant amount of noise into the prediction models.
Although the noise can be reduced by learning
from MD and DD together, the performance is
still worse than when learning directly from the
domain-dependent corpora. Additionally, when
the domain is not covered by the mixed-domain
corpus (e.g., music), the results are even worse.
Thus, the two stages of our method (learning
domain-independent opinion scores plus domain-
adaptation) are decisive for a good performance,
and the sentiment-lexicon-based BoO model leads
to robust learning of domain-independent opinion
scores.

Another useful property of BoO is its high in-
terpretability. Table 2 shows example opinion
scores learned from the mixed-domain corpus.
We observe that the scores corelate well with our
intuitive interpretation of opinions.

Our CRR-BoO method is highly scalable.
Excluding the preprocessing steps (same for
all methods), the learning of opinion compo-
nent weights from the ca. 350,000 domain-
independent reviews takes only 11 seconds.

5 Related Work

Rating prediction is modeled as an ordinal re-
gression problem in (Pang and Lee, 2005; Gold-
berg and Zhu, 2006; Snyder and Barzilay, 2007).
They simply use the bag-of-words model with re-
gression algorithms, but as seen previously this
cannot capture the expressive power of phrases.
The resulting models are not highly interpretable.
Baccianella et al. (2009) restrict the n-grams to
the ones having certain POS patterns. However,

the long n-grams matching the patterns still suffer
from sparsity. The same seems to hold for sparse
n-gram models (BCR in this paper) in the spirit
of Ifrim et al. (2008). Although sparse n-gram
models can explore arbitrarily large n-gram fea-
ture spaces, they can be of little help if the n-grams
of interests occur sparsely in the datasets.

Since our approach can be regarded as learning
a domain-independent sentiment lexicon, it is re-
lated to the area of automatically building domain-
independent sentiment lexicons (Esuli and Sebas-
tiani, 2006; Godbole et al., 2007; Kim and Hovy,
2004). However, this prior work focused mainly
on the opinion polarity of opinion words, neglect-
ing the opinion strength. Recently, the lexicon
based approaches were extended to learn domain-
dependent lexicons (Kanayama and Nasukawa,
2006; Qiu et al., 2009), but these approaches
also neglect the aspect of opinion strength. Our
method requires only the prior polarity of opinion
roots and can thus be used on top of those meth-
ods for learning the scores of domain-dependent
opinion components. The methods proposed in
(Hu and Liu, 2004; Popescu and Etzioni, 2005b)
can also be categorized into the lexicon based
framework because their procedure starts with a
set of seed words whose polarities are propagated
to other opinion bearing words.

6 Conclusion and Future Work

In this paper we show that the bag-of-opinions
(BoO) representation is better suited for captur-
ing the expressive power of n-grams while at the
same time overcoming their sparsity bottleneck.
Although in this paper we use the BoO represen-
tation to model domain-independent opinions, we
believe the same framework can be extended to
domain-dependent opinions and other NLP appli-
cations which can benefit from modelling n-grams
(given that the n-grams are decomposable in some
way). Moreover, the learned model can be re-
garded as a domain-independent opinion lexicon
with each entry in the lexicon having an associated
score indicating its polarity and strength. This in
turn has potential applications in sentiment sum-
marization, opinionated information retrieval and
opinion extraction.
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Abstract

Emotion words have been well used as the
most obvious choice as feature in the task
of textual emotion recognition and auto-
matic emotion lexicon construction. In
this work, we explore features for rec-
ognizing word emotion. Based on Ren-
CECps (an annotated emotion corpus) and
MaxEnt (Maximum entropy) model, sev-
eral contextual features and their com-
bination have been experimented. Then
PLSA (probabilistic latent semantic anal-
ysis) is used to get semantic feature by
clustering words and sentences. The ex-
perimental results demonstrate the effec-
tiveness of using semantic feature for
word emotion recognition. After that,
“word emotion components” is proposed
to describe the combined basic emotions
in a word. A significant performance
improvement over contextual and seman-
tic features was observed after adding
word emotion components as feature.

1 Introduction

Textual emotion analysis is becoming increas-
ingly important due to augmented communication
via computer mediated communication (CMC). A
possible application of textual emotion recogni-
tion is online chat system. An emotion feedback
system can recognize users’ emotion and give ap-
propriate responses. Another application exam-
ple is weblog emotion recognition and prediction.
Blogspace consists of millions of users who main-
tain their online diaries, containing frequently-
updated views and personal remarks about a range
of issues. An emotion recognition and predic-
tion system can understand the public’s reaction to
some social issues and predict emotion changes. It

would be helpful for solving some psychological
problems or giving early warnings, such as suicide
or terrorism.

Textual emotion analysis also can improve
the accuracy of other nonverbal modalities like
speech or facial emotion recognition, and to im-
prove human computer interaction systems. How-
ever, automatic recognition of emotion meaning
from texts presents a great challenge. One of the
reasons is the manifoldness of expressed emotions
in words.

Emotion words have been well used as the
most obvious choice as feature in the task of tex-
tual emotion recognition and automatic emotion
lexicon construction (Virginia and Pablo, 2006;
Tokuhisa et al., 2008, etc.). And there are many
lexical resources developed for these tasks, such
as GI (Stone et al., 1966), WordNet-Affect (Strap-
parava and Valitutti, 2004), NTU Sentiment Dic-
tionary (Ku et al., 2006), Hownet (Dong and
Dong, 2003), SentiWordnet (Esuli and Sebastiani,
2006). In these sentimental or affective lexicons,
the words usually bear direct emotions or opin-
ions, such as happy or sad, good or bad. Al-
though they play a role in some applications, sev-
eral problems of emotion expression in words
have been ignored.

Firstly, there are a lot of sentences can evoke
emotions without direct emotion words. For ex-
ample,

(1) SU3¯f��úp!3¯f��%
p"(Spring is in children’s eyes, and in their
hearts.)

In sentence (1), we may feel joy, love or expect
delivered by the writer. But there are no direct
emotion words can be found from lexicons. As
Ortony (1987) indicates, besides words directly
referring to emotion states (e.g., “fear”, “cheer-
ful”) and for which an appropriate lexicon would
help, there are words that act only as an indirect
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reference to emotions depending on the context.
Strapparava et al. (2006) also address this issue.
The authors believed that all words can potentially
convey affective meaning, and they distinguished
between words directly referring to emotion states
(direct affective words) and those having only an
indirect reference that depends on the context (in-
direct affective words).

The second problem is emotion ambiguity of
words. The same word in different contexts may
reflect different emotions. For example,

(2) ù´8c·������U��"(This is cur-
rently the only thing I can do.)

(3)¦´·�������"(He is my only one.)
In sentence (2), the word “�� (only)” may

express the emotion of anxiety or expect; but in
sentence (3), the word “�� (only)” may express
the emotion of love or expect. The emotion cat-
egories can not be determined without their cer-
tain contexts especially for the words with emo-
tion ambiguity.

In addition, some words can express multiple
emotions, such as “�U�\ (mingled feelings
of joy and sorrow)”. Statistics on an annotated
emotion corpus (Ren-CECps 1, Chinese emotion
corpus developed by Ren-lab) showed that 84.9%
of all emotion words have one emotion, 15.1%
have more than one emotions (Quan and Ren,
2010). Multi-emotion words are indispensable for
expressing complex feelings in use of language.

In this work, we explore features for recogniz-
ing word emotion in sentences. Based on Ren-
CECps and MaxEnt model, several contextual
features and their combination have been exper-
imented. Then PLSA (probabilistic latent seman-
tic analysis) is used to get semantic feature by
clustering word and sentence. The experimental
results demonstrate the effectiveness of using se-
mantic feature for word emotion recognition. Af-
ter that, the notion of “word emotion components”
is proposed to describe the combined basic emo-
tions in a word. A significant performance im-
provement over only using contextual and seman-
tic features was observed after adding word emo-
tion components as feature and output in MaxEnt
based model.

1http://a1-www.is.tokushima-u.ac.jp/member
/ren/Ren-CECps1.0/Ren-CECps1.0.html

This paper is organized as follows. In section 2,
based on Ren-CECps and MaxEnt, an exploration
of using contextual feature for Chinese word emo-
tion recognition is described. In section 3, using
PLSA technique, the performance of adding se-
mantic feature is presented. In section 4, the no-
tion of “word emotion components” is proposed
and the performance of using encoding feature is
presented. In section 5, the discussions are de-
scribed. Section 6 is conclusions.

2 Chinese Word Emotion Recognition

2.1 Related Works

There are many researches concerning comput-
ing semantics of words, while the researches on
computing emotions of words are relatively less.
Computing word emotions is a challenge task be-
cause the inherent of emotion is ambiguous and
natural language is very rich in emotion termi-
nology. Using the textual emotion information,
several methods have been explored for comput-
ing lexical emotions. Wilson et al. (2009) pro-
posed a two-step approach to classify word po-
larity out of context firstly, and then to clas-
sify word polarity in context with a wide vari-
ety of features. Strapparava et al. (2007) im-
plemented a variation of Latent Semantic Anal-
ysis (LSA) to measure the similarities between di-
rect affective terms and generic terms. Lee and
Narayanan (2005) proposed a method of comput-
ing mutual information between a specific word
and emotion category to measure how much in-
formation a word provides about a given emo-
tion category (emotion salience). Based on struc-
tural similarity, Bhowmick (2008) computed the
structural similarity of words in WordNet to dis-
tinguish the emotion words from the non-emotion
words. Kazemzadeh (2008) measured similar-
ity between word and emotion category based on
interval type-2 fuzzy logic method. Takamura
(2005) used a spin model to extract emotion po-
larity of words.

Different from the above researches, in this
work, we explore which features are effective for
word emotion recognition. The features include
contextual feature, semantic feature and encoding
feature.
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2.2 Ren-CECps and MaxEnt based Chinese
Word Emotion Recognition

Ren-CECps is constructed based on a relative
fine-grained annotation scheme, annotating emo-
tion in text at three levels: document, paragraph,
and sentence. The all dataset consisted of 1,487
blog articles published at sina blog, sciencenet
blog, etc. There are 11,255 paragraphs, 35,096
sentences, and 878,164 Chinese words contained
in this corpus (more details can be found in (Quan
and Ren, 2010)).

In the emotion word annotation scheme of Ren-
CECps, direct emotion words and indirect emo-
tion words in a sentence are all annotated. For
example, in sentence (1) /SU (spring)0and
/¯f� (the children)0are labeled. An emo-
tion keyword or phrase is represented as a vec-
tor to record its intensities of the eight basic emo-
tion classes (expect, joy, love, surprise, anxiety,
sorrow, angry and hate). For instance, the emo-
tion vector for the word /SU (spring)0−→w =
(0.1,0.3,0.3,0.0,0.0,0.0,0.0,0.0) indicates the
emotions of weak expect, joy and love. In this
work, we focus on if a word contains some emo-
tion(s) in a certain context. The analysis on emo-
tion intensity of emotion words is included in our
future work.

As word emotion is subjective entity, a word
in a certain context may evoke multiple emotions
in different people’s mind. A part of documents
in Ren-CECps have been annotated by three an-
notators independently to measure agreement on
the annotation of this corpus, which include 26
documents with a total of 805 sentences, 19,738
words. This part of corpus is used as testing cor-
pus to evaluate the experimental results. (Section
5.1 shows the analysis on the annotation agree-
ment on word emotion.)

MaxEnt modeling provides a framework for in-
tegrating information from many heterogeneous
information sources for classification (Manning,
1999). MaxEnt principle is a well used technique
provides probability of belongingness of a token
to a class. In word emotion recognition, the Max-
Ent estimation process produces a model in which
each feature fi is assigned a weight αi. The de-
terministic model produces conditional probabil-
ity (Berger, 1996), see equation (1) and (2). In

experiments, we have used a Java based open-nlp
MaxEnt toolkit 2.

p(e|context) =
1

Z(context) ∏
i

α fi(context,e)
i (1)

Z(context) = ∑∏
i

α fi(context,e)
i (2)

2.3 Contextual Features
The contextual features used in MaxEnt for Chi-
nese word emotion recognition are described as
follows:

Word Feature (WF): Word itself to be recog-
nized.

N-words Feature (NF): To know the rela-
tionship between word emotion and its con-
text, the surrounding words of length n for the
word (wi) to be recognized are used as feature:
(wi−n...wi...wi+n).

POS Feature (POSF): The part of speech of
the current word and surrounding words are used
as feature. We have used a Chinese segmentation
and POS tagger (Ren-CMAS) developed by Ren-
lab, which has an accuracy about 97%. The set of
POS includes 35 classes.

Pre-N-words Emotion Feature (PNEF): The
emotions of the current word may be influenced
by the emotions of its previous words. So the
emotions of previous n words are used as feature.
The value of this feature for a word (wi) is ob-
tained only after the computation of the emotions
for its previous words.

Pre-is-degree-word Feature (PDF), Pre-
is-negative-word Feature (PNF), Pre-is-
conjunction Feature (PCF): To determine if
the previous word is a degree word, a negative
word, or a conjunction may be helpful to identify
word emotions. The degree word list (contains
1,039 words), negative word list (contains 645
words), and conjunction list (contains 297 words)
extracted from Ren-CECps have been used.

2.4 The Performance of Using Contextual
Feature

We use the documents in Ren-CECps that have
been annotated by three annotators independently

2http://maxent.sourceforge.net/
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as testing corpus. An output of word emotion(s)
will be regarded as a correct result if it is in agree-
ment with any one item of word emotion(s) pro-
vided by the three annotators. The numbers of
training and testing corpus are shown in table 1.
The accuracies are measured by F-value.

Table 1: Number of training and testing corpus

Number Training Testing
Documents 1,450 26
Sentences 33,825 805
Words 813,507 19,738
Emotion words 99,571 2,271∗

(*) At least agreed by two annotators.

Table 2 gives the results of F-value for differ-
ent contextual features in the MaxEnt based Chi-
nese word emotion recognition. The results of F-
value include: (a) recognize emotion and unemo-
tion words; (b) recognize the eight basic emotions
for emotion words (complete matching); (c) rec-
ognize the eight basic emotions for emotion words
(single emotion matching).

As shown in table 2, when we only use Word
Feature(WF), the F-value of task (a) achieved a
high value (96.3). However, the F-values of task
(b) and (c) are relative low, that means the prob-
lem of recognizing the eight basic emotions for
emotion words is a lot more difficult than the
problem of recognizing emotion and unemotion
words, so we focus on task (b) and (c).

When we experiment with Word Feature(WF)
and N-words Feature (NF), we have observed
that word feature (wi) and a window of previ-
ous and next word (wi−1,wi,wi+1) give the best
results (a=96.5, b=50.4, c=69.0). Compared
with (wi−1,wi,wi+1), a larger window of previous
and next two words (wi−2,wi−1,wi,wi+1,wi+2) re-
duces the F-value. This demonstrates that wi and
wi−1,wi,wi+1 are effective features for word emo-
tion recognition.

When POS Feature (POSF) is added, the F-
value is increased. Especially the F-value is in-
creased to (a=97.1, b=51.9, c=72.0) when posi

and posi−1, posi, posi+1 are added.
We also find that Pre-N-words Emotion Fea-

ture (PNEF) (pre e0, ..., pre ei−1) increases the F-

value, but previous one word emotion can not in-
creases the F-value.

As can be seen from table 2, when only con-
textual features are used, the highest F-value
is (a=97.1, b=53.0, c=72.7) when Pre-is-degree-
word Feature (PDF), Pre-is-negative-word Fea-
ture (PNF), Pre-is-conjunction Feature (PCF) are
added.

3 Semantic Feature

To know if semantic information is useful for
emotion recognition, we have used probabilis-
tic latent semantic analysis (PLSA) (Hofmann,
1999) to cluster words and sentences. PLSA clus-
ters documents based on the term-document co-
occurrence which results in semantic decomposi-
tion of the term-document matrix into a lower di-
mensional latent space. PLSA can be defined as:

P(s,w) = ∑
z∈Z

P(z)P(s|z)P(w|z) (3)

where p(s,w) is the probability of word w and
sentence s co-occurrence, P(s|z) is the probability
of a sentence given a semantic class z, and P(w|z)
is the probability of a word given a semantic class
z.

For word clustering, We made the assignment
based on the maximum p(z|w), if p(z

′ |w) = max
p(z|w), then w was assigned to z

′
. Sentence clus-

tering is similar to word clustering. Word clus-
tering and sentence clustering are run separately.
The word class id and sentence class id are used
as semantic feature (SF), which including sen-
tence class feature (SCF) and word class feature
(WCF). PeenAspect implementation of PLSA has
been used for our expriments 3.

Table 3 gives the results of F-value for com-
bined all contextual features and semantic fea-
ture in the MaxEnt based Chinese word emotion
recognition.

As can be seen from table 3, when SCF is used,
the best result is obtained when the cluster num-
ber is 100; when WCF is used, the best result is
obtained when the cluster number is 100 or 160.
The results demonstrate the effectiveness of using
SCF is a little higher than using WCF.

3http://www.cis.upenn.edu/datamining/software dist/
PennAspect/

925



Table 2: F-value for different contextual features in the MaxEnt based Chinese word emotion recogni-
tion

(a) recognize emotion or unemotion words
(b) recognize the eight basic emotions for emotion words (complete matching)
(c) recognize the eight basic emotions for emotion words (single emotion matching)

Feature Features F-value
type (a) (b) (c)
WF f 1 = wi 96.3 45.9 63.0
NF f 1 = wi−1,wi,wi+1 94.8 44.8 60.7

f 1 = wi−2,wi−1,wi,wi+1,wi+2 92.4 28.4 40.3
WF+NF f 1 = wi; f 2 = wi−1,wi,wi+1 96.5 50.4 69.0
WF+NF f 1 = wi f 2 = wi−1,wi,wi+1 f 3 = posi 96.8 51.5 71.1
+POSF f 1 = wi f 2 = wi−1,wi,wi+1 f 3 = posi−1, posi, posi+1 97.0 51.7 71.6

f 1 = wi f 2 = wi−1,wi,wi+1 f 3 = posi f 4 = posi−1, posi, posi+1 97.1 51.9 72.0
WF+NF
+POSF

f 1 = wi f 2 = wi−1,wi,wi+1 f 3 = posi

f 4 = posi−1, posi, posi+1 f 5 = pre ei−1
97.1 51.9 72.0

+PNEF
f 1 = wi f 2 = wi−1,wi,wi+1 f 3 = posi

f 4 = posi−1, posi, posi+1 f 5 = pre e0, ..., pre ei−1
97.1 52.4 72.2

WF+NF
+POSF
+PNEF
+PDF
+PNF
+PCF

f 1 = wi f 2 = wi−1,wi,wi+1 f 3 = posi

f 4 = posi−1, posi, posi+1 f 5 = pre e0, ..., pre ei−1
f 6 =?(wi−1 is a degree word)
f 7 =?(wi−1 is a negative word)
f 8 =?(wi−1 is a con junction)

97.1 53.0 72.7

4 Encoding Feature: Emotion
Components of Word

Researches on the psychology of concepts show
that categories in the human mind are not sim-
ply sets with clearcut boundaries (Murphy, 2002;
Hampton, 2007). Word emotions are certainly re-
lated to mental concepts. As for emotion states,
most theorists appear to take a combinatorial view.
Plutchik (1962), for example, talks about “mixed
states”, “dyads” and “triads” of primary emotions.
Similarly, Averill (1975) argues for compound
emotions based on more elementary ones. And
one model, suggested by Ekman (1982) (emotion
blends) and Plutchik (mixed states), is that emo-
tions mix (Ortony, 1988). According to these re-
searches, we use an encoding feature: emotion
components of word.

“Emotion components of word” describes the
combined basic emotions in a word, which is rep-
resented by eight binary digits, and each digit cor-

responding to a basic emotion class respectively.
For example, the word “U� (like)”, its possi-
ble emotion components in a certain context is
“01100000”, which expresses the combined emo-
tions by joy and love.

With the expression of emotion components
of word, it is possible to distinguish direct emo-
tion words and indirect emotion words. Those
words always demonstrate similar emotion com-
ponents in different contexts can be regarded as
direct emotion words, accordingly, those words
demonstrate different emotion components in dif-
ferent contexts can be regarded as indirect emo-
tion words. With the expression of emotion com-
ponents in word, the problem of expressing emo-
tion ambiguity in words can be solved. The same
word in different contexts may reflect different
emotions, which can be expressed by different
emotion components. The emotions of words with
multiple emotions also can be expressed by emo-
tion components.
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Table 3: F-value for combined contextual features
(CF) and semantic feature (SF) (including sen-
tence class feature (SCF) and word class feature
(WCF))

Feature Cluster F-value
type number (a) (b) (c)
CF+SCF 20 97.0 53.1 72.8

40 97.0 53.4 72.7
60 97.0 53.5 72.8
80 97.0 52.9 72.5
100 97.0 53.6 73.1
120 97.0 53.1 72.7
150 97.0 53.2 72.9
180 97.0 53.4 73.1

CF+WCF 40 97.0 53.1 72.8
100 97.0 53.4 72.9
160 97.0 53.4 72.9
220 97.0 53.3 72.9
280 97.0 53.2 72.8
370 97.0 53.1 72.8

The statistics of word emotion components in
Ren-CECps show that there are a total of 68 emo-
tion components in all of 22,095 annotated emo-
tion words without repetitions. Figure 1 shows the
growth curve of word emotion components num-
ber with emotion word number increase.

As can be seen from figure 1, the number in-
crease of word emotion components shows a very
slow growth rate with the number increase of
emotion words. We can conclude that the space
of word emotion components is a relatively small
space.

In the model of MaxEnt based Chinese word
emotion recognition, the Pre-N-words Emotion
Feature (PNEF) and emotion output can be en-
coded to emotion components.

Pre-N-words Emotion Components Feature
(PNECF): The emotion components of its previ-
ous words for a word (wi). The value of this fea-
ture is obtained only after the computation of the
emotion components for its previous words.

Table 4 gives the results of F-value for the com-
bined contextual features and encoding feature.

As can be seen in table 4, when Pre-N-words
Emotion Feature (PNEF) is replaced by Pre-N-

Figure 1: The growth curve of word emotion com-
ponents

words Emotion Components Feature (PNECF),
and emotion components are output as results, F-
value is increased up to (a=97.3, b=57.3, c=73.3).
Then based on this result, we firstly trained a word
emotion based model, then the word emotion out-
puts of this model are used as Pre-N-words Emo-
tion Feature (PNEF) for the word emotion com-
ponents based model. A significant F-value im-
provement of task (b) and (c) (b=62.5, c=73.7)
over only using contextual and semantic features
was observed after adding the combined word
emotion and word emotion components as feature.

5 Discussion

5.1 Word Emotion Agreement on People’s
Judgments

The final aim of a human-computer interaction
recognition system is to get the result close to peo-
ple’s judgments. As word emotion is inherently
uncertain and subjective, here we report the anno-
tation agreement on word emotion of Ren-CECps,
which can be taken as an evaluation criteria for a
algorithm.

To measure the annotation agreement of Ren-
CECps, three annotators independently annotated
26 documents with a total of 805 sentences,
19,738 words. We use the following two metrics
to measure agreement on word emotion annota-
tion.

(1) Kappa coefficient of agreement (Carletta,
1996). It is a statistic adopted by the computa-
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Table 4: F-value for the combined contextual features and encoding feature

Feature type Features F-value
(a) (b) (c)

WF+NF+POSF+PNECF
+PDF+PNF+PCF

f 1 = wi f 2 = wi−1,wi,wi+1 f 3 = posi

f 4 = posi−1, posi, posi+1
f 5 = pre es0, ..., pre esi−1
f 6 =?(wi−1 is a degree word)
f 7 =?(wi−1 is a negative word)
f 8 =?(wi−1 is a con junction)

97.3 57.3 73.3

WF+NF+POSF+PNEF
+PNECF+PDF+PNF+PCF

f 1 = wi f 2 = wi−1,wi,wi+1 f 3 = posi

f 4 = posi−1, posi, posi+1
f 5 = pre e0, ..., pre ei−1
f 6 = pre es0, ..., pre esi−1
f 7 =?(wi−1 is a degree word)
f 8 =?(wi−1 is a negative word)
f 9 =?(wi−1 is a con junction)

97.3 62.5 73.7

tional linguistics community as a standard mea-
sure.

(2) Voting agreement. It is used to mea-
sure how much intersection there is between
the sets of word emotions identified by the
annotators. It includes majority-voting agree-
ment (AgreementMV ) and all-voting agreement
(AgreementAV ). AgreementMV is defined as fol-
lows. Let A, B and C be the sets of word emo-
tion components annotated by annotators a, b and
c respectively. The expert coder is the set of ex-
pressions that agreed by at least two annotators,
see equation (4).

AgreementMV = Avg(
count(ti = e j)

count(ti)
) (4)

In which, ti ∈ T , e j ∈ E, T = A
⋃

B
⋃

C, E =
(A
⋂

B)
⋃
(A
⋂

C)
⋃
(B
⋂

C).
Accordingly, the expert coder of AgreementAV

is the set of expressions that agreed by all annota-
tors.

The above two metrics are used to measure the
agreements on: (a) determine if a word is an emo-
tion or unemotion word; (b) determine the eight
basic emotions for emotion words (complete emo-
tion matching); (c) determine the eight basic emo-
tions for emotion words (single matching). (b)
and (c) are provided that at least two people to be-

lieve the word is an emotion word. Table 5 shows
the agreements measured by the two metrics.

As shown in table 5, it is easier for annotators to
agree at if a word contains emotion, but it is more
difficult to agree on emotions or emotion compo-
nents of a word. Compared with the agreement on
people’s judgments, our experiments gave promis-
ing results.

Table 5: Agreement of word emotion annotation
measured by Kappa, Majority-voting (MV), and
All-voting (AV)

Measure Kappa MV AV
(a) 84.3 98.5 95.1
(b) 66.7 70.3 26.2
(c) 77.5 100 84.9

5.2 Error Analysis

Conducting an error analysis, we find that a lot
of errors occur due to the recognition on multi-
emotion words and indirect emotion words, espe-
cially in short sentences because the features can
be extracted are too few. So more features should
be considered from larger contexts, such as the
topic emotion of paragraph or document.

There are some errors occur due to more than
one emotion holders exist in one sentence, for ex-
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ample of sentence (4).
(4) ·uyå��wX¨a,��ä"(I

found that daughter was looking at the toys of her
interest.)

In sentence (4), three annotators all agree that
the emotion components of the word “a,� (in-
terest)” is “00000000” since they believe that this
word is an unemotion word from the view of the
writer. But our system give a result of “00100000”
because the emotion holder “å� (daughter)” of
the emotion word “a,� (interest)” has not been
considered in our algorithm. Therefore, the recog-
nition of emotion holder is indispensable for an
accurate emotion analysis system.

In addition, Chinese segmentation mistakes and
phrasing error also cause errors.

6 Conclusions

Automatically perceive the emotions from text
has potentially important applications in CMC
(computer-mediated communication) that range
from identifying emotions from online blogs to
enabling dynamically adaptive interfaces. Therein
words play important role in emotion expressions
of text.

In this paper we explored features for recogniz-
ing word emotions in sentences. Different from
previous researches on textual emotion recogni-
tion that based on affective lexicons, we believe
that besides obvious emotion words referring to
emotions, there are words can potentially convey
emotions act only as an indirect reference. Also,
quite often words that bear emotion ambiguity and
multiple emotions are difficult to be recognized
depending on emotion lexicons. Emotion of a
word should be determined with its context.

Based on Ren-CECps (an annotated emotion
corpus) and MaxEnt (Maximum entropy) model,
we have experimented several contextual features
and their combination, then using PLSA (proba-
bilistic latent semantic analysis), semantic feature
are demonstrated the effectiveness for word emo-
tion recognition. A significant performance im-
provement over only using contextual and seman-
tic features was observed after adding encoding
feature (word emotion components). Determining
intensity of word emotion and recognizing emo-
tion of sentence or document based on word emo-

tion are included in our future work.
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Abstract

Research in named entity recognition and
mention detection has typically involved a
fairly small number of semantic classes,
which may not be adequate if seman-
tic class information is intended to sup-
port natural language applications. Moti-
vated by this observation, we examine the
under-studied problem of semantic sub-
type induction, where the goal is to au-
tomatically determine which of a set of
92 fine-grained semantic classes a noun
phrase belongs to. We seek to improve the
standard supervised approach to this prob-
lem using two techniques: hierarchical
classification and collective classification.
Experimental results demonstrate the ef-
fectiveness of these techniques, whether
or not they are applied in isolation or in
combination with the standard approach.

1 Introduction

Semantic class determination refers to the task
of classifying a noun phrase (NP), be it a name
or a nominal, as one of a set of pre-defined se-
mantic classes. A semantic class classifier is a
basic text-processing component in many high-
level natural language processing (NLP) applica-
tions, including information-extraction (IE) sys-
tems and question-answering (QA) systems. In
recent years, supervised semantic class determi-
nation has been tackled primarily in the context of
(1) coreference resolution(e.g., Ng (2007), Huang
et al. (2009)), where semantic classes are induced
and subsequently used to disallow coreference be-
tween semantically incompatible NPs, and (2) the

mention detectiontask in the ACE evaluations
(e.g., Florian et al. (2004; 2006)), where the goal
is to identify the boundary of amention(i.e., a
noun phrase that belongs to one of the pre-defined
ACE semantic classes), its mention type (e.g., pro-
noun, name), and its semantic class. The output
of a mention detector is then used by downstream
IE components, which typically include a coref-
erence resolution system and a relation extraction
system. Owing in part to its potentially large in-
fluence on downstream IE components, accurate
semantic class determination is crucial.

Over the years, NLP researchers have focused
on a relatively small number of semantic classes in
both NE recognition and mention detection: seven
classes in the MUC-6 and MUC-7 NE recognition
task, four classes in the CoNLL 2002 and 2003
NE recognition shared task, and seven classes in
the ACE 2005 mention detection task. Given that
one of the uses of semantic class information is
to support NLP applications, it is questionable
whether this purpose can be adequately served by
such a small number of semantic classes. For ex-
ample, given the question “Which city was the
first Olympic Games held in?”, it would be help-
ful for a QA system to know which NEs are cities.
However, virtually all of the existing NE recog-
nizers and mention detectors can only determine
whether an NE is a location or not.

Our goal in this paper is to tackle the under-
studied problem of determining fine-grained se-
mantic classes (henceforthsemantic subtypes).
More specifically, we aim to classify an NP as
one of the 92 fine-grained, domain-independent
semantic classes that are determined to be use-
ful for supporting the development of QA and
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IE systems in the ACE and AQUAINT programs.
These 92 semantic subtypes have been used to
manually annotate the NPs in theBBN Entity Type
Corpus(Weischedel and Brunstein, 2005). Given
the availability of this semantic subtype-annotated
corpus, we adopt a supervised machine learn-
ing approach to semantic subtype determination.
Specifically, given (the boundary of) an NP, we
train a classification model to determine which of
the 92 semantic subtypes it belongs to.

More importantly, we seek to improve the stan-
dard approach to semantic subtype induction de-
scribed above by proposing two techniques. The
first technique, collective classification, aims to
address a common weakness in the standard su-
pervised learning paradigm, where a classifier
classifies each instance independently of the oth-
ers and is unable to exploit any relational informa-
tion between a pair (or a subset) of the instances
that may be helpful for classification. The sec-
ond technique, hierarchical classification, exploits
the observation that these 92 semantic subtypes
can be grouped into a smaller number of coarse-
grained semantic types (henceforth semantic su-
pertypes). With this two-level hierarchy, learning
can proceed in a sequential fashion: given an NP,
we first determine its semantic supertype and then
classify it as one of the semantic subtypes that
fall under the predicted supertype in the hierar-
chy. Empirical results show that these two tech-
niques, when applied in isolation to the standard
learning approach to subtype induction, can sig-
nificantly improve its accuracy, and the best result
is achieved when they are applied in combination.

The rest of the paper is organized as follows.
Section 2 provides an overview of the 92 seman-
tic subtypes and the evaluation corpus. In Sec-
tion 3, we present our baseline semantic subtype
classification system. Sections 4 and 5 introduce
collective classification and hierarchical classifi-
cation respectively, and describe how these two
techniques can be used to improve the baseline
semantic subtype classifier. We show evaluation
results in Section 6 and conclude in Section 7.

2 Semantic Subtypes

As noted before, each name and nominal in the
BBN Entity Type Corpusis annotated with one of

the 92 semantic subtypes. In our experiments, we
use all the 200 Penn Treebank Wall Street Journal
articles in the corpus, yielding 17,292 NPs that are
annotated with their semantic subtypes.

Table 1 presents an overview of these subtypes.
Since they have been manually grouped into 29
supertypes, we also show the supertypes in the ta-
ble. More specifically, the first column shows the
supertypes, the second column contains a brief de-
scription of a supertype, and the last column lists
the subtypes that correspond to the supertype in
the first column. In cases where a supertype con-
tains only one subtype (e.g.,PERSON), the super-
type is not further partitioned into different sub-
types; for classification purposes, we simply treat
the subtype as identical to its supertype (and hence
the two always have the same name). A detailed
description of these supertypes and subtypes can
be found in Weischedel and Brunstein (2005). Fi-
nally, we show the class distribution: the paren-
thesized number after each subtype is the percent-
age of the 17,292 NPs annotated with the subtype.

3 Baseline Classification Model

We adopt a supervised machine learning approach
to train our baseline classifier for determining the
semantic subtype of an NP. This section describes
the details of the training process.

Training corpus. As mentioned before, we use
the Wall Street Journal articles in the BBN Entity
Type Corpus for training the classifier.

Training instance creation. We create one
training instance for each annotated NP,NPi,
which is either a name or a nominal, in each train-
ing text. The classification of an instance is its an-
notated semantic subtype value, which is one of
the 92 semantic subtypes. Each instance is repre-
sented by a set of 33 features1, as described below.

1. Mention String (3): Three features are de-
rived from the string ofNPi. Specifically, we em-
ploy the NP string as a feature. IfNPi contains
more than one token, we create one feature for
each of its constituent tokens. Finally, to distin-
guish the different senses of a nominal, we create

1As we will see, since we employ an exponential model,
an instance may be represented by fewer than 33 features.
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Supertype Brief Description Subtypes
PERSON Proper names of people. Person (9.2).
PERSON DESC Any head word of a common noun Person Desc (16.8).

referring to a person or group of people.
NORP This type is named after its subtypes: Nationality (2.9), Religion (0.1), Political (0.6),

nationality, religion, political, etc. Other (0.1).
FACILITY Names of man-made structures, includingBuilding (0.1), Bridge (0.02), Airport (0.01),

infrastructure, buildings, monuments, Attraction (0.01), Highway Street (0.05),
camps, farms, mines, ports, etc. Other (0.1).

FACILITY DESC Head noun of a noun phrase describing Building (0.5), Bridge (0.05), Airport (0.01),
buildings, bridges, airports, etc. Highway Street (0.2), Attraction (0.02), Other (0.5).

ORGANIZATION Names of companies, government Government (3.6), Corporation (8.3), Political (0.5),
agencies, educational institutions and Educational (0.3), Hotel (0.04), City (0.01),
other institutions. Hospital (0.01), Religious (0.1), Other (0.7).

ORG DESC Heads of descriptors of companies, Government (2.1), Corporation (4.3), Political (0.2),
educational institutions and other Educational (0.1), Religious (0.1), Hotel (0.1),
governments, government agencies, etc. City (0.01), Hospital (0.02), Other (0.7).

GPE Names of countries, cities, states, Country (4.2), City (3.2), State Province (1.4),
provinces, municipalities, boroughs. Other (0.1).

GPE DESC Heads of descriptors of countries, cities, Country (0.8), City (0.3), State Province (0.3),
states, provinces, municipalities. Other (0.1).

LOCATION Names of locations other than GPEs. River (0.03), Lake Sea Ocean (0.05), Region (0.2),
E.g., mountain ranges, coasts, borders, Continent (0.1), Other (0.2).
planets, geo-coordinates, bodies of water.

PRODUCT Name of any product. It does not Food (0.01), Weapon (0.02), Vehicle (0.2),
include the manufacturer). Other (0.2).

PRODUCT DESC Descriptions of weapons and vehicles Food (0.01), Weapon (0.2), Vehicle (0.97),
only. Cars, buses, machine guns, missiles,Other (0.02).
bombs, bullets, etc.

DATE Classify a reference to a date or period. Date (7.99), Duration (1.9), Age (0.5), Other (0.4).
TIME Any time ending with A.M. or P.M. Time (0.5).
PERCENT Percent symbol or the actual word percent.Percent (2.07).
MONEY Any monetary value. Money (2.9).
QUANTITY Used to classify measurements. E.g., 4 1D (0.11), 2D (0.08), 3D (0.1), Energy (0.01),

miles, 4 grams, 4 degrees, 4 pounds, etc. Speed (0.01), Weight (0.1), Other (0.04).
ORDINAL All ordinal numbers. E.g., First, fourth. Ordinal (0.6).
CARDINAL Numerals that provide a count or quantity. Cardinal (5.1).
EVENT Named hurricanes, battles, wars, sports War (0.03), Hurricane (0.1), Other (0.24).

events, and other named events.
PLANT Any plant, flower, tree, etc. Plant (0.2).
ANIMAL Any animal class or proper name of an Animal (0.7).

animal, real or fictional.
SUBSTANCE Any chemicals, elements, drugs, and Food (1.1), Drug (0.46), Chemical (0.23), Other (0.9).

foods. E.g., boron, penicillin, plutonium.
DISEASE Any disease or medical condition. Disease (0.6).
LAW Any document that has been made into Law (0.5).

a law. E.g., Bill of Rights, Equal Rights.
LANGUAGE Any named language. Language (0.2).
CONTACT INFO Address, phone. Address (0.01), Phone (0.04).
GAME Any named game. Game (0.1).
WORK OF ART Titles of books, songs and other creations.Book (0.16), Play (0.04), Song (0.03), Painting (0.01),

Other (0.4).

Table 1: The 92 semantic subtypes and their corresponding supertypes.

a feature whose value is the concatenation of the
head ofNPi and its WordNet sense number.2

2We employ the sense number that is manually annotated
for each NP in the WSJ corpus as part of the OntoNotes
project (Hovy et al., 2006).

2. Verb String (3): If NPi is governed by a verb,
the following three features are derived from the
governing verb. First, we employ the string of the
governing verb as a feature. Second, we create
a feature whose value is the semantic role of the
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governing verb.3 Finally, to distinguish the differ-
ent senses of the governing verb, we create a fea-
ture whose value is the concatenation of the verb
and its WordNet sense number.

3. Semantic (5): We employ five semantic fea-
tures. First, ifNPi is an NE, we create a feature
whose value is the NE label ofNPi, as determined
by the Stanford CRF-based NE recognizer (Finkel
et al., 2005). However, ifNPi is a nominal, we cre-
ate a feature that encodes the WordNet semantic
class of which it is a hyponym, using the manu-
ally determined sense ofNPi.4 Moreover, to im-
prove generalization, we employ a feature whose
value is the WordNet synset number of the head
noun of a nominal. IfNPi has a governing verb,
we also create a feature whose value is the Word-
Net synset number of the verb. Finally, ifNPi is a
nominal, we create a feature based on itsWordNet
equivalent concept. Specifically, for each entity
type defined in ACE 20055, we create a list con-
taining all the word-sense pairs in WordNet (i.e.,
synsets) whose glosses are compatible with that
entity type.6 Then, givenNPi and its sense, we use
these lists to determine if it belongs to any ACE
2005 entity type. If so, we create a feature whose
value is the corresponding entity type.

4. Morphological (8). If NPi is a nominal, we
create eight features: prefixes and suffixes of
length one, two, three, and four.

5. Capitalization (4): We create four cap-
italization features to determine whetherNPi
IsAllCap, IsInitCap, IsCapPeriod, and
IsAllLower (see Bikel et al. (1999)).

6. Gazetteers (8): We compute eight gazetteer-
based features, each of which checks whetherNPi
is in a particular gazetteer. The eight dictionaries
contain pronouns (77 entries), common words and
words that are not names (399.6k), person names
(83.6k), person titles and honorifics (761), vehi-

3We also employ the semantic role that is manually anno-
tated for each NP in the WSJ corpus in OntoNotes.

4The semantic classes we considered are person, location,
organization, date, time, money, percent, and object.

5The ACE 2005 entity types include person, organization,
GPE, facility, location, weapon, and vehicle.

6Details of how these lists are constructed can be found
in Nicolae and Nicolae (2006).

cle words (226), location names (1.8k), company
names (77.6k), and nouns extracted from Word-
Net that are hyponyms ofPERSON(6.3k).

7. Grammatical (2): We create a feature that
encodes the part-of-speech (POS) sequence ofNPi
obtained via the Stanford POS tagger (Toutanova
et al., 2003). In addition, we have a feature that
determines whetherNPi is a nominal or not.

We employ maximum entropy (MaxEnt) mod-
eling7 for training the baseline semantic subtype
classifier. MaxEnt is chosen because it provides
a probabilistic classification for each instance,
which we will need to perform collective classi-
fication, as described in the next section.

4 Collective Classification

One weakness of the baseline classification model
is that it classifies each instance independently. In
particular, the model cannot take into account re-
lationships between them that may be helpful for
improving classification accuracy. For example,
if two NPs are the same string in a given doc-
ument, then it is more likely than not that they
have the same semantic subtype according to the
“one sense per discourse” hypothesis (Gale et al.,
1992). Incorporating this kind ofrelational infor-
mation into the feature set employed by the base-
line system is not an easy task, since each feature
characterizes only a single NP.

To make use of the relational information, one
possibility is to design a new learning procedure.
Here, we adopt a different approach: we perform
collective classification, or joint probabilistic in-
ference, on the output of the baseline model. The
idea is to treat the output for each NP, which is
a probability distribution over the semantic sub-
types, as itsprior label/class distribution, and con-
vert it into aposterior label/class distribution by
exploiting the available relational information as
an additional piece of evidence. For this purpose,
we will make use offactor graphs. In this section,
we first give a brief overview of factor graphs8,
and show how they can be used to perform joint

7We use the MaxEnt implementation available at
http://homepages.inf.ed.ac.uk/s0450736/maxenttoolkit.html

8See Bunescu and Mooney (2004) and Loeliger (2004)
for a detailed introduction to factor graphs.
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inference for semantic subtype determination.

4.1 Factor Graphs

Factor graphs model optimization problems of
an objective functiong, which is a real-valued
function ofn random variablesX1, ..., Xn. We
assume thatg can be decomposed into a product
of m factors. In other words,g (X1, ..., Xn) =
f1 (s1 (X1, ..., Xn)) ...fm (sm (X1, ..., Xn)),
where each factorfk is a real-valued function
of some subset ofX1, ... , Xn, denoted as
sk (X1, ..., Xn). Eachfk can be thought of as a
feature function that computes thecompatibility
of an assignment of values to the variables in
sk (X1, ..., Xn) with respect to a user-defined
feature. Hence, a larger function value is more
desirable, as it corresponds to a more compatible
assignment of values to the variables involved.

A factor graph consists of two types of nodes:
variable nodes and factor nodes. Each random
variableXi is represented by a variable node, and
each factorfk is represented by a factor node.
Each factor nodefk is connected only to the nodes
corresponding tosk. This results in a bipartite
graph, where edges exist only between a variable
node and a factor node.

Given this graph, there are several methods for
finding an optimal assignment of the random vari-
ablesX1, ..., Xn such that the objective function
g is maximized. Exact inference using the sum-
product algorithm (Kschischang et al., 2001) is
possible if there are no cycles in the graph; other-
wise a belief propagation algorithm, such as loopy
belief propagation (Murphy et al., 1999), can be
applied. Although there are no cycles in our factor
graphs, we choose to use loopy belief propagation
as our inferencer, since it performs approximate
inference and is therefore computationally more
efficient than an exact inferencer.

4.2 Application to Subtype Inference

To apply joint inference to semantic subtype in-
duction, we create one factor graph for each test
document, where each variable node is random
variableXi over the set of semantic subtype la-
bels L and represents an NP,NPi, in the docu-
ment. To retain the prior probabilities over the
semantic subtype labelslq ∈ L obtained from the

baseline classification model, each variable node
is given a factorf (Xi) = P (Xi = lq). If no
additional factors that model the relation between
two nodes/instances are introduced, maximizing
the objective function for this graph (by maximiz-
ing the product of factors) will find an assignment
identical to the one obtained by taking the most
probable semantic subtype label assigned to each
instance by the baseline classifier.

Next, we exploit the relationship between two
random variables. Specifically, we want to en-
courage the inference algorithm to assign the
same label to two variables if there exists a rela-
tion between the corresponding NPs that can pro-
vide strong evidence that they should receive the
same label. To do so, we create apairwise fac-
tor node that connects two variable nodes if the
aforementioned relation between the underlying
NPs is satisfied. However, to implement this idea,
we need to address two questions.

First,which relation between two NPs can pro-
vide strong evidence that they have the same se-
mantic subtype?We exploit the coreference re-
lation. Intuitively, the coreference relation is a
reasonable choice, as coreferent entities are likely
to have the same semantic subtype. Here, we
naively posit two NPs as coreferent if at least one
of the following conditions is satisfied: (1) they
are the same string after determiners are removed;
(2) they are aliases (i.e., one is an acronym or
abbreviation of the other); and (3) they are both
proper names and have at least one word in com-
mon (e.g., “Delta” and “Delta Airlines”).9

Second,how can we define a pairwise factor,
fpair, so that it encourages the inference algo-
rithm to assign the same label to two nodes?One
possibility is to employ the following definition:

fpair(Xi, Xj)

= P (Xi = lp, Xj = lq), where lp, lq ∈ L

=

{
1 if lp = lq
0 otherwise

In essence,fpair prohibits the assignment of dif-
ferent labels to the two nodes it connects. In our

9The third condition can potentially introduce many false
positives, positing “Bill Clinton” and “Hillary Clinton” as
coreferent, for instance. However, this kind of false positives
does not pose any problem for us, since the two NPs involved
belong to the same semantic subtype (i.e.,PERSON).
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experiments, however, we “improve”fpair by in-
corporating semantic supertype information into
its definition, as shown below:

fpair(Xi, Xj)

= P (Xi = lp, Xj = lq), where lp, lq ∈ L

=

{
Psup(sup(lp)|NPi)Psup(sup(lq)|NPj) if lp = lq
0 otherwise

In this definition, sup(lq) is the supertype oflq
according to the semantic type hierarchy shown
in Section 2, andPsup(sup(lq)|NPj) is the proba-
bility that NPj belongs tosup(lq) according to the
semantic supertype classification modelPsup (see
Section 5 for details on how this model can be
trained). In essence, we estimate the joint proba-
bility by (1) assuming that the two events are inde-
pendent, and then (2) computing each event using
supertype information. Intuitively, this definition
allowsfpair to favor those label assignments that
are more compatible with the predictions ofPsup.

After graph construction, we apply an infer-
encer to compute a marginal probability distribu-
tion over the labels for each node/instance in the
graph by maximizing the objective functiong, and
output the most probable label for each instance
according to its marginal distribution.

5 Hierarchical Classification

The pairwise factorfpair defined above exploits
supertype information in asoft manner, meaning
that the most probable label assigned to an NP by
an inferencer is not necessarily consistent with its
predicted supertype (e.g., an NP may receive Ho-
tel as its subtype even if its supertype isPERSON).
In this section, we discuss how to use supertype
information for semantic subtype classification in
a hard manner so that the predicted subtype is
consistent with its supertype.

To exploit supertype information, we first train
a model,Psup, for determining the semantic su-
pertype of an NP using MaxEnt. This model is
trained in essentially the same way as the base-
line model described in Section 3. In particular,
it is trained on the same set of instances using the
same feature set as the baseline model. The only
difference is that the class value of each training
instance is the semantic supertype of the associ-
ated NP rather than its semantic subtype.

Next, we train 29 supertype-specific classifi-
cation models for determining the semantic sub-
type of an NP. For instance, theORGANIZATION-
specific classification model will be used to clas-
sify an NP as belonging to one of its subtypes
(e.g., Government, Corporation, Political agen-
cies). A supertype-specific classification model is
trained much like the baseline model. Each in-
stance is represented using the same set of fea-
tures as in the baseline, and its class label is its
semantic subtype. The only difference is that the
model is only trained only on the subset of the
instances for which it is intended. For instance,
the ORGANIZATION-specific classification model
is trained only on instances whose class is a sub-
type ofORGANIZATION.

After training, we can apply the supertype clas-
sification model and the supertype-specific sub-
type classification model to determine the se-
mantic subtype of an NP in a hierarchical fash-
ion. Specifically, we first employ the supertype
model to determine its semantic supertype. Then,
depending on this predicted semantic supertype,
we use the corresponding subtype classification
model to determine its subtype.

6 Evaluation

For evaluation, we partition the 200 Wall Street
Journal Articles in the BBN Entity Type corpus
into a training set and a test set following a 80/20
ratio. As mentioned before, each text in the Entity
Type corpus has its NPs annotated with their se-
mantic subtypes. Test instances are created from
these texts in the same way as the training in-
stances described in Section 3. To investigate
whether we can benefit from hierarchical and col-
lective classifications, we apply these two tech-
niques to the Baseline classification model in iso-
lation and in combination, resulting in the four
sets of results in Tables 2 and 3.

The Baseline results are shown in the second
column of Table 2. Due to space limitations, it is
not possible to show the result for each semantic
subtype. Rather, we present semantic supertype
results, which are obtained by micro-averaging
the corresponding semantic subtype results and
are expressed in terms of recall (R), precision (P),
and F-measure (F). Note that only those semantic
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Baseline only Baseline+Hierarchical
Semantic Supertype R P F R P F

1 PERSON 91.9 89.7 90.8 88.8 91.1 89.9
2 PERSON DESC 91.3 87.8 89.5 92.1 89.8 91.0
3 SUBSTANCE 60.0 66.7 63.2 70.0 58.3 63.6
4 NORP 87.8 90.3 89.0 91.9 90.7 91.3
5 FACILITY DESC 72.7 88.9 80.0 68.2 93.8 79.0
6 ORGANIZATION 76.6 73.8 75.2 78.5 73.2 75.8
7 ORG DESC 75.0 70.7 72.8 75.8 75.2 75.5
8 GPE 75.6 73.9 74.7 77.0 75.4 76.2
9 GPE DESC 60.0 75.0 66.7 70.0 70.0 70.0

10 PRODUCT DESC 53.3 88.9 66.7 53.3 88.9 66.7
11 DATE 85.0 85.0 85.0 84.5 85.4 85.0
12 PERCENT 100.0 100.0 100.0 100.0 100.0 100.0
13 MONEY 83.9 86.7 85.3 88.7 96.5 92.4
14 QUANTITY 22.2 100.0 36.4 66.7 66.7 66.7
15 ORDINAL 100.0 100.0 100.0 100.0 100.0 100.0
16 CARDINAL 96.0 77.4 85.7 94.0 81.0 87.0

Accuracy 81.56 82.60

Table 2: Results for Baseline only and Baseline with hierarchical classification.

Baseline+Collective Baseline+Both
Semantic Supertype R P F R P F

1 PERSON 93.8 98.1 95.9 91.9 100.0 95.8
2 PERSON DESC 93.9 88.5 91.1 92.6 89.5 91.0
3 SUBSTANCE 60.0 85.7 70.6 70.0 63.6 66.7
4 NORP 89.2 93.0 91.0 90.5 94.4 92.4
5 FACILITY DESC 63.6 87.5 73.7 68.2 93.8 79.0
6 ORGANIZATION 85.8 76.2 80.7 87.4 76.3 81.3
7 ORG DESC 75.8 74.1 74.9 75.8 74.6 75.2
8 GPE 74.1 75.8 74.9 81.5 81.5 81.5
9 GPE DESC 60.0 60.0 60.0 70.0 77.8 73.7

10 PRODUCT DESC 53.3 88.9 66.7 53.3 88.9 66.7
11 DATE 85.0 85.4 85.2 85.0 86.3 85.6
12 PERCENT 100.0 100.0 100.0 100.0 100.0 100.0
13 MONEY 83.9 86.7 85.3 90.3 96.6 93.3
14 QUANTITY 22.2 100.0 36.4 66.7 66.7 66.7
15 ORDINAL 100.0 100.0 100.0 100.0 100.0 100.0
16 CARDINAL 96.0 78.7 86.5 94.0 83.9 88.7

Accuracy 83.70 85.08

Table 3: Results for Baseline with collective classification and Baseline with both techniques.

supertypes with non-zero scores are shown. As we
can see, only 16 of the 29 supertypes have non-
zero scores.10 Among the “traditional” seman-
tic types, the Baseline yields good performance
for PERSON, but only mediocre performance for
ORGANIZATION and GPE. While additional ex-
periments are needed to determine the reason, we
speculate that this can be attributed to the fact that
PERSONandPERSON DESChave only one seman-
tic subtype (which is the supertype itself), whereas

10The 13 supertypes that have zero scores are all under-
represented classes, each of which accounts for less than one
percent of the instances in the dataset.

ORGANIZATION andGPEhave nine and four sub-
types, respectively. The classification accuracy is
shown in the last row of the table. As we can see,
the Baseline achieves an accuracy of 81.56.

Results obtained when hierarchical classifica-
tion is applied to the Baseline are shown in the
third column of Table 2. In comparison to the
Baseline, accuracy rises from 81.56 to 82.60. This
represents an error reduction of 5.6%, and the dif-
ference between these two accuracies is statisti-
cally significant at thep = 0.04 level.11

11All significance test results in this paper are obtained us-
ing Approximate Randomization (Noreen, 1989).
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Results obtained when collective classification
alone is applied to the Baseline are shown in
the second column of Table 3. In this case, the
prior probability distribution over the semantic
subtypes that is needed to create the factor asso-
ciated with each node in the factor graph is sim-
ply the probabilistic classification of the test in-
stance that the node corresponds to. In compar-
ison to the Baseline, accuracy rises from 81.56
to 83.70. This represents an error reduction of
11.6%, and the difference is significant at the
p = 0.01 level. Also, applying collective clas-
sification to the Baseline yields slightly better re-
sults than applying hierarchical classification to
the Baseline, and the difference in their results is
significant at thep = 0.002 level.

Finally, results obtained when both hierarchi-
cal and collective classification are applied to the
Baseline are shown in the third column of Table
3. In this case, the prior distribution needed to
create the factor associated with each node in the
factor graph is provided by the supertype-specific
classification model that is used to classify the test
instance in hierarchical classification. In compar-
ison to the Baseline, accuracy rises from 81.56
to 85.08. This represents an error reduction of
19.1%, and the difference is highly significant
(p < 0.001). Also, applying both techniques to
the Baseline yields slightly better results than ap-
plying only collective classification to the Base-
line, and the difference in their results is signifi-
cant at thep = 0.003 level.

6.1 Feature Analysis

Next, we analyze the effects of the seven feature
types described in Section 3 on classification ac-
curacy. To measure feature performance, we take
the best-performing system (i.e., Baseline com-
bined with both techniques), begin with all seven
feature types, and iteratively remove them one by
one so that we get the best accuracy. The re-
sults are shown in Table 4. Across the top line,
we list the numbers representing the seven feature
classes. The feature class that corresponds to each
number can be found in Section 3, where they are
introduced. For instance, “2” refers to the fea-
tures computed based on the governing verb. The
first row of results shows the system performance

1 3 7 4 2 5 6
81.4 75.8 83.3 83.7 84.1 85.2 85.6
80.4 74.9 84.3 85.3 85.3 86.1
80.4 78.3 83.9 86.5 86.7
81.8 76.2 85.2 87.6
75.4 83.4 84.6
66.2 80.9

Table 4: Results of feature analysis.

after removing just one feature class. In this
case, removing the sixth feature class (Gazetteers)
improves accuracy to 85.6, while removing the
mention string features reduces accuracy to 81.4.
The second row repeats this, after removing the
gazetteer features.

Somewhat surprisingly, using only mention
string, semantic, and grammatical features yields
the best accuracy (87.6). This indicates that
gazetteers, morphological features, capitalization,
and features computed based on the governing
verb are not useful. Removing the grammati-
cal features yields a 3% drop in accuracy. After
that, accuracy drops by 4% when semantic fea-
tures are removed, whereas a 18% drop in accu-
racy is observed when the mention string features
are removed. Hence, our analysis suggests that
the mention string features are the most useful fea-
tures for semantic subtype prediction.

7 Conclusions

We examined the under-studied problem of se-
mantic subtype induction, which involves clas-
sifying an NP as one of 92 semantic classes,
and showed that two techniques — hierarchi-
cal classification and collective classification —
can significantly improve a baseline classification
model trained using an off-the-shelf learning al-
gorithm on the BBN Entity Type Corpus. In par-
ticular, collective classification addresses a ma-
jor weakness of the standard feature-based learn-
ing paradigm, where a classification model classi-
fies each instance independently, failing to capture
the relationships among subsets of instances that
might improve classification accuracy. However,
collective classification has not been extensively
applied in the NLP community, and we hope that
our work can increase the awareness of this pow-
erful technique among NLP researchers.
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Abstract

Model minimization has been shown to
work well for the task of unsupervised
part-of-speech tagging with a dictionary.
In (Ravi and Knight, 2009), the authors in-
voke an integer programming (IP) solver
to do model minimization. However,
solving this problem exactly using an
integer programming formulation is in-
tractable for practical purposes. We pro-
pose a novel two-stage greedy approxima-
tion scheme to replace the IP. Our method
runs fast, while yielding highly accurate
tagging results. We also compare our
method against standard EM training, and
show that we consistently obtain better
tagging accuracies on test data of varying
sizes for English and Italian.

1 Introduction

The task of unsupervised part-of-speech (POS)
tagging with a dictionary as formulated by Meri-
aldo (1994) is: given a raw word sequence and a
dictionary of legal POS tags for each word type,
tag each word token in the text. A common ap-
proach to modeling such sequence labeling prob-
lems is to build a bigram Hidden Markov Model
(HMM) parameterized by tag-bigram transition
probabilities P (ti|ti−1) and word-tag emission
probabilities P (wi|ti). Given a word sequence w
and a tag sequence t, of length N , the joint prob-
ability P (w, t) is given by:

P (w, t) =
N∏

i=1

P (wi|ti) · P (ti|ti−1) (1)

We can train this model using the Expectation
Maximization (EM) algorithm (Dempster and Ru-
bin, 1977) which learns P (wi|ti) and P (ti|ti−1)
that maximize the likelihood of the observed data.
Once the parameters are learnt, we can find the
best tagging using the Viterbi algorithm.

t̂ = arg max
t

P (w, t) (2)

Ravi and Knight (2009) attack the Merialdo
task in two stages. In the first stage, they search
for a minimized transition model (i.e., the small-
est set of tag bigrams) that can explain the data
using an integer programming (IP) formulation.
In the second stage, they build a smaller HMM
by restricting the transition parameters to only
those tag bigrams selected in the minimization
step. They employ the EM algorithm to train this
model, which prunes away some of the emission
parameters. Next, they use the pruned emission
model along with the original transition model
(which uses the full set of tag bigrams) and re-
train using EM. This alternating EM training pro-
cedure is repeated until the number of tag bigrams
in the Viterbi tagging output does not change be-
tween subsequent iterations. The final Viterbi tag-
ging output from their method achieves state-of-
the-art accuracy for this task. However, their mini-
mization step involves solving an integer program,
which can be very slow, especially when scal-
ing to large-scale data and more complex tagging
problems which use bigger tagsets. In this pa-
per, we present a novel method that optimizes the
same objective function using a fast greedy model
selection strategy. Our contributions are summa-
rized below:
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• We present an efficient two-phase greedy-
selection method for solving the minimiza-
tion objective from Ravi and Knight (2009),
which runs much faster than their IP.

• Our method easily scales to large data
sizes (and big tagsets), unlike the previ-
ous minimization-based approaches and we
show runtime comparisons for different data
sizes.

• We achieve very high tagging accuracies
comparable to state-of-the-art results for un-
supervised POS tagging for English.

• Unlike previous approaches, we also show
results obtained when testing on the entire
Penn Treebank data (973k word tokens) in
addition to the standard 24k test data used for
this task. We also show the effectiveness of
this approach for Italian POS tagging.

2 Previous work

There has been much work on the unsupervised
part-of-speech tagging problem. Goldwater and
Griffiths (2007) also learn small models employ-
ing a fully Bayesian approach with sparse pri-
ors. They report 86.8% tagging accuracy with
manual hyperparameter selection. Smith and Eis-
ner (2005) design a contrastive estimation tech-
nique which yields a higher accuracy of 88.6%.
Goldberg et al. (2008) use linguistic knowledge to
initialize the the parameters of the HMM model
prior to EM training. They achieve 91.4% ac-
curacy. Ravi and Knight (2009) use a Minimum
Description Length (MDL) method and achieve
the best results on this task thus far (91.6% word
token accuracy, 91.8% with random restarts for
EM). Our work follows a similar approach using a
model minimization component and alternate EM
training.

Recently, the integer programming framework
has been widely adopted by researchers to solve
other NLP tasks besides POS tagging such as se-
mantic role labeling (Punyakanok et al., 2004),
sentence compression (Clarke and Lapata, 2008),
decipherment (Ravi and Knight, 2008) and depen-
dency parsing (Martins et al., 2009).

3 Model minimization formulated as a
Path Problem

The complexity of the model minimization step
in (Ravi and Knight, 2009) and its proposed ap-
proximate solution can be best understood if we
formulate it as a path problem in a graph.

Let w = w0, w1, . . . , wN , wN+1 be a word se-
quence where w1, . . . , wN are the input word to-
kens and {w0, wN+1} are the start/end tokens.
Let T = {T1, . . . , TK}

⋃{T0, TK+1} be the fixed
set of all possible tags. T0 and TK+1 are special
tags that we add for convenience. These would be
the start and end tags that one typically adds to
the HMM lattice. The tag dictionary D contains
entries of the form (wi, Tj) for all the possible
tags Tj that word token wi can have. We add en-
tries (w0, T0) and (wK+1, TK+1) to D. Given this
input, we now create a directed graph G(V,E).
Let C0, C1 . . . , CK+1 be columns of nodes in G,
where column Ci corresponds to word token wi.
For all i = 0, . . . , N+1 and j = 0, . . . ,K+1, we
add node Ci,j in column Ci if (wi, Tj) ∈ D. Now,
∀i = 0, . . . , N , we create directed edges from ev-
ery node in Ci to every node in Ci+1. Each of
these edges e = (Ci,j , Ci+1,k) is given the label
(Tj , Tk) which corresponds to a tag bigram. This
creates our directed graph. Let l(e) be the tag bi-
gram label of edges e ∈ E. For every path P from
C0,0 to CN+1,K+1, we say that P uses an edge la-
bel or tag bigram (Tj , Tk) if there exists an edge
e in P such that l(e) = (Tj , Tk). We can now
formulate the the optimization problem as: Find
the smallest set S of tag bigrams such that there
exists at least one path from C0,0 to CN+1,K+1 us-
ing only the tag bigrams in S. Let us call this the
Minimal Tag Bigram Path (MinTagPath) problem.

Figure 1 shows an example graph where the
input word sequence is w1, . . . , w4 and T =
{T1, . . . , T3} is the input tagset. We add the
start/end word tokens {w0, w5} and correspond-
ing tags {T0, T4}. The edges in the graph are in-
stantiated according to the word/tag dictionary D
provided as input. The node and edge labels are
also illustrated in the graph. Our goal is to find a
path from C0,0 to C5,4 using the smallest set of tag
bigrams.
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Figure 1: Graph instantiation for the MinTagPath problem.

4 Problem complexity

Having defined the problem, we now show that
it can be solved in polynomial time even though
the number of paths from C0,0 to CN+1,K+1 is
exponential in N , the input size. This relies on the
assumption that the tagset T is fixed in advance,
which is the case for most tagging tasks.1 Let B
be the set of all the tag bigram labels in the graph,
B = {l(e), ∀e ∈ E}. Now, the size of B would
be at most K2 + 2K where every word could be
tagged with every possible tag. For m = 1 . . . |B|,
let Bm be the set of subsets of B each of which
have size m. Algorithm 1 optimally solves the
MinTagPath problem.

Algorithm 1 basically enumerates all the possi-
ble subsets of B, from the smallest to the largest,
and checks if there is a path. It exits the first time a
path is found and therefore finds the smallest pos-
sible set si of size m such that a path exists that
uses only the tag bigrams in si. This implies the
correctness of the algorithm. To check for path ex-
istence, we could either throw away all the edges
from E not having a label in si, and then execute
a Breadth-First-Search (BFS) or we could traverse

1If K, the size of the tagset, is a variable as well, then we
suspect the problem is NP-hard.

Algorithm 1 Brute Force solution to MinTagPath
for m = 1 to |B| do

for si ∈ Bm do
Use Breadth First Search (BFS) to check
if ∃ path P from C0,0 to CN+1,K+1 using
only the tag bigrams in si.
if P exists then

return si,m
end if

end for
end for

only the edges with labels in si during BFS. The
running time of Algorithm 1 is easy to calculate.
Since, in the worst case we go over all the sub-
sets of size m = 1, . . . , |B| of B, the number of
iterations we can perform is at most 2|B|, the size
of the powerset P of B. In each iteration, we do
a BFS through the lattice, which has O(N) time
complexity2 since the lattice size is linear in N
and BFS is linear in the lattice size. Hence the run-
ning time is≤ 2|B| ·O(N) = O(N). Even though
this shows that MinTagPath can be solved in poly-
nomial time, the time complexity is prohibitively
large. For the Penn Treebank, K = 45 and the

2Including throwing away edges or not.
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worst case running time would be ≈ 1013.55 · N .
Clearly, for all practical purposes, this approach is
intractable.

5 Greedy Model Minimization

We do not know of an efficient, exact algorithm
to solve the MinTagPath problem. Therefore, we
present a simple and fast two-stage greedy ap-
proximation scheme. Notice that an optimal path
P (or any path) covers all the input words i.e., ev-
ery word token wi has one of its possible taggings
in P . Exploiting this property, in the first phase,
we set our goal to cover all the word tokens using
the least possible number of tag bigrams. This can
be cast as a set cover problem (Garey and John-
son, 1979) and we use the set cover greedy ap-
proximation algorithm in this stage. The output
tag bigrams from this phase might still not allow
any path from C0,0 to CN+1,K+1. So we carry out
a second phase, where we greedily add a few tag
bigrams until a path is created.

5.1 Phase 1: Greedy Set Cover
In this phase, our goal is to cover all the word to-
kens using the least number of tag bigrams. The
covering problem is exactly that of set cover. Let
U = {w0, . . . , wN +1} be the set of elements that
needs to be covered (in this case, the word tokens).
For each tag bigram (Ti, Tj) ∈ B, we define its
corresponding covering set STi,Tj as follows:

STi,Tj = {wn : ((wn, Ti) ∈ D

∧ (Cn,i, Cn+1,j) ∈ E

∧ l(Cn,i, Cn+1,j) = (Ti, Tj))∨
((wn, Tj) ∈ D

∧ (Cn−1,i, Cn,j) ∈ E

∧ l(Cn−1,i, Cn,j) = (Ti, Tj))}

Let the set of covering sets be X . We assign
a cost of 1 to each covering set in X . The goal
is to select a set CHOSEN ⊆ X such that⋃

STi,Tj
∈CHOSEN = U , minimizing the total cost

of CHOSEN . This corresponds to covering all
the words with the least possible number of tag
bigrams. We now use the greedy approximation
algorithm for set cover to solve this problem. The
pseudo code is shown in Algorithm 2.

Algorithm 2 Set Cover : Phase 1
Definitions
Define CAND : Set of candidate covering sets
in the current iteration
Define Urem : Number of elements in U re-
maining to be covered
Define ESTi,Tj

: Current effective cost of a set
Define Itr : Iteration number

Initializations
LET CAND = X
LET CHOSEN = ∅
LET Urem = U
LET Itr = 0
LET ESTi,Tj

= 1
|STi,Tj

| , ∀ STi,Tj ∈ CAND

while Urem 6= ∅ do
Itr ← Itr + 1
Define ŜItr = argmin

STi,Tj
∈CAND

ESTi,Tj

CHOSEN = CHOSEN
⋃

ŜItr

Remove ŜItr from CAND
Remove all the current elements in ŜItr from
Urem

Remove all the current elements in ŜItr from
every STi,Tj ∈ CAND
Update effective costs, ∀ STi,Tj ∈ CAND,
ESTi,Tj

= 1
|STi,Tj

|
end while
return CHOSEN

For the graph shown in Figure 1, here are a few
possible covering sets STi,Tj and their initial ef-
fective costs ESTi,Tj

.

• ST0,T1 = {w0, w1}, EST0,T1
= 1/2

• ST1,T2 = {w1, w2, w3, w4}, EST1,T2
= 1/4

• ST2,T2 = {w2, w3, w4}, EST2,T2
= 1/3

In every iteration Itr of Algorithm 2, we pick a
set ŜItr that is most cost effective. The elements
that ŜItr covers are then removed from all the re-
maining candidate sets and Urem and the effec-
tiveness of the candidate sets is recalculated for
the next iteration. The algorithm stops when all
elements of U i.e., all the word tokens are cov-
ered. Let, BCHOSEN = {(Ti, Tj) : STi,Tj ∈
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CHOSEN}, be the set of tag bigrams that have
been chosen by set cover. Now, we check, using
BFS, if there exists a path from C0,0 to CN+1,K+1

using only the tag bigrams in BCHOSEN . If not,
then we have to add tag bigrams to BCHOSEN to
enable a path. To accomplish this, we carry out the
second phase of this scheme with another greedy
strategy (described in the next section).

For the example graph in Figure 1,
one possible solution BCHOSEN =
{(T0, T1), (T1, T2), (T2, T4)}.

5.2 Phase 2: Greedy Path Completion

We define a graph GCHOSEN (V ′, E′) ⊆
G(V,E) that contains the edges e ∈ E such
l(e) ∈ BCHOSEN .

Let BCAND = B \ BCHOSEN , be the current
set of candidate tag bigrams that can be added to
the final solution which would create a path. We
would like to know how many holes a particular
tag bigram (Ti, Tj) can fill. We define a hole as an
edge e such that e ∈ G \ GCHOSEN and there
exists e′, e′′ ∈ GCHOSEN such that tail(e′) =
head(e) ∧ tail(e) = head(e′′).

Figure 2 illustrates the graph GCHOSEN using
tag bigrams from the example solution to Phase 1
(Section 5.1). The dotted edge (C2,2, C3,1) rep-
resents a hole, which has to be filled in the cur-
rent phase in order to complete a path from C0,0

to C5,4.
In Algorithm 3, we define the effectiveness of a

candidate tag bigram H(Ti, Tj) to be the number
of holes it covers. In every iteration, we pick the
most effective tag bigram, fill the holes and recal-
culate the effectiveness of the remaining candidate
tag bigrams.

Algorithm 3 returns BFINAL, the final set of
chosen tag bigrams. It terminates when a path has
been found.

5.3 Fitting the Model

Once the greedy algorithm terminates and returns
a minimized grammar of tag bigrams, we follow
the approach of Ravi and Knight (2009) and fit
the minimized model to the data using the alter-
nating EM strategy. The alternating EM iterations
are terminated when the change in the size of the
observed grammar (i.e., the number of unique tag

Algorithm 3 Greedy Path Complete : Phase 2
Define BFINAL : Final set of tag bigrams se-
lected by the two-phase greedy approach

LET BFINAL = BCHOSEN

LET H(Ti, Tj) = |{e}| such that l(e) =
(Ti, Tj) and e is a hole, ∀ (Ti, Tj) ∈ BCAND

while @ path P from C0,0 to CN+1,K+1 using
only (Ti, Tj) ∈ BCHOSEN do

Define (T̂i, T̂j) = argmax
(Ti,Tj)∈BCAND

H(Ti, Tj)

BFINAL = BFINAL
⋃

(T̂i, T̂j)
Remove (T̂i, T̂j) from BCAND

GCHOSEN = GCHOSEN
⋃{e} such that

l(e) = (Ti, Tj)
∀ (Ti, Tj) ∈ BCAND, Recalculate H(Ti, Tj)

end while
return BFINAL

bigrams in the tagging output) is ≤ 5%. We refer
to our entire approach using greedy minimization
followed by EM training as MIN-GREEDY.

6 Experiments and Results

6.1 English POS Tagging
Data: We use a standard test set (consisting of
24,115 word tokens from the Penn Treebank) for
the POS tagging task (described in Section 1). The
tagset consists of 45 distinct tag labels and the
dictionary contains 57,388 word/tag pairs derived
from the entire Penn Treebank. Per-token ambi-
guity for the test data is about 1.5 tags/token. In
addition to the standard 24k dataset, we also train
and test on larger data sets of 48k, 96k, 193k, and
the entire Penn Treebank (973k).

Methods: We perform comparative evaluations
for POS tagging using three different methods:

1. EM: Training a bigram HMM model using
EM algorithm.

2. IP: Minimizing grammar size using inte-
ger programming, followed by EM training
(Ravi and Knight, 2009).

3. MIN-GREEDY: Minimizing grammar size
using the Greedy method described in Sec-
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Figure 2: Graph constructed with tag bigrams chosen in Phase 1 of the MIN-GREEDY method.

tion 5, followed by EM training.

Results: Figure 3 shows the tagging perfor-
mance (word token accuracy %) achieved by the
three methods on the standard test (24k tokens) as
well as Penn Treebank test (PTB = 973k tokens).
On the 24k test data, the MIN-GREEDY method
achieves a high tagging accuracy comparable to
the previous best from the IP method. However,
the IP method does not scale well which makes
it infeasible to run this method in a much larger
data setting (the entire Penn Treebank). MIN-
GREEDY on the other hand, faces no such prob-
lem and in fact it achieves high tagging accuracies
on all four datasets, consistently beating EM by
significant margins. When tagging all the 973k
word tokens in the Penn Treebank data, it pro-
duces an accuracy of 87.1% which is much better
than EM (82.3%) run on the same data.

Ravi and Knight (2009) mention that it is pos-
sible to interrupt the IP solver and obtain a sub-
optimal solution faster. However, the IP solver did
not return any solution when provided the same
amount of time as taken by MIN-GREEDY for
any of the data settings. Also, our algorithms
were implemented in Python while the IP method
employs the best available commercial software
package (CPLEX) for solving integer programs.

Figure 4 compares the running time efficiency
for the IP method versus MIN-GREEDY method

Test set Efficiency
(average running time in secs.)

IP MIN-GREEDY
24k test 93.0 34.3
48k test 111.7 64.3
96k test 397.8 93.3
193k test 2347.0 331.0
PTB (973k) test ∗ 1485.0

Figure 4: Comparison of MIN-GREEDY versus
MIN-GREEDY approach in terms of efficiency
(average running time in seconds) for different
data sizes. All the experiments were run on a sin-
gle machine with a 64-bit, 2.4 GHz AMD Opteron
850 processor.

as we scale to larger datasets. Since the IP solver
shows variations in running times for different
datasets of the same size, we show the average
running times for both methods (for each row in
the figure, we run a particular method on three
different datasets with similar sizes and average
the running times). The figure shows that the
greedy approach can scale comfortably to large
data sizes, and a complete run on the entire Penn
Treebank data finishes in just 1485 seconds. In
contrast, the IP method does not scale well—on
average, it takes 93 seconds to finish on the 24k
test (versus 34 seconds for MIN-GREEDY) and
on the larger PTB test data, the IP solver runs for
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Method Tagging accuracy (%)
when training & testing on:

24k 48k 96k 193k PTB (973k)
EM 81.7 81.4 82.8 82.0 82.3
IP 91.6 89.3 89.5 91.6 ∗

MIN-GREEDY 91.6 88.9 89.4 89.1 87.1

Figure 3: Comparison of tagging accuracies on test data of varying sizes for the task of unsupervised
English POS tagging with a dictionary using a 45-tagset. (∗ IP method does not scale to large data).
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Figure 5: Comparison of observed grammar size
(# of tag bigram types) in the final tagging output
from EM, IP and MIN-GREEDY.

more than 3 hours without returning a solution.

It is interesting to see that for the 24k dataset,
the greedy strategy finds a grammar set (contain-
ing only 478 tag bigrams). We observe that MIN-
GREEDY produces 452 tag bigrams in the first
minimization step (phase 1), and phase 2 adds an-
other 26 entries, yielding a total of 478 tag bi-
grams in the final minimized grammar set. That
is almost as good as the optimal solution (459
tag bigrams from IP) for the same problem. But
MIN-GREEDY clearly has an advantage since it
runs much faster than IP (as shown in Figure 4).
Figure 5 shows a plot with the size of the ob-
served grammar (i.e., number of tag bigram types
in the final tagging output) versus the size of the
test data for EM, IP and MIN-GREEDY methods.
The figure shows that unlike EM, the other two
approaches reduce the grammar size considerably
and we observe the same trend even when scaling

Test set Average Speedup Optimality Ratio
24k test 2.7 0.96
48k test 1.7 0.98
96k test 4.3 0.98

193k test 7.1 0.93

Figure 6: Average speedup versus Optimality ra-
tio computed for the model minimization step
(when using MIN-GREEDY over IP) on different
datasets.

to larger data. Minimizing the grammar size helps
remove many spurious tag combinations from the
grammar set, thereby yielding huge improvements
in tagging accuracy over the EM method (Fig-
ure 3). We observe that for the 193k dataset, the
final observed grammar size is greater for IP than
MIN-GREEDY. This is because the alternating
EM steps following the model minimization step
add more tag bigrams to the grammar.

We compute the optimality ratio of the MIN-
GREEDY approach with respect to the grammar
size as follows:

Optimality ratio =
Size of IP grammar

Size of MIN-GREEDY grammar

A value of 1 for this ratio implies that the solu-
tion found by MIN-GREEDY algorithm is exact.
Figure 6 compares the optimality ratio versus av-
erage speedup (in terms of running time) achieved
in the minimization step for the two approaches.
The figure illustrates that our solution is nearly op-
timal for all data settings with significant speedup.

The MIN-GREEDY algorithm presented here
can also be applied to scenarios where the dictio-
nary is incomplete (i.e., entries for all word types
are not present in the dictionary) and rare words
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Method Tagging accuracy (%) Number of unique tag bigrams in final tagging output
EM 83.4 1195
IP 88.0 875

MIN-GREEDY 88.0 880

Figure 7: Results for unsupervised Italian POS tagging with a dictionary using a set of 90 tags.

take on all tag labels. In such cases, we can fol-
low a similar approach as Ravi and Knight (2009)
to assign tag possibilities to every unknown word
using information from the known word/tag pairs
present in the dictionary. Once the completed dic-
tionary is available, we can use the procedure de-
scribed in Section 5 to minimize the size of the
grammar, followed by EM training.

6.2 Italian POS Tagging
We also compare the three approaches for Italian
POS tagging and show results.

Data: We use the Italian CCG-TUT corpus (Bos
et al., 2009), which contains 1837 sentences. It
has three sections: newspaper texts, civil code
texts and European law texts from the JRC-Acquis
Multilingual Parallel Corpus. For our experi-
ments, we use the POS-tagged data from the
CCG-TUT corpus, which uses a set of 90 tags.
We created a tag dictionary consisting of 8,733
word/tag pairs derived from the entire corpus
(42,100 word tokens). We then created a test set
consisting of 926 sentences (21,878 word tokens)
from the original corpus. The per-token ambiguity
for the test data is about 1.6 tags/token.

Results: Figure 7 shows the results on Italian
POS tagging. We observe that MIN-GREEDY
achieves significant improvements in tagging ac-
curacy over the EM method and comparable to IP
method. This also shows that the idea of model
minimization is a general-purpose technique for
such applications and provides good tagging ac-
curacies on other languages as well.

7 Conclusion

We present a fast and efficient two-stage greedy
minimization approach that can replace the inte-
ger programming step in (Ravi and Knight, 2009).
The greedy approach finds close-to-optimal solu-
tions for the minimization problem. Our algo-

rithm runs much faster and achieves accuracies
close to state-of-the-art. We also evaluate our
method on test sets of varying sizes and show that
our approach outperforms standard EM by a sig-
nificant margin. For future work, we would like
to incorporate some linguistic constraints within
the greedy method. For example, we can assign
higher costs to unlikely tag combinations (such as
“SYM SYM”, etc.).

Our greedy method can also be used for solving
other unsupervised tasks where model minimiza-
tion using integer programming has proven suc-
cessful, such as word alignment (Bodrumlu et al.,
2009).
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Abstract

Active learning has been applied to dif-
ferent NLP tasks, with the aim of limit-
ing the amount of time and cost for human
annotation. Most studies on active learn-
ing have only simulated the annotation
scenario, using prelabelled gold standard
data. We present the first active learning
experiment for Word Sense Disambigua-
tion with human annotators in a realistic
environment, using fine-grained sense dis-
tinctions, and investigate whether AL can
reduce annotation cost and boost classifier
performance when applied to a real-world
task.

1 Introduction
Active learning has recently attracted attention as
having the potential to overcome the knowledge
acquisition bottleneck by limiting the amount of
human annotation needed to create training data
for statistical classifiers. Active learning has been
shown, for a number of different NLP tasks, to re-
duce the number of manually annotated instances
needed for obtaining a consistent classifier perfor-
mance (Hwa, 2004; Chen et al., 2006; Tomanek et
al., 2007; Reichart et al., 2008).

The majority of such results have been achieved
by simulating the annotation scenario using prela-
belled gold standard annotations as a stand-in for
real-time human annotation. Simulating annota-
tion allows one to test different parameter set-
tings without incurring the cost of human anno-
tation. There is, however, a major drawback: we

do not know whether the results of experiments
performed using hand-corrected data carry over to
real-world scenarios in which individual human
annotators produce noisy annotations. In addi-
tion, we do not know to what extent error-prone
annotations mislead the learning process. A sys-
tematic study of the impact of erroneous annota-
tion on classifier performance in an active learn-
ing (AL) setting is overdue. We need to know a)
whether the AL approach can really improve clas-
sifier performance and save annotation time when
applied in a real-world scenario with noisy data,
and b) whether AL works for classification tasks
with fine-grained or complex annotation schemes
and a low inter-annotator agreement.

In this paper we bring active learning to life in
the context of frame semantic annotation of Ger-
man texts within the SALSA project (Burchardt
et al., 2006). Specifically, we apply AL methods
for learning to assign semantic frames to predi-
cates, following Erk (2005) in treating frame as-
signment as a Word Sense Disambiguation task.
Under our fine-grained annotation scheme, anno-
tators have to deal with a high level of ambigu-
ity, resulting in low inter-annotator agreement for
some word senses. This fact, along with the po-
tential for wrong annotation decisions or possi-
ble biases from individual annotators, results in
an annotation environment in which we get noisy
data which might mislead the classifier. A sec-
ond characteristic of our scenario is that there is no
gold standard for the newly annotated data, which
means that evaluation is not straightforward. Fi-
nally, we have multiple annotators whose deci-
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sions on particular instances may diverge, raising
the question of which annotations should be used
to guide the AL process. This paper thus investi-
gates whether active learning can be successfully
applied in a real-world scenario with the particular
challenges described above.

Section 2 of the paper gives a short overview
of the AL paradigm and some related work, and
Section 3 discusses the multi-annotator scenario.
In Section 4 we present our experimental design
and describe the data we use. Section 5 presents
results, and Section 6 concludes.

2 Active Learning

The active learning approach aims to reduce the
amount of manual annotation needed to create
training data sufficient for developing a classifier
with a given performance. At each iteration of
the AL cycle, the actual knowledge state of the
learner guides the learning process by determin-
ing which instances are chosen next for annota-
tion. The main goal is to advance the learning
process by selecting instances which provide im-
portant information for the machine learner.

In a typical active learning scenario, a small set
of manually labelled seed data serves as the ini-
tial training set for the classifier (learner). Based
on the predictions of the classifier, a large pool
of unannotated instances is queried for the next
instance (or batch of instances) to be presented
to the human annotator (sometimes called the or-
acle). The underlying active learning algorithm
controlling the learning process tries to select the
most informative instances in order to get a strong
boost in classifier performance. Different meth-
ods can be used for determining informativity of
instances. We use uncertainty sampling (Cohn et
al., 1995) in which “most informative” instances
are those for which the classifier has the lowest
confidence in its label predictions. The rough in-
tuition behind this selection method is that it iden-
tifies instance types which have yet to be encoun-
tered by the classifier. The learning process pro-
ceeds by presenting the selected instances to the
human annotator, who assigns the correct label.
The newly-annotated instances are added to the
seed data and the classifier is re-trained on the new
data set. The newly trained classifier now picks

the next instances, based on its updated knowl-
edge, and the process repeats. If the learning pro-
cess can provide precisely that information which
the classifier still needs to learn, a smaller number
of instances should suffice to achieve the same ac-
curacy as on a larger training set of randomly se-
lected training examples.

Active learning has been applied to a num-
ber of natural language processing tasks like
POS tagging (Ringger et al., 2007), NER (Laws
and Schütze, 2008; Tomanek and Hahn, 2009),
syntactic parsing (Osborne and Baldridge, 2004;
Hwa, 2004), Word Sense Disambiguation (Chen
et al., 2006; Chan and Ng, 2007; Zhu and Hovy,
2007; Zhu et al., 2008) and morpheme gloss-
ing for language documentation (Baldridge and
Palmer, 2009). While most of these studies suc-
cessfully show that the same classification accu-
racy can be achieved with a substantially smaller
data set, these findings are mostly based on simu-
lations using gold standard data.

For our task of Word Sense Disambiguation
(WSD), mixed results have been achieved. AL
seems to improve results in a WSD task with
coarse-grained sense distinctions (Chan and Ng,
2007), but the results of (Dang, 2004) raise doubts
as to whether AL can successfully be applied to
a fine-grained annotation scheme, where Inter-
Annotator Agreement (IAA) is low and thus the
consistency of the human annotations decreases.
In general, AL has been shown to reduce the cost
of annotation when applied to classification tasks
where a single human annotator predicts labels for
new data points with a reasonable consistency and
accuracy. It is not clear whether the same settings
can be applied to a multi-annotator environment
where IAA is low.

3 Active Learning in a realistic task
including multiple annotators

Another possible difference between active learn-
ing simulations and real-world scenarios is the
multi-annotator environment. In such a setting,
two or more annotators assign labels to the same
instances, which are then merged to check for con-
flicting decisions from different annotators. This
is standard practise in many annotation projects
doing fine-grained semantic annotation with a
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high level of ambiguity, and it necessitates that all
annotators work on the same data set.

Replicating an active learning simulation on
hand-corrected data, starting with a fixed set of
seed data and fixed parameter settings, using the
same algorithm, will always result in the same
training set selected from the pool. Human anno-
tators, however, will assign different labels to the
same instances, thus influencing the selection of
the next instance from the pool. This means that
individual annotators might end up with very dif-
ferent sets of annotated data, depending on factors
like their interpretation of the annotation guide-
lines, an implicit bias towards a particular label,
or simply errors made during annotation.

There is not much work addressing this prob-
lem. (Donmez and Carbonell, 2008) consider
modifications of active learning to accommodate
variability of annotators. (Baldridge and Palmer,
2009) present a real-world study with human an-
notators in the context of language documenta-
tion. The task consists of producing interlin-
ear glossed text, including morphological and
grammatical analysis, and can be described as
a sequence labelling task. Annotation cost is
measured as the actual time needed for annota-
tion. Among other settings, the authors compare
the performance of two annotators with different
grades of expertise. The classifier trained on the
data set created by the expert annotator in an ac-
tive learning setting does obtain a higher accuracy
on the gold standard. For the non-expert annota-
tor, however, the active learning setting resulted
in a lower accuracy than for a classifier trained on
a randomly selected data set. This finding sug-
gests that the quality of annotation needs to be
high enough for active learning to actually work,
and that annotation noise is a problem for AL.

There are two problems arising from this:

1. It is not clear whether active learning will
work when applied to noisy data

2. It is not straightforward to apply active learn-
ing to a real-world scenario, where low IAA
asks for multiple annotators

In our experiment we address these questions
by systematically investigating the impact of an-
notation noise on classifier performance and on

the composition of the training set. The next sec-
tion presents the experimental design and the data
used in our experiment.

4 Experimental Design
In the experiment we annotated 8 German cau-
sation nouns, namelyAusgang, Anlass, Ergeb-
nis, Resultat, Grund, Konsequenz, Motiv, Quelle
(outcome, occasion, effect, result, reason, con-
sequence, motive, source of experience). These
nouns were chosen because they exhibit a range
of difficulty in terms of the number of senses they
have in our annotation scheme. They all encode
subtle distinctions between different word senses,
but some of them are clearly easier to disam-
biguate than others. For instance, althoughAus-
gang has 9 senses, they are easier to distinguish
for humans than the 4 senses ofKonsequenz.

Six annotators participated in the experiment.
While all annotators were trained, having at least
one year experience in frame-semantic annota-
tion, one of the annotators is an expert with several
years of training and working experience in the
Berkeley FrameNet Project. This annotator also
defined the frames (word senses) used in our ex-
periment.

Prior to the experiment, all annotators were
given 100 randomly chosen sentences. After
annotating the training data, problematic cases
were discussed to make sure that the annotators
were familiar with the fine-grained distinctions
between word senses in the annotation scheme.
The data sets used for training were adjudicated
by two of the annotators (one of them being the
expert) and then used as a gold standard to test
classifier performance in the active learning pro-
cess.

4.1 Data and Setup
For each lemma we extracted sentences from the
Wahrig corpus1 containing this particular lemma.
The annotators had to assign word senses to 300
instances for each target word, split into 6 pack-
ages of 50 sentences each. This resulted in 2,400
annotated instances per annotator (14,400 anno-
tated instances in total). The annotation was done

1The Wahrig corpus includes more than 113 mio. sen-
tences from German newspapers and magazines covering
topics such as politics, science, fashion, and others.
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Anlass Motiv Konsequenz Quelle Ergebnis / Resultat Ausgang Grund
Occasion (37) Motif (47) Causation (32) Relationalnat feat.(3) Causation (4/10) Outcome (67) Causation (24)
Reason (63) Reason(53) Level of det.(6) Sourceof getting (14) Competitivescore(12/36) Have leave (4) Reason (58)

Response (61) Sourceof exp. (14) Decision (11/6) Portal (21) Death (1)
MWE1 (1) Sourceof info. (56) Efficacy (2/3) Outgoinggoods (4) Part orientation. (0)

Well (6) Finding out (24/23) Ostomy (0) Localeby owner(3)
Emissionssource (7) Mathematics (1/0) Origin (5) Surfaceearth (0)

Operatingresult (36/5) Techoutput (7) Bottom layer (0)
Outcome (10/17) Processend (2) Soil (1)

Departing (1) CXN1 (0)
CXN2 (0)
MWE1 (0)
MWE2 (10)
MWE3 (0)
MWE4 (3)
MWE5 (0)
MWE6 (0)

Fleiss’ kappa for the 6 annotators for the 150 instances annotated in the random setting
0.67 0.79 0.55 0.77 0.63 / 0.59 0.82 0.43

Table 1: 8 causation nouns and their word senses (numbers in brackets give the distribution of word
senses in the gold standard (100 sentences); CXN: constructions, MWE: multi-word expressions; note
that Ergebnis and Resultat are synonyms and therefore sharethe same set of frames.)

using a Graphical User Interface where the sen-
tence was presented to the annotator, who could
choose between all possible word senses listed in
the GUI. The annotators could either select the
frame by mouse click or use keyboard shortcuts.
For each instance we recorded the time it took
the annotator to assign an appropriate label. To
ease the reading process the target word was high-
lighted.

As we want to compare time requirements
needed for annotating random samples and sen-
tences selected by active learning, we had to con-
trol for training effects which might speed up the
annotation. Therefore we changed the annotation
setting after each package, meaning that the first
annotator started with 50 sentences randomly se-
lected from the pool, then annotated 50 sentences
selected by AL, followed by another 50 randomly
chosen sentences, and so on. We divided the an-
notators into two groups of three annotators each.
The first group started annotating in the random
setting, the second group in the AL setting. The
composition of the groups was changed for each
lemma, so that each annotator experienced all dif-
ferent settings during the annotation process. The
annotators were not aware of which setting they
were in.

Pool data For the random setting we randomly
selected three sets of sentences from the Wahrig
corpus which were presented for annotation to all
six annotators. This allows us to compare annota-
tion time and inter-annotator agreement between

the annotators. For the active learning setting we
randomly selected three sets of 2000 sentences
each, from which the classifier could pick new in-
stances during the annotation process. This means
that for each trial the algorithm could select 50 in-
stances out of a pool of 2000 sentences. On any
given AL trial each annotator uses the same pool
as all the other annotators. In an AL simulation
with fixed settings and gold standard labels this
would result in the same subset of sentences se-
lected by the classifier. For our human annotators,
however, due to different annotation decisions the
resulting set of sentences is expected to differ.

Sampling method Uncertainty sampling is a
standard sampling method for AL where new in-
stances are selected based on the confidence of the
classifier for predicting the appropriate label. Dur-
ing early stages of the learning process when the
classifier is trained on a very small seed data set,
it is not beneficial to add the instances with the
lowest classifier confidence. Instead, we use a dy-
namic version of uncertainty sampling (Rehbein
and Ruppenhofer, 2010), based on the confidence
of a maximum entropy classifier2, taking into ac-
count how much the classifier has learned so far.
In each iteration one new instance is selected from
the pool and presented to the oracle. After anno-
tation the classifier is retrained on the new data
set. The modified uncertainty sampling results in
a more robust classifier performance during early
stages of the learning process.

2http://maxent.sourceforge.net
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Anlass Motiv Konsequenz Quelle Ergebnis Resultat Ausgang Grund
R U R U R U R U R U R U R U R U

A1 8.6 9.6 5.9 6.6 10.7 10.5 6.0 4.8 10.5 7.4 10.1 9.6 6.4 10.0 10.2 11.1
A2 4.4 5.7 4.8 5.9 8.2 9.2 4.9 4.9 6.4 4.4 11.7 8.5 5.1 7.7 9.0 9.3
A3 9.9 9.2 6.8 6.7 6.8 8.3 7.4 6.1 9.4 7.6 9.0 12.3 7.5 8.5 11.7 10.2
A4 5.8 4.9 3.6 3.6 9.9 11.3 4.8 3.5 7.9 7.1 9.7 11.1 3.6 4.1 9.9 9.4
A5 3.0 3.5 3.0 2.6 4.8 4.9 3.8 3.0 6.8 4.8 6.7 6.1 3.1 3.5 6.3 6.0
A6 5.4 6.3 5.3 4.7 6.7 8.6 5.4 4.6 7.8 6.1 8.7 9.0 6.9 6.6 9.3 8.5
ø 6.2 6.5 4.9 5.0 7.8 8.8 5.4 4.5 8.1 6.2 9.3 9.4 5.4 6.7 9.4 9.1
sl 25.8 27.8 27.8 26.0 24.2 25.8 24.9 26.5 25.7 25.2 29.0 35.9 25.5 27.9 26.8 29.7

Table 2: Annotation time (sec/instance) per target/annotator/setting and average sentence length (sl)

5 Results

The basic idea behind active learning is to se-
lect the most informative instances for annotation.
The intuition behind “more informative” is that
these instances support the learning process, so we
might need fewer annotated instances to achieve
a comparable classifier performance, which could
decrease the cost of annotation. On the other
hand, “more informative” also means that these
instances might be more difficult to annotate, so it
is only fair to assume that they might need more
time for annotation, which increases annotation
cost. To answer the question of whether AL re-
duces annotation cost or not we have to check a)
how long it took the annotators to assign labels
to the AL samples compared to the randomly se-
lected instances, and b) how many instances we
need to achieve the best (or a sufficient) perfor-
mance in each setting. Furthermore, we want to
investigate the impact of active learning on the
distribution of the resulting training sets and study
the correlation between the performance of the
classifier trained on the annotated data and these
factors: the difficulty of the annotation task (as-
sessed by IAA), expertise and individual proper-
ties of the annotators.

5.1 Does AL speed up the annotation process
when working with noisy data?

Table 2 reports annotation times for each annota-
tor and target for random sampling (R) and uncer-
tainty sampling (U). For 5 out of 8 targets the time
needed for annotating in the AL setting (averaged
over all annotators) was higher than for annotat-
ing the random samples. To investigate whether
this might be due to the length of the sentences
in the samples, Table 2 shows the average sen-
tence length for random samples and AL samples

for each target lemma. Overall, the sentences se-
lected by the classifier during AL are longer (26.2
vs. 28.1 token per sentence), and thus may take
the annotators more time to read.3 However, we
could not find a significant correlation (Spearman
rank correlation test) between sentence length and
annotation time, nor between sentence length and
classifier confidence.

The three target lemmas which took longer to
annotate in the random setting areErgebnis (re-
sult), Grund (reason) andQuelle (source of expe-
rience). This observation cannot be explained by
sentence length. While sentence length forErgeb-
nis is nearly the same in both settings, forGrund
and Quelle the sentences picked by the classi-
fier in the AL setting are significantly longer and
therefore should have taken more time to anno-
tate. To understand the underlying reason for this
we have to take a closer look at the distribution of
word senses in the data.

5.2 Distribution of word senses in the data
In the literature it has been stated that AL implic-
itly alleviates the class imbalance problem by ex-
tracting more balanced data sets, while random
sampling tends to preserve the sense distribution
present in the data (Ertekin et al., 2007). We could
not replicate this finding when using noisy data
to guide the learning process. Table 3 shows the
distribution of word senses for the target lemma
Ergebnis a) in the gold standard, b) in the random
samples, and c) in the AL samples.

The variance in the distribution of word senses
in the random samples and the gold standard can

3The correlation between sentence length and annotation
time is not obvious, as the annotators only have to label one
target in each sentence. For ambiguous sentences, however,
reading time may be longer, while for the clear cases we do
not expect a strong effect.
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Ergebnis
Frame gold (%) R (%) U (%)
Causation 4.0 4.8 3.7
Outcome 10.0 17.8 10.5
Finding out 24.0 26.2 8.2
Efficacy 2.0 0.8 0.1
Decision 11.0 5.1 3.2
Mathematics 1.0 1.6 0.4
Operatingresult 36.0 24.5 66.7
Competitivescore 12.0 19.2 7.2

Table 3: Distribution of frames (word senses) for
the lemmaErgebnis in the gold standard (100 sen-
tences), in the random samples (R) and AL sam-
ples (U) (150 sentences each)

be explained by low inter-annotator agreement
caused by the high level of ambiguity for the tar-
get lemmas. The frame distribution in the data
selected by uncertainty sampling, however, cru-
cially deviates from those of the gold standard
and the random samples. A disproportionately
high 66% of the instances selected by the classi-
fier have been assigned the label Operatingresult
by the human annotators. This is the more sur-
prising as this frame is fairly easy for humans to
distinguish.

The classifier, however, proved to have seri-
ous problems learning this particular word sense
and thus repeatedly selected more instances of this
frame for annotation. As a result, the distribution
of word senses in the training set for the uncer-
tainty samples is highly skewed, having a nega-
tive effect on the overall classifier performance.
The high percentage of instances of the “easy-to-
decide” frame Operatingresult explains why the
instances forErgebnis took less time to annotate
in the AL setting. Thus we can conclude that an-
notating the same number of instances on average
takes more time in the AL setting, and that this
effect is not due to sentence length.

5.3 What works, what doesn’t, and why

For half of the target lemmas(Motiv, Konsequenz,
Quelle, Ausgang), we did obtain best results in
the AL setting (Table 4). ForAusgang and Mo-
tiv AL gives a substantial boost in classifier per-
formance of 5% and 7% accuracy, while the gains
for Konsequenz andQuelle are somewhat smaller
with 2% and 1%, and forGrund the highest accu-
racy was reached on both the AL and the random

Random Uncertainty
50 100 150 50 100 150

Anlass 0.85 0.86 0.85 0.84 0.85 0.84
Motiv 0.57 0.62 0.63 0.64 0.67 0.70
Konseq. 0.55 0.59 0.60 0.61 0.62 0.62
Quelle 0.56 0.53 0.54 0.52 0.52 0.57
Ergebnis 0.39 0.42 0.41 0.39 0.37 0.38
Resultat 0.31 0.35 0.37 0.32 0.34 0.34
Ausgang 0.67 0.69 0.69 0.68 0.72 0.74
Grund 0.48 0.47 0.47 0.47 0.44 0.48

Table 4: Avg. classifier performance (acc.) over
all annotators for the 8 target lemmas when train-
ing on 50, 100 and 150 annotated instances for
random samples and uncertainty samples

sample.
Figure 1 (top row) shows the learning curves

for Resultat, our worst-performing lemma, for the
classifier trained on the manually annotated sam-
ples for each individual annotator. The solid black
line represents the majority baseline, obtained by
assigning the most frequent word sense in the gold
standard to all instances. For both random and AL
settings, results are only slightly above the base-
line. The curves for the AL setting show how erro-
neous decisions can mislead the classifier, result-
ing in classifier accuracy below the baseline for
two of the annotators, while the learning curves
for these two annotators on the random samples
show the same trend as for the other 4 annotators.

For Konsequenz (Figure 1, middle), the classi-
fier trained on the AL samples yields results over
the baseline after around 25 iterations, while in
the random sampling setting it takes at least 100
iterations to beat the baseline. ForMotiv (Figure
1, bottom row), again we observe far higher re-
sults in the AL setting. A possible explanation for
why AL seems to work forAusgang, Motiv and
Quelle might be the higher IAA4 (κ 0.825, 0.789,
0.768) as compared to the other target lemmas.
This, however, does not explain the good results
achieved on the AL samples forKonsequenz, for
which IAA was quite low withκ 0.554.

Also startling is the fact that AL seems to work
particularly well for one of the annotators (A6,
Figure 1) but not for others. Different possible ex-
planations come to mind: (a) the accuracy of the
annotations for this particular annotator, (b) the

4IAA was computed on the random samples, as the AL
samples do not include the same instances.
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Figure 1: Active learning curves for Resultat, Konsequenz and Motiv (random sampling versus uncer-
tainty sampling; the straight black line shows the majoritybaseline)
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Konsequenz A1 A2 A3 A4 A5 A6
human 0.80 0.72 0.89 0.73 0.89 0.76
maxent 0.60 0.63 0.67 0.60 0.63 0.64

Table 5: Acc. for human annotators against the
adjudicated random samples and for the classifier

instances selected by the classifier based on the
annotation decisions of the individual annotators,
and (c) the distribution of frames in the annotated
training sets for the different annotators.

To test (a) we evaluated the annotated ran-
dom samples forKonsequenz for each annotator
against the adjudicated gold standard. Results
showed that there is no strong correlation between
the accuracy of the human annotations and the
performance of the classifier trained on these an-
notations. The annotator for whom AL worked
best had a medium score of 0.76 only, while the
annotator whose annotations were least helpful
for the classifier showed a good accuracy of 0.80
against the gold standard.

Next we tested (b) the impact of the particu-
lar instances in the AL samples for the individ-
ual annotators on classifier performance. We took
all instances in the AL data set fromA6, whose
annotations gave the greatest boost to the clas-
sifier, removed the frame labels and gave them
to the remaining annotators for re-annotation.
Then we trained the classifier on each of the re-
annotated samples and compared classifier perfor-
mance. Results for 3 of the remaining annotators
were in the same range or even higher than the
ones forA6 (Figure 2). For 2 annotators, however,
results remained far below the baseline.

This again shows that the AL effect is not di-
rectly dependent on the accuracy of the individual
annotators, but that particular instances are more
informative for the classifier than others. Another
crucial point is (c) the distribution of frames in
the samples. In the annotated samples forA1 and
A2 the majority frame forKonsequenz is Causa-
tion, while in the samples for the other annotators
Response was more frequent. In our test set Re-
sponse also is the most frequent frame, therefore it
is not surprising that the classifiers trained on the
samples ofA3 to A6 show a higher performance.
This means that high-quality annotations (identi-
fied by IAA) do not necessarily provide the in-
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Figure 2: Re-annotated instances for Konsequenz
(AL samples from annotatorA6)

formation from which the classifier benefits most,
and that in a realistic annotation task address-
ing the class imbalance problem (Zhu and Hovy,
2007) is crucial.

6 Conclusions

We presented the first experiment applying AL in
a real-world scenario by integrating the approach
in an ongoing annotation project. The task and
annotation environment pose specific challenges
to the AL paradigm. We showed that annotation
noise caused by biased annotators as well as erro-
neous annotations mislead the classifier and result
in skewed data sets, and that for this particular task
no time savings are to be expected when applied
to a realistic scenario. Under certain conditions,
however, classifier performance can improve over
the random sampling baseline even on noisy data
and thus yield higher accuracy in the active learn-
ing setting. Critical features which seem to influ-
cence the outcome of AL are the amount of noise
in the data as well as the distribution of frames
in training- and test sets. Therefore, addressing
the class imbalance problem is crucial for apply-
ing AL to a real annotation task.
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Abstract

Route directions are natural language
(NL) statements that specify, for a given
navigational task and an automatically
computed route representation, a se-
quence of actions to be followed by the
user to reach his or her goal. A corpus-
based approach to generate route direc-
tions involves (i) the selection of elements
along the route that need to be mentioned,
and (ii) the induction of a mapping from
route elements to linguistic structures that
can be used as a basis for NL generation.

This paper presents an Expectation-Maxi-
mization (EM) based algorithm that aligns
geographical route representations with
semantically annotated NL directions, as
a basis for the above tasks. We formu-
late one basic and two extended models,
the latter capturing special properties of
the route direction task. Although our
current data set is small, both extended
models achieve better results than the sim-
ple model and a random baseline. The
best results are achieved by a combination
of both extensions, which outperform the
random baseline and the simple model by
more than an order of magnitude.

1 Introduction

The purpose of route directions is to inform a per-
son, who is typically not familiar with his cur-
rent environment, of how to get to a designated
goal. Generating such directions poses difficul-
ties on various conceptual levels such as planning

the route, selecting landmarks (i.e., recognizable
buildings or structures) and splitting the task into
appropriate single instructions of how to navigate
along the route using the selected landmarks as
reference points.

Previously developed natural language genera-
tion (NLG) systems make use of simple heuristics
for the task of content selection for route direc-
tions (Dale et al., 2005; Roth and Frank, 2009).
In our work, we aim for a corpus-based approach
that can be flexibly modeled after natural, human-
produced directions for varying subtasks (e.g., in-
door vs. outdoor navigation), and that facilitates
multilingual extensions. By employing salient
landmarks and allowing for variation in NL real-
ization, such a system is expected to generate nat-
ural sounding directions that are easier to memo-
rize and easier to follow than directions given by
a classical route planner or navigation system.

NLG for route directions crucially differs from
other generation tasks such as document summa-
rization (Mani, 2001) in that the selection and or-
dering of input structures for language generation
is heavily situation-dependent, i.e., dependent on
the specific properties of a given route to be fol-
lowed.

In line with a corpus-based NLG approach, we
propose to automatically align geographical route
representations as produced by a route planner
with an annotated corpus of NL directions given
by humans for the respective routes. The induced
alignments will (i) serve to identify which ele-
ments of a route to select for verbalization, and (ii)
deliver correspondences between route segments
and linguistic input structures that can be used as
a basis for statistical NL generation. We investi-
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gate a minimally supervised method for inducing
such alignments to ensure maximal flexibility for
adaptations to different scenarios.

The remainder of this paper is structured as fol-
lows: In Section 2 we discuss related work. Sec-
tion 3 introduces the task, and the representation
formats and resources we use. Section 4 intro-
duces a basic Expectation-Maximization model
and two extensions for the alignment task. Sec-
tion 5 outlines the experiments and presents the
evaluation results. In Section 6 we conclude and
discuss future work.

2 Related Work

Various aspects of route directions have been sub-
ject of research in computational linguistics, rang-
ing from instructional dialogues in MapTask (An-
derson et al., 1991) to recent work on learning
to follow route directions (Vogel and Jurafsky,
2010). However, little work has been done on
generating NL directions based on data from Geo-
graphical Information Systems (Dale et al., 2005;
Roth and Frank, 2009).

NLG systems are typically realized as pipeline
architectures (Reiter and Dale, 2000). As a first
step, they compute a set of messages that rep-
resent the information to be conveyed to a user,
given a specific communicative task (Content Se-
lection). Selecting appropriate content for a task
can be defined heuristically, by manually crafted
rules or by learning content selection rules auto-
matically from corpus data. Previous work by
Dale et al. (2005) and Roth and Frank (2009)
on generating NL directions used hand-crafted
heuristics. Duboue and McKeown (2003) were
the first to model content selection as a machine
learning task, in which selection rules are induced
from pairs of human-written text and associated
sets of database entries. They induce baseline se-
lection rules from exact matches of NL expres-
sions with database entries; in addition, class-
based rules are computed by matching database
entry types against NL expressions, using statis-
tical co-occurrence clusters. Barzilay and Lapata
(2005) incorporate the interplay between multiple
events and entities when learning content selec-
tion rules using a special link function.

Recent work by Liang et al. (2009) focuses on

modeling grounded language, by aligning real-
world representations with NL text that references
corresponding world states. They show how a
generative model can be used to segment text into
utterances and to identify relevant facts with min-
imal supervision. Both tasks are handled jointly
in a unified framework by training a hierarchical
semi-Markov model on pairs of text and world
states, thereby modeling sequencing effects in the
presentation of facts. While their work is not pri-
marily concerned with NLG, the learned corre-
spondences and their probabilities could be ap-
plied to induce content selection rules and lin-
guistic mappings in a NLG task. The approach is
shown to be effective in scenarios typical for NLG
settings (weather forecasts, RoboCup sportscast-
ing, NFL recaps) that differ in the amount of avail-
able data, length of textual descriptions, and den-
sity of alignments.

In the following, we will adapt ideas from their
EM-based approach to align (segments of) route
representations and NL route directions in a min-
imally supervised manner. We will investigate in-
creasingly refined models that are tailored to the
nature of our task and underlying representations.
In particular, we extend their approach by exploit-
ing semantic markup in the NL direction corpus.

3 Aligning Routes and Directions

In this work we explore the possibility of using
an implementation of the EM algorithm (Demp-
ster et al., 1977) to learn correspondences between
(segments of) the geographical representation of
a route and linguistic instructions of how to fol-
low this route in order to arrive at a designated
goal. We are specifically interested in identifying
which parts of a route are realized in natural lan-
guage and which kinds of semantic constructions
are used to express them.

As a data source for inducing such correspon-
dences we use a parallel corpus of route repre-
sentations and corresponding route directions that
were collected in a controlled experiment for nav-
igation in an urban street network (cf. Schuldes
et al. (2009)). For the alignment task, the routes
were compiled to a specification format that has
been realized in an internal version of an online
route planner. Figure 1 displays the route rep-
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Figure 1: A (partial) route representation of the route segment displayed on the right.

resentation for a small route segment (a junction
connecting ’Hauptstraße’ and ’Leyergasse’). The
corresponding part of a NL route direction is dis-
played in Figure 2. The route representation and
the NL direction share some common concepts:
For example, both contain references to a land-
mark called “Sudpfanne” (marked as [1]) and a
street named “Leyergasse” (marked as [2]). Using
pairs of route representations and directions, we
aim to automatically induce alignments between
such correspondences. In the following we de-
scribe our data in more detail.

3.1 Route Representation Format
The route representation format we use (illus-
trated in Figure 1) is an extended version of
the OpenGIS Location Service (OpenLS) Imple-
mentation Standards, a set of XML-based rep-
resentations specified by the Open Geospatial
Consortium1. Previous approaches on extend-
ing the latter with landmarks in an interopera-

1http://www.opengeospatial.org/standards/is

ble way have been presented by Neis and Zipf
(2008). The representation format of our data
has been developed in close collaboration with re-
searchers from Geoinformatics at Heidelberg Uni-
versity2 and adopts ideas previously proposed in
the Cognitive OpenLS specification by Hansen et
al. (2006). The resulting specification will be im-
plemented in an extended (internal) version of the
online route planner OpenRouteService.org.

Our work revolves around two kinds of ele-
ments in this format: so-called maneuvers, i.e., el-
ements that describe a decision point including the
required action and the following route segment,
and landmarks that occur along the route. For the
alignment task we focus on the following types of
attributes that are part of the XML specification,
specified here as Attribute (Element):

directionOfTurn (Maneuver) – the direction of
movement for the current maneuver, i.e.,
“left”, “right” or “straight”

2Chair of GIScience, Alexander Zipf,
http://www.geog.uni-heidelberg.de/lehrstuehle/gis/
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Figure 2: Directions for the route segment displayed in Figure 1 annotated with frame-semantic markup
and alignment information. The directions translate to “You start walking from Hauptstraße towards
Gaststätte Sudpfanne, then you turn right onto Leyergasse”

junctionType (Maneuver) – the type of junction
at the current maneuver, e.g., “intersection”,
“crossing”

name (JunctionCategory) – the name of the
junction at the current maneuver, e.g.,
“Hauptstraße/Leyergasse”

name (NextSegment) – the name of the street of
the next route segment, e.g., “Hauptstraße”

streetName (RouteBranch) – the street name of
a branch along which the route continues,
e.g., “Leyergasse”

streetName (NoRouteBranch) – the street name
of a branch that is not part of the route, e.g.,
“Kisselgasse”

name (Landmark) – the name of a landmark,
e.g., “Hotel Sudpfanne”

spatialRelation (UsedLandmark) – the spatial
relation between a landmark and the current
maneuver, e.g., “left”, “right”, “before”

3.2 A Parallel Corpus of Route Directions

The corpus of route directions used in this work
is a subset of the data collected by Schuldes et al.
(2009) in a desk-based experiment. To elicit NL
route directions, subjects were shown a web appli-
cation that guided them along a route by means of
a 2D animation. Subsequently they had to write
NL route directions in German for the shown

routes. The subjects were allowed to use all infor-
mation displayed by the web application: named
places, buildings, bridges and street names, etc.
The resulting directions were POS-tagged with
TreeTagger (Schmid, 1997), dependency-parsed
with XLE (Maxwell and Kaplan, 1993), and man-
ually revised. Additionally, we annotated frame-
semantic markup (Fillmore et al., 2003) and gold
standard alignments to the route representation us-
ing the SALTO annotation tool (Burchardt et al.,
2006).

Frame semantic markup. The texts are an-
notated with an inventory of 4 frames relevant
for directions (SELF MOTION, PERCEPTION, BE-
ING LOCATED, LOCATIVE RELATION), with se-
mantic roles (frame elements) such as DIREC-
TION, GOAL, PATH, LOCATION. Figure 2 il-
lustrates a typical example for the use of the
SELF MOTION frame, once with the elements
SOURCE and DIRECTION, and once with the el-
ements DIRECTION and GOAL. Our alignment
model uses the frame semantic annotation as
structuring information.

Gold standard alignments. For evaluation we
constructed gold alignments. We asked two an-
notators to align text parts with corresponding
attributes in the respective route representation3.
The information about corresponding attributes
was added to a single word by manually insert-

3The alignments have not been double annotated, hence
no measure for inter-annotator agreement can be provided.
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#S #W #FE #aligned FE
avg. per direction 8 98 28 14 (50%)
overall 412 5298 1519 750

Table 1: Corpus statistics: number of sentences
(S), words (W), frame elements (FE) and align-
ments.

#attributes #aligned attr.
avg. per route 115 14 (12%)
overall 921

Table 2: Corpus statistics: total number and per-
centage of relevant attribute alignments.

ing XPATH expressions that unambiguously refer
to the aligned attribute in the route representation
format. For learning the alignment model, the an-
notations were spread to all words in the span of
the respective frame element.

Corpus statistics. We made use of a corpus of
54 NL directions collected for 8 routes in an urban
street network. Tables 1 and 2 give some statis-
tics about the number of words (W) and frame
elements (FE) in the parallel corpus. Comparing
the total number of relevant attributes (as listed in
Section 3.1) and attributes annotated in the gold
alignments (aligned attr.) we note that only 12%
are actually mentioned in NL directions. Thus it
is necessary to select the most salient attributes to
avoid the generation of overly redundant text.

4 Alignment Model

For the induction of alignments between (parts of)
route structures and semantic representations, we
adopt ideas from the models presented in Liang et
al. (2009) (cf. Section 2).

We start from a basic frame alignment model.
It specifies a conditional probability distribution
p(f |a) for the alignment to a frame element f of
type ft (e.g., source, goal, direction) in the frame-
semantic annotation layer given an attribute a of
type at (e.g., streetName, directionOfTurn) in the
route representation format. Note that this model
does not take into account the actual value av of
the attribute a nor the words that are annotated as
part of f . We assume that the frame annotation
represents a reliable segmentation for this align-
ment. This allows us to omit modeling segmenta-

tion explicitly.
As extensions to the basic frame alignment

model, we specify two further models that cap-
ture properties that are specific to the task of di-
rection alignment. As route directions are typi-
cally presented in a linear order with respect to
the route, we incorporate an additional distance
model λ in our alignment. We further account
for word choice within a frame element as an ad-
ditional factor. The word choice model p(w|a)
will exploit attribute type and value information
in the route representations that are reflected in
word choice in the linguistic instructions. Both
extensions are inspired by and share similarities
with models that have been successfully applied
in work on text alignment for the task of machine
translation (Vogel et al., 1996; Tiedemann, 2003).

Our full model is a distribution over frame el-
ements f and words w that factorizes the three
above mentioned parts under the assumption of
independence between each component and each
attribute:

p(f, w|a) = p(f |a)λ(dist(f, a)) p(w|a) (1)

The individual models are described in more
detail in the following subsections.

4.1 Frame Alignment Model

This basic frame alignment model specifies the
probabilities p(f |a) for aligning an attribute a of
type at (i.e., one of the types listed in Section 3.1)
to a frame element f labeled as type ft. This
alignment model is initialized as a uniform distri-
bution over f and trained using a straight-forward
implementation of the EM algorithm, following
the well-known IBM Model 1 for alignment in
machine translation (Brown et al., 1993). The ex-
pectation step (E-step) computes expected counts
given occurrences of ft and at under the assump-
tion that all alignments are independent 1:1 corre-
spondences:

count(ft, at) =

∑
{〈f ′,a′〉|f ′

t=ft∧a′t=at} p(f
′|a′)

∑
{〈f ′,y〉|f ′

t=ft} p(f
′|y)

(2)
The probabilities are re-estimated to maximize

the overall alignment probability by normalizing
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the estimated counts (M-step):

p(f |a) = count(ft, at)∑
x count(xt, at)

(3)

4.2 Distance Model
We hypothesize that the order of route directions
tends to be consistent with the order of maneuvers
encoded by the route representation. We include
this information in our alignment model by defin-
ing a distance measure dist(f, a) between the rel-
ative position of a frame element f in the text and
the relative position of an attribute a in the route
representation. The probabilities are specified in
form of a distance distribution λ(i) over normal-
ized distances i ∈ [0 : 1] and learned during EM
training. The weights are initialized as a uniform
distribution and re-estimated in each M-step by
normalizing the estimated counts:

λ(i) =

∑
{〈x,y〉| dist(x,y)=i} count(x, y)∑

{〈x,y〉} count(x, y)
(4)

4.3 Word Choice Model
We define a word choice model for word us-
age within a frame element. This additional fac-
tor is necessary to distinguish between various
occurrences of the same type of frame element
with different surface realizations. For exam-
ple, assuming that the frame alignment model
correctly aligns directionOfTurn attributes to a
frame element of type DIRECTION, the word
choice model will provide an additional weight
for the alignment between the value of an attribute
(e.g., “left”) and the corresponding words within
the frame element (e.g., “links”). Similarly to
the word choice model within fields in (Liang
et al., 2009), our model specifies a distribution
over words given the attribute a. Depending on
whether the attribute is typed for strings or cate-
gorial values, two different distributions are used.

String Attributes. For string attributes, we de-
termine a weighting factor based on the longest
common subsequence ratio (LCSR). The reason
for using this measure is that we want to allow for
spelling variants and the use of synonymous com-
mon nouns in the description of landmarks and
street names (e.g., “Main St.” vs. “Main Street”,

“Texas Steakhouse” vs. “Texas Restaurant”). The
weighting factor pstr(w|a) for an alignment pair
〈f, a〉 is a constant in the E-step and is calculated
as the LCSR of the considered attribute value av
and the content words w = cw(f) in an anno-
tated frame element f divided by the sum over the
LCSR values of all alignment candidates for a:

pstr(w|a) =
LCSR(av, w)∑

x LCSR(av, cw(x))
(5)

Categorial Attributes. We define categorial at-
tributes as attributes that can only take a finite
and prescribed set of values. For these we do
not expect to find matching strings in NL direc-
tions as the attribute values are defined indepen-
dently of the language in use (e.g., values for di-
rectionOfTurn are “left”, “right” and “straight”.
However, the directions in our data set are in Ger-
man, thus containing the lexemes “links”, “rechts”
und “geradeaus” instead). As the set of values
{av ∈ Dat} for a categorial attribute type at is
finite, we can define and train probability distri-
butions over words for each of them during EM
training. The models are initialized as uniform
distributions and are used as a weighting factor
in the E-Step. We re-calculate the parameters of
a distribution pcat(w|a) in each EM iteration by
normalizing the estimated counts during M-step:

pcat(w|a) =
count(av, w)∑
x count(av, x)

(6)

5 Experiments and Results

5.1 Setting
We test the performance of different combinations
of these EM-based models on our data, starting
from a simple baseline model (EM), combined
with the distance (EM+dst) and word choice
models (EM+wrd) and finally the full model
(Full). We perform additional experiments to ex-
amine the impact of different corpus sizes and an
alignment threshold (+thld).

EM is a baseline model that consists of a simple
EM implementation for aligning attributes
and frame elements (equation (3)).

EM+dst consists of the simple EM model and the
additional distance factor (equation (4)).
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Model P (+thld) R (+thld) F1 (+thld)
Random 2.7 (2.7) 3.9 (3.9) 3.2 (3.2)
EM 2.0 (3.6) 2.9 (3.7) 2.34 (3.6)
EM+dst 7.3 (11.6) 10.8 (11.7) 8.7 (11.6)
EM+wrd 26.8 (36.3) 39.5 (35.5) 32.0 (35.9)
Full 28.9 (38.9) 42.5 (37.9) 34.4 (38.4)

Table 3: Precision (P), Recall (R) and F1 measure
results with and without threshold (+thld) on the
alignment task (all numbers in percentages).

EM+wrd consists of the simple EM model with
the word choice model (equations (5) and
(6), respectively).

Full is the full alignment model including dis-
tance and word choice as described in Sec-
tion 4 (cf. equation (1)).

We use the data set described in Section 3. The
predictions made by the different models are eval-
uated against the gold standard alignments (cf. Ta-
bles 1 and 2). We run a total number of 30 iter-
ations4 of EM training on the complete data set
to learn the parameters of the probability distri-
butions. From the set of all possible 1-to-1 align-
ments, we select the most probable alignments ac-
cording to the model in a way that no attribute and
no frame element is aligned twice.

5.2 Results

We measure precision as the number of predicted
alignments also annotated in the gold standard di-
vided by the total number of alignments generated
by our model. Recall is measured as the number
of correctly predicted alignments divided by the
total number of alignment annotations. As base-
lines we consider a random baseline (obtained
from the average results measured over 1,000 ran-
dom alignment runs) and the simple EM model.

The results in Table 3 show that the simple
EM model performs below the random baseline.
The individual extended models achieve signifi-
cant improvement over the simple model and the
random baseline. While the distance model has a
smaller impact, the influence of the word choice

4This number was determined by experiments as a gen-
eral heuristics.

# directions Precison Recall F1

1 28.94% 42.31% 34.38%
2 29.04% 41.90% 34.31%
3 29.01% 42.18% 34.38%
4 28.75% 41.81% 34.07%
5 29.36% 42.69% 34.79%
6 30.18% 43.91% 35.77%

Table 4: Average results when using only a spe-
cific number of directions for each route with the
model Full (-thld).

model is considerable. Applying the full model
yields further performance gains. We note that for
all models recall is higher compared to precision.

One of the reasons for this phenomenon may be
that the EM-based models align as many attributes
as possible to frame elements in the route direc-
tions. In our gold standard, however, only around
12% of all relevant attributes correspond to frame
elements in the route directions (cf. Section 3.2).
We estimate this quota from a part of the corpus
and use it as an alignment threshold, i.e., for eval-
uation we select the best alignments proposed by
the models, until we reach the threshold. With this
we achieve a F1 measure of 38.40% in a 6-fold
cross validation test. This represents an improve-
ment of 3.97 points and considerably boosts preci-
sion, yielding overall balanced precision (38.90%)
and recall (37.92%).

A general problem of the current setup is the
small amount of available data. With a total of 54
route directions, the data consists of 6 to 8 direc-
tions for each route. We compute a learning curve
by using only exactly 1 to 6 directions per route to
examine whether performance improves with in-
creasing data size. The results are computed as
an average over multiple runs with different data
partitions (see Table 4). The results indicate small
but consistent improvements with increasing data
sizes, however, the differences are minimal. Thus
we are not able to conclude at this point whether
performance increases are possible with the addi-
tion of more data.

5.3 Error Analysis
In an error analysis on the results of the full model,
we found that 363 out of 784 (46%) misalign-

964



ments are related to attributes not aligned in our
gold standard. This is due to the fact that not
all relevant attributes are realized in natural lan-
guage directions. By addressing this problem in
the model Full+threshold, we are able to reduce
these errors, as evidenced by a gain of almost 10
points in precision and 4 points in F1 measure.

We further observe that the word choice model
does not correctly reflect the distribution of cat-
egorial attributes in the parallel corpus. In the
data, we observe that humans often aggregate
multiple occurrences of the same attribute value
into one single utterance. An example of such a
phenomenon can be seen with the attribute type
’directionOfTurn’: Even though “straight” is the
most common value for this attribute, it is only re-
alized in directions in 33 (5%) cases (compared
to 65% and 47% for “left” and “right” respec-
tively). While our EM implementation maximizes
the likelihood for all alignment probabilities based
on expected counts, many pairs are not – or not
frequently – found in the corpus. This results in
the model often choosing incorrect alignments for
categorial attributes and makes up for 23% of the
misaligned attributes in total.

We found that further 5% of the attributes are
misaligned with frame elements containing pro-
nouns that actually refer to a different attribute.
As our word choice model does not account for
the use of anaphora, none of the affected frame
elements are aligned correctly. Given the genre
of our corpus, integrating simple heuristics to re-
solve anaphora (e.g., binding to the closest pre-
ceding mention) could solve this problem for the
majority of the cases.

6 Conclusion

We presented a weakly supervised method for
aligning route representations and natural lan-
guage directions on the basis of parallel corpora
using EM-based learning. Our models adopt ideas
from Liang et al. (2009) with special adaptations
to the current application scenario. As a major
difference to their work, we make use of frame-
semantic annotations on the NL side as a basis for
segmentation.

While we can show that the extended mod-
els significantly outperform a simple EM-based

model, the overall results are still moderate. We
cannot draw a direct comparison to the results pre-
sented in Liang et al. (2009) due to the different
scenarios and data sets. However, the corpus they
used for the NFL recaps scenario is the closest to
ours in terms of available data size and percentage
of aligned records (in our case attributes). For this
kind of corpus, they achieve an F1 score of 39.9%
with the model that is closest to ours (Model 2’).
Their model achieves higher performance for sce-
narios with more available data and a higher per-
centage of alignments. Thus we expect that our
model benefits from additional data sets, which
we plan to gather in web-based settings.

Still, we do not expect to achieve near to per-
fect alignments due to speaker variation, a factor
we also observe in the current data. As our ul-
timate goal is to generate NL instructions from
given route representations, we can nevertheless
make use of imperfectly aligned data for the com-
pilation of high-confidence rules to compute se-
mantic input structures for NLG. Following previ-
ous work by Barzilay and Lee (2002), we can also
exploit the fact that our data consists of multiple
directions for each route to identify alternative re-
alization patterns for the same route segments. In
addition, (semi-)supervised models could be used
to assess the gain we may achieve in comparison
to the minimally supervised setting.

However, we still see potential for improv-
ing our current models by integrating refinements
based on the observations outlined above: Miss-
ing alignment targets on the linguistic side – es-
pecially due to anaphora, elliptical or aggregating
constructions – constitute the main error source.
We aim to capture these phenomena within the
linguistic markup in order to provide hidden align-
ment targets. Also, our current model only consid-
ers frame elements as alignment targets. This can
be extended to include their verbal predicates.
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Abstract 

The interpretation of a multiple-domain 
text corpus as a single ontology leads to 
misconceptions. This is because some 
concepts may be syntactically equal; 
though, they are semantically lopsided in 
different domains. Also, the occurrences 
of a domain concept in a large multiple-
domain corpus may not gauge correctly 
the concept significance. This paper 
tackles the mentioned problems and pro-
poses a novel ontology builder to extract 
separate domain specific ontologies from 
such a corpus. The builder contribution is 
to sustain each domain specific concepts 
and relations to get precise answers for 
user questions. We extend a single ontol-
ogy builder named Text2Onto to apply 
our thought. We fruitfully enhance it to 
answer, more precisely, questions on a 
subset of AQUAINT corpus. 

1 Introduction 

Domain ontology is a knowledge representation 
of the domain as a set of concepts and relations. 
Ontology notion always presents handy semantic 
solutions for various hot research areas such as 
Semantic Web, Informational Retrieval, and 
Question Answering. 

Currently, automatic ontology builders pre-
sume that the given corpus has a single domain. 
When used with a multiple-domain corpus, these 
builders generate 1 large ontology for the whole 
corpus. Dramatically, this causes 2 domain mis-
conception problems. First, the ontology concep-
tual model becomes imprecise for the common 
concepts in various domains having different 

semantics. Second, the relevance weights as-
signed to the concepts do not measure precisely 
their significance in specific domains. 

This paper presents a promising solution for 
the mentioned problems. The proposed solution 
is an integrated 2-layer ontology builder. The 
ontology layers are: 1) the conceptual layer, 
which has the key concepts and relations of each 
separate domain, and 2) the general layer, which 
maintains the general domain information re-
garding related persons, organizations, locations, 
and dates. Our proposed 2-layer ontology im-
proves the extracted answers for single-domain 
and cross-domain questions. We successfully 
prove our thought against Text2Onto builder. 

Ontology extraction from a domain corpus has 
been targeted by many researchers. The core ex-
traction approaches can be classified into 3 ap-
proaches. The first approach is to build the on-
tology from scratch (Buitelaar et al., 2004; Ci-
miano and Völker, 2005). The second approach 
is to extend a predefined general ontology, such 
as WordNet, with possible application domain 
concepts and relations (Navigli and Velardi, 
2004). The last approach is to build ontology as a 
composition of other predefined ontologies (Ci-
miano et al., 2006). Moreover, as an ontology 
building design decision, the resultant ontology 
is either a single layer ontology or a multi-
layered ontology (Benslimane et al., 2000; Du-
montier and Villanueva-Rosales, 2007). 

The paper is organized as follows: Section 2 
introduces some related systems; Section 3 ex-
plains the misconceptions due to extracting a 
single ontology from a multiple-domain corpus; 
Section 4 describes our proposed builder; Section 
5 illustrates our Question Answering system, 
which is used for the evaluation; Section 6 states 
our evaluation results; and Section 7 draws our 
conclusion and directions for the future work. 

Computer Science Department 
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2 Related Work 

There are 3 main approaches for ontology build-
ing, namely building from scratch, extending a 
general ontology, or building an ontology as a 
composition of other predefined ontologies. 

Text2Onto (Cimiano and Völker, 2005) ap-
plies the first approach. It is a framework for 
learning ontologies automatically from textual 
data. It implements diverse linguistic and statis-
tical techniques to extract domain concepts and 
relations. It combines results from different tech-
niques, and it represents the extracted ontology 
elements in a so called Probabilistic Ontology 
Model (POM), which assigns a confidence value 
for each learnt element. 

OntoLT (Buitelaar et al., 2004) is another ex-
ample of building from scratch. It is a Protégé1 
plug-in that extracts ontology from text by defin-
ing a set of mapping rules. The rules map certain 
linguistic structures in an annotated text into on-
tological elements. The extracted elements are 
validated by the user before being inserted into 
the ontology. 

OntoLearn (Navigli and Velardi, 2004) em-
ploys the second approach. It is a framework for 
trimming and extending general purpose ontolo-
gies, like WordNet, with specific domain termi-
nologies and taxonomies. It extracts domain ter-
minologies, and it uses a relevance measure to 
keep out non-relevant terms. OntoLearn uses a 
novel technique, called SSI, to assign a domain 
specific term to the correct sense in a general 
ontology. 

The third approach is proposed in (Cimiano et 
al., 2006). It presents a system that integrates 
several heterogeneous semantic sources into 1 
ontology, which is used to extract answers for 
user queries from various knowledge sources. 

As a design decision, the ontology may consist 
of a single layer or of multiple layers. Bensli-
mane et al. (2000) apply the multiple-layer ap-
proach for manually generating a set of interre-
lated ontology layers; each layer models a spatial 
domain specific function. Also, Dumontier and 
Villanueva-Rosales (2007) suggest a 3-layer on-
tology design. The first layer (primitive layer) 
defines the basic domain concepts and relations. 
The second layer (complex layer) imposes more 
complex domain restrictions on the primitive 
                                                 
1 http://protege.stanford.edu/  

layer. The top layer (application layer) maintains 
application specific restrictions. 

Our builder constructs a layered ontology 
from scratch. Its main distinguished features are: 
1) generating separate domain specific ontolo-
gies from a multiple-domain corpus, 2) extract-
ing general domain information, in addition to 
core domain conceptual information, and 3) it is 
an automatic multi-layered ontology builder, un-
like other automatic builders, which generate 
single layer ontologies. 

Our system can extend current builders, which 
extract ontologies from textual data, allowing 
them to handle a multiple-domain corpus. We 
selected Text2Onto because it is an automatic 
ontology builder, and it implements a variety of 
algorithms to extract many types of ontology 
elements. We use a news corpus as a multiple-
domain corpus since it contains documents from 
different domains like Politics, Sports, Arts, and 
Finance. 

3 Ontology Misconceptions 

Building a single ontology for a given corpus is a 
familiar method. However, when dealing with a 
multiple-domain corpus, the builder usually suf-
fers from the following 2 problems: 

First, the ontology conceptual model becomes 
imprecise in the definition of common concepts 
that are semantically lopsided in different do-
mains. For example, the concept "wall street" in 
the Finance domain is defined as a financial in-
stitution, and it is in the Arts domain defined as a 
movie.  It is inaccurate to define the concept with 
2 totally different meanings in 1 ontology. It is 
also incorrect to ignore a definition of them. 
When using Text2Onto for that example, it gene-
rates only 1 definition for "wall street" as a sub-
class-of "institution". 

Second, when weighing concepts in a 
multiple-domain corpus, the relevance weights 
assigned to the concepts do not indicate the 
significance of each concept in a certain domain. 
As a result, some core domain specific concepts 
may have low weights with respect to the whole 
corpus. For example the concept "trading" has a 
low weight in a multiple-domain corpus; 
although, it is a main concept in the Finance 
domain (Section 6.2). This gives wrong 
indication of the concept importance to the user.  
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Figure 1. The Multiple-Domain Ontology Builder. 
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4 The Proposed Ontology Builder 

Our builder aims to extract precise ontologies, 
which model possible knowledge in a multiple-
domain corpus. A domain corpus, mostly, not 
only contains information about the core domain 
concepts and their relations, but it also contains 
general domain information such as dates of 
events and names of persons, locations, or organ-
izations participating in the domain. Existing 
ontology builders either ignore this general in-
formation or they provide a limited implementa-
tion to extract it. 

4.1 System Overview 

The input to our builder (Figure 1) is a multiple-
domain corpus. The first step is the clustering 
operation, which divides the given corpus doc-
uments into clusters that are different among 
each other with high internal similarity. The next 
step is the conceptual layer generation. In this 
step, we use Text2Onto to extract a separate on-
tology for each domain. Finally, the general 
layer generator uses each domain corpus and the 
conceptual layer ontology to extract relations 
among the concepts and the Named Entities in 
that domain.  

4.2 The Conceptual Layer 

The first step in constructing the conceptual layer 
is the clustering operation. We separate a mul-
tiple-domain corpus into various domain specific 
corpora such that the domain concepts are 
weighted based on their significance in that do-
main; also, the common concepts in different 
domains are separated. We favored a hierarchical 
clustering technique over a flat clustering one. 
That was because the number of resulting clus-

ters should be known as a parameter in the latter. 
However, the number of corpus domains might 
be unknown in our case. 

We employ the agglomerative hierarchical 
clustering technique (Manning et al., 2008). The 
technique starts with each document as a single-
ton cluster, and then it successively merges pairs 
of similar clusters until all clusters are merged 
into 1 cluster. We use the vector space model 
(Manning et al., 2008) to represent each docu-
ment as a vector of terms' weights. The weight of 
a term w in a document d is calculated using the 
TF-IDF measure (Equation 1). 

 

, ,         1  

 
Where N is the corpus size, TF (w,d) is the 

number of occurrences of the term w in the doc-
ument d, and DF (w) is the number of documents 
containing the term w.  

The similarity between 2 documents is calcu-
lated using the Cosine Similarity measure (Equa-
tion 2). 

 

1, 2
1  . 2

|| 1 || || 2 ||
       2  

 
Where V(d) is the terms' weights vector for the 

document d, ||V(d)|| is the Euclidean length of 
the vector V(d), and the numerator is the dot 
product of the 2 vectors.  

The similarity between 2 clusters is calculated 
using the UPGMA measure (Steinbach et al., 
2000) (Equation 3). 
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Figure 2. The General Relations Extraction. 
 

 Mixed 
Tagging 

Input 

Tagged  
Text 

Relations 
Extractor 

Patterns 

Relations 1, 2
∑ 1, 2

1 2
          3  

 
We use the UPGMA measure to cluster a sub-

set of DMOZ2 data (1322 documents, in 4 do-
mains), and it performs F-Measure of 0.86. 
Steinbach et al. (2000) describe how to calculate 
F-Measure for a hierarchy of clusters. 

The combination similarity is the similarity of 
2 merged clusters. We use this measure to cut the 
clusters hierarchy into M clusters by grouping 
ones having a minimum combination similarity 
of the threshold value €3. After clustering, we use 
Text2Onto to generate an ontology for each clus-
ter (domain). 

4.3 The General Layer 

Text2Onto performs well in extracting ontology 
elements such as concepts, sub-class-of relations, 
instance-of relations, and part-of relations. Un-
fortunately, it performs inaccurately in extracting 
general domain information such as Named Enti-
ties and numeric information. There are 3 rea-
sons for such misconception. First, proper nouns 
are not extracted as concepts. Second, numeric 
data is ignored. Third, restricted patterns are ap-
plied for the relations of Named Entities, that 
include only verb relations like [(NP |PNP) verb 
(NP|PNP)] and instance-of relations like [NP 
such as PNP], [such NP as PNP], and [PNP 
(NP)]. 

Because of the above reasons, we propose a 
highly flexible pattern based relation extractor. 
In our system, a pattern is a sequence of tags in 
the form of a regular expression. The possible 
tags are the normal POS tags like NN, VB, JJ, IN 
besides the following 5 tags CONCEPT, PER-
SON, LOCATION, ORGANIZATION, and 
DATE. This criterion is called Mixed Tagging. 
Currently, dates are the only data containing 
numbers extracted by our builder, but we can 
easily extend it to handle more numeric data.  

The Mixed Tagging operation inputs are a 
document and the related conceptual ontology 
(Figure 2). The operation output is a mixed 
tagged document. The tagged text is then pro-
vided to the Relations Extractor to take out all 

                                                 
2 http://www.dmoz.org/ 
3 For clustering 600 AQUAINT documents, we use €=0.55 
resulting in 7 Clusters (Secion 6.4). 

relations matching our current predefined pat-
terns. Example patterns are listed in Table 1; the 
first 2 patterns are verb relations, and the last 2 
are noun relations. 

The regular expression ([.{1,12}]){0,5} is 
used to limit the maximum number of tokens 
between the subject, the object, and the relation 
to 5 tokens. The expression [NN.?.?] matches 
any noun tag, and [VB.?] matches any verb tag. 

After extracting the relations in all domain 
documents, the domain general ontology is 
created. It imports the corresponding conceptual 
ontology to model the relations among Named 
Entities and concepts. 

 
([PERSON]) ([.{1,12}]){0,5}([VB.?])+ 
([.{1,12}]){0,5}([CONCEPT]) 
([ORGANIZATION])([.{1,12}]){0,5} 
([DATE])([.{1,12}]){0,5}([VB.?])+ 
([PERSON])([.{1,12}]){0,5} 
([NN.?.?])+([.{1,12}]){0,5}([DATE]) 
([NN.?.?])+([.{1,12}]){0,5}([PERSON]) 
([.{1,12}]){0,5}([ORGANIZATION]) 
Table 1. Sample Relation Patterns. 

5 Question Answering System 

Based on (Brank et al., 2005), a generated ontol-
ogy can be evaluated using 4 different ways: 1) 
by a human who assesses it based on specific 
criteria, 2) by a comparison with the source data, 
3) by a comparison with a golden standard, or 4) 
by using the ontology in an application and mea-
suring the application performance. We chose 
the last option because the manual human as-
sessment and the comparison with the source 
data are time consuming. Also, there is no golden 
standard ontology for a multiple-domain corpus. 

Recently, researchers have studied the use of 
ontologies to extract answers to the user 
questions. AquaLog (Lopez et al., 2007) and 
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Figure 3. The Question Answering System. 
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PowerAqua (Lopez et al., 2009) are both 
ontology based Question Answering systems. 
PowerAqua extracts answers from various 
ontologies available on the web, unlike 
AquaLog, which extracts answers from 1 
configurable ontology. 

5.1 System Description 

We implemented our simple Question Answer-
ing system handling who, when, where, and what 
questions. In the following, we describe the 
components of the system (Figure 3). 

The Indexer: to make it easier for the system 
to locate the question concepts, an index is gen-
erated for our layered ontology. All concepts in 
different ontologies containing a certain stem are 
grouped in an index entry in the index file. The 
form of an index entry is as follows: 

 
Stem,(Concept URI)+ 

 
The Question Parser: this component parses 

the user question, and it extracts 4 elements from 
it. First, the answer type; it can be PERSON, 
LOCATION, ORGANIZATION, DATE, or 
ANY based on the question type such as who, 
where, when, or what. Second, the answer re-
striction; it is used to limit the answers of what 
questions. For example, the answers for "what 
sport …?" question are restricted only to the 
sport types. Third, the question target; it defines 
the thing in which the question is interested. The 
fourth element is the relation; it contains the 
main verb(s) in the question. As an example, the 
elements of the question "What sport does Jenni-
fer Capriati play?" are: the answer type (ANY), 
the restriction (sport), the question target (Jenni-
fer Capriati), and the relation (play). 

For a compound (2-clause) question such as 
"What countries have Rhodes Scholars come 

from and has the Hale Bopp comet visible?", 
each question clause is parsed as a separate ques-
tion; finally, the answer extraction step intersects 
the answers of both clauses. 

The Concepts Finder: using the ontology in-
dex, it locates concepts containing the stems of 
the question target and the restriction (if exists). 

The Triples Finder: it extracts the triples 
which contain the question target concepts either 
as subjects or as objects. If the question is a defi-
nition question like "What is something?", the 
triple finder extracts only the sub-class-of triples. 

The Triples Weighting: the triples are 
weighted based on their similarity to the question 
using our similarity criterion (Equation 4): 
 

,
∑ ,

                             4  

 
Where Q and T are sets of the bag-of-words 

for the question relation and the triple relation 
respectively, Lin(a,b) is a measure for the seman-
tic similarity between a and b based on WordNet 
(Lin, 1998), and L(x) is the number of elements 
in the set x. 

The Answer Extraction: this component first 
filters out the triples mismatching the expected 
answer type. Then, if there is no restriction ele-
ment, it extracts the answer from the weighted 
triples by considering the triple object if the 
question target is the subject, and vice versa. The 
extracted answer from a triple is assigned the 
same triple weight. If the question has a restric-
tion element, the answer(s) will be limited to the 
sub concepts of the restriction element. A weight 
(Equation 5) is assigned to each sub concept s 
based on its similarity to the extracted triples as 
follows: 
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Where R is the set of extracted triples, S and T 

are the sets of bag-of-words for the sub concept 
and the triple relation respectively, sim(S,T) is 
calculated using Equation 4, and L(R) is the 
number of elements in R.  

For a compound question, the list of resulting 
answers contains only the common answers ex-
tracted for the 2 clauses. 

6 Evaluation and Discussion 

In our evaluation, we assess: 1) the enhancement 
of the concepts' weights in a specific domain 
corpus, 2) the enhancement of modeling com-
mon concepts in different domains with different 
semantics, and 3) the performance of our  Ques-
tion Answering system. The assessment is done 
through a comparison between our approach and 
Text2Onto. 

In the development of our builder, we used 
Text2Onto 4 , Stanford Part-Of-Speech Tagger 
(POS Tagger)5, Stanford Named Entity Recog-
nizer (NER)6, and Jena7. In the Question Ans-
wering system, we also used the Java WordNet 
Similarity Library (JWSL)8; it implements the 
Lin measure. 

6.1 Data Set 

Our evaluation is based on the AQUAINT9 cor-
pus (Graff, 2002). It is an English news corpus 
containing documents from the New York Times 
News Service, the Xinhua News Service, and the 
Associated Press Worldstream News Service. 
The Question Answering track in TREC10 (The 
Text REtrieval Conference) provides a set of 
questions on AQUAINT corpus along with their 
answers. 

6.2 Concepts Weights Enhancement 

For this experiment, we generated a corpus for 
the 3 domains, namely Finance, Sports, and 
                                                 
4 http://code.google.com/p/text2onto/  
5 http://nlp.stanford.edu/software/tagger.shtml  
6 http://nlp.stanford.edu/software/CRF-NER.shtml  
7 http://jena.sourceforge.net/  
8 http://grid.deis.unical.it/similarity/  
9http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalo
gId=LDC2002T31  
10 http://trec.nist.gov/data/qa.html  

Movies, from AQUAINT documents, such that 
each domain has equal number of documents. 
We measured the concepts' significance weights 
when using Text2Onto to generate a single on-
tology for the whole corpus and when using our 
builder to generate 3 different domains ontolo-
gies. We consider 3 measures implemented in 
Text2Onto, namely the Relative Term Frequency 
(RTF), the Entropy, and the TF-IDF. 

The RTF for a concept w is the probability of 
the concept occurrence in the corpus (Equation 
6). 
 

.    
.    

             6  

 
The entropy and the normalized entropy for a 

concept w are calculated as follows (Equations 7 
and 8 respectively): 

 
log                                7  

 

  
               8  

 
In Section 4.2, we mention how to calculate 

the TF-IDF value for a term w in a document d 
(Equation 1). The TF-IDF weight and the norma-
lized TF-IDF weight for a concept w in the 
whole corpus are calculated as follows (Equa-
tions 9 and 10 respectively): 
 

∑ ,
                   9  

 

∑
        10  

 
Where D is the set of documents containing w, 

N is the corpus size, and C is the set of all con-
cepts in the corpus.  

Since the concept weight is proportional to its 
occurrences in the corpus with respect to the oth-
er concepts, the fair distribution of the occur-
rences leads to precise weight calculation. In the 
specific domain corpus, the distribution is more 
reasonable than in multiple-domain corpus.  
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Domain Concept Entropy TF-IDF RTF 
Text2 
Onto 

Our 
Builder 

Text2 
Onto 

Our 
Builder 

Text2 
Onto 

Our 
Builder 

Finance Stock 0.181 0.999 0.053 0.103 0.001 0.020 
Trading 0.155 0.670 0.044 0.139 0.001 0.010 
Shares 0.100 0.670 0.036 0.139 0.000 0.010 
Economy 0.100 0.670 0.026 0.051 0.000 0.010 

Sports Sport 0.822 0.974 0.344 0.379 0.012 0.019 
Baseball 0.321 0.389 0.147 0.190 0.003 0.006 
League 0.299 0.363 0.134 0.174 0.003 0.005 
Football 0.205 0.251 0.085 0.111 0.002 0.003 

Movies Actor 0.525 0.613 0.150 0.194 0.007 0.022 
Movie Industry 0.230 0.362 0.098 0.263 0.002 0.011 
Music 0.205 0.326 0.085 0.230 0.002 0.009 
Home Video 0.038 0.066 0.012 0.032 0.000 0.001 

Table 2. Concepts Weights Comparison between Our Builder and Text2Onto. 

This fact can be verified easily from Table 2. 
The 3 measures give higher weights in the do-
main specific ontologies than in a single ontolo-
gy for the whole corpus. 

6.3 Modeling Common Concepts 

To study the enhancement in modeling common 
concepts having different meaning in different 
domains, we chose 5 concepts as samples (Table 
3). For each concept, we selected documents 
from AQUAINT and from the Wikipedia con-
cerning the concepts in 2 different domains. 

In this experiment, the single ontology gener-
ated by Text2Onto contains only 1 definition for 
each concept namely wall_street is_a institution, 
marijuana is_a drug, bear is_a mammal, jaguar 
is_a cat, and world_war is_a war. On the other 
hand, our builder maintains both concept defini-
tions in different ontologies. 

 
Concept Definition 1 Definition 2 
Wall Street A financial  

Institution 
A movie 

Marijuana A drug A song 
The bear A Mammal A movie 
Jaguar A big cat A car 
World War A war A museum 
Table 3. Sample of Lopsided Concepts. 

6.4 Question Answering Enhancement 

The experiment includes common concepts defi-
nition questions, single-domain questions, and 
cross-domain questions. 

To illustrate the effect of the common con-
cepts misconception problem solved by our 
builder against Text2Onto, we generated 5 defi-
nition questions for the 5 concepts in Table 3, 
like "what is wall street?", "what is marijua-
na?"…etc. 

For the single-domain questions, we used a 
subset of AQUAINT corpus composed of 600 
documents clustered into 7 domains using com-
bination similarity threshold value of 0.55. We 
selected 60 factoid questions from TREC 2004 
questions having their answers in these docu-
ments. Examples of single-domain questions are: 
• Who discovered prions? 
• When was the IFC established? 
In addition to factoid questions, TREC 2004 

also includes list questions. The answers of each 
question are aggregated from multiple docu-
ments. We used these questions in generating 10 
cross-domain questions. Each question combines 
2 of TREC list questions such that the 2 list ques-
tions are in different domains. Examples of these 
questions are: 
• What cities have an Amtrak terminal and 

have Crip gangs? 
• What countries are Burger King located in 

and have IFC financed projects? 
Evaluation Criteria: the accuracy (A) (Equa-

tion 11) is used for evaluating single-domain 
questions because each factoid question has only 
1 correct answer.  
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The definition and cross-domain questions 

have multiple correct answers. The average Pre-
cision (P), Recall (R), and F-Measure (F) (Equa-
tions 12, 13, and 14 respectively) of all questions 
are used for our evaluation. 
 

.   
.   

                  12  

 
.   
.   

                       13  

 
2

                                                     14  
 

Table 4 shows that, in the definition questions, 
we achieve F-Measure of 1, while Text2Onto 
achieves 0.5. This is because our builder main-
tains the 2 different definitions of each concept, 
unlike Text2Onto, which contains only one. 

 
Questions 
Type 

Our 
Ontology 

Text2Onto 
Ontology 

Definition 
Questions 

P=1.0 
R=1.0 
F=1.0 

P=0.5 
R=0.5 
F=0.5 

Single-Domain  A=68% A=0.05% 
Cross-Domain 
 

P=0.49 
R=0.59 
F=0.44 

P=0 
R=0 
F=0 

Table 4. Question Answering Evaluation. 
 
In the single-domain questions, using our on-

tology, we could answer 41 questions while us-
ing Text2Onto ontology we could answer only 3 
questions ("what particle is a quark?", "what are 
prions made of?", and "What is the treatment of 
cataract?"). The low coverage of Named Entities 
in Text2Onto hinders it from answering correctly 
any question of types Who, When, and Where. 
This indicates the enhancement introduced by the 
proposed general layer for modeling accurately 
more domain information. In the cross-domain 
questions, we achieve F-Measure of 0.44. None 
of the cross-domain questions are answered us-
ing Text2Onto ontology due to the mentioned 
Named Entity coverage problem. 

Although our results are better than 
Text2Onto, there is a room for more improve-
ments. There are 4 main sources for retrieving 
wrong or incomplete answers (Table 5). Some 
relations are not extracted because their elements 
(subject, relation, and object) are not near 
enough from each other in the text, so none of 
our patterns or Text2Onto patterns could match 
them. This is the source of 65% of the errors. 
Missed Named Entities or wrongly tagged ones 
cause 16% of the errors. Some relations are not 
extracted because co-reference has not been han-
dled yet. That leads to 12% of the total errors. 
Finally, in the factoid questions, we consider the 
answer with the highest weight to be the correct 
answer; 7% of the answers are extracted but with 
lower weights.  

 
Error Type Error percentage 
No matching pattern 65% 
NER Error 16% 
Co-Reference 12% 
Low answer weight 7% 
Table 5. Answer Error Sources. 
 
Based on the mentioned experiments, our 

builder outperforms Text2Onto in Question 
Answering. In addition, it can be used skillfully 
to enhance other Natural Language Processing 
applications such as Information Retrieval from 
multiple-domain data. Our initial results using 
220 queries on 600 AQUAINT documents 
records 0.35 F-Measure against Lucene11, which 
achieves 0.18. 

7 Conclusion and Future Work 

This paper presents the misconception problems 
when interpreting a multiple-domain corpus in a 
single ontology. A novel ontology builder is pre-
sented handling these problems by generating 
separate domain ontologies describing core and 
general domain information. 

Currently, we hand on improving our builder 
relation extractor to answer more TREC ques-
tions by automatically learning patterns from text 
and by handling co-reference. Moreover, we are 
working to enhance the performance of our In-
formation Retrieval system. 
 
                                                 
11 http://lucene.apache.org/  

974



References 
Benslimane, D., E. Leclercq, M. Savonnet, M.-N. 

Terrasse, and K. Yétongnon. 2000. On the Defini-
tion of Generic Multi-layered Ontologies for Ur-
ban Applications. In the International Journal of 
Computers, Environment, and Urban Systems, vo-
lume 24: 191-214. 

Brank, Janez, Marko Grobelnik, and Dunja Mladenić. 
2005. A Survey of Ontology Evaluation Tech-
niques. In the Proceedings of the 8th International 
Multiconference on Information Society: 166-169. 

Buitelaar, Paul, Daniel Olejnik, and Michael Sintek. 
2004. A Protégé Plug-In for Ontology Extraction 
from Text Based on Linguistic Analysis. In the Pro-
ceedings of the 1st European Semantic Web Sym-
posium: 31-44. 

Cimiano, Philipp, and Johanna Völker. 2005. 
Text2Onto - A Framework for Ontology Learning 
and Data-driven Change Discovery. In the Pro-
ceedings of the 10th International Conference on 
Applications of Natural Language to Information 
Systems: 227-238. 

Cimiano, Philipp, Peter Haase, York Sure, Johanna 
Völker, and Yimin Wang. 2006. Question Answer-
ing on Top of the BT Digital Library. In the Pro-
ceedings of the 15th International Conference on 
World Wide Web: 861-862. 

Dumontier, Michel, and Natalia Villanueva-Rosales. 
2007. Three-Layer OWL Ontology Design. In the 
Proceedings of the 2nd International Workshop on 
Modular Ontologies. CEUR Workshop Proceed-
ings, volume 315. 

Graff, David. 2002. The AQUAINT Corpus of English 
News Text. Linguistic Data Consortium, Philadel-
phia. 

Lin, Dekang. 1998. An Information-Theoretic Defini-
tion of Similarity. In the Proceedings of the 15th In-
ternational Conference on Machine Learning: 296-
304. 

Lopez, Vanessa, Victoria Uren, Enrico Motta, and 
Michele Pasin. 2007. AquaLog: An Ontology-
driven Question Answering System for Organiza-
tional Semantic Intranets. In the Journal of Web 
Semantics, volume 5: 72-105. 

Lopez, Vanessa, Victoria Uren, Marta Sabou, and 
Enrico Motta. 2009. Cross Ontology Query Ans-
wering on the Semantic Web: An Initial Evalua-
tion. In the Proceedings of the 5th International 
Conference on Knowledge Capture: 17-24. 

 

Manning, Christopher D., Prabhakar Raghavan, and 
Hinrich Schütze. 2008. Introduction to Information 
Retrieval. Online edition. 
http://nlp.stanford.edu/IR-book/information-
retrieval-book.html. Cambridge University Press. 

Navigli, Roberto, and Paola Velardi. 2004. Learning 
Domain Ontologies from Document Warehouses 
and Dedicated Web Sites. In the Journal of Compu-
tational Linguistics, volume 30: 151-179. 

Steinbach, Michael, George Karypis, and Vipin Ku-
mar. 2000. A Comparison of Document Clustering 
Techniques. Technical Report #00-034, University 
of Minnesota. 

 

975



Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 976–983,
Beijing, August 2010

Weakly Supervised Morphology Learning for Agglutinating Languages
Using Small Training Sets

Ksenia Shalonova
Computer Science,

University of Bristol
ksenia@cs.bris.ac.uk

Bruno Golénia
Computer Science,

University of Bristol
csbsgg@bristol.ac.uk

Abstract

The paper describes a weakly supervised
approach for decomposing words into all
morphemes: stems, prefixes and suffixes,
using wordforms with marked stems as
training data. As we concentrate on
under-resourced languages, the amount
of training data is limited and we need
some amount of supervision in the form
of a small number of wordforms with
marked stems. In the first stage we in-
troduce a new Supervised Stem Extrac-
tion algorithm (SSE). Once stems have
been extracted, an improved unsupervised
segmentation algorithm GBUMS (Graph-
Based Unsupervised Morpheme Segmen-
tation) is used to segment suffix or prefix
sequences into individual suffixes and pre-
fixes. The approach, experimentally val-
idated on Turkish and isiZulu languages,
gives high performance on test data and is
comparable to a fully supervised method.

1 Introduction

The major function of morphological analysis is
decomposition of words into their constituents -
stems and prefixes/suffixes. In recent years Ma-
chine Learning approaches were used for word de-
composition. There is a number of both unsuper-
vised morphology learning systems that use ”raw”
wordforms as training data (Creutz and Lagus,
2002; Goldsmith, 2001; Kazakov and Manand-
har, 2001) and supervised morphology learning
systems using segmented wordforms into stems
and affixes as training data (Oflazer et al., 2001).
The supervised morphology learning systems are
usually based on two-level morphology (Kosken-
niemmi, 1983). There is also a weakly supervised
approach that uses, for example, wordpairs as in-

put, and this was applied mainly to fusional lan-
guages for stem extraction (Erjavec and Dzeroski,
2004). Our project concerns developing speech
technology for under-resourced languages. For
this type of applications we need a relatively fast,
cheap (i.e. does not require large training sets),
almost knowledge-free approach that gives high
performance. We have chosen to use wordforms
with marked stems as training data in order to ful-
fill the criteria mentioned above.
Morphological analysis is used in many prac-
tical Natural Language Processing applications
such as Machine Translation, Text Mining, spell-
checkers etc. Our near-term goal is the integration
of the morphology learning algorithms into the
language-independent Text-to-Speech (TTS) sys-
tem for improvement of grapheme-to-phoneme
rules, stress prediction and tone assignment. In
particular, the morphology learning algorithms
described in this paper will be incorporated into
the available isiZulu TTS system for automatic
prediction of lexical tones. In the isiZulu language
lexical tone assignment depends on the morpheme
boundary. The current isiZulu TTS system is
tone-deaf due to the lack of morphological de-
composition. A number of perception tests will
be carried out in order to evaluate which perfor-
mance of morphology decomposition is accept-
able for TTS and will improve the quality of the
synthesised speech. It seems that the unsuper-
vised morphology learning systems can be rela-
tively easy to implement from scratch, but their
performance probably cannot be regarded as high
enough to improve the performance of the synthe-
sized speech. In order to overcome this problem
we present a novel synthesis of supervised and un-
supervised induction techniques for morphology
learning.
Our approach consists of two parts: the new su-
pervised stem extraction algorithm for agglutinat-
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ing languages and the improved version of the
unsupervised algorithm for segmenting affix se-
quences. In (Shalonova et al., 2009) the authors
presented the function learning approach called
TASR (Tree of Aligned Suffix Rules) for extract-
ing stems in fusional languages given wordpairs
(word in grammatical form - word in basic form).
While this algorithm gives good performance for
Russian and English, it gives quite poor perfor-
mance for agglutinating languages as shown in
Section 4. A new approach for stem extraction in
agglutinating languages is required for two main
reasons. Firstly, suffix (or prefix) sequences in
agglutinating languages can be much longer than
in fusional languages and TASR does not seem
to be efficient on long affix sequences as it does
not generalise data in the efficient way and gen-
erates too many specific rules. This leads to poor
performance on unseen data. Secondly, in some
agglutinating languages it could be easier for na-
tive speakers to provide a stem (i.e. to provide a
list of wordforms with annotated stems), whereas
in highly inflective fusional languages the stem is
often strongly bound with suffix sequences, and
providing a proper stem requires high linguistic
expertise. TASR approach is more appropriate for
word-and-paradigm or realizational morphology
that focuses on the whole word form rather than
on word segmentation. For example, in Russian
the infinitive verb govorit’ (’to speak’) generates
a set of grammatical forms or a paradigm - gov-
orivshij, govor’aschij, govorim etc.
The second part of our approach is the im-
proved version of GBUAS algorithm (Shalonova
et al., 2009) that provides affix segmentation given
unannotated affix sequences. Given stem bound-
aries in the training set, our method splits the
input word into all morphemes: stems and pre-
fixes/suffixes. Our two-stage approach is tested
on the under-resourced language isiZulu contain-
ing both prefixes and suffixes, as well as on Turk-
ish containing only suffixes. Turkish is the most
commonly spoken of the Turkic languages (over
77 million people). isiZulu is the Bantu lan-
guage with about 10 million speakers and it is
the most widely spoken home language in South
Africa. Both Turkish and isiZulu use agglutina-
tion to form new words from noun and verb stems.

In comparison to Turkish, isiZulu is a tonal lan-
guage. In contrast to East Asian languages, in
isiZulu there are three steps for tone assignment:
lexical, morphemic and terraced. For TTS the lex-
ical and morphemic tones will need to be recov-
ered from the lexicon and the grammar as the or-
thography has no tone marking. The terraced tone
relation can in general be recovered and marked
automatically from the tone sequence with a finite
state model.

2 Stem Extraction Algorithm

The Stem Extraction Algorithm (SSE) is the su-
pervised algorithm for stem extraction. The train-
ing data for the SSE represent wordforms with
the marked stem boundaries. During the train-
ing stage we collect a set of all possible stem ex-
traction rules from training data and assign pre-
cision measures to each rule. Each rule is of the
form L R where ” ” is the stem boundary, L and
R are the left and right graphemic contexts of a
stem boundary of different lengths. We differen-
tiate prefix Lpre f Rstem and suffix Lstem Rsu f f
stem extraction rules that correspond to the rules
containing the left-hand stem boundary and the
right-hand stem boundary respectively. For ex-
ample, the Turkish word yer (’earth’) with the
marked word boundary #ye r# generates the fol-
lowing Lstem Rsu f f rules: #ye r#, #ye r, ye r#,
#ye , ye r, e r#, r#, ye , e r, r, and e , where
the symbol ’#’ signifies the word initial and fi-
nal positions. We are implementing similar fea-
ture vectors used for automatic pronunciation pre-
diction based on the focal grapheme (in our case
it is a stem boundary) and left/right graphemic
contexts of different length (Davel and Barnard,
2008). The idea of implementing expanding con-
text in NLP tasks is usually applied for two-level
data like grapheme-to-phoneme mapping rules
(Torkkola, 1993), whereas in our case we use it
for one-level data.

The precision measure for each rule is calcu-
lated by the formula p/(p+n+ε) where p and n are
the number of positive and negative examples, and
ε is used to cover the cases where there are no neg-
ative examples. A high precision is desirable and
this occurs when there are high values of p and
low values of n (i.e. many positive examples and
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few negative examples). Using negative examples
in contrast to using only rule frequencies (or pos-
itive examples) improves the performance of the
algorithm.

Definition 1. The number of positive examples for
the rule Lstem Rsuff (or rule Lpref Rstem) is the
number of training instances of Stem Su f f ixes
(or Pre f ixes Stem) containing the substring L R.

Definition 2. The number of negative exam-
ples for rule Lstem Rsuff (or Lpref Rstem) is the
number of training instances Stem Su f f ixes (or
Pre f ixes Stem) such that Stem + Su f f ixes (or
Pre f ixes + Stem) contains substring L+R and
Stem Su f f ixes (or Pre f ixes Stem) does not con-
tain substring L R where ’+’ denotes string con-
catenation.

In the above definitions ’ ’ is a stem boundary.

Example 1. Suppose we have only three isiZulu
verbs: zi bek e, zi nak eke and a hlul eke. For
the Lstem Rsu f f rule ’ek e’, the word zi bek e
generates one positive example and the two other
words zi nak eke and a hlul eke generate one
negative example each.

The approach given in Algorithm 1 aims to find
the unique longest rule-pair ’Lpre f Rstem and
Lstem Rsu f f ’ with the highest precision that is
applied to the input wordform for stem extraction.
In case the language does not have prefixes like
Turkish, the longest rule Lstem Rsu f f with the
highest precision is applied. The decision of us-
ing either a rule-pair or just a single suffix rule
is influenced by prior knowledge that a particu-
lar language has got either both prefixes and suf-
fixes like isiZulu or only suffixes like Turkish.
From now on we will use the term ’rulepair’ in
application both to the rulepair ’Lpre f Rstem and
Lstem Rsu f f ’ in case of isiZulu and to the rule-
pair ’ and Lstem Rsu f f ’ with an empty first ele-
ment in case of Turkish.

Algorithm 1 Choosing rule pair for stem extrac-
tion.
input W = raw wordform; P and S are sets of

unique Lpre f Rstem and Lstem Rsu f f rules
output result rule pair

result rule pair← /0
iMaxlength← ∞
repeat

(p1,s1) ← getrulepair (P × S, W,
iMaxlength)
(p2,s2)← getrulepair (P × S \ (p1,s1), W,
iMaxlength)
iMaxlength← length(p1,s1)

until (p1,s1) = /0 or precision (p1,s1)
�= precision(p2,s2) or length (p1,s1) �=
length(p2,s2)
result rule pair← (p1,s1)

function getrulepair(PS, W, iMaxlength)
ilength← 0
r← /0
for all (p,s) ∈ PS do

if (p,s) matches W then
if length(p,s) < iMaxlength and
length(p,s) > ilength then

ilength← length(p,s)
r← (p,s)

else
if length(p,s) = ilength and
precision(p,s) > precision(r) then

r← (p,s)
end if

end if
end if

end for
return r
end function

The search is carried out on the set of rule
pairs matching an input raw wordform. The set
is sorted by length first, and then by precision
measure within each length category.

For example, if rulepairs have the following
length-precision values:
’4-0.5,’4-0.5’,’4-0.2’
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’3-0.4’,’3-0.3’
’2-0.3’
rulepair with the value 3-0.4 is selected.

The rulepair matches the input word if
Lpre f Rstem and Lstem Rsu f f rules can be ap-
plied without contradicting each other. For exam-
ple, the rule pair ’#a hl’ and ’l eke’ matches the
word a hlul eke, whereas the rule pair ’#a hlulek’
and ’le ke’ does not match this word. For each
input wordform the set of its own rulepair candi-
dates is generated. The search in the algorithm
among these rulepairs starts from the longest rule-
pairs, and this allows more specific rules and ex-
ceptions to be applied first, whereas the more gen-
eral rules are applied if no specific rules cover the
input wordform.

3 Graph-Based Unsupervised
Morpheme Segmentation

In this section we extend GBUMS (Graph-
Based Unsupervised Morpheme Segmentation)
that segments sequences of prefixes and suffixes
(Golénia et al., 2009). We propose an exten-
sion of GBUMS which uses the graph structure of
GBUMS through a brute-force method. Our ex-
periments showed the improved results on train-
ing set and allowed GBUMS to be run on the test
sets for two languages: Turkish and isiZulu.

The algorithm GBUMS was originally devel-
oped in (Shalonova et al., 2009) under the name
GBUSS (Graph-Based Unsupervised Suffix Seg-
mentation) to extract suffix sequences efficiently
and it was applied to Russian and Turkish lan-
guages on training sets. We refer to prefixes and
suffixes generally as morphemes. GBUMS uses
a morpheme graph in a bottom-up way. Similar
to Harris (Harris, 1955), the algorithm is based
on letter frequencies. However, when Harris uses
successor and predecessor frequencies, they use
position-independent n-gram statistics to merge
single letters into morphemes until a stopping cri-
terion is fulfilled.

In the morpheme graph, each node represents a
morpheme and each directed edge the concatena-
tion of two morphemes labelled with the frequen-
cies in a M-corpus (see Figure 1). M-corpus is a
list of morpheme sequences

Definition 3. Let M = {mi|1 ≤ i ≤ |M|} be a set
of morphemes, let fi be the frequency with which
morpheme mi occurs in a M-corpus of morpheme
sequences, let vi = (mi, fi) for 1 ≤ i ≤ n, and let
fi, j denote the number of morpheme sequences in
the corpus in which morpheme mi is followed by
morpheme m j. The morpheme graph G = (V,E)
is a directed graph with vertices or nodes V =
{vi|1≤ i≤ |V |} and edges E = {(vi,v j)| fi, j > 0}.
We treat fi, j as the label of the edge from vi to v j.

In G, each node is initialised with a letter ac-
cording to a M-corpus, then one by one, nodes
are merged to create the real morphemes. To
merge nodes, an evaluation function is required.
In (Golénia et al., 2009), Golenia et al. employed
the Morph Lift evaluation function based on its re-
lation to the lift of a rule for association rules in
data mining (Brin et al., 1997).
Definition 4. Morph Li f t is defined for a pair of
morphemes m1 and m2 as follows:

Morph Li f t(m1,m2) =
f1,2

f1 + f2
(1)

From now on, we know how to merge nodes.
Now, we need to figure out the most important
part of GBUMS, which is the stopping crite-
rion. The stopping criterion is to prevent over-
generalisation. In other words, the algorithm
needs to be stopped before getting the initial M-
corpus (since no merging is possible). This cri-
terion is based on the Bayesian Information Cri-
terion (BIC) and Jensen-Shannon divergence (Li,
2001).

BIC is used for selecting a model (set of mor-
phemes) which fits a data set (M-Corpus) without
being too complex. We want to point out that BIC
is related to MDL. BIC is a trade-off between the
maximum likelihood, the parameters of the model
(probability and length of each morpheme) and
the number of elements in the data set (frequency
of each morpheme). A smaller value of BIC cor-
responds to a better model fit. The maximum of
the Jensen-Shannon divergence is used in order to
analyse the increase of log-likelihood among all
possible models. The Jensen-Shannon divergence
is defined as follows (Dagan et al., 1997):
Definition 5. The Jensen-Shannon divergence is
defined for two morphemes m1 and m2 as the de-
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crease in entropy between the concatenated and
the individual morphemes:

DJS(m1,m2)= H(m1 ·m2)−
Lm1H(m1)+Lm2H(m2)

N
(2)

where H(m) =−P(m) log2 P(m) N = ∑m Freq(m)
and Lm is the string length of m.

Stopping criterion requires that ΔBIC < 0
which translates to:

max
m1,m2

DJS(m1,m2)≤ 2log2 N (3)

Algorithm 2 The GBUMS morpheme segmenta-
tion algorithm
input M-Corpus = List of Strings
output M-CorpusSeg = List of Strings

M-CorpusSeg ← SegmentInLetters(M-
Corpus);
Graph← InitialiseGraph(M-CorpusSeg);
repeat

Max← 0;
for all (p,q) ∈ Graph do

ML Max←Morph Lift(p, q);
if ML Max > Max then

Max←ML Max;
pMax← p;
qMax← q;

end if
end for
Graph ← MergeNodes(Graph, pMax,
qMax);
M-CorpusSeg ← DeleteBoundaries(M-
CorpusSeg, Label(pMax), Label(qMax));
Graph ← AdjustGraph(M-corpusSeg,
Graph);

until StoppingCriterion(pMax, qMax, Max)

After several merging iterations, the output of
the algorithm is the graph shown in Figure 1. The
GBUMS is presented in Algorithm 2.
Note that the M-Corpus is completely segmented
at the beginning of the algorithm. Then, the
boundaries in the segmented M-Corpus are re-
moved step by step according to a pair found in the
graph with the maximum value for Morph Li f t.

When the stopping criterion is fulfilled, the seg-
mented M-Corpus represents the morpheme se-
quences.

At this point we present our extension of
GBUMS based on a brute-force heuristic which
scores every possible segmentation of an input
morpheme sequence using graph values. We
consider the morpheme graph as a model where
each morpheme sequence can be extracted by the
MGraph function (eq. 4).

Definition 6. We define MGraph of a morpheme
sequence without boundaries x as follows:

MGraph(x) = argmax
t⊆x

1
Nt −Ct

∑
m∈t

Lmlog( fm +1)

(4)
where

• t is a morpheme sequence with boundaries of
x,

• m is a morpheme of t,

• fm is the frequency of the morpheme m,

• Nt is the number of morphemes existing in
the graph,

• Ct is the number of morphemes existing and
contiguous in the graph.

Firstly, as a post-processing procedure the
MGraph function improves the performance on
training data. Secondly, it permits the identifica-
tion of unseen morphemes. That is why the model
generated by GBUMS can be run on test data sets.

Example 2. Let our final morpheme graph be as
shown in Figure 1 where nodes represent suffixes
and their frequencies.
Let x=”ekwe” be our input suffix sequence that we
want to segment into individual suffixes. We split
this input sequence into all possible substrings
from individual characters up to size of the input
string length: e-k-w-e, e-k-we, e-kw-e, ek-w-e, . . . ,
ekwe.
Using equation 4, we evaluate each substring and
select the one with the highest score as the correct
segmentation. Here, we have 7 potential segmen-
tations with a score higher than 0 (MGraph > 0),
e.g: e-k-w-e = (log(3)+ log(3))/2 = 1.0986, ek-
w-e =(2log(4)+ log(3))/2 = 1.9356 and ek-we =
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2log(4) = 2.7726.
Consequently, ek-we is chosen as the correct seg-
mentation for the substring ”ekwe”.

We would like to highlight that our new method
can identify unseen cases with M-Graph, for in-
stance, in the previous example suffix ”we” was
not present in the training graph, but was correctly
extracted.

������
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Figure 1: Example of a suffix subgraph in the
training phase for isiZulu.

4 Results

Our experiments were based on Turkish data con-
taining 1457 verbs and 2267 nouns, and isiZulu
data containing 846 nouns and 931 verbs, with
one single unambiguous segmentation per word.1

Both isiZulu and Turkish data were uniquely sam-
pled from the most frequent word lists.

Our first experiments compared TASR and the
new SSE algorithm for stem extraction (10-fold
cross validation assumes the following training
and test set sizes: training sets containing 1311
wordforms for verbs and 2040 wordforms for
nouns; test sets containing 146 wordforms for
verbs and 227 wordforms for nouns). As can be
seen from the Table 1, the performance of the SSE
algorithm on Turkish data is much higher than that
of TASR on the same dataset. As we mentioned in
Section 1, TASR is not suitable for agglutinating
languages with long suffix sequences. Although
TASR algorithm gives an excellent performance
on Russian, for most Turkish words it fails to ex-
tract proper stems.

1In agglutinating languages some wordforms even within
one POS category can have several possible segmentations.

Test FMea
TASR Nouns 20.7±6.8

Verbs 12.6±5.9
SSE Nouns 84.3±3.2

Verbs 82.1±3.7

Table 1: Comparison of TASR and SSE for Turk-
ish using 10-fold cross validation.

Our next experiments evaluated the perfor-
mance of GBUMS on its own given unsegmented
suffix sequences from Turkish nouns and verbs as
training data. The performance on these training
data increased by approximately 3-4 % in com-
parison to the results presented in (Shalonova et
al., 2009). We would like to point out that the
results in (Shalonova et al., 2009) are based on
training data rather than on test data, whereas in
the current paper we run our algorithms on test
(or unseen) data. Our final experiments examined
performance on the test sets and were run both
on Turkish and isiZulu data. We compared our
approach with Morfessor run both in supervised
and in unsupervised mode. Although Morfessor is
known as one of the best unsupervised morphol-
ogy learning systems, it is possible to run it in the
supervised mode as well (Spiegler et al., 2008).
The training data for SSE+ GBUMS contained
wordforms with marked stems. During training
stage the SSE algorithm was collecting informa-
tion about stem boundaries and the GBUMS al-
gorithm was run on unlabelled suffix and pre-
fix sequences from the same training set. The
test stage for the SSE+GBUMS approach was run
on ”raw” wordforms by applying the SSE algo-
rithm first for stem extraction and then running
GBUMS algorithm for segmenting prefix or suf-
fix sequences after the SSE has extracted stems.
Training data for supervised Morfessor used the
same wordforms as for the SSE+GBUMS train-
ing set and contained wordforms segmented into
stems and affixes (i.e. words segmentated into
all morphemes were given as training data). The
test data for supervised Morfesor were the same
as those used for SSE+GBUMS. Morfessor in un-
supervised mode was run on ”raw” wordforms as
training data. To evaluate our current work we ap-
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Test FMea
Supervised Morfessor Nouns 74.6±2.3

Verbs 84.5±2.2
SSE+ GBUMS Nouns 78.8±2.4

Verbs 76.9±0.7
Unsupervised Morfessor Nouns 26.6±2.6

Verbs 28.4±2.8

Table 2: Comparison of Morfessor and
SSE+GBUMS for Turkish using 10-fold cross
validation.

plied the SSE+GBUMS approach for the under-
resourced agglutinating language isiZulu contain-
ing both prefixes and suffixes and for Turkish con-
taining only suffixes. The results show (Table 2
and Table 3) that our weakly supervised approach
is comparable with the supervised Morfessor and
decisively outperforms the unsupervised Morfes-
sor. We think that it is useful to point out that un-
supervised morphology learning systems in gen-
eral require much larger training sets for better
performance. F-measure is the harmonic mean
of precision and recall, whereas precision is the
proportion of true morpheme boundaries among
the boundaries found, recall is the proportion
of boundaries found among the true boundaries.
In our experiments the GBUMS algorithm had
no restrictions on affix length (Shalonova et al.,
2009), but if there were restrictions, performance
could be better. For isiZulu nouns our approach
significantly outperformed supervised Morfessor,
whereas for Turkish verbs SSE+GBUMS per-
formed much worse. The best overall results
obtained by GBUMS were based on the isiZulu
nouns where about 53% of all affixes were sin-
gle letter affixes, whereas the worst results our ap-
proach gave for Turkish verbs where only about
12% of affixes are composed of one letter. It is
important to notice that the GBUMS algorithm,
which is completely unsupervised, gives better re-
sults for extracting one letter affixes compared to
Morfessor.

5 Conclusions

In the paper we described a weakly supervised
approach for learning morphology in agglutinat-

Test FMea
Supervised Morfessor Nouns 76.7±1.6

Verbs 88.5±2.4
SSE+ GBUMS Nouns 87.9±1.9

Verbs 84.5±2.5
Unsupervised Morfessor Nouns 27.4±5.1

Verbs 26.9±5.0

Table 3: Comparison of Morfessor and
SSE+GBUMS for isiZulu using 10-fold cross
validation.

ing languages. We were successful in our ulti-
mate goal of synthesis of supervised and unsuper-
vised induction techniques by achieving high per-
formance on small amount of training data. Our
weakly supervised approach is comparable with
the supervised morphology learning system. As
we are working with the languages for which lin-
guistic resources are very limited (in particular
words with morpheme boundaries), the developed
method fulfills our goals of providing key compo-
nents for speech and language products for such
under-resourced languages. We speculate that the
current performance might be improved by adding
a small amount of completely ”raw” data to the
training set.
The integration of our algorithms into working
TTS systems is of key importance. As our near-
term goal is the integration of morphology learn-
ing component into the currently working isiZulu
TTS system, we will have to analyse the neces-
sity of a Part of Speech Tagger (POS) and mor-
phological disambiguation. In agglutinating lan-
guages some wordforms can be segmented in dif-
ferent ways (i.e. have different surface forms)
and Machine Learning approaches normally se-
lect the most probable segmentation, and there-
fore our morphology disambiguation can be im-
portant. Morphological disambiguation for TTS
can be considered a less complex problem than
full morphological disambiguation as it can be
linked, for example, to lexical tone disambigua-
tion that may not require the full POS tag set.
We intend to carry out user perception tests in or-
der to evaluate the possible improvement in the
isiZulu TTS quality after morphology information
is added.
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Abstract

Multi-document summarization has
been an important problem in infor-
mation retrieval. It aims to dis-
till the most important information
from a set of documents to gener-
ate a compressed summary. Given
a sentence graph generated from a
set of documents where vertices repre-
sent sentences and edges indicate that
the corresponding vertices are simi-
lar, the extracted summary can be de-
scribed using the idea of graph dom-
ination. In this paper, we propose
a new principled and versatile frame-
work for multi-document summariza-
tion using the minimum dominating
set. We show that four well-known
summarization tasks including generic,
query-focused, update, and compara-
tive summarization can be modeled as
different variations derived from the
proposed framework. Approximation
algorithms for performing summariza-
tion are also proposed and empirical
experiments are conducted to demon-
strate the effectiveness of our proposed
framework.

1 Introduction

As a fundamental and effective tool for docu-
ment understanding and organization, multi-
document summarization enables better infor-
mation services by creating concise and infor-
mative reports for a large collection of doc-
uments. Specifically, in multi-document sum-
marization, given a set of documents as input,
the goal is to produce a condensation (i.e.,
a generated summary) of the content of the

entire input set (Jurafsky and Martin, 2008).
The generated summary can be generic where
it simply gives the important information con-
tained in the input documents without any
particular information needs or query/topic-
focused where it is produced in response to a
user query or related to a topic or concern the
development of an event (Jurafsky and Mar-
tin, 2008; Mani, 2001).

Recently, new summarization tasks such as
update summarization (Dang and Owczarzak,
2008) and comparative summarization (Wang
et al., 2009a) have also been proposed. Up-
date summarization aims to generate short
summaries of recent documents to capture
new information different from earlier docu-
ments and comparative summarization aims
to summarize the differences between compa-
rable document groups.

In this paper, we propose a new principled
and versatile framework for multi-document
summarization using the minimum dominat-
ing set. Many known summarization tasks in-
cluding generic, query-focused, update, and
comparative summarization can be modeled
as different variations derived from the pro-
posed framework. The framework provides an
elegant basis to establish the connections be-
tween various summarization tasks while high-
lighting their differences.

In our framework, a sentence graph is first
generated from the input documents where
vertices represent sentences and edges indicate
that the corresponding vertices are similar. A
natural method for describing the extracted
summary is based on the idea of graph dom-
ination (Wu and Li, 2001). A dominating set
of a graph is a subset of vertices such that
every vertex in the graph is either in the sub-
set or adjacent to a vertex in the subset; and
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a minimum dominating set is a dominating
set with the minimum size. The minimum
dominating set of the sentence graph can be
naturally used to describe the summary: it
is representative since each sentence is either
in the minimum dominating set or connected
to one sentence in the set; and it is with
minimal redundancy since the set is of mini-
mum size. Approximation algorithms are pro-
posed for performing summarization and em-
pirical experiments are conducted to demon-
strate the effectiveness of our proposed frame-
work. Though the dominating set problem has
been widely used in wireless networks, this pa-
per is the first work on using it for modeling
sentence extraction in document summariza-
tion.

The rest of the paper is organized as fol-
lows. In Section 2, we review the related work
about multi-document summarization and the
dominating set. After introducing the min-
imum dominating set problem in graph the-
ory in Section 3, we propose the minimum
dominating set based framework for multi-
document summarization and model the four
summarization tasks including generic, query-
focused, update, and comparative summariza-
tion in Section 4. Section 5 presents the exper-
imental results and analysis, and finally Sec-
tion 6 concludes the paper.

2 Related Work

Generic Summarization For generic sum-
marization, a saliency score is usually as-
signed to each sentence and then the sen-
tences are ranked according to the saliency
score. The scores are usually computed based
on a combination of statistical and linguistic
features. MEAD (Radev et al., 2004) is an
implementation of the centroid-based method
where the sentence scores are computed based
on sentence-level and inter-sentence features.
SumBasic (Nenkova and Vanderwende, 2005)
shows that the frequency of content words
alone can also lead good summarization re-
sults. Graph-based methods (Erkan and
Radev, 2004; Wan et al., 2007b) have also
been proposed to rank sentences or passages

based on the PageRank algorithm or its vari-
ants.

Query-Focused Summarization In
query-focused summarization, the informa-
tion of the given topic or query should be
incorporated into summarizers, and sentences
suiting the user’s declared information need
should be extracted. Many methods for
generic summarization can be extended to
incorporate the query information (Saggion
et al., 2003; Wei et al., 2008). Wan et al.
(Wan et al., 2007a) make full use of both
the relationships among all the sentences in
the documents and relationship between the
given query and the sentences by manifold
ranking. Probability models have also been
proposed with different assumptions on the
generation process of the documents and
the queries (Daumé III and Marcu, 2006;
Haghighi and Vanderwende, 2009; Tang et
al., 2009).

Update Summarization and Compara-
tive Summarization Update summariza-
tion was introduced in Document Understand-
ing Conference (DUC) 2007 (Dang, 2007) and
was a main task of the summarization track in
Text Analysis Conference (TAC) 2008 (Dang
and Owczarzak, 2008). It is required to sum-
marize a set of documents under the assump-
tion that the reader has already read and
summarized the first set of documents as the
main summary. To produce the update sum-
mary, some strategies are required to avoid re-
dundant information which has already been
covered by the main summary. One of the
most frequently used methods for remov-
ing redundancy is Maximal Marginal Rele-
vance(MMR) (Goldstein et al., 2000). Com-
parative document summarization is proposed
by Wang et. al. (Wang et al., 2009a) to
summarize the differences between compara-
ble document groups. A sentence selection
approach is proposed in (Wang et al., 2009a)
to accurately discriminate the documents in
different groups modeled by the conditional
entropy.
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The Dominating Set Many approxima-
tion algorithms have been developed for find-
ing minimum dominating set for a given
graph (Guha and Khuller, 1998; Thai et al.,
2007). Kann (Kann, 1992) shows that the
minimum dominating set problem is equiv-
alent to set cover problem, which is a well-
known NP-hard problem. Dominating set has
been widely used for clustering in wireless net-
works (Chen and Liestman, 2002; Han and
Jia, 2007). It has been used to find topic
words for hierarchical summarization (Lawrie
et al., 2001), where a set of topic words is ex-
tracted as a dominating set of word graph. In
our work, we use the minimum dominating set
to formalize the sentence extraction for docu-
ment summarization.

3 The Minimum Dominating Set
Problem

Given a graph G =< V,E >, a dominating
set of G is a subset S of vertices with the
following property: each vertex of G is either
in the dominating set S, or is adjacent to some
vertices in S.

Problem 3.1. Given a graph G, the mini-
mum dominating set problem (MDS) is to find
a minimum size subset S of vertices, such that
S forms a dominating set.

MDS is closely related to the set cover prob-
lem (SC), a well-known NP-hard problem.

Problem 3.2. Given F , a finite collection
{S1, S2, . . . , Sn} of finite sets, the set cover
problem (SC) is to find the optimal solution

F ∗ = arg min
F ′⊆F

|F ′| s.t.
⋃

S′∈F ′
S′ =

⋃

S∈F

S.

Theorem 3.3. There exists a pair of polyno-
mial time reduction between MDS and SC.

So, MDS is also NP-hard and it has been
shown that there are no approximate solutions
within c log |V |, for some c > 0 (Feige, 1998;
Raz and Safra, 1997).

3.1 An Approximation Algorithm

A greedy approximation algorithm for the SC
problem is described in (Johnson, 1973). Ba-
sically, at each stage, the greedy algorithm

chooses the set which contains the largest
number of uncovered elements.

Based on Theorem 3.3, we can obtain a
greedy approximation algorithm for MDS.
Starting from an empty set, if the current sub-
set of vertices is not the dominating set, a new
vertex which has the most number of the ad-
jacent vertices that are not adjacent to any
vertex in the current set will be added.

Proposition 3.4. The greedy algorithm ap-
proximates SC within 1 + ln s where s is the
size of the largest set.

It was shown in (Johnson, 1973) that the
approximation factor for the greedy algorithm
is no more than H(s) , the s-th harmonic num-
ber:

H(s) =
s∑

k=1

1

k
≤ ln s + 1

Corollary 3.5. MDS has a approximation al-
gorithm within 1 + ln Δ where Δ is the maxi-
mum degree of the graph.

Corollary 3.5 follows directly from Theo-
rem 3.3 and Proposition 3.4.

4 The Summarization Framework

4.1 Sentence Graph Generation

To perform multi-document summarization
via minimum dominating set, we need to first
construct a sentence graph in which each node
is a sentence in the document collection. In
our work, we represent the sentences as vec-
tors based on tf-isf, and then obtain the cosine
similarity for each pair of sentences. If the
similarity between a pair of sentences si and
sj is above a given threshold λ, then there is
an edge between si and sj .

For generic summarization, we use all sen-
tences for building the sentence graph. For
query-focused summarization, we only use the
sentences containing at least one term in the
query. In addition, when a query q is involved,
we assign each node si a weight, w(si) =
d(si, q) = 1 − cos(si, q), to indicate the dis-
tance between the sentence and the query q.

After building the sentence graph, we can
formulate the summarization problem using
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Figure 1: Graphical illustrations of multi-document summarization via the minimum domi-
nating set. (a): The minimum dominating set is extracted as the generic summary. (b):The
minimum weighted dominating set is extracted as the query-based summary. (c):Vertices in
the right rectangle represent the first document set C1, and ones in the left represent the sec-
ond document set where update summary is generated. (d):Each rectangle represents a group
of documents. The vertices with rings are the dominating set for each group, while the solid
vertices are the complementary dominating set, which is extracted as comparative summaries.

the minimum dominating set. A graphical il-
lustration of the proposed framework is shown
in Figure 1.

4.2 Generic Summarization

Generic summarization is to extract the most
representative sentences to capture the impor-
tant content of the input documents. Without
taking into account the length limitation of
the summary, we can assume that the sum-
mary should represent all the sentences in the
document set (i.e., every sentence in the docu-
ment set should either be extracted or be sim-
ilar with one extracted sentence). Meanwhile,
a summary should also be as short as possi-
ble. Such summary of the input documents
under the assumption is exactly the minimum
dominating set of the sentence graph we con-
structed from the input documents in Section
4.1. Therefore the summarization problem
can be formulated as the minimum dominat-
ing set problem.

However, usually there is a length restric-
tion for generating the summary. Moreover,
the MDS is NP-hard as shown in Section 3.
Therefore, it is straightforward to use a greedy
approximation algorithm to construct a subset
of the dominating set as the final summary. In
the greedy approach, at each stage, a sentence
which is optimal according to the local crite-
ria will be extracted. Algorithm 1 describes

Algorithm 1 Algorithm for Generic Summariza-
tion
INPUT: G, W
OUTPUT: S

1: S = ∅
2: T = ∅
3: while L(S) < W and V (G)! = S do
4: for v ∈ V (G) − S do
5: s(v) = |{ADJ(v) − T}|
6: v∗ = arg maxv s(v)
7: S = S ∪ {v∗}
8: T = T ∪ ADJ(v∗)

an approximation algorithm for generic sum-
marization. In Algorithm 1, G is the sen-
tence graph, L(S) is the length of the sum-
mary, W is the maximal length of the sum-
mary, and ADJ(v) = {v′|(v′, v) ∈ E(G)} is
the set of vertices which are adjacent to the
vertex v. A graphical illustration of generic
summarization using the minimum dominat-
ing set is shown in Figure 1(a).

4.3 Query-Focused Summarization

Letting G be the sentence graph constructed
in Section 4.1 and q be the query, the query-
focused summarization can be modeled as

D∗ = arg minD⊆G
∑

s∈D d(s, q) (1)

s.t. D is a dominating set of G.

Note that d(s, q) can be viewed as the weight
of vertex in G. Here the summary length is
minimized implicitly, since if D′ ⊆ D, then
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∑
s∈D′ d(s, q) ≤ ∑

s∈D d(s, q). The problem
in Eq.(1) is exactly a variant of the minimum
dominating set problem, i.e., the minimum
weighted dominating set problem (MWDS).

Similar to MDS, MWDS can be reduced
from the weighted version of the SC problem.
In the weighted version of SC, each set has a
weight and the sum of weights of selected sets
needs to be minimized. To generate an ap-
proximate solution for the weighted SC prob-
lem, instead of choosing a set i maximizing
|SET (i)|, a set i minimizing w(i)

|SET (i)| is cho-

sen, where SET (i) is composed of uncovered
elements in set i, and w(i) is the weight of set
i. The approximate solution has the same ap-
proximation ratio as that for MDS, as stated
by the following theorem (Chvatal, 1979).

Theorem 4.1. An approximate weighted
dominating set can be generated with a size at
most 1+log Δ·|OPT |, where Δ is the maximal
degree of the graph and OPT is the optimal
weighted dominating set.

Accordingly, from generic summarization to
query-focused summarization, we just need to
modify line 6 in Algorithm 1 to

v∗ = arg min
v

w(v)

s(v)
, (2)

where w(v) is the weight of vertex v. A graph-
ical illustration of query-focused summariza-
tion using the minimum dominating set is
shown in Figure 1(b).

4.4 Update Summarization

Give a query q and two sets of documents C1

and C2, update summarization is to generate
a summary of C2 based on q, given C1. Firstly,
summary of C1, referred as D1 can be gener-
ated. Then, to generate the update summary
of C2, referred as D2, we assume D1 and D2

should represent all query related sentences in
C2, and length of D2 should be minimized.

Let G1 be the sentence graph for C1. First
we use the method described in Section 4.3 to
extract sentences from G1 to form D1. Then
we expand G1 to the whole graph G using the
second set of documents C2. G is then the

graph presentation of the document set in-
cluding C1 and C2. We can model the update
summary of C2 as

D∗ = arg minD2

∑
s∈D2

w(s) (3)

s.t. D2 ∪ D1 is a dominating set of G.

Intuitively, we extract the smallest set of sen-
tences that are closely related to the query
from C2 to complete the partial dominating
set of G generated from D1. A graphical il-
lustration of update summarization using the
minimum dominating set is shown in Fig-
ure 1(c).

4.5 Comparative Summarization

Comparative document summarization aims
to summarize the differences among compara-
ble document groups. The summary produced
for each group should emphasize its difference
from other groups (Wang et al., 2009a).

We extend our method for update sum-
marization to generate the discriminant sum-
mary for each group of documents. Given N
groups of documents C1, C2, . . . , CN , we first
generate the sentence graphs G1, G2, . . . , GN ,
respectively. To generate the summary for
Ci, 1 ≤ i ≤ N , we view Ci as the update
of all other groups. To extract a new sen-
tence, only the one connected with the largest
number of sentences which have no represen-
tatives in any groups will be extracted. We
denote the extracted set as the complemen-
tary dominating set, since for each group we
obtain a subset of vertices dominating those
are not dominated by the dominating sets of
other groups. To perform comparative sum-
marization, we first extract the standard dom-
inating sets for G1, . . . , GN , respectively, de-
noted as D1, . . . , DN . Then we extract the
so-called complementary dominating set CDi

for Gi by continuing adding vertices in Gi to
find the dominating set of ∪1≤j≤NGj given
D1, . . . ,Di−1,Di+1, . . . ,DN . A graphical il-
lustration of comparative summarization is
shown in Figure 1(d).
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DUC04 DUC05 DUC06 TAC08 A TAC08 B
Type of Summarization Generic Topic-focused Topic-focused Topic-focused Update

#topics NA 50 50 48 48
#documents per topic 10 25-50 25 10 10

Summary length 665 bytes 250 words 250 words 100 words 100 words

Table 1: Brief description of the data set

5 Experiments

We have conducted experiments on all four
summarization tasks and our proposed meth-
ods based on the minimum dominating set
have outperformed many existing methods.
For the generic, topic-focused and update
summarization tasks, the experiments are per-
form the DUC data sets using ROUGE-2 and
ROUGE-SU (Lin and Hovy, 2003) as evalua-
tion measures. For comparative summariza-
tion, a case study as in (Wang et al., 2009a) is
performed. Table 1 shows the characteristics
of the data sets. We use DUC04 data set to
evaluate our method for generic summariza-
tion task and DUC05 and DUC06 data sets
for query-focused summarization task. The
data set for update summarization, (i.e. the
main task of TAC 2008 summarization track)
consists of 48 topics and 20 newswire articles
for each topic. The 20 articles are grouped
into two clusters. The task requires to pro-
duce 2 summaries, including the initial sum-
mary (TAC08 A) which is standard query-
focused summarization and the update sum-
mary (TAC08 B) under the assumption that
the reader has already read the first 10 docu-
ments.

We apply a 5-fold cross-validation proce-
dure to choose the threshold λ used for gener-
ating the sentence graph in our method.

5.1 Generic Summarization

We implement the following widely used or
recent published methods for generic summa-
rization as the baseline systems to compare
with our proposed method (denoted as MDS).
(1) Centroid: The method applies MEAD al-
gorithm (Radev et al., 2004) to extract sen-
tences according to the following three pa-
rameters: centroid value, positional value,
and first-sentence overlap. (2) LexPageR-

ank: The method first constructs a sentence
connectivity graph based on cosine similarity
and then selects important sentences based on
the concept of eigenvector centrality (Erkan
and Radev, 2004). (3) BSTM: A Bayesian
sentence-based topic model making use of
both the term-document and term-sentence
associations (Wang et al., 2009b).

Our method outperforms the simple Cen-
troid method and another graph-based Lex-
PageRank, and its performance is close to the
results of the Bayesian sentence-based topic
model and those of the best team in the DUC
competition. Note however that, like clus-
tering or topic based methods, BSTM needs
the topic number as the input, which usually
varies by different summarization tasks and is
hard to estimate.

5.2 Query-Focused Summarization

We compare our method (denoted as MWDS)
described in Section 4.3 with some recently
published systems. (1) TMR (Tang et al.,
2009): incorporates the query information
into the topic model, and uses topic based
score and term frequency to estimate the im-
portance of the sentences. (2) SNMF (Wang
et al., 2008): calculates sentence-sentence
similarities by sentence-level semantic analy-
sis, clusters the sentences via symmetric non-
negative matrix factorization, and extracts
the sentences based on the clustering result.
(3) Wiki (Nastase, 2008): uses Wikipedia
as external knowledge to expand query and
builds the connection between the query and
the sentences in documents.

Table 3 presents the experimental compar-
ison of query-focused summarization on the
two datasets. From Table 3, we observe that
our method is comparable with these systems.
This is due to the good interpretation of the
summary extracted by our method, an ap-
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DUC04
ROUGE-2 ROUGE-SU

DUC Best 0.09216 0.13233
Centroid 0.07379 0.12511

LexPageRank 0.08572 0.13097
BSTM 0.09010 0.13218
MDS 0.08934 0.13137

Table 2: Results on generic summariza-
tion.

DUC05 DUC06
ROUGE-2 ROUGE-SU ROUGE-2 ROUGE-SU

DUC Best 0.0725 0.1316 0.09510 0.15470
SNMF 0.06043 0.12298 0.08549 0.13981
TMR 0.07147 0.13038 0.09132 0.15037
Wiki 0.07074 0.13002 0.08091 0.14022

MWDS 0.07311 0.13061 0.09296 0.14797

Table 3: Results on query-focused summariza-
tion.

proximate minimal dominating set of the sen-
tence graph. On DUC05, our method achieves
the best result; and on DUC06, our method
outperforms all other systems except the best
team in DUC. Note that our method based
on the minimum dominating set is much sim-
pler than other systems. Our method only
depends on the distance to the query and has
only one parameter (i.e., the threshold λ in
generating the sentence graph).
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Figure 2: ROUGE-2 vs. threshold λ

We also conduct experiments to empirically
evaluate the sensitivity of the threshold λ.
Figure 2 shows the ROUGE-2 curve of our
MWDS method on the two datasets when λ
varies from 0.04 to 0.26. When λ is small,
edges fail to represent the similarity of the sen-
tences, while if λ is too large, the graph will
be sparse. As λ is approximately in the range
of 0.1 − 0.17, ROUGE-2 value becomes stable
and relatively high.

5.3 Update Summarization

Table 5 presents the experimental results on
update summarization. In Table 5, ‘TAC
Best” and “TAC Median” represent the best

and median results from the participants of
TAC 2008 summarization track in the two
tasks respectively according to the TAC 2008
report (Dang and Owczarzak, 2008). As seen
from the results, the ROUGE scores of our
methods are higher than the median results.
The good results of the best team typically
come from the fact that they utilize advanced
natural language processing (NLP) techniques
to resolve pronouns and other anaphoric ex-
pressions. Although we can spend more efforts
on the preprocessing or language processing
step, our goal here is to demonstrate the ef-
fectiveness of formalizing the update summa-
rization problem using the minimum dominat-
ing set and hence we do not utilize advanced
NLP techniques for preprocessing. The exper-
imental results demonstrate that our simple
update summarization method based on the
minimum dominating set can lead to compet-
itive performance for update summarization.

TAC08 A TAC08 B
ROUGE-2 ROUGE-

SU

ROUGE-2 ROUGE-

SU

TAC Best 0.1114 0.14298 0.10108 0.13669
TAC Median 0.08123 0.11975 0.06927 0.11046

MWDS 0.09012 0.12094 0.08117 0.11728

Table 5: Results on update summarization.

5.4 Comparative Summarization

We use the top six largest clusters of doc-
uments from TDT2 corpora to compare the
summary generated by different comparative
summarization methods. The topics of the six
document clusters are as follows: topic 1: Iraq
Issues; topic 2: Asia’s economic crisis; topic 3:
Lewinsky scandal; topic 4: Nagano Olympic
Games; topic 5: Nuclear Issues in Indian and
Pakistan; and topic 6: Jakarta Riot. From
each of the topics, 30 documents are extracted
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Topic Complementary Dominating Set Discriminative Sentence Selection Dominating Set
1 · · · U.S. Secretary of State

Madeleine Albright arrives to
consult on the stand-off between
the United Nations and Iraq.

the U.S. envoy to the United
Nations, Bill Richardson, · · ·
play down China’s refusal to sup-
port threats of military force
against Iraq

The United States and Britain
do not trust President Sad-
dam and wants cdotswarning
of serious consequences if Iraq
violates the accord.

2 Thailand’s currency, the
baht, dropped through a
key psychological level of · · ·
amid a regional sell-off sparked
by escalating social unrest in
Indonesia.

Earlier, driven largely by the de-
clining yen, South Korea’s
stock market fell by · · · , while
the Nikkei 225 benchmark in-
dex dipped below 15,000 in the
morning · · ·

In the fourth quarter, IBM
Corp. earned $2.1 billion, up
3.4 percent from $2 billion a
year earlier.

3 · · · attorneys representing Pres-
ident Clinton and Monica
Lewinsky.

The following night Isikoff · · · ,
where he directly followed the
recitation of the top-10 list: “Top
10 White House Jobs That
Sound Dirty.”

In Washington, Ken Starr’s
grand jury continued its inves-
tigation of the Monica Lewin-
sky matter.

4 Eight women and six men were
named Saturday night as the
first U.S. Olympic Snow-
board Team as their sport
gets set to make its debut in
Nagano, Japan.

this tunnel is finland’s cross coun-
try version of tokyo’s alpine ski
dome, and olympic skiers flock
from russia, · · · , france and aus-
tria this past summer to work out
the kinks · · ·

If the skiers the men’s super-
G and the women’s downhill
on Saturday, they will be back
on schedule.

5 U.S. officials have announced
sanctions Washington will im-
pose on India and Pakistan
for conducting nuclear tests.

The sanctions would stop all for-
eign aid except for humanitarian
purposes, ban military sales to
India · · ·

And Pakistan’s prime min-
ister says his country will sign
the U.N.’s comprehensive
ban on nuclear tests if In-
dia does, too.

6 · · · remain in force around
Jakarta, and at the Parliament
building where thousands of
students staged a sit-in Tues-
day · · · .

“President Suharto has given
much to his country over the
past 30 years, raising Indone-
sia’s standing in the world · · ·

What were the students doing
at the time you were there, and
what was the reaction of the
students to the troops?

Table 4: A case study on comparative document summarization. Some unimportant words are skipped due to
the space limit. The bold font is used to annotate the phrases that are highly related with the topics, and italic
font is used to highlight the sentences that are not proper to be used in the summary.

randomly to produce a one-sentence summary.
For comparison purpose, we extract the sen-
tence with the maximal degree as the base-
line. Note that the baseline can be thought
as an approximation of the dominating set
using only one sentence. Table 4 shows the
summaries generated by our method (comple-
mentary dominating set (CDS)), discrimina-
tive sentence selection (DSS) (Wang et al.,
2009a) and the baseline method. Our CDS
method can extract discriminative sentences
for all the topics. DSS can extract discrimina-
tive sentences for all the topics except topic 4.
Note that the sentence extracted by DSS for
topic 4 may be discriminative from other top-
ics, but it is deviated from the topic Nagano
Olympic Games. In addition, DSS tends to
select long sentences which should not be pre-
ferred for summarization purpose. The base-

line method may extract some general sen-
tences, such as the sentence for topic 2 and
topic 6 in Table 4.

6 Conclusion

In this paper, we propose a framework to
model the multi-document summarization us-
ing the minimum dominating set and show
that many well-known summarization tasks
can be formulated using the proposed frame-
work. The proposed framework leads to sim-
ple yet effective summarization methods. Ex-
perimental results show that our proposed
methods achieve good performance on several
multi-document document tasks.
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Abstract 

Main approaches to corpus-based seman-

tic class mining include distributional 

similarity (DS) and pattern-based (PB). 

In this paper, we perform an empirical 

comparison of them, based on a publicly 

available dataset containing 500 million 

web pages, using various categories of 

queries. We further propose a frequency-

based rule to select appropriate approach-

es for different types of terms. 

1 Introduction1 

Computing the semantic relationship between 

terms, which has wide applications in natural 

language processing and web search, has been a 

hot topic nowadays. This paper focuses on cor-

pus-based semantic class mining (Lin 1998; Pan-

tel and Lin 2002; Pasca 2004; Shinzato and 

Torisawa, 2005; Ohshima, et al., 2006; Zhang et 

al., 2009), where peer terms (or coordinate terms) 

are discovered from a corpus. 

Existing approaches to semantic class mining 

could roughly be divided into two categories: 

distributional similarity (DS), and pattern-based 

(PB). The first type of work (Hindle, 1990; Lin 

1998; Pantel and Lin 2002) is based on the distri-

butional hypothesis (Harris, 1985), saying that 

terms occurring in analogous (lexical or syntactic) 

contexts tend to be similar. DS approaches basi-

cally exploit second-order co-occurrences to dis-

cover strongly associated concepts. In pattern-

based approaches (Hearst 1992; Pasca 2004; 

Shinzato and Torisawa, 2005; Ohshima, et al., 

2006; Zhang et al., 2009), patterns are applied to 
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discover specific relationships between terms, 

from the general first-order co-occurrences. For 

example, “NP such as NP, NP…, and NP” is a 

popular and high-quality pattern for extracting 

peer terms (and also hyponyms). Besides the nat-

ural language patterns, some HTML tag tree pat-

terns (e.g., the drop down list) are also effective 

in semantic class mining. 

It is worth-noting that the word “pattern” also 

appears in some DS approaches (Pasca et al., 

2006; Tanev and Magnini, 2006; Pennacchiotti 

and Pantel, 2009), to represent the context of a 

term or a term-pair, e.g., “(invent, subject-of)” 

for the term “Edison”, and “- starring -” for the 

term-pair “(The Terminal, Tom Hanks)”. Alt-

hough “patterns” are utilized, we categorize them 

as DS approaches rather than PB, because they 

match the DS framework well. In this paper, PB 

only refers to the approaches that utilize patterns 

to exploit first-order co-occurrences. And the 

patterns in DS approaches are called contexts in 

the following part of this paper. 

Progress has been made and promising results 

have been reported in the past years for both DS 

and PB approaches. However, most previous re-

search work (some exceptions are discussed in 

related work) involves solely one category of ap-

proach. And there is little work studying the 

comparison of their performance for different 

types of terms (we use “term” to represent a sin-

gle word or a phrase). 

In this paper, we make an empirical study of 

this problem, based on a large-scale, publicly 

available dataset containing 500 million web 

pages. For each approach P, we build a term-

similarity graph G(P), with vertices representing 

terms, and edges being the confidence that the 

two terms are peers. Approaches are compared 

by the quality of their corresponding term graphs. 
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We measure the quality of a term graph by set 

expansion. Two query sets are adopted: One con-

tains 49 semantic classes of named entities and 

20220 trials (queries), collected by Pantel et al. 

(2009) from Wikipedia
2
; and the other contains 

100 queries of five lexical categories (proper 

nouns, common nouns, verbs, adjectives, and 

adverbs), built in this paper for studying the per-

formance comparison on different term types. 

With the dataset and the query sets, we study the 

comparison of DS and PB. Key observations and 

preliminary conclusions are, 

   DS vs. PB: DS approaches perform much 

better on common nouns, verbs, adjectives, 

and adverbs; while PB generates higher-

quality semantic classes for proper nouns. 

   Lexical vs. Html-tag patterns: If only lexi-

cal patterns are adopted in PB, the perfor-

mance drops significantly; while the perfor-

mance only becomes slightly worse with only 

Html-tag patterns being included. 

   Corpus-size: For proper nouns, PB beats 

DS even based on a much smaller corpus; 

similarly, for other term types, DS performs 

better even with a smaller corpus. 

Given these observations, we further study the 

feasibility of selecting appropriate approaches for 

different term types to obtain better results. A 

simple and effective frequency-based rule is pro-

posed for approach-selection. Our online seman-

tic mining system (NeedleSeek)
3
 adopts both PB 

and DS to build semantic classes. 

2 Related Work 

Existing efforts for semantic class mining has 

been done upon various types of data sources, 

including text-corpora, search-results, and query 

logs. In corpus-based approaches (Lin 1998; Lin 

and Pantel 2001; Pantel and Lin 2002; Pasca 

2004; Zhang et al., 2009), semantic classes are 

obtained by the offline processing of a corpus 

which can be unstructured (e.g., plain text) or 

semi-structured (e.g., web pages). Search-results-

based approaches (Etzioni et al., 2004; Kozareva 

et al., 2008; Wang and Cohen, 2008) assume that 

multiple terms (or, less often, one term) in a se-

mantic class have been provided as seeds. Other 

terms in the class are retrieved by sending queries 
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3
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(constructed according to the seeds) to a web 

search engine and mining the search results. Que-

ry logs are exploited in (Pasca 2007; Komachi 

and Suzuki, 2008; Yamaguchi 2008) for semantic 

class mining. This paper focuses on corpus-based 

approaches. 

As has been mentioned in the introduction 

part, primarily two types of methodologies are 

adopted: DS and PB. Syntactic context infor-

mation is used in (Hindle, 1990; Ruge, 1992; Lin 

1998; Lin and Pantel, 2001; Pantel and Lin, 2002) 

to compute term similarities. The construction of 

syntactic contexts requires sentences to be parsed 

by a dependency parser, which may be extremely 

time-consuming on large corpora. As an alterna-

tive, lexical context (such as text window) has 

been studied (Pantel et al., 2004; Agirre et al., 

2009; Pantel et al., 2009). In the pattern-based 

category, a lot of work has been done to discover 

term relations by sentence lexical patterns 

(Hearst 1992; Pasca 2004), HTML tag patterns 

(Shinzato and Torisawa, 2005), or both (Shi et al., 

2008; Zhang et al., 2009). In this paper, our focus 

is not one specific methodology, but the compari-

son and combination of them. 

A small amount of existing work is related to 

the comparison or combination of multiple meth-

ods. Pennacchiotti and Pantel (2009) proposed a 

feature combination framework (named ensemble 

semantic) to combine features generated by dif-

ferent extractors (distributional and “pattern-

based”) from various data sources. As has been 

discussed in the introduction, in our terminology, 

their “pattern-based” approaches are actually DS 

for term-pairs. In addition, their study is based on 

three semantic classes (actors, athletes, and musi-

cians), all of which are proper nouns. Differently, 

we perform the comparison by classifying terms 

according to their lexical categories, based on 

which additional insights are obtained about the 

pros and cons of each methodology. Pantel et al., 

(2004) proposed, in the scenario of extracting is-

a relations, one pattern-based approach and com-

pared it with a baseline syntactic distributional 

similarity method (called syntactic co-occurrence 

in their paper). Differently, we study the compar-

ison in a different scenario (semantic class min-

ing). In addition, they did not differentiate the 

lexical types of terms in the study. The third dif-

ference is that we proposed a rule for method-

selection while they did not. In (Pasca and Durme, 
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2008), clusters of distributional similar terms 

were adopted to expand the labeled semantic 

classes acquired from the “such as | including” 

pattern. Although both patterns and distributional 

similarity were used in their paper, they did not 

do any comparison about their performance. 

Agirre et al. (2009) compared DS approaches 

with WordNet-based methods in computing word 

similarity and relatedness; and they also studied 

the combination of them. Differently, the meth-

ods for comparison in our paper are DS and PB. 

3 Similarity Graph Construction 

A key operation in corpus-based semantic class 

mining is to build a term similarity graph, with 

vertices representing terms, and edges being the 

similarity (or distance) between terms. Given the 

graph, a clustering algorithm can be adopted to 

generate the final semantic classes. Now we de-

scribe the state-of-the-art DS and PB approaches 

for computing term similarities. 

3.1 Distributional Similarity 

DS approaches are based on the distributional 

hypothesis (Harris, 1985), which says that terms 

appearing in analogous contexts tend to be simi-

lar. In a DS approach, a term is represented by a 

feature vector, with each feature corresponding to 

a context in which the term appears. The similari-

ty between two terms is computed as the similari-

ty between their corresponding feature vectors. 

Different approaches may have different ways of 

1) defining a context, 2) assigning feature values, 

or 3) measuring the similarity between two fea-

ture vectors. 

 

Contexts 
Text window (window size: 2, 4) 

Syntactic 

Feature value PMI 

Similarity measure Cosine, Jaccard 

Table 1. DS approaches implemented in this paper 

 

Mainly two kinds of contexts have been exten-

sively studied: syntactic context and lexical con-

text. The construction of syntactic contexts relies 

on the syntactic parsing trees of sentences, which 

are typically the output of a syntactic parser. Giv-

en a syntactic tree, a syntactic context of a term w 

can be defined as the parent (or one child) of w in 

the tree together with their relationship (Lin, 

1998; Pantel and Lin, 2002; Pantel et al., 2009). 

For instance, in the syntactic tree of sentence 

“this is an interesting read for anyone studying 

logic”, one context of the word “logic” can be 

defined as “study V:obj:N”. In this paper, we 

adopt Minipar (Lin, 1994) to parse sentences and 

to construct syntactic trees. 

One popular lexical context is text window, 

where a context c for a term w in a sentence S is 

defined as a substring of the sentence containing 

but removing w. For example, for sentence 

“…w1w2w3ww4w5w6…”, a text window context 

(with size 4) of w can be “w2w3w4w5”. It is typi-

cally time-consuming to construct the syntactic 

trees for a large-scale dataset, even with a light-

weight syntactic parser like Minipar. The con-

struction of lexical contexts is much more effi-

cient because it does not require the syntactic 

dependency between terms. Both contexts are 

studied in this paper. 

After defining contexts for a term w, the next 

step is to construct a feature vector for the term: 

F(w)=(fw1, fw2…, fw,m), where m is the number of 

distinct contexts, and fw,c is the feature value of 

context c with respect to term w. Among all the 

existing approaches, the dominant way of assign-

ing feature values (or context values) is compu-

ting the pointwise mutual information (PMI) be-

tween the feature and the term, 

                
             

             
 (3.1) 

where F(w,c) is the frequency of context c occur-

ring for term w, F(w,*) is the total frequency of 

all contexts for term w, F(*,c) is the frequency of 

context c for all terms, and F(*,*) is the total fre-

quency of all context for all terms. They are cal-

culated as follows respectively, 

 

       ∑        
     

       ∑        
     

       ∑ ∑        
   

 
     

(3.2) 

where m and n are respectively the distinct num-

bers of contexts and terms. 

Following state-of-the-art, we adopt PMI in 

this paper for context weighting. 

Given the feature vectors of terms, the simi-

larity of any two terms is naturally computed as 

the similarity of their corresponding feature vec-

tors. Cosine similarity and Jaccard similarity 

(weighted) are implemented in our experiments, 

         ⃑  ⃑  
∑      

√∑   
 

  √∑   
 

 
  (3.3) 
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          ⃑  ⃑  
∑             

∑     ∑     ∑             
  (3.4) 

Jaccard similarity is finally used in presenting 

our experimental results (in Section 6), because it 

achieves higher performance. 

3.2 Pattern-based Approaches 

In PB approaches, a list of carefully-designed (or 

automatically learned) patterns is exploited and 

applied to a text collection, with the hypothesis 

that the terms extracted by applying each of the 

patterns to a specific piece of text tend to be simi-

lar. Two categories of patterns have been studied 

in the literature: sentence lexical patterns, and 

HTML tag patterns. Table-2 lists some popular 

patterns utilized in existing semantic class mining 

work (Heast 1992; Pasca 2004; Kozareva et al., 

2008; Zhang et al., 2009). In the table, “T” means 

a term (a word or a phrase). Exactly the same set 

of patterns is employed in implementing our pat-

tern-based approaches in this paper. 

 
Type Pattern 

Lexical 

T {, T}*{,} (and|or) {other} T 

(such as | including) T (and|,|.) 

T, T, T {,T}* 

Tag 

<ul>  <li> T </li>  …  <li> T </li>  </ul> 

<ol> <li> T </li> …  <li> T </li> </ol> 

<select> <option> T …<option> T </select> 

<table>  <tr> <td> T </td> … <td> T </td> </tr> ... </table> 

Other Html-tag repeat patterns 

Table 2. Patterns employed in this paper (Lexical: 

sentence lexical patterns; Tag: HTML tag patterns) 

We call the set of terms extracted by applying 

a pattern one time as a raw semantic class 

(RASC). The term similarity graph needs to be 

built by aggregating the information of the ex-

tracted RASCs. 

One basic idea of estimating term similarity is 

to count the number of RASCs containing both of 

them. This idea is extended in the state-of-the-art 

approaches (Zhang et al., 2009) to distinguish the 

reliability of different patterns and to punish term 

similarity contributions from the same domain 

(or site), as follows, 

          ∑      ∑          

  

   

 

 

   

 (3.5) 

where Ci,j is a RASC containing both term a and 

term b, P(Ci,j) is the pattern via which the RASC 

is extracted, and w(P) is the weight of pattern P. 

The above formula assumes all these RASCs be-

long to m sites (or domains) with Ci,j extracted 

from a page in site i, and ki being the number of 

RASCs corresponding to site i. 

In this paper, we adopt an extension of the 

above formula which considers the frequency of 

a single term, as follows, 

 Sim
*
(a, b) = Sim(a, b)  √              (3.6) 

where IDF(a)=log(1+N/N(a)), N is the total num-

ber of RASCs, and N(a) is the number of RASCs 

containing a. In the experiments, we simply set 

the weight of every pattern type to be the same 

value (1.0). 

4 Compare PB and DS 

We compare PB and DS by the quality of the 

term similarity graphs they generated. The quali-

ty of a term graph is measured by set expansion: 

Given a list of seed terms (e.g., S={lent, epipha-

ny}) belonging to a semantic class, our task is to 

find other members of this class, such as advent, 

easter, and christmas. 

In this section, we first describe our set expan-

sion algorithm adopted in our study. Then DS 

and PB are compared in terms of their set-

expansion performance. Finally we discuss ways 

of selecting appropriate approaches for different 

types of seeds to get better expansion results. 

4.1 Set Expansion Algorithm 

Having at hand the similarity graph, set expan-

sion can be implemented by selecting the terms 

most similar to the seeds. So given a query 

Q={s1, s2, …, sk}, the key is to compute       , 
the similarity between a term t and the seed-set 

Q. Naturally, we define it as the weighted aver-

age similarity between t and every seed in Q, 

        ∑             
 
     (4.1) 

where    is the weight of seed   , which can be a 

constant value, or a function of the frequency of 

term    in the corpus. Although Formula 3.6 can 

be adopted directly for calculating Sim(t,si), we 

use the following rank-based formula because it 

generate better expansion results. 

           
 

               
 (4.2) 

where         is the rank of term t among the 

neighbors of   . 
In our experiments, we fix   =1 and  =10. 
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4.2 Compare DS with PB 

In order to have a comprehensive comparison of 

the two approaches, we intentionally choose 

terms of diverse types and do experiments based 

on various data scales. We classify terms into 5 

types by their lexical categories: proper nouns, 

common nouns, verbs, adjectives, and adverbs. 

The data scales for experiments are from one mil-

lion to 500 million web pages. Please refer to 

sections 5.1 and 5.2 for more details about the 

corpora and seeds used for experiments. 

Experimental results (refer to Section 6) will 

show that, for proper nouns, the ranking of ap-

proaches (in terms of performance) is: 

PB > PB-HtmlTag > DS   PB-Lexical 

While for common nouns, verbs, adjectives, 

and adverbs, we have: 

DS > PB 

Here “PB-lexical” means only the lexical pat-

terns of Table 2 are adopted. Similarly, “PB-

HtmlTag” represents the PB approach with only 

Html-tag patterns being utilized. 

Please pay attention that this paper by no 

means covers all PB or DS approaches (although 

we have tried our best to include the most popu-

lar ones). For PB, there are of course other kinds 

of patterns (e.g., patterns based on deeper linguis-

tic analysis). For DS, other types of contexts may 

exist in addition to those listed in Table 1. So in 

interpreting experimental results, making obser-

vations, and drawing preliminary conclusions, we 

only means the patterns in Table 2 for PB and 

Table 1 for DS. It will be an interesting future 

work to include more DS and PB approaches in 

the study. 

In order to understand why PB performs so 

well in dealing with proper nouns while so badly 

for other term categories, we calculated the fre-

quency of each seed term in the extracted RASCs, 

the output of the pattern-matching algorithm. We 

define the normalized frequency of a term to be 

its frequency in the RASCs divided by the fre-

quency in the sentences of the original documents 

(with duplicate sentences merged). Then we de-

fine the mean normalized frequency (MNF) of a 

seed set S, as follows, 

        
∑            

   
 (4.3) 

where Fnorm(t) is the normalized frequency of t. 

The MNF values for the five seed sets are 

listed in Table 3, where we can see that proper 

nouns have the largest MNF values, followed by 

common nouns. In other words, the patterns in 

Table 2 capture the relations of more proper 

nouns than other term categories. 

 
Seed Categories Terms MNF 

Proper nouns 40 0.2333 

Common nouns 40 0.0716 

Verbs 40 0.0099 

Adjectives 40 0.0126 

Adverbs 40 0.0053 

Table 3. MNF values of different seed categories 

As mentioned in the introduction, the PB and 

DS approaches we studied capture first-order and 

second-order term co-occurrences respectively. 

Some existing work (e.g., Edmonds, 1997) 

showed that second-order co-occurrence leads to 

better results for detecting synonymy. Consider-

ing that a high proportion of coordinate terms of 

verbs, adjectives, and adverbs are their synonyms 

and antonyms, it is reasonable that DS behaves 

better for these term types because it exploits se-

cond-order co-occurrence. For PB, different from 

the standard way of dealing with first-order co-

occurrences where statistics are performed on all 

pairs of near terms, a subset of co-occurred terms 

are selected in PB by specific patterns. The pat-

terns in Table-2 help detecting coordinate proper 

nouns, because they are frequently occurred to-

gether obeying the patterns in sentences or web 

pages. But it is not the case for other term types. 

It will be interesting to study the performance of 

PB when more pattern types are added. 

4.3 Approach Selection 

Having observed that the two approaches per-

form quite differently on every type of queries 

we investigated, we hope we can improve the 

expansion performance by smartly selecting an 

approach for each query. In this section, we pro-

pose and study several approach-selection meth-

ods, by which we hope to gain some insights 

about the possibility and effectiveness of combin-

ing DS and PB for better set expansion. 

Oracle selection: In order to get an insight 

about the upper bound that we could obtain when 

combing the two methods, we implement an ora-

cle that chooses, for each query, the approach 

that generates better expansion results. 
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Frequency-based selection: It is shown in 

Table 3 that the mean normalized frequency of 

proper nouns is much larger than other terms. 

Motivated by this observation, we select a set 

expansion methodology for each query as fol-

lows: Select PB if the normalized frequency val-

ues of all terms in the query are larger than 0.1; 

otherwise choose DS. 

We demonstrate, in Section 6.3, the effective-

ness of the above selection methods. 

5 Experimental Setup 

5.1 Dataset and Exp. Environment 

We adopt a public-available dataset in our exper-

iments: ClueWeb09
4
. This is a very large dataset 

collected by Carnegie Mellon University in early 

2009 and has been used by several tracks of the 

Text Retrieval Conference (TREC)
5
. The whole 

dataset consists of 1.04 billion web pages in ten 

languages while only those in English, about 500 

million pages, are used in our experiments. The 

reason for selecting such a dataset is twofold: 

First, it is a corpus large enough for conducting 

web-scale experiments and getting meaningful 

results. Second, since it is publicly available, it is 

possible for other researchers to reproduce the 

experiments in the paper. 

 

Corpora 
Docs 

(millions) 

Sentences 

(millions) 
Description 

Clue500 500 13,000 All En pages in ClueWeb09 

Clue050  50   1,600 ClueWeb09 category B  

Clue010  10      330 Sampling from Clue050 

Clue001   1       42 Sampling from Clue050 

Table 4. Corpora used in experiments 

To test the impact of corpus size on set expan-

sion performance, four corpora are derived from 

the dataset, as outlined in Table 4. The Clue500 

corpus contains all the 500 million English web 

pages in the dataset; while Clue050 is a subset of 

ClueWeb09 (named category B) containing 50 

million English web pages. The remaining two 

corpora are respectively the 1/5 and 1/50 random 

sampling of web pages from Clue050. 

Documents in the corpora are stored and pro-

cessed in a cluster of 40 four-core machines. 

                                                 
4
 http://boston.lti.cs.cmu.edu/Data/clueweb09/  

5
 http://trec.nist.gov/  

5.2 Query Sets 

We perform our study using two query sets. 

WikiGold: It was collected by Pantel et al. 

(2009) from the “List of” pages in Wikipedia and 

used as the gold standard in their paper. This gold 

standard consists of 49 entity sets, and 20220 tri-

als (used as queries) of various numbers of seeds. 

Most seeds in the query set are named entities. 

Please refer to Pantel et al. (2009) for details of 

the gold standard. 

Mix100: This query set consists of 100 queries 

in five categories: verbs, adjectives, adverbs, 

common nouns, and proper nouns. There are 20 

queries in every category and two seeds in every 

query. The query set was built by the following 

steps: First, 20 terms of each category were ran-

domly selected from a term list (which is con-

structed by part-of-speech tagging the Clue050 

corpus and removing low-frequency terms), and 

were treated as the first seed of the each query. 

Then, we manually added one additional seed for 

each query. The reason for utilizing two seeds 

instead of one is the observation that a large por-

tion of the terms selected in the previous step be-

long to multiple categories. For example, “color-

ful” is both an adjective and a proper noun (a 

Japanese manga). 

5.3 Results Labeling 

No human labeling efforts are needed for the ex-

pansion results of the WikiGold query set. Every 

returned term is automatically judged to be 

“Good” (otherwise “Bad”) if it appears in the 

corresponding gold standard entity set. 

For Mix100, the search results of various ap-

proaches are merged and labeled by three human 

labelers. Each labeler assigns each term in the 

search results a label of “Good”, “Fair” or “Bad”. 

The labeling agreement values (measured by per-

centage agreement) between labelers I and II, I 

and III, II and III are respectively 0.82, 0.81, and 

0.81. The ultimate judgment of each result term 

is obtained from the three labelers by majority 

voting. In the case of three labelers giving mutu-

ally different results (i.e., one “Good”, one “Fair” 

and one “Bad”), the ultimate judgment is set to 

“Fair” (the average). 

5.4 Evaluation Metrics 

After removing seeds from the expansion results, 

we adopt the following metrics to evaluate the 
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results of each query. The evaluation score on a 

query set is the average over all the queries. 

Precision@k: The percentage of relevant 

(good or fair) terms in the top-k expansion results 

(terms labeled as “Fair” are counted as 0.5) 

Recall@k: The ratio of relevant terms in the 

top-k results to the total number of relevant terms 

R-Precision: Precision@R where R is the total 

number of terms labeled as “Good” 

Mean average precision (MAP): The average 

of precision values at the positions of all good or 

fair results 

6 Experimental Results 

6.1 Overall Performance Comparison 

Table 5 lists the performance (measured by 

MAP, R-precision, and the precisions at ranks 25, 

50, and 100) of some key approaches on corpus 

Clue050 and query set WikiGold. The results of 

query set Mix100 are shown in Table 6. In the 

results, TWn represents the DS approach with 

text-window of size n as contexts, Syntactic is the 

DS approach with syntactic contexts, PB-Lexical 

means only the lexical patterns of Table 2 are 

adopted, and PB-HtmlTag represents the PB ap-

proach with only Html-tag patterns utilized. 

 
Approach MAP R-Prec P@25 P@50 P@100 

TW2 0.218 0.287 0.359 0.278 0.204 

TW4 0.152 0.210 0.325 0.244 0.173 

Syntactic 0.170 0.247 0.314 0.242 0.178 

PB-Lexical 0.227 0.276 0.352 0.272 0.190 

PB-HtmlTag 0.354 0.417 0.513 0.413 0.311 

PB 0.362 0.424 0.520 0.418 0.314 

Pantel-24M N/A 0.264 0.353 0.298 0.239 

Pantel-120M N/A 0.356 0.377 0.319 0.250 

Pantel-600M N/A 0.404 0.407 0.347 0.278 

Table 5. Performance comparison on the Clue050 cor-

pus (query set: WikiGold) 

It is shown that PB gets much higher evalua-

tion scores than other approaches on the WikiG-

old query set and the proper-nouns category of 

Mix100. While for other seed categories in 

Mix100, TW2 return significantly better results. 

We noticed that most seeds in WikiGold are 

proper nouns. So the experimental results tend to 

indicate that the performance comparison be-

tween state-of-the-art DS and PB approaches de-

pends on the types of terms to be mined, specifi-

cally, DS approaches perform better in mining 

semantic classes of common nouns, verbs, adjec-

tives, and adverbs; while state-of-the-art PB ap-

proaches are more suitable for mining semantic 

classes of proper nouns. The performance of PB 

is low in dealing with other types of terms (espe-

cially adverbs). The performance of PB drops 

significantly if only lexical patterns are used; and 

the HtmlTag-only version of PB performs only 

slightly worse than PB. 

The observations are verified by the precision-

recall graph in Figure 1 on Clue500. The results 

of the syntactic approach on Clue500 are not in-

cluded, because it is too time-consuming to parse 

all the 500 million web pages by a dependency 

parser (even using a high-performance parser like 

Minipar). It took overall about 12,000 CPU-hours 

to parse all the sentences in Clue050 by Minipar. 

 
Query types & 

Approaches 
MAP P@5 P@10 P@20 

Proper 

Nouns 

TW2 0.302 0.835 0.810 0.758 

PB 0.336 0.920 0.838 0.813 

Common 

Nouns 

TW2 0.384 0.735 0.668 0.595 

PB 0.212 0.640 0.548 0.485 

Verbs 
TW2 0.273 0.655 0.543 0.465 

PB 0.176 0.415 0.373 0.305 

Adjectives 
TW2 0.350 0.655 0.563 0.473 

PB 0.120 0.335 0.285 0.234 

Adverbs 
TW2 0.432 0.605 0.505 0.454 

PB 0.043 0.100 0.095 0.089 

Table 6. Performance comparison on different query 

types (Corpus: Clue050; query set: Mix100) 

 

Figure 1. Precision and recall of various approaches 

(query set: WikiGold) 

The methods labeled Pantel-24M etc. (in Table 

5 and Figure 1) are the approaches presented in 

(Pantel et al., 2009) on their corpus (called 

Web04, Web20, and Web100 in the paper) con-

taining respectively 24 million, 120 million, and 

600 million web pages. Please pay attention that 

their results and ours may not be directly compa-

rable, because different corpora and set-
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expansion algorithms were used. Their results are 

listed here for reference purpose only. 

6.2 Corpus Size Effect 

Table 7 shows the performance (measured by 

MAP) of two approaches on query set Mix100, 

by varying corpus size. We observed that the per-

formance of TW2 improves rapidly along with 

the growth of corpus size from one million to 50 

million documents. From Clue050 to Clue500, 

the performance is slightly improved. 

 
Query types & 

Approaches 
Clue001 Clue010 Clue050 Clue500 

Proper 

Nouns 

TW2 0.209 0.265 0.302 0.311 

PB 0.355 0.351 0.336 0.327 

Common 

Nouns 

TW2 0.259 0.348 0.384 0.393 

PB 0.200 0.234 0.212 0.205 

Verbs 
TW2 0.224 0.268 0.273 0.278 

PB 0.101 0.134 0.176 0.148 

Adjectives 
TW2 0.309 0.326 0.350 0.353 

PB 0.077 0.158 0.120 0.129 

Adverbs 
TW2 0.413 0.423 0.432 0.437 

PB 0.028 0.058 0.043 0.059 

Table 7. Effect of different corpus size (query set: 

Mix100; metric: MAP) 

For PB, however, the performance change is 

not that simple. For proper nouns, the best per-

formance (in terms of MAP) is got on the two 

small corpora Clue001 and Clue010; and the 

score does not increase when corpus size grows. 

Different observations are made on WikiGold 

(see Figure 1), where the performance improves a 

lot with the data growth from Clue001 to 

Clue010, and then stabilizes (from Clue010 to 

Clue500). For other term types, the MAP scores 

do not grow much after Clue010. To our current 

understanding, the reason may be due to the two-

fold effect of incorporating more data in mining: 

bringing useful information as well as noise. 

Clue001 contains enough information, which is 

fully exploited by the PB approach, for expand-

ing the proper-nouns in Mix100. So the perfor-

mance of PB on Clue001 is excellent. The named 

entities in WikiGold are relatively rare, which 

requires a larger corpus (Clue010) for extracting 

peer terms from. But when the corpus gets larger, 

we may not be able to get more useful infor-

mation to further improve results quality. 

Another interesting observation is that, for 

proper nouns, the performance of PB on Clue001 

is even much better than that of TW2 on corpus 

Clue500. Similarly, for other query types (com-

mon nous, verbs, adjectives, and adverbs), TW2 

easily beats PB even with a much smaller corpus. 

6.3 Approach Selection 

Here we demonstrate the experimental results of 

combining DS and PB with the methods we pro-

posed in Section 4.3. Table 8 shows the combina-

tion of PB and TW2 on corpus Clue050 and que-

ry set Mix100. The overall performance relies on 

the number (or percentage) of queries in each 

category. Two ways of mixing the queries are 

tested: avg(4:1:1:1:1) and avg(1:1:1:1:1), where 

the numbers are the proportion of proper nouns, 

common nouns, verbs, adjectives, and adverbs. 

 

Approach 
Avg (1:1:1:1:1) Avg (4:1:1:1:1) 

P@5 P@10 P@20 P@5 P@10 P@20 

TW2 0.697 0.618 0.548 0.749 0.690 0.627 

PB 0.482 0.428 0.385 0.646 0.581 0.545 

Oracle 0.759 0.663 0.591 0.836 0.759 0.695 

Freq-based 0.721 0.633 0.570 0.799 0.723 0.671 

Table 8. Experiments of combining both approaches 

(Corpus: Clue050; query set: Mix100) 

The expansion performance is improved a lot 

with our frequency-based combination method. 

As expected, oracle selection achieves great per-

formance improvement, which shows the large 

potential of combining DS and PB. Similar re-

sults (omitted due to space limitations) are ob-

served on the other corpora. 

Our online semantic mining system (Needle-

Seek, http://needleseek.msra.cn) adopts both PB 

and DS for semantic class construction. 

7 Conclusion 

We compared two mainstream methods (DS and 

PB) for semantic class mining, based on a dataset 

of 500 million pages and using five term types. 

We showed that PB is clearly adept at extracting 

semantic classes of proper nouns; while DS is 

relatively good at dealing with other types of 

terms. In addition, a small corpus is sufficient for 

each approach to generate better semantic classes 

of its “favorite” term types than those obtained 

by its counterpart on a much larger corpus. Final-

ly, we tried a frequency-based method of com-

bining them and saw apparent performance im-

provement. 
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Abstract

We present a novel approach to auto-
matic metaphor identification in unre-
stricted text. Starting from a small seed set
of manually annotated metaphorical ex-
pressions, the system is capable of har-
vesting a large number of metaphors of
similar syntactic structure from a corpus.
Our method is distinguished from previ-
ous work in that it does not employ any
hand-crafted knowledge, other than the
initial seed set, but, in contrast, captures
metaphoricity by means of verb and noun
clustering. Being the first to employ un-
supervised methods for metaphor identifi-
cation, our system operates with the pre-
cision of 0.79.

1 Introduction

Besides enriching our thought and communica-
tion with novel imagery, the phenomenon of
metaphor also plays a crucial structural role in our
use of language. Metaphors arise when one con-
cept is viewed in terms of the properties of the
other. Below are some examples of metaphor.

(1) How can I kill a process? (Martin, 1988)

(2) Inflation has eaten up all my savings. (Lakoff
and Johnson, 1980)

(3) He shot down all of my arguments. (Lakoff
and Johnson, 1980)

(4) And then my heart with pleasure fills,
And dances with the daffodils.1

In metaphorical expressions seemingly unrelated
features of one concept are associated with an-
other concept. In the computer science metaphor

1“I wandered lonely as a cloud”, William Wordsworth,
1804.

in (1) the computational process is viewed as
something alive and, therefore, its forced termi-
nation is associated with the act of killing. Lakoff
and Johnson (1980) explain metaphor as a system-
atic association, or a mapping, between two con-
cepts or conceptual domains: the source and the
target. The metaphor in (3) exemplifies a map-
ping of a concept of argument to that of war. The
argument, which is the target concept, is viewed
in terms of a battle (or a war), the source concept.
The existence of such a link allows us to talk about
arguments using the war terminology, thus giving
rise to a number of metaphors.

Characteristic to all areas of human activity
(from poetic to ordinary to scientific) and, thus,
to all types of discourse, metaphor becomes an
important problem for natural language process-
ing (NLP). In order to estimate the frequency of
the phenomenon, Shutova and Teufel (2010) con-
ducted a corpus study on a subset of the British
National Corpus (BNC) (Burnard, 2007) repre-
senting various genres. They manually anno-
tated metaphorical expressions in this data and
found that 241 out of 761 sentences contained a
metaphor, whereby in 164 phrases metaphoricity
was introduced by a verb. Due to such a high fre-
quency of their use, a system capable of recog-
nizing and interpreting metaphorical expressions
in unrestricted text would become an invaluable
component of any semantics-oriented NLP appli-
cation.

Automatic processing of metaphor can be
clearly divided into two subtasks: metaphor
identification (distinguishing between literal and
metaphorical language in text) and metaphor
interpretation (identifying the intended literal
meaning of a metaphorical expression). Both of
them have been repeatedly attempted in NLP.

To date the most influential account of
metaphor identification is that of Wilks (1978).

1002



According to Wilks, metaphors represent a viola-
tion of selectional restrictions in a given context.
Consider the following example.

(5) My car drinks gasoline. (Wilks, 1978)

The verb drink normally takes an animate subject
and a liquid object. Therefore, drink taking a car
as a subject is an anomaly, which may as well in-
dicate metaphorical use of drink.

This approach was automated by Fass (1991)
in his met* system. However, Fass himself in-
dicated a problem with the method: it detects
any kind of non-literalness or anomaly in lan-
guage (metaphors, metonymies and others), i.e.,
it overgenerates with respect to metaphor. The
techniques met* uses to differentiate between
those are mainly based on hand-coded knowledge,
which implies a number of limitations. In a sim-
ilar manner manually created knowledge in the
form of WordNet (Fellbaum, 1998) is employed
by the system of Krishnakumaran and Zhu (2007),
which essentially differentiates between highly
lexicalized metaphors included in WordNet, and
novel metaphorical senses.

Alternative approaches (Gedigan et al., 2006)
search for metaphors of a specific domain defined
a priori (e.g. MOTION metaphors) in a specific
type of discourse (e.g. Wall Street Journal). In
contrast, the scope of our experiments is the whole
of the British National Corpus (BNC) (Burnard,
2007) and the domain of the expressions we iden-
tify is unrestricted. However, our technique is also
distinguished from the systems of Fass (1991) and
Krishnakumaran and Zhu (2007) in that it does
not rely on any hand-crafted knowledge, but rather
captures metaphoricity in an unsupervised way by
means of verb and noun clustering.

The motivation behind the use of clustering
methods for metaphor identification task lies in
the nature of metaphorical reasoning based on as-
sociation. Compare, for example, the target con-
cepts of marriage and political regime. Having
quite distinct meanings, both of them are cogni-
tively mapped to the source domain of mecha-
nism, which shows itself in the following exam-
ples:

(6) Our relationship is not really working.

(7) Diana and Charles did not succeed in mend-
ing their marriage.

(8) The wheels of Stalin’s regime were well oiled
and already turning.

We expect that such relatedness of distinct tar-
get concepts should manifest itself in the exam-
ples of language use, i.e. target concepts that are
associated with the same source concept should
appear in similar lexico-syntactic environments.
Thus, clustering concepts using grammatical rela-
tions (GRs) and lexical features would allow us to
capture their relatedness by association and har-
vest a large number of metaphorical expressions
beyond our seed set. For example, the sentence
in (6) being part of the seed set should enable the
system to identify metaphors in both (7) and (8).

In summary, our system (1) starts from a seed
set of metaphorical expressions exemplifying a
range of source–target domain mappings; (2) per-
forms unsupervised noun clustering in order to
harvest various target concepts associated with the
same source domain; (3) by means of unsuper-
vised verb clustering creates a source domain verb
lexicon; (4) searches the BNC for metaphorical
expressions describing the target domain concepts
using the verbs from the source domain lexicon.

We tested our system starting with a collection
of metaphorical expressions representing verb-
subject and verb-object constructions, where the
verb is used metaphorically. We evaluated the pre-
cision of metaphor identification with the help of
human judges. In addition to this we compared
our system to a baseline built upon WordNet,
whereby we demonstrated that our method goes
far beyond synonymy and captures metaphors not
directly related to any of those seen in the seed set.

2 Experimental Data

2.1 Seed Phrases

We used the dataset of Shutova (2010) as a seed
set. Shutova (2010) annotated metaphorical ex-
pressions in a subset of the BNC sampling vari-
ous genres: literature, newspaper/journal articles,
essays on politics, international relations and his-
tory, radio broadcast (transcribed speech). The
dataset consists of 62 phrases that are single-word
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metaphors representing verb-subject and verb-
object relations, where a verb is used metaphor-
ically. The seed phrases include e.g. stir ex-
citement, reflect enthusiasm, accelerate change,
grasp theory, cast doubt, suppress memory, throw
remark (verb - direct object constructions) and
campaign surged, factor shaped [..], tension
mounted, ideology embraces, changes operated,
approach focuses, example illustrates (subject -
verb constructions).

2.2 Corpus
The search space for metaphor identification was
the British National Corpus (BNC) that was
parsed using the RASP parser of Briscoe et al.
(2006). We used the grammatical relations out-
put of RASP for BNC created by Andersen et al.
(2008). The system searched the corpus for the
source and target domain vocabulary within a par-
ticular grammatical relation (verb-object or verb-
subject).

3 Method

Starting from a small seed set of metaphorical ex-
pressions, the system implicitly captures the as-
sociations that underly their production and com-
prehension. It generalizes over these associations
by means of unsupervised verb and noun clus-
tering. The obtained clusters then represent po-
tential source and target concepts between which
metaphorical associations hold. The knowledge
of such associations is then used to annotate
metaphoricity in a large corpus.

3.1 Clustering Motivation
Abstract concepts that are associated with the
same source domain are often related to each
other on an intuitive and rather structural level,
but their meanings, however, are not necessarily
synonymous or even semantically close. The re-
sults of previous research on corpus-based lexi-
cal semantics suggest that the linguistic environ-
ment in which a lexical item occurs can shed light
on its meaning. A number of works have shown
that it is possible to automatically induce seman-
tic word classes from corpus data via clustering of
contextual cues (Pereira et al., 1993; Lin, 1998;
Schulte im Walde, 2006). The consensus is that

the lexical items exposing similar behavior in a
large body of text most likely have the same mean-
ing. However, the concepts of marriage and po-
litical regime, that are also observed in similar
lexico-syntactic environments, albeit having quite
distinct meanings are likewise assigned by such
methods to the same cluster. In contrast to con-
crete concepts, such as tea, water, coffee, beer,
drink, liquid, that are clustered together due to
meaning similarity, abstract concepts tend to be
clustered together by association with the same
source domain. It is the presence of this associ-
ation that explains the fact that they share com-
mon contexts. We exploit this idea for identifi-
cation of new target domains associated with the
same source domain. We then use unsupervised
verb clustering to collect source domain vocab-
ulary, which in turn allows us to harvest a large
number of new metaphorical expressions.

3.2 Verb and Noun Clustering

Since Levin (1993) published her classification,
there have been a number of attempts to automati-
cally classify verbs into semantic classes using su-
pervised and unsupervised approaches (Lin, 1998;
Brew and Schulte im Walde, 2002; Korhonen et
al., 2003; Schulte im Walde, 2006; Joanis et al.,
2008; Sun and Korhonen, 2009). Similar methods
were also applied to acquisition of noun classes
from corpus data (Rooth et al., 1999; Pantel and
Lin, 2002; Bergsma et al., 2008).

We adopt a recent verb clustering approach of
Sun and Korhonen (2009), who used rich syntac-
tic and semantic features extracted using a shallow
parser and a clustering method suitable for the re-
sulting high dimensional feature space. When Sun
and Korhonen evaluated their approach on 204
verbs from 17 Levin classes, they obtained 80.4
F-measure (which is high in particular for an un-
supervised approach). We apply this approach to a
much larger set of 1610 verbs: all the verb forms
appearing in VerbNet (Kipper et al., 2006) with
the exception of highly infrequent ones. In addi-
tion, we adapt the approach to noun clustering.

3.2.1 Feature Extraction
Our verb dataset is a subset of VerbNet com-

piled as follows. For all the verbs in VerbNet we
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extracted their occurrences (up to 10,000) from
the raw corpus data collected originally by Korho-
nen et al. (2006) for construction of VALEX lexi-
con. Only the verbs found in this data more than
150 times were included in the experiment.

For verb clustering, we adopted the best per-
forming features of Sun and Korhonen (2009):
automatically acquired verb subcategorization
frames (SCFs) parameterized by their selectional
preferences (SPs). We obtained these features us-
ing the SCF acquisition system of Preiss et al.
(2007). The system tags and parses corpus data
using the RASP parser and extracts SCFs from the
resulting GRs using a rule-based classifier which
identifies 168 SCF types for English verbs. It pro-
duces a lexical entry for each verb and SCF com-
bination occurring in corpus data. We obtained
SPs by clustering argument heads appearing in the
subject and object slots of verbs in the resulting
lexicon.

Our noun dataset consists of 2000 most fre-
quent nouns in the BNC. Following previous
works on semantic noun classification (Pantel and
Lin, 2002; Bergsma et al., 2008), we used GRs as
features for noun clustering. We employed all the
argument heads and verb lemmas appearing in the
subject, direct object and indirect object relations
in the RASP-parsed BNC.

The feature vectors were first constructed from
the corpus counts, and subsequently normalized
by the sum of the feature values before applying
clustering.

3.2.2 Clustering Algorithm
We use spectral clustering (SPEC) for both

verbs and nouns. This technique has proved to be
effective in previous verb clustering works (Brew
and Schulte im Walde, 2002; Sun and Korhonen,
2009) and in related NLP tasks involving high di-
mensional data (Chen et al., 2006). We use the
MNCut algorithm for SPEC which has a wide ap-
plicability and a clear probabilistic interpretation
(Meila and Shi, 2001).

The task is to group a given set of words W =
{wn}N

n=1 into a disjoint partition of K classes.
SPEC takes a similarity matrix as input. We
construct it using the Jensen-Shannon divergence
(JSD) as a measure. The JSD between two feature

vectors w and w′ is djsd(w, w′) = 1
2D(w||m) +

1
2D(w′||m) where D is the Kullback-Leibler di-
vergence, and m is the average of the w and w′.

The similarity matrix S is constructed where
Sij = exp(−djsd(w, w′)). In SPEC, the simi-
larities Sij are viewed as weights on the edges
ij of a graph G over W . The similarity matrix
S is thus the adjacency matrix for G. The de-
gree of a vertex i is di =

∑N
j=1 Sij . A cut be-

tween two partitions A and A′ is defined to be
Cut(A, A′) =

∑
m∈A,n∈A′ Smn.

The similarity matrix S is then transformed into
a stochastic matrix P .

P = D−1S (1)

The degree matrix D is a diagonal matrix where
Dii = di.

It was shown by Meila and Shi (2001) that if P
has the K leading eigenvectors that are piecewise
constants2 with respect to a partition I∗ and their
eigenvalues are not zero, then I∗ minimizes the
multiway normalized cut (MNCut):

MNCut(I) = K − ∑K
k=1

Cut(Ik,Ik)
Cut(Ik,I)

Pmn can be interpreted as the transition probabil-
ity between the vertexes m, n. The criterion can
thus be expressed as MNCut(I) =

∑K
k=1(1 −

P (Ik → Ik|Ik)) (Meila, 2001), which is the sum
of transition probabilities across different clusters.
This criterion finds the partition where random
walks are most likely to happen within the same
cluster. In practice, the leading eigenvectors of
P are not piecewise constants. However, we can
extract the partition by finding the approximately
equal elements in the eigenvectors using a cluster-
ing algorithm, such as K-Means.

Since SPEC has elements of randomness, we ran
the algorithm multiple times and the partition that
minimizes the distortion (the distances to cluster
centroid) is reported. Some of the clusters ob-
tained as a result of applying the algorithm to our
noun and verb datasets are demonstrated in Fig-
ures 1 and 2 respectively. The noun clusters rep-
resent target concepts that we expect to be asso-
ciated with the same source concept (some sug-
gested source concepts are given in Figure 1, al-
though the system only captures those implicitly).

2An eigenvector v is piecewise constant with respect to I
if v(i) = v(j)∀i, j ∈ Ik and k ∈ 1, 2...K
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Source: MECHANISM
Target Cluster: consensus relation tradition partnership
resistance foundation alliance friendship contact reserve
unity link peace bond myth identity hierarchy relation-
ship connection balance marriage democracy defense
faith empire distinction coalition regime division
Source: STORY; JOURNEY
Target Cluster: politics practice trading reading occupa-
tion profession sport pursuit affair career thinking life
Source: LOCATION; CONTAINER
Target Cluster: lifetime quarter period century succes-
sion stage generation decade phase interval future
Source: LIVING BEING; END
Target Cluster: defeat fall death tragedy loss collapse de-
cline disaster destruction fate

Figure 1: Clustered target concepts

Source Cluster: sparkle glow widen flash flare gleam
darken narrow flicker shine blaze bulge
Source Cluster: gulp drain stir empty pour sip spill swal-
low drink pollute seep flow drip purify ooze pump bub-
ble splash ripple simmer boil tread
Source Cluster: polish clean scrape scrub soak
Source Cluster: kick hurl push fling throw pull drag haul
Source Cluster: rise fall shrink drop double fluctuate
dwindle decline plunge decrease soar tumble surge spiral
boom

Figure 2: Clustered verbs (source domains)

The verb clusters contain coherent lists of source
domain vocabulary.

3.3 Selectional Preference Strength Filter

Following Wilks (1978), we take metaphor to rep-
resent a violation of selectional restrictions. How-
ever, not all verbs have an equally strong capacity
to constrain their arguments, e.g. remember, ac-
cept, choose etc. are weak in that respect. We
suggest that for this reason not all the verbs would
be equally prone to metaphoricity, but only the
ones exhibiting strong selectional preferences. We
test this hypothesis experimentally and expect that
placing this criterion would enable us to filter out
a number of candidate expressions, that are less
likely to be used metaphorically.

We automatically acquired selectional pref-
erence distributions for Verb-Subject and
Verb-Object relations from the BNC parsed
by RASP. We first clustered 2000 most frequent
nouns in the BNC into 200 clusters using SPEC

as described in the previous section. The ob-
tained clusters formed our selectional preference
classes. We adopted the selectional preference

measure proposed by Resnik (1993) and success-
fully applied to a number of tasks in NLP includ-
ing word sense disambiguation (Resnik, 1997).
Resnik models selectional preference of a verb in
probabilistic terms as the difference between the
posterior distribution of noun classes in a partic-
ular relation with the verb and their prior distri-
bution in that syntactic position regardless of the
identity of the predicate. He quantifies this dif-
ference using the relative entropy (or Kullback-
Leibler distance), defining the selectional prefer-
ence strength (SPS) as follows.

SR(v) = D(P (c|v)||P (c)) =
∑

c

P (c|v) log
P (c|v)

P (c)
,

(2)

where P (c) is the prior probability of the noun
class, P (c|v) is the posterior probability of the
noun class given the verb and R is the gram-
matical relation in question. SPS measures how
strongly the predicate constrains its arguments.

We use this measure to filter out the verbs with
weak selectional preferences. The optimal SPS

threshold was set experimentally on a small held-
out dataset and approximates to 1.32. We ex-
cluded expressions containing the verbs with pref-
erence strength below this threshold from the set
of candidate metaphors.

4 Evaluation and Discussion

In order to prove that our metaphor identification
method generalizes well over the seed set and goes
far beyond synonymy, we compared its output to
that of a baseline taking WordNet synsets to repre-
sent source and target domains. We evaluated the
quality of metaphor tagging in terms of precision
with the help of human judges.

4.1 Comparison against WordNet Baseline
The baseline system was implemented using syn-
onymy information from WordNet to expand on
the seed set. Assuming all the synonyms of the
verbs and nouns in seed expressions to represent
the source and target vocabularies respectively,
the system searches for phrases composed of lex-
ical items belonging to those vocabularies. For
example, given a seed expression stir excitement,
the baseline finds phrases such as arouse fervour,

1006



stimulate agitation, stir turmoil etc. However, it is
not able to generalize over the concepts to broad
semantic classes, e.g. it does not find other feel-
ings such as rage, fear, anger, pleasure etc., which
is necessary to fully characterize the target do-
main. The same deficiency of the baseline system
manifests itself in the source domain vocabulary:
the system has only the knowledge of direct syn-
onyms of stir, as opposed to other verbs charac-
teristic to the domain of liquids, e.g. pour, flow,
boil etc., successfully identified by means of clus-
tering.

To compare the coverage achieved by unsuper-
vised clustering to that of the baseline in quanti-
tative terms, we estimated the number of Word-
Net synsets, i.d. different word senses, in the
metaphorical expressions captured by the two sys-
tems. We found that the baseline system covers
only 13% of the data identified using clustering
and does not go beyond the concepts present in
the seed set. In contrast, most metaphors tagged
by our method are novel and represent a con-
siderably wider range of meanings, e.g. given
the seed metaphors stir excitement, throw remark,
cast doubt the system identifies previously unseen
expressions swallow anger, hurl comment, spark
enthusiasm etc. as metaphorical.

4.2 Comparison with Human Judgements
In order to access the quality of metaphor identifi-
cation by both systems we used the help of human
annotators. The annotators were presented with
a set of randomly sampled sentences containing
metaphorical expressions as annotated by the sys-
tem and by the baseline. They were asked to mark
the tagged expressions that were metaphorical in
their judgement as correct.

The annotators were encouraged to rely on their
own intuition of metaphor. However, we also pro-
vided some guidance in the form of the following
definition of metaphor3:

1. For each verb establish its meaning in con-
text and try to imagine a more basic meaning
of this verb on other contexts. Basic mean-
ings normally are: (1) more concrete; (2) re-

3taken from the annotation procedure of Shutova and
Teufel (2010) that is in turn partly based on the work of Prag-
glejaz Group (2007).

CKM 391 Time and time again he would stare at the
ground, hand on hip, if he thought he had received a bad
call, and then swallow his anger and play tennis.
AD9 3205 He tried to disguise the anxiety he felt when
he found the comms system down, but Tammuz was
nearly hysterical by this stage.
AMA 349 We will halt the reduction in NHS services
for long-term care and community health services which
support elderly and disabled patients at home.
ADK 634 Catch their interest and spark their enthu-
siasm so that they begin to see the product’s potential.
K2W 1771 The committee heard today that gangs regu-
larly hurled abusive comments at local people, making
an unacceptable level of noise and leaving litter behind
them.

Figure 3: Sentences tagged by the system
(metaphors in bold)

lated to bodily action; (3) more precise (as
opposed to vague); (4) historically older.

2. If you can establish the basic meaning that
is distinct from the meaning of the verb in
this context, the verb is likely to be used
metaphorically.

We had 5 volunteer annotators who were all na-
tive speakers of English and had no or sparse lin-
guistic knowledge. Their agreement on the task
was 0.63 in terms of κ (Siegel and Castellan,
1988), whereby the main source of disagreement
was the presence of highly lexicalized metaphors,
e.g. verbs such as adopt, convey, decline etc.
We then evaluated the system performance against
their judgements in terms of precision. Precision
measures the proportion of metaphorical expres-
sions that were tagged correctly among the ones
that were tagged. We considered the expressions
tagged as metaphorical by at least three annota-
tors to be correct. As a result our system identi-
fies metaphor with the precision of 0.79, whereas
the baseline only attains 0.44. Some examples of
sentences annotated by the system are shown in
Figure 3.

Such a striking discrepancy between the per-
formance levels of the clustering approach and
the baseline can be explained by the fact that a
large number of metaphorical senses are included
in WordNet. This means that in WordNet synsets
source domain verbs are mixed with more abstract
terms. For example, the metaphorical sense of
shape in shape opinion is part of the synset (de-
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termine, shape, mold, influence, regulate). This
results in the baseline system tagging literal ex-
pressions as metaphorical, erroneously assuming
that the verbs from the synset belong to the source
domain.

The main source of confusion in the output of
our clustering method was the conventionality of
some metaphorical expressions, e.g. hold views,
adopt traditions, tackle a problem. The system
is capable of tracing metaphorical etymology of
conventional phrases, but their senses are highly
lexicalized. This lexicalization is reflected in the
data and affects clustering in that conventional
metaphors are sometimes clustered together with
literally used terms, e.g. tackle a problem and re-
solve a problem, which may suggest that the lat-
ter are metaphorical. It should be noted, however,
that such errors are rare.

Since there is no large metaphor-annotated cor-
pus available, it was impossible for us to reli-
ably evaluate the recall of the system. How-
ever, the system identified a total number of 4456
metaphorical expressions in the BNC starting with
a seed set of only 62, which is a promising result.

5 Related Work

One of the first attempts to identify and inter-
pret metaphorical expressions in text automati-
cally is the approach of Fass (1991). Fass devel-
oped a system called met*, capable of discrimi-
nating between literalness, metonymy, metaphor
and anomaly. It does this in three stages. First,
literalness is distinguished from non-literalness
using selectional preference violation as an in-
dicator. In the case that non-literalness is de-
tected, the respective phrase is tested for be-
ing a metonymic relation using hand-coded pat-
terns (such as CONTAINER-for-CONTENT). If
the system fails to recognize metonymy, it pro-
ceeds to search the knowledge base for a rele-
vant analogy in order to discriminate metaphor-
ical relations from anomalous ones. E.g., the
sentence in (5) would be represented in this
framework as (car,drink,gasoline), which does
not satisfy the preference (animal,drink,liquid),
as car is not a hyponym of animal. met*
then searches its knowledge base for a triple
containing a hypernym of both the actual ar-

gument and the desired argument and finds
(thing,use,energy source), which represents the
metaphorical interpretation.

Birke and Sarkar (2006) present a sen-
tence clustering approach for non-literal lan-
guage recognition implemented in the TroFi sys-
tem (Trope Finder). This idea originates from
a similarity-based word sense disambiguation
method developed by Karov and Edelman (1998).
The method employs a set of seed sentences,
where the senses are annotated, computes simi-
larity between the sentence containing the word
to be disambiguated and all of the seed sentences
and selects the sense corresponding to the anno-
tation in the most similar seed sentences. Birke
and Sarkar (2006) adapt this algorithm to perform
a two-way classification: literal vs. non-literal,
and they do not clearly define the kinds of tropes
they aim to discover. They attain a performance
of 53.8% in terms of f-score.

The method of Gedigan et al. (2006) discrimi-
nates between literal and metaphorical use. They
trained a maximum entropy classifier for this pur-
pose. They obtained their data by extracting the
lexical items whose frames are related to MO-
TION and CURE from FrameNet (Fillmore et al.,
2003). Then they searched the PropBank Wall
Street Journal corpus (Kingsbury and Palmer,
2002) for sentences containing such lexical items
and annotated them with respect to metaphoric-
ity. They used PropBank annotation (arguments
and their semantic types) as features to train the
classifier and report an accuracy of 95.12%. This
result is, however, only a little higher than the per-
formance of the naive baseline assigning majority
class to all instances (92.90%). These numbers
can be explained by the fact that 92.00% of the
verbs of MOTION and CURE in the Wall Street
Journal corpus are used metaphorically, thus mak-
ing the dataset unbalanced with respect to the tar-
get categories and the task notably easier.

Both Birke and Sarkar (2006) and Gedigan et
al. (2006) focus only on metaphors expressed by
a verb. As opposed to that the approach of Kr-
ishnakumaran and Zhu (2007) deals with verbs,
nouns and adjectives as parts of speech. They
use hyponymy relation in WordNet and word bi-
gram counts to predict metaphors at the sentence
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level. Given an IS-A metaphor (e.g. The world is
a stage4) they verify if the two nouns involved are
in hyponymy relation in WordNet, and if this is
not the case then this sentence is tagged as con-
taining a metaphor. Along with this they con-
sider expressions containing a verb or an adjec-
tive used metaphorically (e.g. He planted good
ideas in their minds or He has a fertile imagi-
nation). Hereby they calculate bigram probabil-
ities of verb-noun and adjective-noun pairs (in-
cluding the hyponyms/hypernyms of the noun in
question). If the combination is not observed in
the data with sufficient frequency, the system tags
the sentence containing it as metaphorical. This
idea is a modification of the selectional prefer-
ence view of Wilks. However, by using bigram
counts over verb-noun pairs as opposed to verb-
object relations extracted from parsed text Kr-
ishnakumaran and Zhu (2007) loose a great deal
of information. The authors evaluated their sys-
tem on a set of example sentences compiled from
the Master Metaphor List (Lakoff et al., 1991),
whereby highly conventionalized metaphors (they
call them dead metaphors) are taken to be neg-
ative examples. Thus, they do not deal with lit-
eral examples as such: essentially, the distinc-
tion they are making is between the senses in-
cluded in WordNet, even if they are conventional
metaphors, and those not included in WordNet.

6 Conclusions and Future Directions

We presented a novel approach to metaphor iden-
tification in unrestricted text using unsupervised
methods. Starting from a limited set of metaphor-
ical seeds, the system is capable of capturing the
regularities behind their production and annotat-
ing a much greater number and wider range of
previously unseen metaphors in the BNC.

Our system is the first of its kind and it is capa-
ble of identifying metaphorical expressions with a
high precision (0.79). By comparing its coverage
to that of a WordNet baseline, we proved that our
method goes far beyond synonymy and general-
izes well over the source and target domains. Al-
though at this stage we tested our system on verb-
subject and verb-object metaphors only, we are

4William Shakespeare

convinced that the described identification tech-
niques can be similarly applied to a wider range
of syntactic constructions. Extending the system
to deal with more parts of speech and types of
phrases is part of our future work.

One possible limitation of our approach is that
it is seed-dependent, which makes the recall of the
system questionable. Thus, another important fu-
ture research avenue is the creation of a more di-
verse seed set. We expect that a set of expres-
sions representative of the whole variety of com-
mon metaphorical mappings, already described in
linguistics literature, would enable the system to
attain a very broad coverage of the corpus. Mas-
ter Metaphor List (Lakoff et al., 1991) and other
existing metaphor resources could be a sensible
starting point on a route to such a dataset.
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Abstract

Thanks to its simplicity, social tagging
system has accumulated huge amount of
user contributed tags. However, user
contributed tags lack explicit hierarchi-
cal structure, while many tag-based ap-
plications would benefit if such a struc-
ture presents. In this work, we explore
the structure of tags with a directed and
easy-to-evaluate relation, named as the
subsumption relation. We propose three
methods to discover the subsumption rela-
tion between tags. Specifically, the tagged
document’s content is used to find the re-
lations, which leads to better result. Be-
sides relation discovery, we also propose
a greedy algorithm to eliminate the re-
dundant relations by constructing a Lay-
ered Directed Acyclic Graph (Layered-
DAG) of tags. We perform quantita-
tive evaluations on two real world data
sets. The results show that our methods
outperform hierarchical clustering-based
approach. Empirical study of the con-
structed Layered-DAG and error analysis
are also provided.

1 Introduction

In this work, we aim at exploring the structure of
social tags. Social tagging is widely used in Web-
based services, in which a user could use any word
to annotate an object. Thanks to its simplicity, ser-
vices with social tagging features have attracted a
lot of users and have accumulated huge amount of
annotations. However, comparing to taxonomies,
social tagging has an inherent shortcoming, that

Figure 1: Examples of (a) flat tag cloud, (b) hier-
archical clusters, and (c) subsumption relations.

there is no explicit hierarchical relations between
tags. Figure 1 (a) shows an example of the com-
monly used flat tag cloud, in which only the pop-
ularity of a tag is concerned. Kome et al. (2005)
argued that implicit hierarchical relations exist in
social tags. Previous literature shows that orga-
nizing tags in hierarchical structures will help tag-
based Information Retrieval applications (Begel-
man et al., 2006; Brooks and Montanez, 2006).

Hierarchical clustering could reveal the simi-
larity relations of tags. Figure 1 (b) shows an
example of a typical hierarchical clustering of
tags. While clusters can capture similarity be-
tween tags, problems still remain: First, clusters
mix different relations, such as synonyms and hy-
pernyms. Second, clusters also ignore the direc-
tion of relations, for example, the direction in
browser → firefox. Third, it is hard to evalu-
ate the correctness of clustering. Specifically, it
is hard to tell if two tags are similar or not. In
practice, directed and easy-to-evaluate relations
between tags are preferred, such as Figure 1 (c).

In this work, we explore the structure of so-
cial tags by discovering a directed and easy-to-
evaluate relation between tags, namedsubsump-
tion relation. A tag ta subsumestb, if and only
if wherever tb is used, we can also replace it
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with ta. Unlike similar-to, subsumption relation
is asymmetric, and its correctness is easier to as-
sess. Then, we propose three ways to discover the
subsumption relations, through tag-tag, tag-word
and tag-reason co-occurrences respectively. In the
third way, A tag’sreasonis defined as the word
in the content that explains the using of the tag.
We employ the Tag Allocation Model (TAM) pro-
posed by Si et al. (2010) to find the reason for
each tag. Besides subsumption relation discov-
ery, we also propose a greedy algorithm to remove
the redundant relations. The removal is done by
constructing a Layered Directed Acyclic Graph
(Layered-DAG) of tags with the subsumption re-
lations.

We carried out the experiments on two real
world data sets. The results of quantitative evalu-
ation showed that tag-reason based approach out-
performed other two methods and a commonly
used hierarchical clustering-based method. We
also do empirical study on the output of Layered-
DAG construction.

The contribution of this paper can be summa-
rized as follows:

1. We explore the structure of social tags by
a clearly defined subsumption relation. We
propose methods to discover the subsump-
tion relation automatically, leveraging both
the co-occurred tags and the content of an-
notated document.

2. We propose an algorithm to eliminate the re-
dundant relations by constructing a Layered-
DAG of tags.

3. We perform both empirical and quantitative
evaluation of proposed methods on two real
world data sets.

The rest of the paper is organized as follows:
Section 2 surveys the related work; Section 3 de-
fines the subsumption relation we used, and pro-
poses methods for relation discovery; Section 4
proposes a greedy algorithm for Layered-DAG
construction; Section 5 explains the experimen-
tal settings and shows the evaluation results. Sec-
tion 6 concludes the paper.

2 Related Work

To explore the hierarchical relations between tags,
an intuitive way is to cluster the tags into hier-

archical clusters. Wu et al. (2006b) used a fac-
torized model, namely Latent Semantic Analy-
sis, to group tags into non-hierarchical topics for
better recommendation. Brooks et al. (2006) ar-
gued that performing Hierarchical Agglomerative
Clustering (HAC) on tags can improve the col-
laborative tagging system. Later, HAC on tags
was also used for improving personalized recom-
mendation (Shepitsen et al., 2008). Heymann et
al. (2006) clustered tags into a tree by a similarity-
based greedy tree-growing method. They evalu-
ated the obtained trees empirically, and reported
that the method is simple yet powerful for orga-
nizing tags with hierarchies. Based on Heymann
et al.’s work, Schwarzkopf et al. (2007) proposed
an approach for modeling users with the hierarchy
of tags. Begelman et al. (2006) used top-down hi-
erarchical clustering, instead of bottom-up HAC,
to organize tags, and argued that tag hierarchies
improve user experiences in their system. Most
of the hierarchical clustering algorithms rely on
the symmetric similarity between tags, while the
discovered relations are hard to evaluate quantita-
tively, since one cannot distinguish similar from
not-similar with a clear boundary.

People have also worked on bridging social tag-
ging systems and ontologies. An ontology defines
relations between entities. Peter Mika (2005) pro-
posed an extended scheme of social tagging that
includes actors, concepts and objects, and used
tag co-occurrences to construct an ontology from
social tags. Wu et al. (2006a) used hierarchical
clustering to build ontology from tags that also
use similar-to relations. Later, ontology schemes
that fits social tagging system were proposed, such
as (Van Damme et al., 2007) and (Echarte et
al., 2007), which mainly focused on the relation
between tags, objects and users, rather than be-
tween tags themselves. Alexandre Passant (2007)
mapped tags to domain ontologies manually to
improve information retrieval in social media. To
construct tag ontology automatically, Angeletou
et al. (2007) used ontologies built by domain ex-
perts to find relations between tags, but observed
a very low coverage. Specia et al. (2007) pro-
posed an integrated framework for organizing tags
by existing ontologies, but no experiment was per-
formed. Kim et al. (2008) summarized the state-
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of-the-art methods to model tags with semantic
annotations.

Before social tagging was invented, Sanderson
et al. (1999) proposed to usesubsumptionrelation
to organize words in text hierarchically. Schmitz
et al. (2006) followed the idea to use subsumption
relation for organizing Flickr1 tag, where tag-tag
co-occurrences are used for discover the relations.
We follow the idea of subsumption relation in this
paper, and explore alternative ways for relation
discovery.

3 Subsumption Relations in Tags

In this section, we define the subsumption relation
used in our study, and propose three methods to
discover the subsumption relations.

3.1 Definitions

First, we introduce the symbols used through out
the paper: A tag is denoted ast ∈ T , whereT is
the set of all tags. To distinguish from words, we
usefixed-width to represent the example tags.
An annotated document is denoted asd ∈ D,
whereD is the set of all documents. The words
in d are denoted as a set{wdi

}, wherei ∈ [1, |d|],
and|d| is the number of words ind.

Inspired by (Sanderson and Croft, 1999), we
define the subsumption relation betweenta andtb
as follows:ta subsumestb, means that wherever
the tag tb is used,ta can also be used without
ambiguity. The subsumption relation betweenta
andtb is denoted asta →s tb.

Subsumption relation is directional, that is,
ta →s tb does not implytb →s ta. For ex-
ample, literature →s chineseliterature,
since for any document annotated with
chineseliterature, we can also annotate
it with literature. However, if we swapped the
two tags, the statement would not hold.

Subsumption relation is more strict than simi-
larity. For example, during the time of Haiti earth-
quake, the tagearthquake is close tohaiti in
similarity, but none of them implies the use of the
other one: document annotated withearthquake
may refer to the earthquake in China, while docu-

1http://www.flickr.com. An image sharing site that allows
users to annotate images with tags

ment annotated withhaiti may mean the travel-
ing experience in Haiti.

Note that the subsumption has transitivity prop-
erty, thatta →s tb and tb →s tc meansta →s

tc, which corresponds to our intuition. For in-
stance, naturaldisaster →s earthquake and
disaster→snaturaldisaster meansdisaster
→searthquake.

3.2 Discover Subsumption Relation

We discover the subsumption relations by estimat-
ing the probabilityp(ta|tb). The motivation is, if
ta →s tb andtb is used, it would be more likely to
seeta. So, by sorting all(ta, tb) pairs byp(ta|tb)
in descending order, top-ranked pairs are more
likely to have subsumption relations.

In this work, we present three methods to esti-
mate the probabilityp(ta|tb), using tag-tag, tag-
word and tag-reason co-occurrences respectively.
By using tag-word and tag-reason co-occurrences,
we leverage the content of the annotated docu-
ment for subsumption relation discovery.

3.2.1 Tag-Tag Co-occurrences Approach

The most intuitive way to estimatep(ta|tb) is
via tag-tag co-occurrences. Specifically, we use
the following formula:

p(ta|tb) =
Nd(ta, tb)

Nd(tb)
, (1)

whereNd(ta, tb) is the number of documents that
are annotated by bothta andtb, andNd(tb) is the
number of documents annotated bytb. We de-
note the tag-tag co-occurrences approach as TAG-
TAG.

The use of TAG-TAG can be found in previous
literature for organizing tags for photos(Schmitz,
2006). One of TAG-TAG’s benefits is that it does
not rely on the content of the annotated document,
thus it can be applied to tags for non-text objects,
such as images and music. However, when com-
ing to text documents, this benefit is also a short-
coming, that TAG-TAG makes no use of the con-
tent when it is available.

Using TAG-TAG for subsumption relation dis-
covery relies on an implication, that if a user has
annotatedd with tb, he would also annotate all
tags that subsumestb. The implication may not
always hold in real world situations. For example,
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a novel reader would use tags such asscifi and
mystery to organize his collections, but he is not
likely to annotate each of his collection asnovel
or book, since they are too obvious for him. We
name the problem as theomitted-tag problem.

3.2.2 Tag-Word Co-occurrences Approach

When the content of the annotated document
is available, using it for estimatingp(ta|tb) is a
natural thought. The content is expected to be
complete and information-rich whether or not the
user has omitted any tags. We use the follow-
ing formula to estimatep(ta|tb) by tag-word co-
occurrences:

p(ta|tb) =
∑

w∈W

p(ta|w)p(w|tb)

=
∑

w∈W

Nd(ta, w)

Nd(w)

Nd(tb, w)

Nd(tb)
, (2)

whereNd(ta, w) is the number of documents that
contains both tagta and wordw, andNd(w) is
the number of documents that contains the word
w. We denote this approach as TAG-WORD.

Instead of computing tag-tag co-occurrences
directly, TAG-WORD uses words in the document
as a bridge to estimatep(ta|tb). By introduc-
ing words, the estimation is less affected by the
omitted-tag problem, Take the novel reader exam-
ple again: Although he does not use the tagnovel

too often, the words in book descriptions would
suggest the using ofnovel, according to all other
documents annotated bynovel.

While using the content may weaken the
omitted-tag problem, it also brings the noise in
text to the estimation. Not every word in the con-
tent is related to one of the tags. To the oppo-
site, most words are functional words or that about
other aspects of the document.p(ta|tb) estimated
by using all words may largely depends on these
irrelevant words.

3.2.3 Tag-Reason Co-occurrences Approach

To focus on the words that are highly relevant
to the interested tags, we propose the third method
that uses tag-reason co-occurrences. Thereasonis
defined as the word(s) that can explain the using
of a tag in the document. For example, the tag
scifi for a book could be explained by the words

“robot”, “Asimov” in the book description. If the
reason of each tag could be identified, the noise in
content-basedp(ta|tb) could be reduced.

Si et al. (2010) proposed a probabilistic model
for content-based social tags, named Tag Allo-
cation Model (TAM). TAM introduces a latent
variable r for each tag in the data set, known
as the reason variable. The value ofr can be a
word in the corresponding document, or a global
noise variableµ. Allowing the reason of tags to
be a global noise makes TAM deal with content-
irrelevant tags and mistakenly annotated tags ef-
fectively. The likelihood that a documentd is an-
notated by tagt is given as:

p(t|d) =
∑

w∈d

p(t|r = w)p(r = w|d)p(s = 0)

+ p(t|µ)p(r = µ)p(s = 1), (3)

wherer is the reason of the tagt, r ∈ {wdi|i ∈
[0, |d|]} ∪ {µ}, µ is the global noise variable.s is
the source of reasont, s = 0 means the source is
the content of the document, whiles = 1 means
the source is the global noise variableµ. TAM
can be trained use Gibbs sampling method. For
the details of TAM, please refer to (Si and Sun,
2010).

With a trained TAM, we can inferp(t|r), the
probability of seeing a tagt when usingr as the
reason, andp(r|t), the probability of choosingr
as the reason for tagt. With these probabilities,
we can estimatep(ta|tb) by

p(ta|tb) =
∑

r∈W

p(ta|r)p(r|tb). (4)

Note that we use only word reasons (r ∈ W ),
ignoring the noise reasonµ completely. We de-
note this approach as TAG-REASON.

With the help of TAM, TAG-REASON cov-
ers the problems of the TAG-WORD method in
two aspects: First, instead of using all words,
TAG-REASON emphasizes on the really relevant
words, which are the reasons identified by TAM.
Second, by ignoring the noise variableµ, TAG-
REASON is less affected by the content-irrelevant
noise tags, such asthingstodo or myown.

After p(ta|tb) is estimated for each(ta, tb) ∈
T ×T , we use the top-n pairs with largestp(ta|tb)
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Figure 2: DAG and Layered-DAG

as the final set of discovered subsumption rela-
tions.

4 Remove Redundancy with
Layered-DAG Construction

The discovered subsumption relations connect all
tags into a directed graphG = {V,E}, whereV
is the set of nodes, with each node is a tag;E is
the set of edges, an edgeeta,tb from ta to tb means
ta →s tb. Furthermore, we define the weight of
each edgewe as the probabilityp(ta|tb).

Recalling that subsumption relation has transi-
tivity property, to avoid the cyclic references inG,
we would like to turnG into a Directed Acyclic
Graph (DAG). Further, DAG may also contains
redundant information. Figure 2 (a) shows a part
of a DAG. Note the edge marked as “*”, which
is perfectly correct, but does not provide extra
information, sinceliterature →s novel and
novel→s scifi-novel have already implied that
literature→s novel. We would like to remove
these redundant relations, turning a DAG into the
form of Figure 2 (b).

We define Layered-DAG formally as follows:
For a DAGG, when given any pair of nodes, if ev-
ery path that can connect them has equal length,G
is a Layered-DAG. Layered-DAG prohibits edges
that link cross layers, such like edge “*” in Fig-
ure 2 (a). Constructing a Layered-DAG from the
discovered relations can eliminate the redundant
information.

Given a set of subsumption relations, multiple
Layered-DAGs may be constructed. In particular,
we want to find the Layered-DAG that maximizes
the sum of all edges’ weights. Weight maximiza-
tion implies two concerns: First, when we need
to remove a relation to resolve the conflicts or re-
dundancy, the one with lower weight is prefered.

Layered-DAG Construction Algorithm
Input: A set of weighted relations,R = {ta →s tb|ta ∈ T, tb ∈ T},
wta→stb > 0
Output: A Layered-DAG of tagsG∗ = {V ∗, E∗}
1: V ∗ = {}
2: while R 6= ∅
3: if V ∗ = ∅
4: chooseta →s tb ∈ R with highest weight.
5: E∗ ⇐ ta →s tb
6: V ∗ ⇐ ta, V

∗ ← tb.
7: removeta →s tb from R.
8: else
9: C ⇐ {ta →s tb|ta →s tb ∈ R, {ta, tb} ∩ V ∗ 6= ∅}

10: for ta →s tb ∈ C in descending weight order
11: if addingta →s tb to G∗ keepsG∗ a Layered-DAG.
12: E∗ ⇐ ta →s tb
13: V ∗ ⇐ ta, V

∗ ← tb.
14: break
15: endif
16: removeta →s tb from R.
17: endfor
18: endif
19: endwhile
20: output G∗

Figure 3: A greedy algorithm for constructing
Layered-DAG of tags

Second, when more than one valid Layered-DAGs
are available, we want to use the one that contains
as many edges as possible.

Finding and proving an optimal algorithm for
maximum Layered-DAG construction are beyond
the scope of this paper. Here we present a greedy
algorithm that works well in practice, as described
in Figure 3.

The proposed algorithm starts with a minimal
Layered-DAG G∗ that contains only the high-
est weighted relation inR (Steps 1-8). Then, it
moves an edge inG to G∗ once a time, ensuring
that adding the new edge still keepsG∗ a valid
Layered-DAG (Step 11), and the new edge has the
highest weights among all valid candidates (Steps
9-10).

5 Experiments

In this section, we show the experimental results
of proposed methods. Specifically, we focus on
the following points:

• The quality of discovered subsumption rela-
tions by different methods.

• The characteristics of wrong subsumption re-
lations discovered.

• The effect of Layered-DAG construction on
the quality of relations.

• Empirical study of the resulted Layered-
DAG.
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Name N N̄tag N̄content

BLOG 100,192 2.78 332.87
BOOK 110,371 8.51 204.76

Table 1: Statistics of the data sets.N is the num-
ber of documents.N̄tag is the mean number of
tags per document.̄Ncontent is the mean number
of words per document.

5.1 Data Sets

We use two real world social tagging data sets.
The first data set, named BLOG, is a collection
of blog posts annotated by blog authors, which
is crawled from the web. The second data set,
named BOOK, is from a book collecting and shar-
ing site2, which contains description of Chinese
books and user contributed tags. Table 1 lists the
basic statistics of the data sets.

The two data sets have different characteristics.
Documents in BLOG are longer, not well written,
and the number of tags per document is small. To
the opposite, documents in BOOK are shorter but
well written, and there are more tags for each doc-
ument.

5.2 Discovered Subsumption Relations

5.2.1 Experimental Settings

For BLOG, we use the tags that have been used
more than10 times; For BOOK, we use the tags
that have been used more than50 times. We per-
form 100 iterations of Gibbs sampling when train-
ing the TAM model, with first50 iterations as
the burn-in iterations. All the estimation meth-
ods require proper smoothing. Here we use ad-
ditive smoothing for all methods, which adds a
very small number (0.001 in our case) to all raw
counts. Sophisticated smoothing method could be
employed, but is out of the scope of this paper.

5.2.2 Evaluation

We useprecisionandcoverageto evaluate the
discovered relations at any given cut-off threshold
n. First, we sort the discovered relations by their
weights in descending order. Then, we take the
top-n relations, discarding the others. For the re-
maining relations, precision is computed asNc/n,
Nc is the number of correct relations in the top-n

2http://www.douban.com

list; coverage is computed asNt/|T |, whereNt is
the number of unique tags appeared in the top-n
list, and|T | is the total number of tags.

To getNc, the number of correct relations, we
need a standard judgement of the correctness of
relations, which involves human labeling. To min-
imize the bias in human assessment, we usepool-
ing, which is a widely accepted method in Infor-
mation Retrieval research (Voorhees and Harman,
2005). Pooling works as follows: First, relations
obtained by different methods are mixed together,
creating a pool of relations. Second, the pool is
shuffled, so that the labeler cannot identify the
source of a single relation. Third, annotators are
requested to label the relations in the pool as cor-
rect or incorrect, based on the definition of sub-
sumption relation. After all relations in the pool
are labeled, we use them as the standard judge-
ment to evaluate each method’s output.

Precision measures the proportion of correct re-
lations, while coverage measures the proportion of
tags that are connected by the relations. The cut-
off thresholdn affects both precision and cover-
age: the larger then, the lower the precision, and
the higher the coverage.

5.2.3 Baseline methods

Besides TAG-TAG, TAG-WORD and TAG-
REASON, we also include the method described
in (Heymann and Garcia-Molina, 2006) as a
baseline, denoted as HEYMANN. HEYMANN
method was designed to find similar-to relation
rather than subsumption relation. The similar-to
relation is symmetric, while subsumption relation
is more strict and asymmetric. In our experiments,
we use the same evaluation process to evalu-
ate TAG-TAG, TAG-WORD, TAG-REASON and
HEYMANN, in which only subsumption relations
will be marked as correct.

5.2.4 Results

For each method, we set the cut-off threshold
n from 1 to 500, so as to plot the psrecision-
coverage curves. The result is shown in Figure 4.
The larger the area under the curve, the better the
method’s performance.

We have three observations from Figure 4.
First, TAG-REASON has the best performance
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Figure 4: The precision and coverage of TAG-TAG, TAG-WORD, TAG-REASON and HEYMANN
methods. The larger the area under the curve, the better the result. The cut-off thresholdn ∈ [1, 500].

BLOG BOOK
Insufficient Reversed Irrelevant Insufficient Reversed Irrelevant

childedu→s father stock→s security travel→sbuilding textbook→s exam English→s foreignlang japan→slightnovel
childedu→s grandma stock→s financial emotion→stime history→s military biography→speople building→stextbook

emotion→swarm delicious→staste emotion→soriginal piano→sscores jpbuilding→s jpculture sales→sO
childedu→schild delicious→sfood culture→sspring history→sculture novel→spureliterature japan→s shower
education→schild earthquake→sdisaster poem→snight novel→slove ancientgreek→sgreek photo→sumbrella

Total 52% Total 14% Total 34% Total 37% Total 48% Total 15%

Table 2: Examples of mistakes and the percentage of each mistake type.

on both data sets: On the BOOK data set, TAG-
REASON outperforms others by a marked mar-
gin; On the BLOG data set, TAG-REASON has
higher precision when coverage is smaller (which
means within top-ranked relations), and has com-
parable precision to TAG-TAG when coverage
increases. Second, similarity-based clustering
method (namely HEYMANN) performed worse
than others, suggesting it may not be adequate for
discovering subsumption relation. Third, while
also using content information, TAG-WORD per-
forms poorer than both TAG-REASON and TAG-
TAG, which suggests that noise in the content
would prevent TAG-WORD from getting the cor-
rect estimation ofp(ta|tb).

To summarize, by leveragingrelevant con-
tent, TAG-REASON could discover better sub-
sumption relations than just using tag-tag co-
occurrences and similarity-based hierarchical
clustering.

5.2.5 Mistakes in Discovered Relations

We also studied the type of mistakes in sub-
sumption relation discovery. To our observation, a

mistakenly discovered relationta →s tb falls into
one of the following categories:

1. insufficient ta relates withtb, but usingtb
does not implies the using ofta in all cases.

2. reversedtb →s ta is correct, whileta →s tb
is not.

3. irrelevant There is no obvious connection
betweenta andtb.

We collected all incorrect relations discovered
by the TAG-REASON method. Then, the type of
mistake for each relation is labeled manually. The
result is shown in Table 2, along with selected ex-
amples of each type.

Table 2 shows different error patterns for
BLOG and BOOK. In BLOG, most of the
mistakes are of the typeinsufficient. Taking
“education→s child” for example, annotating a
document aschild does not imply that it is about
child education, it may about food or clothes for
a child. In BOOK, most of the mistakes arere-
versedmistakes, which is a result of the omitted-
tag problem discussed in Section 3.2.1.
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Figure 5: Part of the constructed Layered-DAG from the BOOK data set.

BLOG BOOK
Method Precision Coverage Precision Coverage

TAG-TAG −4.7% +7.9% −7.4% +12.5%
TAG-WORD 0% 0% −9.0% +2.2%

TAG-REASON −3.6% +5.4% −0.9% +5.4%

Table 3: The effects on precision and coverage by
Layered-DAG construction

5.3 Layered-DAG Construction
Using the algorithm introduced in Section 4, we
constructed Layered-DAGs from the discovered
relations. Constructing Layered-DAG will re-
move certain relations, which will decrease the
precision and increase the coverage. Table 3
shows the changes of precision and coverage
brought by Layered-DAG construction. In most
of the cases, the increasing of coverage is more
than the decreasing of precision.

As a representative example, we show part of
a constructed Layered-DAG from the BOOK data
set in Figure 5, since the whole graph is too big to
fit in the paper. All tags in Chinese are translated
to English.

6 Conclusion and Future Work

In this paper, we explored the structure of social
tags by discovering subsumption relations. First,
we defined the subsumption relationta →s tb
as ta can be used to replacetb without ambigu-
ity. Then, we cast the subsumption relation iden-
tification problem to the estimation ofp(ta|tb).
We proposed three methods, namely TAG-TAG,
TAG-WORD and TAG-REASON, while the last

two leverage the content of document to help esti-
mation. We also proposed an greedy algorithm for
constructing a Layered-DAG from the discovered
relations, which helps minimizing redundancy.

We performed experiments on two real world
data sets, and evaluated the discovered subsump-
tion relations quantitatively by pooling. The
results showed that the proposed methods out-
perform similarity-based hierarchical clusteing
in finding subsumption relations. The TAG-
REASON method, which uses only the relevant
content to the tags, has the best performance. Em-
pirical study showed that Layered-DAG construc-
tion works effectively as expected.

The results suggest two directions for future
work: First, more ways forp(ta|tb) estima-
tion could be explored, for example, combining
TAG-TAG and TAG-REASON; Second, external
knowledge, such as the Wikipedia and the Word-
Net, could be exploited as background knowledge
to improve the accuracy.
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Abstract

Zulu is an indigenous language of South
Africa, and one of the eleven official
languages of that country. It is spoken
by about 11 million speakers. Although
it is similar in size to some Western
languages, e.g. Swedish, it is consid-
erably under-resourced. This paper
presents a new open-source morphologi-
cal corpus for Zulu named Ukwabelana
corpus. We describe the agglutinating
morphology of Zulu with its multiple
prefixation and suffixation, and also
introduce our labeling scheme. Further,
the annotation process is described and
all single resources are explained. These
comprise a list of 10,000 labeled and
100,000 unlabeled word types, 3,000
part-of-speech (POS) tagged and 30,000
raw sentences as well as a morphological
Zulu grammar, and a parsing algorithm
which hypothesizes possible word roots
and enumerates parses that conform to the
Zulu grammar. We also provide a POS
tagger which assigns the grammatical
category to a morphologically analyzed
word type. As it is hoped that the corpus
and all resources will be of benefit to
any person doing research on Zulu or on
computer-aided analysis of languages,
they will be made available in the public
domain from http://www.cs.bris.

ac.uk/Research/MachineLearning/

Morphology/Resources/.

1 Introduction

Zulu (also known as isiZulu) is a Bantu language
of South Africa, classified as S.30 in Guthrie’s
classification scheme (Guthrie, 1971). Since

1994, it has been recognized as one of the eleven
official languages of South Africa. It has a written
history of about 150 years: the first grammar was
published by Grout (1859), and the first dictionary
by Colenso (1905). There are about 11 million
mother-tongue speakers, who constitute approxi-
mately 23% of South Africa’s population, making
Zulu the country’s largest language.

Zulu is highly mutually intelligible with the
Xhosa, Swati and Southern Ndebele languages,
and with Ndebele of Zimbabwe (Lanham, 1960),
to the extent that all of these can be consid-
ered dialects or varieties of a single language,
Nguni. Despite its size, Zulu is considerably
under-resourced, compared to Western languages
with similar numbers of speakers, e.g. Swedish.
There are only about four regular publications in
Zulu, there are few published books, and the lan-
guage is not used as a medium of instruction.

This of course is partly due to the short time-
span of its written history, but the main reason, of
course, is the apartheid history of South Africa:
for most of the twentieth century resources were
allocated to Afrikaans and English, the two former
official languages, and relatively few resources
to the indigenous Bantu languages. Since 1994,
Zulu has had a much larger presence in the media,
with several television programs being broadcast
in Zulu every day. Yet much needs to be done in
order to improve the resources available to Zulu
speakers and students of Zulu.

The aim of the project reported in this paper
was to establish a Zulu corpus, named the Uk-
wabelana corpus1, consisting of morphologically
labeled words (that is, word types) and part-of-
speech (POS) tagged sentences. Along with the
labeled corpus, unlabeled words and sentences, a
morphological grammar, a semi-automatic mor-

1Ukwabelana means ‘to share’ in Zulu where the ‘k’ is
pronounced voiced like a [g].
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phological analyzer and a POS tagger for morpho-
logically analyzed words will be provided.

The sources used for the corpus were limited to
fictional works and the Zulu Bible. This means
that there is not a wide variety of registers, and
perhaps even of vocabulary items. This defect will
have to be corrected in future work.

The Ukwabelana corpus can be used to de-
velop and train automatic morphological analyz-
ers, which in turn tag a large corpus of writ-
ten Zulu, similar to the Brown corpus or the
British National Corpus. Moreover, the list of
POS tagged sentences is an essential step towards
building an automatic syntactic tagger, which still
does not exist for Zulu, and a tagged corpus of
Zulu. Such a corpus would be beneficial to lan-
guage researchers as it provides them with ex-
amples of actual usage, as opposed to elicited
or invented examples, which may be artificial or
unlikely to occur in real discourse. This would
greatly improve the quality of Zulu dictionaries
and grammars, most of which rely heavily on
the work of Doke (1927) and Doke, Malcom and
Sikakana (1958), with little in the way of inno-
vation. Morphological tagging is also useful for
practical computational applications like predic-
tive text, spell-checking, grammar checking and
machine translation; in the case of Zulu, where
a large percentage of grammatical information is
conveyed by prefixes and suffixes rather than by
separate words, it is essential. For example, in
English, the negative is expressed by means of a
separate word ‘not’, but in Zulu the negative is
constructed using a prefix-and-suffix combination
on the verb, and this combination differs accord-
ing to the mood of the verb (indicative, participial
or subjunctive). The practical computational ap-
plications mentioned could have a very great im-
pact on the use of Zulu as a written language, as
spell-checking and grammar checking would ben-
efit proofreaders, editors and writers. Machine
translation could aid in increasing the number of
texts available in Zulu, thus making it more of a
literary language, and allowing it to become es-
tablished as a language of education. The use
of Zulu in public life could also increase. Cur-
rently, the tendency is to use English, as this is
the language that reaches the widest audience. If

high-quality automatic translation becomes avail-
able, this would no longer be necessary. As it is
hoped that the Ukwabelana corpus will be of ben-
efit to any person doing research on Zulu or on
computer-aided analysis of languages, it will be
made available as the first morphologically anal-
ysed corpus of Zulu in the public domain.

2 Related work

In this section, we will give an overview of lin-
guistic research on Nguni languages, following
the discussions in van der Spuy (2001), and there-
after a summary of computational approaches to
the analysis of Zulu.

2.1 Linguistic research on Nguni languages
The five Nguni languages Zulu, Xhosa, South
African Ndebele, Swati, and Zimbabwean Nde-
bele are highly mutually intelligible, and for this
reason, works on any of the other Nguni languages
are directly relevant to an analysis of Zulu.

There have been numerous studies of Nguni
grammar, especially its morphology; in fact,
the Nguni languages probably rival Swahili and
Chewa for the title of most-studied Bantu lan-
guage. The generative approach to morphologi-
cal description (as developed by Aronoff (1976),
Selkirk (1982), Lieber (1980), Lieber (1992)) has
had very little influence on most of the work that
has been done on Nguni morphology.

Usually, the descriptions have been atheoreti-
cal or structuralist. Doke’s paradigmatic descrip-
tion of the morphology (Doke, 1927; Doke, 1935)
has remained the basis for linguistic work in the
Southern Bantu languages. Doke (1935) criticized
previous writers on Bantu grammars for basing
their classification, treatment and terminology on
their own mother tongue or Latin. His intention
was to create a grammatical structure for Bantu
which did not conform to European or classical
standards. Nevertheless, Doke himself could not
shake off the European mindset: he treated the
languages as if they had inflectional paradigms,
with characteristics like subjunctive or indicative
belonging to the whole word, rather than to identi-
fiable affixes; in fact, he claimed (1950) that Bantu
languages are “inflectional with [just] a tendency
to agglutination”, and assumed that the morphol-
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ogy was linear not hierarchical. Most subsequent
linguistic studies and reference grammars of the
Southern Bantu languages have been directed at
refining or redefining Doke’s categories from a
paradigmatic perspective.

Important Nguni examples are Van Eeden
(1956), Van Wyk (1958), Beuchat (1966), Wilkes
(1971), Nkabinde (1975), Cope (1984), Davey
(1984), Louw (1984), Ziervogel et al. (1985),
Gauton (1990), Gauton (1994), Khumalo (1992),
Poulos and Msimang (1998), Posthumus (1987),
Posthumus (1988), Posthumus (1988) and Posthu-
mus (2000). Among the very few generative
morphological descriptions of Nguni are Lanham
(1971), Mbadi (1988) and Du Plessis (1993). Lan-
ham (1971) gives a transformational analysis of
Zulu adjectival and relative forms. This analy-
sis can be viewed as diachronic rather than syn-
chronic. Mbadi (1988) applies Lieber (1980)
and Selkirk’s percolation theory (Selkirk, 1982)
to a few Xhosa morphological forms. Du Plessis
(1993) gives a hierarchical description of the mor-
phology of the verb, but he assumes that deriva-
tion is syntactical rather than lexical.

In short, there has been no thorough-going
generative analysis of the morphology which
has treated the Nguni languages as agglutinative
rather than inflectional.

2.2 Computational approaches to analyzing
Zulu

In the last decade, various computational ap-
proaches for Zulu have been reported. Based on
the Xerox finite-state toolbox by Beesley and Kart-
tunen (2003), Pretorius and Bosch (2003) devel-
oped a prototype of a computational morpholog-
ical analyzer for Zulu. Using a semi-automated
process, a morphological lexicon and a rule-base
were built incrementally. Later work (Pretorius
and Bosch, 2007) dealt with overgeneration of
the Zulu finite-state tool concerning locative for-
mation from nouns and verbal extensions to verb
roots. Pretorius and Bosch (2009) also used cross-
linguistic similarities and dissimilarities of Zulu
to bootstrap a morphological analyser for Xhosa.
Joubert et al. (2004) followed a bootstrapping
approach to morphological analysis. A simple
framework uses morpheme lists, morphophono-

logical and morphosyntactic rules which are learnt
by consulting an oracle, in their case a linguis-
tic expert who corrects analyses. The frame-
work then revises its grammar so that the updated
morpheme lists and rules do not contradict previ-
ously found analyses. Botha and Barnard (2005)
compared two approaches for gathering Zulu text
corpora from the World Wide Web. They drew
the conclusion that using commercial search en-
gines for finding Zulu websites outperforms web-
crawlers even with a carefully selected starting
point. They saw the reason for that in the fact that
most documents on the internet are in one of the
world’s dominant languages. Bosch and Eiselen
(2005) presented a spell checker for Zulu based on
morphological analysis and regular expressions.
It was shown that after a certain threshold for
the lexicon size performance could only be im-
proved by incrementally extending morphological
rules. Experiments were performed for basic and
complex Zulu verbs and nouns, and large num-
bers of words still were not recognized. Spiegler
et al. (2008) performed experiments where they
tested four machine learning algorithms for mor-
phological analysis with different degrees of su-
pervision. An unsupervised algorithm analyzed
a raw word list, two semi-supervised algorithms
were provided with word stems and subsequently
segmented prefix and suffix sequences, and the
supervised algorithm used a language model of
analysed words which was applied to new words.
They experimentally showed that there is a cer-
tain trade-off between the usage of labeled data
and performance. They also reckoned that com-
putational analysis improves if words of different
grammatical categories are analysed separately
since there exist homographic morphemes across
different word categories.

3 Zulu morphology

Zulu is an agglutinative language, with a complex
morphology. It presents an especial problem for
computational analysis, because words usually in-
corporate both prefixes and suffixes, and there can
be several of each. This makes it hard to identify
the root by mechanical means, as the root could
be the first, second, third, or even a later mor-
pheme in a word. The complexities involved are
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exacerbated by the fact that a considerable num-
ber of affixes, especially prefixes, have allomor-
phic forms. This is largely brought about by the
fact that Zulu has a prohibition against sequences
of vowels, so that a prefix whose canonical form is
nga- will have an allomorph ng- before roots that
begin with vowels. Given a sequence nga-, then, it
is possible that it constitutes an entire morpheme,
or the beginning of a morpheme like the verb root
ngabaz- ‘to be uncertain’, or a morpheme ng- fol-
lowed by a vowel-commencing root like and- ‘to
increase’. Furthermore, many morphemes are ho-
mographs, so that the prefix nga- could represent
either the potential mood morpheme or a form of
the negative that occurs in subordinate clauses;
and the sequence ng- could be the allomorph of ei-
ther of these, or of a number of homographic mor-
phemes ngi-, which represent the first person sin-
gular in various moods. Besides these phonologi-
cally conditioned allomorphs, there are also mor-
phologically conditioned ones, for example the
locative prefix e- has an allomorph o- that occurs
in certain morphological circumstances. Certain
morpheme sequences also exhibit syncretism, so
that while most nouns take a sequence of prefixes
known as the initial vowel and the noun prefix, as
in i-mi-zi ‘villages’, nouns of certain classes, like
class 5, syncretise these two prefixes, as in i-gama
‘name’, where the prefix i- represents both the ini-
tial vowel and the noun prefix.

Like all other Bantu languages, Zulu divides its
nouns into a number of classes. The class is often
identifiable from the noun prefix that is attached
to the noun, and it governs the agreement of all
words that modify the noun, as well as of predi-
cates of which the noun is a subject. Object agree-
ment may also be marked on the predicate. Two
examples of this agreement are given below.
Example 1.
Leso si-tshudeni e-si-hle e-ngi-si-fundis-ile si-phas-e kahle.

that student who-AGR-good who-I-him-teach-PAST AGR-

pass-PAST well.

‘That good student whom I taught passed well.’

Example 2.
Lowo m-fundi o-mu-hle e-ngi-m-fundis-ile u-phas-e kahle.

that learner who-AGR-good who-I-him-teach-PAST AGR-

pass-PAST well.

‘That good learner whom I taught passed well.’

The differences in agreement morphology in the
two sentences is brought about because the nouns
sitshudeni and mfundi belong to different classes.
Canonici (1996) argues that a noun should be as-
signed to a class by virtue of the agreement that it
takes. In terms of this criterion, there are twelve
noun classes in Zulu. These classes are numbered
1–7, 9, 10, 11, 14, 15. The numbering system
was devised by Meinhof (1906), and reflects the
historical affinities between Zulu and other Bantu
languages: Zulu lacks classes 8, 12 and 13, which
are found in other Bantu languages. In the labels
used on the database, morphemes that command
or show agreement have been labeled as <xn>,
where x is a letter or sequence of letters, and n is
a number: thus the morpheme m- in mfundi is la-
beled <n1>, as it marks the noun as belonging to
noun class 1. The morpheme si- in engisifundis-
ile is marked <o7>, as it shows object agreement
with a noun of class 7.

Zulu predicatives may be either verbal or non-
verbal – the latter are referred to in the literature as
copulatives. Copulatives usually consist of a pred-
icative prefix and a base, which may be a noun,
an adjective, or a prepositional, locative or adver-
bial form. There may also be various tense, aspect
and polarity markers. They translate the English
verb ‘be’, plus its complement – Zulu has no di-
rect equivalent of ‘be’; the verb -ba, which has
the closest meaning, is probably better translated
as ‘become’. Examples of copulative forms are
ubenguthisha ‘he was a teacher’, zimandla ‘they
are strong’, basekhaya ‘they are at home’. Pred-
icatives may occur in a variety of moods, tenses,
aspects and polarities; these are usually distin-
guished by the affixes attached to the base form.
Thus in engasesendlini ‘(s)he no longer being in
the house’, the initial prefix e- indicates third per-
son singular, class 1, participial mood; the prefix
nga- denotes negative; the first prefix se- denotes
continuative aspect; the second prefix se- is the
locative prefix; n- shows that the noun belongs to
class 9; dl- is the noun root meaning ‘house’, an
allomorph of the canonical form -dlu; and -ini is
the locative suffix. Thus in typical agglutinative
manner, each affix contributes a distinctive part of
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the meaning of the word as a whole. This charac-
teristic of the language was exploited in the label-
ing system used for the morphological corpus: la-
bels were designed so as to indicate the grammati-
cal function of the morpheme. A person searching
for past tense negative verbs, for example, could
simply search for the combination of <past >,
<neg> and <vr>. A complete list of morphemes,
allomorphs and their labels is provided along with
the corpus and other resources.

According to the Dokean grammatical tradition
(Doke, 1927), Zulu has a large number of parts
of speech. This is because what would be sepa-
rate words in other languages are often prefixes in
Zulu, and also because various subtypes of deter-
miner are given individual names. The parts of
speech recognised in the corpus are: noun, verb,
adjective, pronoun, adverb, conjunction, prepo-
sitional, possessive, locative, demonstrative, pre-
sentative, quantitative, copulative and relative.

Adjective includes the traditional Dokean ad-
jective (a closed class of roots which take noun
prefixes as their agreement prefixes) and the pred-
icative form of the Dokean relative, which is
seen as an open class of adjectives (cf. van der
Spuy (2006)). Pronouns are the personal pro-
nouns, which may also (sometimes in allomor-
phic form) be used as agreement morphemes in
quantifiers. Adverbs may be forms derived from
adjectives by prefixing ka- to the root, or mor-
phologically unanalysable forms like phansi ‘in
front, forward’. Ideophones have been included
as adverbs. Prepositionals are words that incor-
porate the Dokean “adverbials” na- ‘with’, nga-
‘by means of’, njenga- ‘like’, kuna- ‘more than’,
etc., which are better analysed as prepositions.
The presentative is Doke’s “locative demonstra-
tive copulative” - the briefer name was suggested
by van der Spuy (2001). Copulatives are all
Doke’s copulatives, excluding the adjectives men-
tioned above. Relatives are all predicative forms
incorporating a relative prefix.

4 The labeling scheme

The labeling scheme has been based on the idea
that each morpheme in a word should be la-
beled, even when words belong to a very re-
stricted class. For example, the demonstratives

could have been labeled as composite forms, but
instead it is assumed that demonstratives con-
tain between one and three morphemes, e.g.
le<d>si<d7>ya<po3> ‘a demonstrative of the
third position referring to class 7’ - i.e.. ‘that one
yonder, class 7’. It should be possible from this
detailed labeling to build up an amalgam of the
morphological structure of the word. The labels
have been chosen to be both as brief as possi-
ble and as transparent as possible, though trans-
parency was often sacrificed for brevity. Thus in-
dicative subject prefixes are labeled <i1-15>, rel-
ative prefixes are labeled <r>, and noun prefixes
are labeled <n1-15>; but negative subject pre-
fixes are labeled <g1-15> and possessive agree-
ment prefixes are labeled <z1-15>. Sometimes a
single label was used for several different forms,
when these are orthographically distinct, so for
example <asp> (aspect) is used as a label for
the following, among others: the continuative pre-
fix sa- and its allomorph se-, the exclusive pre-
fix se-, and the potential prefix nga- and its allo-
morph ng-. A person searching for forms contain-
ing the potential aspect would have to search for
‘nga<asp> + ng<asp>’. However, there should
be no ambiguity, as the orthographic form would
eliminate this. The detailed description of the
scheme is provided by Spiegler et al. (2010).

5 Annotation process

The goal of this project was to build a reason-
ably sized corpus of morphologically annotated
words of high quality which could be later used
for developing and training automatic morpholog-
ical analyzers. For this reason, we had gathered a
list of the commonest Zulu word types, defined
a partial grammar and parsed Zulu words with a
logic algorithm which proposes possible parses
based on the partial grammar. Compared to a
completely manual approach, this framework pro-
vided possible annotations to choose from or the
option to type in an annotation if none of the sug-
gestions was the correct one. This semi-automatic
process speeded up the labeling by an estimated
factor of 3-4, compared to a purely manual ap-
proach. In Figure 1 we illustrate the annotation
process and in the following subsections each step
is detailed.
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Figure 1: Process view of the annotation.

5.1 Unannotated word list

A list of unannotated Zulu words has been com-
piled from fictional works and the Zulu Bible. The
original list comprises around 100,000 of the com-
monest Zulu word types. No information, mor-
phological or syntactic, was given along with the
words. We selected an initial subset of 10,000
words although our long-term goal is the complete
analysis of the entire word list.

5.2 Partial grammar

Our choice for representing the morphological
Zulu grammar was the formalism of Definite
Clause Grammars (DCGs) used in the logic pro-
gramming language Prolog. Although we de-
fined our grammar as a simple context-free gram-
mar, DCGs can also express context-sensitive
grammars by associating variables as arguments
to non-terminal symbols (Gazdar and Mellish,
1989). When defining our morphological gram-
mar, we assumed that a linguistic expert could
enumerate all or at least the most important mor-
phological rules and morphemes of ‘closed’ mor-
pheme categories, e.g. prefixes and suffixes of
nouns and verbs. Morphemes of ‘open’ categories
like noun and verb roots, however, would need to
be hypothesized during the semi-automatic anal-
ysis and confirmed by the linguistic expert. Our
final grammar comprised around 240 morpholog-
ical rules and almost 300 entries in the morpheme
dictionary. Since we did not only want to recog-
nize admissible Zulu words but also obtain their
morphological structure, we needed to extend our

DCG by adding parse construction arguments as
shown in the example below.
Example 3.
w((X)) --> n(X).
n((X,Y,Z)) --> iv(X),n2(Y),nr(Z).
iv(iv(a)) --> [a].
n2(n2(ba))--> [ba].

A possible parse for the word abantu ‘people’
could be iv(a),n2(ba),*nr(ntu) where
‘*’ marks the hypothesized noun root.

With our partial grammar we could not directly
use the inbuilt Prolog parser since we had to ac-
count for missing dictionary entries: Zulu verb
and noun roots. We therefore implemented an
algorithm which would generate hypotheses for
possible parses according to our grammar. The al-
gorithm will be described in the next subsection.

5.3 Hypothesis generation
For the hypothesis generation we reverted to logic
programming and abductive reasoning. Abduc-
tion is a method of reasoning which is used with
incomplete information. It generates possible hy-
potheses (parses) for an observation (word) and a
given theory (grammar). Depending on the im-
plementation, abduction finds the best hypothe-
sis by evaluating all possible explanations. Our
abductive algorithm is an extension of the meta-
interpreter designed by Flach (1994) which only
enumerates possible parses based on the grammar.
A linguistic expert would then choose the best hy-
pothesis. The algorithm invokes rules top-down
starting with the most general until it reaches the
last level of syntactic variables. These variables
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are then matched against their dictionary entries
from the left to the right of the word. A possi-
ble parse is found if either all syntactic variables
can be matched to existing dictionary entries or
if an unmatched variable is listed as abducible.
Abducibles are predefined non-terminal symbols
whose dictionary entry can be hypothesized. In
our case, abducibles were noun and verb roots.

5.4 Evaluation and best hypothesis

Our annotation framework only enumerated al-
lowable parses for a given word, therefore a lin-
guistic expert needed to evaluate hypotheses. We
provided a web-interface to the annotation frame-
work, so that multiple users could participate in
the annotation process. They would choose either
a single or multiple correct parses. If none of the
hypotheses were correct, the user would provide
the correct analysis. Although our grammar was
incomplete it still generated a substantial number
of hypotheses per word. These were in no par-
ticular order and a result of the inherent ambi-
guity of Zulu morphology. We therefore experi-
mented with different ways of improving the pre-
sentation of parses. The most promising approach
was structural sorting. Parses were alphabetically
re-ordered according to their morphemes and la-
bels such that similar results were presented next
to each other.

5.5 Grammar update

The grammar was defined in an iterative process
and extended if the linguistic expert found mor-
phemes of closed categories which had not been
listed yet or certain patterns of incomplete or in-
correct parses caused by either missing or inaccu-
rate rules. The updated rules and dictionary were
considered for newly parsed words.

5.6 Annotated word list and curation process

Although there had been great effort in improv-
ing the hypothesis generation of the parsing al-
gorithm, a reasonable number of morphological
analyses still had to be provided manually. Dur-
ing the curation process, we therefore had to deal
with removing typos and standardizing morpheme
labels provided by different experts. In order to
guarantee a high quality of the morphological cor-

Category # Analyses # Word types
Verb 6965 4825
Noun 1437 1420
Relative 1042 988
Prepositional 969 951
Possessive 711 647
Copulative 558 545
Locative 380 379
Adverb 156 155
Modal 113 113
Demonstrative 63 61
Pronoun 38 31
Interjection 24 24
Presentative 15 15
Adjective 14 14
Conjunction 3 3
Total # 12488 10171

Table 1: Categories of labeled words.

pus, we also inspected single labels and analyses
for their correctness. This was done by examin-
ing frequencies of labels and label combinations
assuming that infrequent labels and combinations
were likely to be incorrect and needed to be man-
ually examined again. The finally curated corpus
has an estimated error of 0.4 ± 0.5 incorrect sin-
gle labels and 2.8± 2.1 incorrect complete analy-
ses per 100 parses. Along with each word’s anal-
ysis we wanted to provide part-of-speech (POS)
tags. This was done by using a set of rules which
determine the POS tag based on the morphologi-
cal structure. We developed a prototype of a POS
tagger which would assign the part-of-speech to a
given morphological analysis based on a set of 34
rules. A summary of morphological analyses and
words is given in Table 1. The rules are provided
in Spiegler et al. (2010).

5.7 POS tagging of sentences

In addition to the list of morphologically labeled
words, we assigned parts-of-speech to a subset of
30,000 Zulu sentences. This task is straightfor-
ward if each word of a sentence only belongs to a
single grammatical category. This was the case for
2595 sentences. For 431 sentences, however, we
needed to disambiguate POS tags. We achieved
this by analysing the left and right context of a
word form and selecting the most probable part-
of-speech from a given list of possible tags.

The overall error is estimated at 3.1±0.3 incor-
rect POS tags per 100 words for the 3,000 sen-
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Dataset # Sentences # Word tokens #Word types # Words per sentence Word length
Raw 29,424 288,106 87,154 9.79±6.74 7.49±2.91
Tagged 3,026 21,416 7,858 7.08±3.75 6.81±2.68

Table 2: Statistics of raw and POS-tagged sentences.

tences we tagged. The summary statistics for raw
and tagged sentences are shown in Table 2.

6 The Ukwabelana corpus - a resource
description

The Ukwabelana corpus is three-fold:
1. It contains 10,000 morphologically labeled

words and 3,000 POS-tagged sentences.
2. The corpus also comprises around 100,000

common Zulu word types and 30,000 Zulu sen-
tences compiled from fictional works and the
Zulu Bible, from which the labeled words and
sentences have been sampled.

3. Furthermore, all software and additional data
used during the annotation process is provided:
the partial grammar in DCG format, the ab-
ductive algorithm for parsing with incomplete
information and a prototype for a POS tagger
which assigns word categories to morphologi-
cally analyzed words.

We are making these resources publicly available
from http://www.cs.bris.ac.uk/Research/

MachineLearning/Morphology/Resources/ so
that they will be of benefit to any person doing
research on Zulu or on computer-aided analysis
of languages.

7 Conclusions and future work

In this paper, we have given an overview of the
morphology of the language Zulu, which is spo-
ken by 23% and understood by more than half of
the South African population. As an indigenous
language with a written history of 150 years which
was only recognised as an official languages in
1994, it is considerably under-resourced. We have
spent considerable effort to compile the first open-
source corpus of labeled and unlabeled words as
well as POS-tagged and untagged sentences to
promote research on this Bantu language. We
have described the annotation process and the
tools for compiling this corpus. We see this work

as a first step in an ongoing effort to ultimately
label the entire word and sentence corpus.

Our future work includes further automation of
the annotation process by extending the described
abductive algorithm with a more sophisticated hy-
pothesis evaluation and by combining syntactical
and morphological information during the deci-
sion process. Our research interest also lies in the
field of automatic grammar induction which will
help to refine our partial grammar. Another aspect
is interactive labeling where a linguistic expert di-
rects the search of an online parsing algorithm by
providing additional information. Apart from the
benefits to language researchers, we foresee an ap-
plication of the corpus by machine learners which
can develop and train their algorithms for morpho-
logical analysis.
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Abstract

We present a novel Evaluation Metric
for Morphological Analysis (EMMA)
that is both linguistically appealing and
empirically sound. EMMA uses a graph-
based assignment algorithm, optimized
via integer linear programming, to match
morphemes of predicted word analyses
to the analyses of a morphologically rich
answer key. This is necessary especially
for unsupervised morphology analysis
systems which do not have access to
linguistically motivated morpheme labels.
Across 3 languages, EMMA scores of
14 systems have a substantially greater
positive correlation with mean average
precision in an information retrieval
(IR) task than do scores from the metric
currently used by the Morpho Challenge
(MC) competition series. We compute
EMMA and MC metric scores for 93
separate system-language pairs from
the 2007, 2008, and 2009 MC compe-
titions, demonstrating that EMMA is
not susceptible to two types of gaming
that have plagued recent MC competi-
tions: Ambiguity Hijacking and Shared
Morpheme Padding. The EMMA eval-
uation script is publicly available from
http://www.cs.bris.ac.uk/
Research/MachineLearning/
Morphology/Resources/.

1 Introduction

Words in natural language are constructed from
smaller building blocks called morphemes. For

example, the word wives breaks down into an un-
derlying stem, wife, together with a plural suffix.
Analyzing the morphological structure of words
is known to benefit a variety of downstream nat-
ural language (NL) tasks such as speech recogni-
tion (Creutz, 2006; Arısoy et al., 2009), machine
translation (Oflazer et al., 2007), and information
retrieval (McNamee et al., 2008).

A variety of automatic systems can morpholog-
ically analyze words that have been removed from
their surrounding context. These systems range
from hand-built finite state approaches (Beesley
and Karttunen, 2003) to recently proposed algo-
rithms which learn morphological structure in an
unsupervised fashion (Kurimo et al., 2007). Since
unsupervised systems do not have access to lin-
guistically motivated morpheme labels, they typ-
ically produce morphological analyses that are
closely related to the written form. Such a system
might decompose wives as wiv -es. Meanwhile,
a hand-built system might propose wife_N +Plu-
ral, or even parse wives as a hierarchical feature
structure. As morphological analysis systems pro-
duce such varied outputs, comparing decomposi-
tions from disparate systems is a challenge.

This paper describes EMMA, an Evaluation
Metric for Morphological Analysis that quantita-
tively measures the quality of a set of morpholog-
ical analyses in a linguistically adequate, empir-
ically useful, and novel fashion. EMMA evalu-
ates analyses that can be represented as a flat set
of symbolic features, including hierarchical repre-
sentations, which can be projected down to a lin-
earized form (Roark and Sproat, 2007).

An automatic metric that discriminates be-
tween proposed morphological analyses should
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fulfill certain computational and linguistic crite-
ria. Computationally, the metric should:

1. Correlate with the performance of real-world
NL processing tasks which embed the morpho-
logical analyses.

2. Be Readily Computable: The metric will only
be useful if it is less time consuming and easier
to compute than the larger NL task.

3. Be Robust: The metric should be difficult to
game and should accurately reflect the distri-
bution of predicted and true morphemes.

4. Be Readily Interpretable: When possible, the
final numeric score should directly identify the
strengths and weaknesses of the underlying
morphological analysis system.

While accounting for these computational re-
quirements, a morphology metric should still re-
ward accurate models of linguistic structure. In
particular, the metric should account for:

1. Morphophonology: Applying a morphological
rule may alter the surface form of stem or af-
fix. In the word wives, /waivz/, a rule of mor-
phophonology voices the stem-final /f/ of wife,
/waif/, when the plural suffix is added. A met-
ric should penalize for not placing wives and
wife as forms of the same lexeme.

2. Allomorphy: A metric should capture the suc-
cessful grouping of allomorphs. The German
plural has several surface allomorphs includ-
ing -en in Zeiten (times), -e in Hunde (dogs),
and -s in Autos (cars). A metric should reward
a morphological analysis system that analyzes
the different surface forms of the German plu-
ral as underlyingly identical.

3. Syncretism: In mirror fashion, a metric
should reward analyses that distinguish be-
tween surface-identical syncretic morphemes:
although derives and derivations both contain
an -s morpheme, one marks 3rd person singular
and the other plural.

4. Ambiguity: Finally, a metric should account
for legitimate morphological ambiguity. In He-
brew, the written word MHGR has three vi-
able morphological segmentations: M- H- GR,
“from the foreigner”, M- HGR, “from Hagar”,

and the unsegmented form MHGR, meaning
“immigrant” (Lavie et al., 2004). Absent dis-
ambiguating context, a morphological system
should be rewarded for calling out all three
analyses for MHGR.

Morphophonology, allomorphy, syncretism,
and ambiguity are all common phenomena in the
world’s languages. The first three have all re-
ceived much discussion in theoretical linguistics
(Spencer and Zwicky, 2001), while morpholog-
ical ambiguity has significant practical implica-
tions in NL processing, e.g. in machine translation
of morphologically complex languages (Lavie et
al., 2004; Oflazer et al., 2007).

In Section 2 we propose the metric EMMA,
which has been specifically designed to evalu-
ate morphological analyses according to our com-
putational and linguistic criteria. Section 3 then
describes and qualitatively critiques several well-
used alternative metrics. Section 4 empirically
compares EMMA against the qualitatively-strong
metric used in the Morpho Challenge competition
series (Kurimo et al., 2009). And we conclude in
Section 5.

2 EMMA: An Evaluation Metric for
Morphological Analysis

EMMA, the metric we propose for the evalua-
tion of morphological analyses, like all the met-
rics that we consider in this paper, compares pro-
posed morphological analyses against an answer
key of definitively-analyzed words from a vocab-
ulary. Since a set of proposed analyses is likely
to use a different labeling scheme than the answer
key, especially true of the output from unsuper-
vised systems, EMMA does not perform a direct
comparison among proposed and answer analy-
ses. Instead, EMMA seeks a one-to-one relabel-
ing of the proposed morphemes that renders them
as similar as possible to the answer key. EMMA,
then, measures the degree to which proposed anal-
yses approximate an isomorphism of the answer
key analyses. For exposition, we initially assume
that, for each word, a single proposed analysis
is scored against a single unambiguous answer
analysis. We relax this restriction in Section 2.3,
where EMMA scores multiple proposed analyses
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against a set of legitimately ambiguous morpho-
logical analyses.

To find the most appropriate one-to-one mor-
pheme relabeling, EMMA turns to a standard al-
gorithm from graph theory: optimal maximum
matching in a bipartite graph. A bipartite graph,
G = {X,Y ;E}, consists of two disjoint sets
of vertices, X = {x1, x2, . . . , xn} and Y = {y1,
y2, . . . , ym}, and a set of edges e(xi, yj) ∈ E
such that each edge has one end in X and the other
end in Y . In EMMA, the set, A, of all unique mor-
phemes in the answer key and the set, P , of all
unique morphemes in the proposed analyses serve
as the disjoint vertex sets of a bipartite graph.

A matching M ⊆ E in a bipartite graph is de-
fined as a set of edges e(xi, yj) such that no xi
or yj is repeated. A maximum matching is a
matching where no M ′ with |M ′| > |M | exists.
Furthermore, a weight w(xi, yj) ∈ < may be as-
signed to each edge e(xi, yj) of a bipartite graph.
An optimal assignment is a maximum matching
which also maximizes the sum of the weights of
the edges of the matching

∑

e(xi,yj)∈M
w(xi, yj) .

EMMA weights the edge between a particular
answer morpheme a ∈ A and a proposed mor-
pheme p ∈ P as the number of words, w, in the
vocabulary, V , where the answer analysis of w in-
cludes morpheme a while the proposed analysis
includes p. EMMA constructs an optimal assign-
ment maximum matching in this weighted bipar-
tite morpheme graph. The edge weights ensure
that the optimal matching will link the answer and
proposed morphemes which globally occur in the
analyses of the same words most often – restrict-
ing each answer morpheme to be represented by at
most one proposed morpheme, and each proposed
morpheme to represent at most one morpheme in
the answer key. On the one hand, the restrictions
thus imposed by bipartite matching penalize sets
of proposed analyses that do not differentiate be-
tween surface-identical syncretic morphemes. On
the other hand, the same one-to-one matching re-
strictions penalize proposed analyses that do not
conflate allomorphs of the same underlying mor-
pheme, whether those allomorphs are phonologi-

cally induced or not. Thus, EMMA meets our lin-
guistic criteria from Section 1 of modeling syn-
cretism, allomorphy, and morphophonology.

2.1 Maximum Matching by Integer Linear
Programming

To construct the maximum matching optimal as-
signment of answer and proposed morphemes,
EMMA uses standard integer linear programming
techniques as implemented in lpsolve (Berkelaar
et al., 2004). For the purpose of our integer pro-
gram, we represent the weight of each potential
edge of the optimal bipartite morpheme assign-
ment in a count matrix C = {cij} where cij is as-
signed the number of words w ∈ V which share
morpheme ai in the answer key and pj in the pre-
diction. We then define a binary matrix B = {bij}
of the same dimensions as C. Each bij will be set
to 1 if an edge exists from ai to pj in the optimal
maximum matching, with bij = 0 otherwise. The
integer linear program can then be defined as fol-
lows:

argmax
B

∑

i,j

(C ·B)ij (1)

s.t.
∑

i

bij ≤ 1 ,
∑

j

bij ≤ 1 , bij ≥ 0 ,

where (C · B)ij = cij · bij is the element-wise
Hadamard product.

2.2 Performance Measures
Having settled on a maximum matching optimal
assignment of proposed and answer morphemes,
EMMA derives a final numeric score. Let wk

be the kth word of V ; and let Ak and Pk de-
note, respectively, the sets of morphemes in the
answer key analysis of wk and predicted analysis
of wk. Furthermore, let P ∗k denote the predicted
morphemes for wk where a morpheme pj is re-
placed by ai if bij = 1. Now that Ak and P ∗k
contain morpheme labels that are directly compa-
rable, we can define precision and recall scores
for the proposed analysis of the word wk. Preci-
sion is the fraction of correctly relabeled proposed
morphemes from among all proposed morphemes
of wk; while recall is the number of correctly rela-
beled morphemes as a fraction of the answer key
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analysis of wk. Precision and recall of the full vo-
cabulary are the average word-level precision and
recall:

precision =
1

|V |

|V |∑

k

|Ak
⋂
P ∗k |

|P ∗k |
, (2)

recall =
1

|V |

|V |∑

k

|Ak
⋂
P ∗k |

|Ak|
. (3)

Finally, f-measure is the harmonic mean of pre-
cision and recall:

f -measure =
2 · precision · recall
precision+ recall

. (4)

2.3 Morphological Ambiguity in EMMA
Thus far we have presented EMMA for the sce-
nario where each word has a single morphological
analysis. But, as we saw in Section 1 with the He-
brew word MHGR, natural language permits sur-
face forms to have multiple legitimate morpho-
logical analyses. When a word is truly ambigu-
ous, EMMA expects an answer key to contain a
set of analyses for that word. Similarly, we per-
mit sets of proposed alternative analyses. To ex-
tend EMMA with the ability to evaluate alterna-
tive analyses we first generalize the optimal max-
imum matching of morphemes from Section 2.1.
We then define a new integer linear program to
match answer and proposed alternative analyses.
Finally, we adjust the performance measures of
Section 2.2 to account for alternatives.

2.3.1 Ambiguity and Morpheme Matching
Let Ak,r denote the rth alternative answer anal-
ysis of the kth word with 1 ≤ r ≤ mk, and let
Pk,s denote the sth alternative prediction with
1 ≤ s ≤ nk, where mk is the number of alterna-
tive analyses in the answer key and nk the num-
ber of alternative predictions for wk. We redefine
Ak =

⋃mk
r Ak,r and Pk =

⋃nk
s Pk,s as the set of

all answer or, respectively, predicted morphemes
of wk across all analysis alternatives. Instead of
incrementing each cij entry in the count matrix
C by a full count, we now add 1

mk·nk
to cij for

all pairs (ai, pj) ∈ Ak × Pk. This corresponds to
counting each combination of an answer key and
predicted morpheme normalized by the number of

possible pairings between proposed and answer
analysis alternatives. When both the answer and
proposed analyses consist of just a single alter-
native, cij remains unchanged. Generalized mor-
pheme matching still employs the linear program
defined in Equation 1.

2.3.2 Matching of Alternative Analyses
After performing a one-to-one morpheme rela-
belling that accounts for ambiguity, we need to
extend EMMA with the ability to evaluate alterna-
tive analyses. We again turn to optimal maximum
matching in a bipartite graph: Where earlier we
matched proposed and answer morphemes, now
we match full proposed and answer analysis alter-
natives, maximizing the total number of correctly
predicted morphemes across all alternatives. Gen-
eralizing on the notation of the unambiguous case,
let P ∗k,s denote the sth alternative predicted analy-
sis of the kth word where predicted morphemes
have been replaced by their assigned answer key
morphemes. We introduce a new count matrix
C ′ = {c′r,s}, where c′r,s is the count of common
morphemes of the rth answer key alternative and
sth predicted alternative. Based on Equation 1,
we calculate the binary matrix B′ = {b′r,s} which
contains the optimal assignment of the alternative
answer key and predicted analyses for wk.

2.3.3 Ambiguity and Performance Scores
We now adjust EMMA’s numeric performance
measures to account for sets of ambiguous anal-
ysis alternatives. Precision becomes

1

|V |

|V |∑

k

1

nk

mk∑

r

nk∑

s

b′r,s
|Ak,r

⋂
P ∗k,s|

|P ∗k,s|
, (5)

the ratio of correctly predicted morphemes across
all predicted alternatives normalised by the num-
ber of predicted alternatives, nk, and the vocab-
ulary size, |V |. The factor b′r,s guarantees that
scores are only averaged over pairs of proposed
and answer analysis alternatives that have been as-
signed, that is, where b′r,s = 1. Recall is measured
similarly with

1

|V |

|V |∑

k

1

mk

mk∑

r

nk∑

s

b′r,s
|Ak,r

⋂
P ∗k,s|

|Ak,r|
. (6)
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Here, we normalize by mk, the number of alterna-
tive analyses for the kth word that are listed in the
answer key. The normalisation factors 1

mk
and 1

nk

ensure that predicting too few or many alternative
analyses is penalised.

3 Other Morphology Metrics

Having presented the EMMA metric for evaluat-
ing the quality of a set of morphological analyses,
we take a step back and examine other metrics that
have been proposed. Morphology analysis metrics
can be categorized as either: 1. Directly compar-
ing proposed analyses against an answer key, or 2.
Indirectly comparing proposed and answer analy-
ses by measuring the strength of an isomorphic-
like relationship between the proposed and answer
morphemes. The proposed EMMA metric belongs
to the second category of isomorphism-based met-
rics.

3.1 Metrics of Direct Inspection
By Segmentation Point. Perhaps the most read-
ily accessible automatic evaluation metric is a di-
rect comparison of the morpheme boundary posi-
tions in proposed and answer analyses. As early
as 1974, Hafer and Weiss used the direct boundary
metric. Although intuitively simple, the segmen-
tation point method implicitly assumes that it is
possible to arrive at a valid morphological anal-
ysis by merely dividing the characters of a word
into letter sequences that can be reconcatenated to
form the original word. But, by definition, con-
catenation cannot describe non-contanative pro-
cesses like morphophonology and allomorphy.
Nor does simple segmentation adequately differ-
entiate between surface-identical syncretic mor-
phemes. Despite these drawbacks, precision and
recall of segmentation points is still used in cur-
rent morphological analysis research (Poon et al.
(2009), Snyder and Barzilay (2008), Kurimo et al.
(2006)).

Against Full Analyses. To confront the reality
of non-concatenative morphological processes, an
answer key can hold full morphological analyses
(as opposed to merely segmented surface forms).
But while a hand-built (Beesley and Karttunen,
2003) or supervised (Wicentowski , 2002) mor-
phology analysis system can directly model the

annotation standards of a particular morphologi-
cal answer key, the label given to specific mor-
phemes is ultimately an arbitrary choice that an
unsupervised morphology induction system has
no way to discover.

By Hand. On the surface, scoring proposed
analyses by hand appears to provide a way to eval-
uate the output of an unsupervised morphology
analysis system. Hand evaluation, however, does
not meet our criteria from Section 1 for a robust
and readily computable metric. It is time consum-
ing and, as Goldsmith (2001) explains, leaves dif-
ficult decisions of what constitutes a morpheme to
on-the-fly subjective opinion.

3.2 Metrics of Isomorphic Analysis
Recognizing the drawbacks of direct evaluation,
Schone and Jurafsky (2001), Snover et al. (2002),
and Kurimo et al. (2007) propose related measures
of morphological analysis quality that are based
on the idea of an isomorphism. For reasons that
will be clear momentarily, we refer to the Schone
and Jurafsky, Snover et al., and Kurimo et al. met-
rics as soft isomorphic measures. As discussed
in Section 2, metrics of isomorphism measure
similarities between the distribution of proposed
morphemes and the distribution of answer mor-
phemes, where proposed and answer morphemes
may be disjoint symbol sets.

Unlike the EMMA metric proposed in Section
2, the soft metrics of isomorphism do not seek
to explicitly link proposed morphemes to answer
morphemes. Instead, their metrics group sets or
pairs of words which share, in either the pro-
posed analyses or in the answer analyses, a stem
(Schone and Jurafsky, 2001; Snover, 2002), a suf-
fix (Snover et al., 2002), or any arbitrary mor-
pheme (Kurimo et al., 2007). The soft met-
rics subsequently note whether these same sets or
pairs of words share any morpheme in the answer
key or, respectively, in the proposed analyses. By
foregoing a hard morpheme assignment, the soft
metrics do not adequately punish sets of proposed
and answer morphemes which fail to model syn-
cretism and/or allomorphy. For example, pro-
posed analyses that annotate 3rd person singular
and plural with a single undifferentiated +s mor-
pheme will receive recall credit for both nouns and
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verbs.

3.3 The Morpho Challenge Metric
The Morpho Challenge (MC) competition series
for unsupervised morphology analysis algorithms
(Kurimo et al., 2009) has used a soft metric of iso-
morphism in its most recent three years of compe-
tition: 2007, 2008, and 2009. According to Ku-
rimo et al. (2009) the Morpho Challenge (MC)
measure samples random word pairs which share
at least one common morpheme. Precision is cal-
culated by generating random word pairs from
the set of proposed analyses and then compar-
ing the analyses of the word pairs in the answer
key. The fraction of found and expected common
morphemes is normalised by the number of words
which are evaluated. Recall is defined in mirror
fashion. The MC metric also normalizes preci-
sion and recall scores across sets of alternative
analyses for each word in the proposal and answer
key. To our knowledge the MC metric is the first
isomorphism-based metric to attempt to account
for morphological ambiguity. As we show in Sec-
tion 4, however, MC’s handling of ambiguity is
easily gamed.

The MC metric does meet our criterion of being
readily computable and, as we will show in the ex-
perimental section, the metric also correlates to a
certain extent with performance on a higher-level
natural language processing task. The downside
of the MC metric, however, is robustness. In addi-
tion to MC’s crude handling of ambiguity and its
over-counting of allomorphs and syncretic mor-
phemes, the random pair sampling method that
MC uses is not independent of the set of analyses
being evaluated. If two algorithms predict differ-
ent morpheme distributions, the sampling method
will find different numbers of word pairs. We sub-
stantiate our claim that the MC metric lacks ro-
bustness in Section 4 where we empirically com-
pare it to the EMMA metric.

4 Experimental Evaluation

To experimentally evaluate our newly proposed
EMMA metric, and to quantitatively compare the
EMMA and MC metrics, we have evaluated re-
sults of 93 system-language pairs from Morpho

Challenge 2007, 2008, and 2009.1 The evaluation
comprised three algorithms by Bernhard (2007)
and Bernhard (2009), one algorithm by Can and
Manandhar (2009), the MC baseline algorithm
Morfessor by Creutz (2006), UNGRADE by Gole-
nia et al. (2009), two algorithms by Lavallee and
Langlais (2009), one algorithm by Lignos et al.
(2009), five ParaMor versions by Monson et al.
(2008) and Monson et al. (2009), three Promodes
versions by Spiegler et al. (2009) and one al-
gorithm by Tchoukalov et al. (2009). We ran
these algorithms over six data sets available from
the MC competition: Arabic (vowelized and non-
vowelized), English, Finnish, German, and Turk-
ish. We then scored the system outputs using both
EMMA and the MC metric against an answer key
provided by MC. In Sections 2 and 3.3 we have al-
ready commented on the linguistic characteristics
of both metrics. In this section, we concentrate on
their computational performance.

Both the EMMA and MC metrics are readily
computable: Both are freely available2 and they
each take less than two minutes to run on the av-
erage desktop machines we have used. In terms
of interpretability, EMMA not only returns the
performance as precision, recall and f-measure
as MC does, but also provides predicted analy-
ses where mapped morphemes are replaced by an-
swer key morphemes. This information is help-
ful when judging results qualitatively since it ex-
poses tangible algorithmic characteristics. In Ta-
ble 1 we present the algorithms with the highest
MC and EMMA scores for each language. For
all languages, the EMMA and MC metrics place
different algorithms highest. One reason for the
significantly different rankings that the two met-
rics provide may be the sampling of random pairs
that MC uses. Depending on the distribution of
predicted morphemes across words, the number
of random pairs, which is used for calculating the
precision, may vary. For instance, on vowelized
Arabic, Promodes 1 is evaluated over a sample
of 100 pairs where MC selected just 47 pairs for
ParaMor Mimic.

1Detailed results can be found in Spiegler (2010).
2EMMA may be downloaded from http://www.

cs.bris.ac.uk/Research/MachineLearning/
Morphology/Resources/
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Language Algorithm and year of MC evaluation metric EMMA evaluation metric
participation in MC Pr. Re. F1 Pr. Re. F1

Arabic (nv) Promodes 2 2009 0.7789 0.3980 0.5268 0.5356 0.2444 0.3356
Ungrade 2009 0.7971 0.1603 0.2670 0.7017 0.2490 0.3675

Arabic (vw) Promodes 2 2009 0.5946 0.6017 0.5982 0.4051 0.3199 0.3575
Promodes 1 2009 0.7381 0.3477 0.4727 0.5588 0.3281 0.4135

English Bernhard 1 2007 0.7850 0.5763 0.6647 0.8029 0.7460 0.7734
Lignos 2009 0.7446 0.4716 0.5775 0.9146 0.6747 0.7766

Finnish ParaMorPlusMorfessor 2008 0.5928 0.5675 0.5798 0.2271 0.3428 0.2732
Lavallee rali-cof 2009 0.6731 0.3563 0.4659 0.5061 0.4065 0.4509

German ParaMorPlusMorfessor 2008 0.5562 0.6077 0.5808 0.3633 0.4948 0.4190
Morfessor 2009 0.6528 0.3818 0.4818 0.7311 0.5556 0.6314

Turkish ParaMorPlusMorfessor 2008 0.6779 0.5732 0.6212 0.3476 0.4315 0.3851
Morfessor 2009 0.7894 0.3330 0.4684 0.5901 0.3703 0.4550

Table 1: Best performing algorithms with MC and EMMA evaluation metric.

Algorithm and year of MC evaluation metric EMMA evaluation metric
participation in MC Pr. Re. F1 Pr. Re. F1

Morfessor 2009 0.8143 0.2788 0.4154 0.4751 0.3472 0.4012
ParaMor 2008 0.4111 0.4337 0.4221 0.4322 0.3770 0.4027
ParaMorPlusMorfessor 2008 0.5928 0.5675 0.5798 0.2271 0.3428 0.2732
Paramor Morfessor Union 2009 0.4374 0.5676 0.4941 0.3878 0.4530 0.4178

Table 3: Gaming MC with ambiguity hijacking on Finnish.

Looking at any particular algorithm-language
pair, the EMMA and MC scores differ consider-
ably and respective raw scores are not directly
comparable. More interesting is the extent to
which both metrics correlate with real NL tasks.
Table 2 lists the Spearman rank correlation co-
efficient for algorithms from MC 2009 on En-
glish, Finnish and German comparing rankings of
f-measure results returned by either MC or EMMA
against rankings using the mean average preci-
sion (MAP) of an information retrieval (IR) task.3

All MAP scores are taken from Kurimo et al.
(2009). Although both metrics positively correlate
with the IR results; EMMA’s correlation is clearly
stronger across all three languages.

To test the robustness of the EMMA and MC
metrics, we performed two experiments where we
intentionally attempt to game the metrics – ambi-
guity hijacking and shared morpheme padding. In
both experiments, the MC metric showed vulnera-
bility. Ambiguity hijacking results for Finnish ap-

3Detailed results can be found in Spiegler (2010).

pear in Table 3, other languages perform similarly.
Using both metrics, we scored the Finnish analy-
ses that were proposed by a) the Morfessor algo-
rithm alone, b) ParaMor alone, and c) two ways
of combining ParaMor and Morfessor: ParaMor-
PlusMorfessor simply lists the ParaMor and Mor-
fessor analyses as alternatives – as if each word
were ambiguous between a ParaMor and a Mor-
fessor analysis; ParaMorMorfessorUnion, on the
other hand, combines the morpheme boundary
predictions of ParaMor and Morfessor into a sin-
gle analysis. The ParaMorPlusMorfessor system
games the ambiguity mechanism of the MC met-
ric, achieving an f-measure higher than that of any
of the three other algorithms. EMMA, however,
correctly discovers that the analyses proposed by
ParaMorPlusMorfessor lie farther from an iso-
morphism to the the answer key than do the uni-
fied analyses of ParaMorMorfessorUnion.

In Table 4 we show a second way of gaming
the MC metric – shared morpheme padding. We
add the same unique bogus morpheme to each
proposed analysis of every word for all systems.
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Language
MC evaluation EMMA evaluation

Precision Recall F-measure Precision Recall F-measure
Arabic (nv) 0.91±0.02 10.83± 8.33 7.20±5.10 0.91±0.05 1.30±0.07 1.20±0.05
Arabic (vw) 0.85±0.04 11.17±8.81 7.13±5.23 0.89±0.07 1.21±0.06 1.12±0.05
English 0.36±0.08 2.02±0.66 0.63±0.10 0.73±0.15 1.05±0.08 0.86±0.12
Finnish 0.57±0.08 3.07±2.47 1.19±0.68 0.87±0.19 1.12±0.10 0.99±0.14
German 0.43±0.08 2.90±1.45 0.84±0.16 0.80±0.17 1.09±0.08 0.94±0.11
Turkish 0.58±0.09 2.95±1.65 1.19±0.37 0.85±0.08 1.07±0.04 0.97±0.05

Table 4: Gaming MC with shared morpheme padding: Average and standard deviations of the ratio of
padded to original scores.

Padding analyses with a shared morpheme signif-
icantly increases the recall scores of the MC met-
ric. We summarize our experimental results by
calculating, for each language-algorithm pair, the
ratio of the score for the padded analyses as com-
pared to that of the original, unpadded analyses.
Table 4 reports average and standard deviation of
the ratios across all systems for each language. In
Arabic (nv. and vw.), the recall increases by 10.83
and 11.17 times, which leads to an inflation of f-
measure by 7.20 and 7.13 times – this is a direct
result of the soft nature of the MC isomorphism.
In contrast, EMMA’s recall scores increase much
less than MC’s do, and EMMA’s precision scores
decrease proportionately. A small change to the
set of proposed analyses does not lead to a huge
difference in f-measure – characteristic of a more
robust metric.

5 Conclusion

This paper has proposed, EMMA, a novel evalua-
tion metric for the assessment of the quality of a
set of morphological analyses. EMMA’s:

1. Coverage of the major morphological phenom-
ena,

Correlation with IR
IR vs. MC IR vs. EMMA

English 0.466 0.608
Finnish 0.681 0.759
German 0.379 0.637

Table 2: Spearman rank correlation coefficient of
metrics vs. Information Retrieval (IR).

2. Correlation with performance on natural lan-
guage processing tasks, and

3. Computational robustness

all recommend the the metric as a strong and use-
ful measure – particularly when evaluating un-
supervised morphology analysis systems which,
lacking access to labeled training data, are unin-
formed of the labeling standard used in the answer
key.
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Arısoy, Ebru, Doğan Can, Sıddıka Parlak, Haşim Sak,
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Abstract 

In this paper, we describe a novel ap-
proach to computational modeling 
and understanding of social and cul-
tural phenomena in multi-party dia-
logues. We developed a two-tier ap-
proach in which we first detect and 
classify certain social language uses, 
including topic control, disagreement, 
and involvement, that serve as first 
order models from which presence the 
higher level social constructs such as 
leadership, may be inferred.  

1. Introduction 
We investigate the language dynamics in 
small group interactions across various set-
tings. Our focus in this paper is on English 
online chat conversations; however, the mod-
els we are developing are more universal and 
applicable to other conversational situations: 
informal face-to-face interactions, formal 
meetings, moderated discussions, as well as 
interactions conducted in languages other 
than English, e.g., Urdu and Mandarin.  
Multi-party online conversations are particu-
larly interesting because they become a per-
vasive form of communication within virtual 
communities, ubiquitous across all age groups. 
In particular, a great amount of communica-
tion online occurs in virtual chat-rooms, typi-
cally conducted using a highly informal text 
dialect. At the same time, the reduced-cue 
environment of online interaction necessitates 
more explicit linguistic devices to convey 
social and cultural nuances than is typical in 
face-to-face or even voice conversations.  
Our objective is to develop computational 
models of how certain social phenomena such 
as leadership, power, and conflict are signaled 
and reflected in language through the choice 
of lexical, syntactic, semantic and conversa-
tional forms by discourse participants. In this 

paper we report the results of an initial phase 
of our work during which we constructed a 
prototype system called DSARMD-1 (De-
tecting Social Actions and Roles in Multi-
party Dialogue). Given a representative seg-
ment of multiparty task-oriented dialogue, 
DSARMD-1 automatically classifies all dis-
course participants by the degree to which 
they deploy selected social language uses, 
such as topic control, task control, involve-
ment, and disagreement. These are the 
mid-level social phenomena, which are de-
ployed by discourse participants in order to 
achieve or assert higher-level social con-
structs, including leadership. In this work we 
adopted a two-tier empirical approach where 
social language uses are modeled through 
observable linguistic features that can be 
automatically extracted from dialogue. The 
high-level social constructs are then inferred 
from a combination of language uses attrib-
uted to each discourse participant; for exam-
ple, a high degree of influence and a high de-
gree of involvement by the same person may 
indicate a leadership role. In this paper we 
limit our discussion to the first tier only: how 
to effectively model and classify social lan-
guage uses in multi-party dialogue.  

2. Related Research 
Issues related to linguistic manifestation of 
social phenomena have not been systemati-
cally researched before in computational lin-
guistics; indeed, most of the effort thus far 
was directed towards the communicative di-
mension of discourse. While the Speech Acts 
theory (Austin, 1962; Searle, 1969) provides 
a generalized framework for multiple levels 
of discourse analysis (locution, illocution and 
perlocution), most current approaches to dia-
logue focus on information content and 
structural components (Blaylock, 2002; Car-
berry & Lambert, 1999; Stolcke, et al., 2000) 
in dialogue; few take into account the effects 
that speech acts may have upon the social 
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roles of discourse participants. Also relevant 
is research on modeling sequences of dia-
logue acts – to predict the next one (Samuel et 
al. 1998; Ji & Bilmes, 2006 inter alia) – or to 
map them onto subsequences or “dialogue 
games” (Carlson 1983; Levin et al., 1998), 
which are attempts to formalize participants’ 
roles in conversation (e.g., Linell, 1990; Poe-
sio & Mikheev, 1998; Field et al., 2008). 
There is a body of literature in anthropology, 
linguistics, sociology, and communication on 
the relationship between language and power, 
as well as other social phenomena, e.g., con-
flict, leadership; however, existing ap-
proaches typically look at language use in 
situations where the social relationships are 
known, rather than using language predic-
tively. For example, conversational analysis 
(Sacks et al., 1974) is concerned with the 
structure of interaction: turn-taking, when 
interruptions occur, how repairs are signaled, 
but not what they reveal about the speakers. 
Research in anthropology and communication 
has concentrated on how certain social norms 
and behaviors may be reflected in language 
(e.g., Scollon and Scollon, 2001; Agar, 1994) 
with few systematic studies attempting to ex-
plore the reverse, i.e., what the linguistic 
phenomena tell us about social norms and 
behaviors.  

3. Data & Annotation 
Our initial focus has been on on-line chat 
dialogues. While chat data is plentiful on-line, 
its adaptation for research purposes presents a 
number of challenges that include users’ pri-
vacy issues on the one hand, and their com-
plete anonymity on the other. Furthermore, 
most data that may be obtained from public 
chat-rooms is of limited value for the type of 
modeling tasks we are interested in due to its 
high-level of noise, lack of focus, and rapidly 
shifting, chaotic nature, which makes any 
longitudinal studies virtually impossible. To 
derive complex models of conversational be-
havior, we need the interaction to be reasona-
bly focused on a task and/or social objectives 
within a group. 
Few data collections exist covering multiparty 
dialogue, and even fewer with on-line chat. 
Moreover, the few collections that exist were 
built primarily for the purpose of training 
dialogue act tagging and similar linguistic 
phenomena; few if any of these corpora are 

suitable for deriving pragmatic models of 
conversation, including socio-linguistic phe-
nomena. Existing resources include a 
multi-person meeting corpus ICSI-MRDA 
and the AMI Meeting Corpus (Carletta, 2007), 
which contains 100 hours of meetings cap-
tured using synchronized recording devices. 
Still, all of these resources look at spoken 
language rather than on-line chat. There is a 
parallel interest in the online chat environ-
ment, although the development of useful re-
sources has progressed less. Some corpora 
exist such as the NPS Internet chat corpus 
(Forsyth and Martell, 2007), which has been 
hand-anonymized and labeled with 
part-of-speech tags and dialogue act labels. 
The StrikeCom corpus (Twitchell et al., 2007) 
consists of 32 multi-person chat dialogues 
between players of a strategic game, where in 
50% of the dialogues one participant has been 
asked to behave ‘deceptively’. 
It is thus more typical that those interested in 
the study of Internet chat compile their own 
corpus on an as needed basis, e.g., Wu et al. 
(2002), Khan et al. (2002), Kim et al. (2007).  
Driven by the need to obtain a suitable dataset 
we designed a series of experiments in which 
recruited subjects were invited to participate 
in a series of on-line chat sessions in a spe-
cially designed secure chat-room. The ex-
periments were carefully designed around 
topics, tasks, and games for the participants to 
engage in so that appropriate types of behav-
ior, e.g., disagreement, power play, persuasion, 
etc. may emerge spontaneously. These ex-
periments and the resulting corpus have been 
described elsewhere (Shaikh et al., 2010b), 
and we refer the reader to this source. Ulti-
mately a corpus of 50 hours of English chat 
dialogue was collected comprising more than 
20,000 turns and 120,000 words. In addition 
we also assembled a corpus of 20 hours of 
Urdu chat.  
A subset of English language dataset has been 
annotated at four levels: communication links, 
dialogue acts, local topics and meso-topics 
(which are essentially the most persistent lo-
cal topics). Although full details of these an-
notations are impossible to explain within the 
scope of this article, we briefly describe them 
below. Annotated datasets were used to de-
velop and train automatic modules that detect 
and classify social uses of language in dis-
course. It is important to note that the annota-
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tion has been developed to support the objec-
tives of our project and does not necessarily 
conform to other similar annotation systems 
used in the past.  
• Communicative links. In a multi-party dia-

logue an utterance may be directed towards 
a specific participant, a subgroup of par-
ticipants or to everyone.  

• Dialogue Acts. We developed a hierarchy 
of 15 dialogue acts for annotating the func-
tional aspect of the utterance in discussion.  
The tagset we adopted is based on DAMSL 
(Allen & Core, 1997) and SWBD (Jurafsky 
et al., 1997), but compressed to 15 tags 
tuned significantly towards dialogue prag-
matics and away from more surface char-
acteristics of utterances (Shaikh et al., 
2010a).  

• Local topics. Local topics are defined as 
nouns or noun phrases introduced into dis-
course that are subsequently mentioned 
again via repetition, synonym, or pronoun.  

• Topic reference polarity. Some topics, 
which we call meso-topics, persist through 
a number of turns in conversation. A selec-
tion of meso-topics is closely associated 
with the task in which the discourse par-
ticipants are engaged. Meso-topics can be 
distinguished from the local topics because 
the speakers often make polarized state-
ments about them.  

4. Socio-linguistic Phenomena 
We are interested in modeling the social phe-
nomena of Leadership and Power in discourse. 
These high-level phenomena (or Social Roles, 
SR) will be detected and attributed to dis-
course participants based on their deployment 
of selected Language Uses (LU) in 
multi-party dialogue. Language Uses are 
mid-level socio-linguistic devices that link 
linguistic components deployed in discourse 
(from lexical to pragmatic) to social con-
structs obtaining for and between the partici-
pants. The language uses that we are currently 
studying are Agenda Control, Disagreement, 
and Involvement (Broadwell et al., 2010). 
Our research so far is focused on the analysis 
of English-language synchronous chat, and 
we are looking for correlations between vari-
ous metrics that can be used to detect LU in 
multiparty dialogue. We expect that some of 
these correlations may be culturally specific 
or language-specific, as we move into the 

analysis of Urdu and Mandarin discourse in 
the next phase of this project. 

4.1 Agenda Control in Dialogue 
Agenda Control is defined as efforts by a 
member or members of the group to advance 
the group’s task or goal. This is a complex 
LU that we will model along two dimensions: 
(1) Topic Control and (2) Task Control. Topic 
Control refers to attempts by any discourse 
participants to impose the topic of conversa-
tion. Task Control, on the other hand, is an 
effort by some members of the group to de-
fine the group’s project or goal and/or steer 
the group towards that goal. We believe that 
both behaviors can be detected using scalar 
measures per participant based on certain 
linguistic features of their utterances. 
For example, one hypothesis is that topic 
control is indicated by the rate of local topic 
introductions (LTI) per participant (Givon, 
1983). Local topics may be defined quite 
simply as noun phrases introduced into dis-
course, which are subsequently mentioned 
again via repetition, synonym, pronoun, or 
other form of co-reference. Thus, one meas-
ure of topic control is the number of local 
topics introduced by each participant as per-
centage of all local topics in a discourse.  
Using an LTI index we can construct asser-
tions about topic control in a discourse. For 
example, suppose the following information 
is discovered about the speaker LE in a 
multi-party discussion dialogue-11 where 90 
local topics are identified: 
1. LE introduces 23/90 (25.6%) of local top-

ics in this dialogue. 
2. The mean rate of local topic introductions 

is this dialogue is 14.29%, and standard 
deviation is 8.01. 

3. LE is in the top quintile of participants for 
introducing new local topics 

We can now claim the following, with a de-
gree of confidence (to be determined): 

TopicControlLTI (LE, 5, dialogue-1) 
We read this as follows: speaker LE exerts the 
highest degree of topic control in dialogue-1. 
Of course, LTI is just one source of evidence 
and we developed other metrics to comple-
ment it. We mention three of them here: 

                                                
1 Dialogue-1 refers to an actual dataset of 90-minute chat 
among 7 participants, covering approximately 700 turns. The 
task is to select a candidate for a job given a set of resumes. 
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• SMT Index. This is a measure of topic con-
trol suggested in (Givon, 1983) and it is 
based on subsequent mentions of already 
introduced local topics. Speakers who in-
troduce topics that are discussed at length 
by the group tend to control the topic of the 
discussion. The subsequent mentions of lo-
cal topics (SMT) index calculates the per-
centage of second and subsequent refer-
ences to the local topics, by repetition, 
synonym, or pronoun, relative to the 
speakers who introduced them.  

• Cite Score. This index measures the extent 
to which other participants discuss topics 
introduced by that speaker. The difference 
between SMT and CiteScore is that the lat-
ter reflect to what degree a speaker’s efforts 
to control the topic are assented to by other 
participants in a conversation. 

• TL Index (TL). This index stipulates that 
more influential speakers take longer turns 
than those who are less influential. The TL 
index is defined as the average number of 
words per turn for each speaker. Turn 
length also reflects the extent to which 
other participants are willing to ‘yield the 
floor’ in conversation. 

Like LTI, all the above indices are mapped 
into a degree of topic control, based on quin-
tiles in normal distribution (Table 1). 
 

 

 

LTI SMT CS TL AVG 
LE 5 5 5 5 5.00 
JR 4 4 4 3 3.75 
KI 4 3 3 1 2.75 
KN 3 5 4 4 4.00 
KA 2 2 2 4 2.50 
CS 2 2 2 2 2.00 
JY 1 1 1 2 1.25 

Table 1: Topic Control distribution in dialogue-1. Each 
row represents a speaker in the group (LE, JR, etc.). 

Columns show indices used, with degrees per speaker 
on 5-point scale based on quintiles in normal distribu-

tion, and the average value. 
Ideally, all the above indices (and others yet 
to be defined) should predict the same out-
come, i.e., for each dialogue participant they 
should assign the same degree of topic control, 
relative to other speakers. This is not always 
the case, and where the indices divert in their 
predictions, our level of confidence in the 
generated claims decreases. We are currently 

working on how these different metrics cor-
relate to each other and how they should be 
weighted to maximize accuracy of making 
Topic Control claims. Nonetheless, we can 
already output a Topic Control map (shown in 
Table 1) that captures a sense of internal so-
cial dynamics within the group.  
The other aspect of Agenda Control phe-
nomenon is Task Control. It is defined as an 
effort to determine the group's goal and/or 
steer the group towards that goal. Unlike 
Topic Control, which is imposed by influenc-
ing the subject of conversation, Task Control 
is gained by directing other participants to 
perform certain tasks or accept certain opin-
ions. Consequently, Task Control is detected 
by observing the usage of certain dialogue 
acts, including Action-Directive, 
Agree-Accept, Disagree-Reject, and related 
categories. Here again, we define several in-
dices that allow us to compute a degree of 
Task Control in dialogue for each participant: 
• Directive Index (DI). The participant who 

directs others is attempting to control the 
course of the task that the group is per-
forming. We count the number of directives, 
i.e., utterances classified as Ac-
tion-Directive, made by each participant as 
a percentage of all directives in discourse. 

• Directed Topic Shift Index (DTSI). When a 
participant who controls the task offers a 
directive on the task, then the topic of con-
versation shifts. In order to detect this con-
dition, we calculate the ratio of coincidence 
of directive dialogue acts by each partici-
pant with topic shifts following them.  

• Process Management index (PMI). Another 
measure of Task Control is the proportion 
of turns each participant has that explicitly 
address the problem solving process. This 
includes utterances that involve coordinat-
ing the activities of the participants, plan-
ning the order of activities, etc. These fall 
into the category of Task (or Process) 
Management in most DA tagging systems.  

• Process Management Success Index 
(PMSI). This index measures the degree of 
success by each speaker at controlling the 
task. A credit is given to the speaker whose 
suggested curse of action is supported by 
other speakers for each response that sup-
ports the suggestion. Conversely, a credit is 
taken away for each response that rejects or 
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qualifies the suggestion. PMSI is computed 
as distribution of task management credits 
among the participants over all dialogue 
utterances classified as Task/Process Man-
agement. 2 

As an example, let’s consider the following 
information computed for the PMI index over 
dialogue-1:  
1. Dialogue-1 contains 246 utterances classi-

fied as Task/Process Management rather 
than doing the task. 

2. Speaker KI makes 65 of these utterances 
for a PMI of 26.4%. 

3. Mean PMI for participants is 14.3%; 80th 
percentile is >21.2%. PMI for KI is in the 
top quintile for all participants. 

Based on this evidence we may claim (with 
yet to be determined confidence) that: 

TaskControlPMI(KI, 5, dialogue-1) 
This may be read as follows: speaker KI ex-
erts the highest degree of Task Control in 
dialogue-1. We note that Task Control and 
Topic Control do not coincide in this dis-
course, at least based on the PMI index. Other 
index values for Task Control may be com-
puted and tabulated in a way similar to LTI in 
Table 1. We omit these here due to space 
limitations. 

4.2 Disagreement in Dialogue 
Disagreement is another language use that 
correlates with speaker’s power and leader-
ship. There are two ways in which disagree-
ment is realized: expressive disagreement and 
topical disagreement (Stromer-Galley, 2007; 
Price, 2002). Both can be detected using sca-
lar measures applied to subsets of participants, 
typically any two participants. In addition, we 
can also measure for each participant the rate 
with which he or she generates disagreement 
(with any and all other speakers). Expressive 
Disagreement is normally understood at the 
level of dialogue acts, i.e., when discourse 
participants make explicit utterances of dis-
agreement, disapproval, or rejection in re-
sponse to a prior speaker’s utterance. Here is 
an example (KI and KA are two speakers in a 
multiparty dialogue in which participants 

                                                
2 The exact structure of the credit function is still being deter-
mined experimentally. For example, more credit may be given 
to first supporting response and less for subsequent responses; 
more credit may be given for unprompted suggestions than for 
those that were responding to questions from others. 

discuss candidates for a youth counselor job): 
KA: CARLA... women are always better with 

kids 
KI: That’s not true! 
KI: Men can be good with kids too 

While such exchanges are vivid examples of 
expressive disagreement, we are interested in 
more sustained phenomenon where two 
speakers repeatedly disagree, thus revealing a 
social relationship between them. Therefore, 
one measure of Expressive Disagreement that 
we consider is the number of Disagree-Reject 
dialogue acts between any two speakers as a 
percentage of all utterances exchanged be-
tween these two speakers. This becomes a 
basis for the Disagree-Reject Index (DRX). In 
dialogue-1 we have: 
1. Speakers KI and KA have 47 turns between 

them. Among these there are 8 turns classi-
fied as Disagree-Reject, for the DRX of 
15.7%. 

2. The mean DRX for speakers who make any 
Disagree-Reject utterances is 9.5%. The 
pair of speakers KI-KA is in the top quin-
tile (>13.6%). 

Based on this evidence we can conclude the 
following: 
  ExpDisagreementDRX (KI,KA, 5, dialogue-1) 
which may be read as follows: speakers KI 
and KA have the highest level of expressive 
disagreement in dialogue-1. This measure is 
complemented by a Cumulative Disagreement 
Index (CDX), which is computed for each 
speaker as a percentage of all Disagree-Reject 
utterances in the discourse that are made by 
this speaker. Unlike DRX, which is computed 
for pairs of speakers, the CDX values are as-
signed to each group participant and indicate 
the degree of disagreement that each person 
generates. 
While Expressive Disagreement is based on 
the use of more overt linguistic devices, 
Topical Disagreement is defined as a differ-
ence in referential valence in utterances 
(statements, opinions, questions, etc.) made 
on a topic. Referential valence of an utterance 
is determined by the type of statement made 
about the topic in question, which can be 
positive (+), negative (−), or neutral (0). A 
positive statement is one in favor of (express 
advocacy) or in support of (supporting infor-
mation) the topic being discussed. A negative 
statement is one that is against or negative on 
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the topic being discussed. A neutral statement 
is one that does not indicate the speaker’s po-
sition on the topic. Here is an example of op-
posing polarity statements about the same 
topic in discourse: 

Sp-1: I like that he mentions “Volunteerism 
and Leadership” 

Sp-2: but if they’re looking for someone who 
is experienced then I’d cross him off 

Detecting topical disagreement in discourse is 
more complicated because its strength may 
vary from one topic in a conversation to the 
next. A reasonable approach is thus to meas-
ure the degree of disagreement between two 
speakers on one topic first, and then extrapo-
late over the entire discourse. Accordingly, 
our measure of topical disagreement is valua-
tion differential between any two speakers as 
expressed in their utterances about a topic. 
Here, the topic (or an “issue”) is understood 
more narrowly than the local topic defined in 
the previous section (as used in Topic Control, 
for example), and may be assumed to cover 
only the most persistent local topics, i.e., top-
ics with the largest number of references in 
dialogue, or what we call the meso-topics. For 
example, in a discussion of job applicants, 
each of the applicants becomes a meso-topic, 
and there may be additional meso-topics pre-
sent, such as qualifications required, etc.  
The resulting Topical Disagreement Metric 
(TDM) captures the degree to which any two 
speakers advocate the opposite sides of a 
meso-topic. TDM is computed as an average 
of P-valuation differential for one speaker 
(advocating for a meso-topic) and 
(−P)-valuation differential for the other 
speaker (advocating against the meso-topic).  
Using TDM we can construct claims related 
to disagreement in a given multiparty dia-
logue of sufficient duration (exactly what 
constitutes a sufficient duration is still being 
researched). Below is an example based on a 
90-minute chat dialogue-1 about several job 
candidates for a youth counselor. The discus-
sion involved 7 participants, including KI and 
KA. Topical disagreement is measured on 5 
points scale (corresponding to quintiles in 
normal distribution): 
TpDisAgreeTDM(KI,KA,“Carla”,4,dialogue-1) 
This may be read as follows: speakers KI and 
KA topically disagree to degree 4 on topic 
[job candidate] “Carla” in dialogue-1. In or-

der to calculate this we compute the value of 
TDM index between these two speakers. We 
find that KA makes 30% of all positive utter-
ances made by anyone about Carla (40), while 
KI makes 45% of all negative utterances 
against Carla. This places these two speakers 
in the top quintiles in the “for Carla” polarity 
distribution and “against Carla” distribution, 
respectively. Taking into account any oppos-
ing polarity statements made by KA against 
Carla and any statements made by KI for 
Carla, we calculate the level of topical dis-
agreement between KA and KI to be 4 on the 
1-5 scale. 
TDM allows us to compute topical disagree-
ment between any two speakers in a discourse, 
which may also be represented in a 
2-dimensional table revealing another inter-
esting aspect of internal group dynamics.  

4.3 Involvement in Dialogue 
The third type of social language use that we 
discuss in this paper is Involvement. In-
volvement is defined as a degree of engage-
ment or participation in the discussion of a 
group. It is an important element of leader-
ship, although its importance is expected to 
differ between cultures; in Western cultures, 
high involvement and influence (topic control) 
often correlates with group leadership. 
In order to measure Involvement we designed 
several indices based on turn characteristics 
for each speaker. Four of the indices are 
briefly explained below:  
• The NP index (NPI) is a measure of gross 

informational content contributed by each 
speaker in discourse. NPI counts the ratio 
of third-person nouns and pronouns used 
by a speaker to the total number of nouns 
and pronouns in the discourse.  

• The Turn index (TI) is a measure of inter-
actional frequency; it counts the ratio of 
turns per participant to the total number of 
turns in the discourse.  

• The Topic Chain Index (TCI) counts the 
degree to which participants discuss of the 
most persistent topics. In order to calculate 
TCI values, we define a topic chains for all 
local topics. We compute frequency of 
mentions of these longest topics for each 
participant.  

• The Allotopicality Index (ATP) counts the 
number of mentions of local topics that 
were introduced by other participants. An 
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ATP value is the proportion of a speaker's 
allotopical mentions, i.e., excluding 
“self-citations”, to all allotopical mentions 
in a discourse.  

As an example, we may consider the follow-
ing situation in dialogue-1: 
1. Dialogue-1 contains 796 third person 

nouns and pronouns, excluding mentions of 
participants’ names. 

2. Speaker JR uses 180 nouns and pronouns 
for an NPI of 22.6%.  

3. The median NPI is 14.3%; JR are in the 
upper quintile of participants (> 19.9%). 

From the above evidence we can draw the 
following claim: 

InvolvementNPI(JR, 5, dialogue-1) 
This may be read as: speaker JR is the most 
involved participant in dialogue-1. 
As with other language uses, multiple indices 
for Involvement can be combined into a 
2-dimensional map capturing the group in-
ternal dynamics.  

5. Implementation & Evaluation 
We developed a prototype automated 
DSARMD system that comprises a series of 
modules that create automated annotation of 
the source dialogue for all the language ele-
ments discussed above, including communi-
cative links, dialogue acts, local/meso topics, 
and polarity. Automatically annotated dia-
logue is then used to generate language use 
degree claims. In order to evaluate accuracy 
of the automated process we conducted a pre-
liminary evaluation comparing the LU claims 
generated from automatically annotated data 
to the claims generated from manually coded 
dialogues. Below we briefly describe the 
methodology and metrics used. 
Each language use is asserted per a partici-
pant in a discourse (or per each pair of par-
ticipants, e.g., for Disagreement) on a 5-point 
“strength” scale. This can be represented as 
an ordered sequence LUX(d1, d2, … dn), where 
LU is the language use being asserted, X is 
the index used, di is the degree of LU attrib-
uted to speaker i. This assignment is therefore 
a 5-way classification of all discourse par-
ticipants and its correctness is measured by 
dividing the number of correct assignments 
by the total number of elements to be classi-
fied, which gives the micro-averaged preci-
sion. The accuracy metric is computed with 

several variants as follows: 
1. Strict mapping: each complete match is 

counted as 1; all mismatches are counted as 
0. For example, the outputs LUX (5,4,3,2,1) 
and LUX (4,5,3,1,1) produce two exact 
matches (for the third and the last speaker) 
for a precision of 0.4. 

2. Weighted mapping: since each degree value 
di in LUX(d1, d2, … dn) represents a quintile 
in normal distribution, we consider the po-
sition of the value within the quintile. If 
two mismatched values are less than ½ 
quintile apart we assign a partial credit 
(currently 0.5). 

3. Highest – Rest: we measure accuracy with 
which the highest LU degree (but not nec-
essarily the same degree) is assigned to the 
right speaker vs. any other score. This re-
sults in binary classification of scores. The 
sequences in (1) produce 0.6 match score. 

4. High – Low: An alternative binary classifi-
cation where scores 5 and 4 are considered 
High, while the remaining scores are con-
sidered Low. Under this metric, the se-
quences in (1) match with 100% precision. 

The process of automatic assignment of lan-
guage uses derived from automatically proc-
essed dialogues was evaluated against the 
control set of assignments based on hu-
man-annotated data. In order to obtain a reli-
able “ground truth”, each test dialogue was 
annotated by at least three human coders 
(linguistics and communication graduate stu-
dents, trained). Since human annotation was 
done at the linguistic component level, a strict 
inter-annotator agreement was not required; 
instead, we were interested whether in each 
case a comparable statistical distribution of 
the corresponding LU index was obtained. 
Annotations that produced index distributions 
dissimilar from the majority were eliminated. 
Automated dialogue processing involved the 
following modules: 
• Local topics detection identifies first men-

tions by tracking occurrences of noun 
phrases. Subsequent mentions are identi-
fied using fairly simple pronoun resolution 
(based mostly on lexical features), with 
Wordnet used to identify synonyms, etc. 

• Meso-topics are identified as longest-chain 
local topics. Their polarity is assessed at 
the utterance level by noting presence of 
positive or negative cue words and phrases. 

• Dialogue acts are tagged based on presence 
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of certain cue phrases derived from a train-
ing corpus (Webb et al., 2008).  

• Communicative links are mapped by com-
puting inter-utterance similarity based on 
n-gram overlap. 

Preliminary evaluation results are shown in 
Tables 3-5 with average performance over 3 
chat sessions (approx 4.5 hours) involving 
three groups of speakers and different tasks 
(job candidates, political issues). Topic Con-
trol and Involvement tables show average 
accuracy per index. For example, the LTI in-
dex, computed over automatically extracted 
local topics, produces Topic Control assign-
ments with the average precision of 80% 
when compared to assignments derived from 
human-annotated data using the strict accu-
racy metric. However, automated prediction 
of Involvement based on NPI index is far less 
reliable, although we can still pick the most 
involved speaker with 67% accuracy. We omit 
the indices based on turn length (TL) and turn 
count (TI) because their values are trivially 
computed. At this time we do not combine 
indices into a single LU prediction. Addi-
tional experiments are needed to determine 
how much each of these indices contributes to 
LU prediction. 

Topic  
Control LTI  SMT  CS 

Strict  0.80  0.40  0.40 

Weighted  0.90  0.53  0.53 

Highest‐Rest  0.90  0.67  0.67 

High‐Low  1.00  0.84  0.90 

Table 3: Topic Control LU assignment performance 
averages of selected indices over a subset of data cov-
ering three dialogues with combined duration of 4.5 
hours with total of 19 participants (7, 5, 7 per session). 

Involvement NPI  TCI  ATP 

Strict  0.31  0.42  0.39 

Weighted  0.46  0.49  0.42 

Highest‐Rest  0.67  0.77  0.68 

High‐Low  0.58  0.74  0.48 

Table 4: Involvement LU assignment performance av-
erages for selected indices over the same subset of data 
as in Table 3. 

Topical Disagreement performance is shown 
in Table 5. We calculated precision and recall 
of assigning a correct degree of disagreement 

to each pair of speakers who are members of 
a group. Precision and recall averages are 
then computed over all meso-topics identified 
in the test dataset, which consists of three 
separate 90-minute dialogues involving 7, 5 
and 7 speakers, respectively. Our calculation 
includes the cases where different sets of 
meso-topics were identified by the system 
and by the human coder. A strict mapping of 
levels of disagreement between speakers is 
hard to compute accurately; however, finding 
the speakers who disagree the most, or the 
least, is significantly more robust. 

Topical 
Disagreement Prec.  Recall 

Strict  0.33  0.32 

Weighted  0.54  0.54 

Highest‐Rest  0.89  0.85 

High‐Low  0.77  0.73 

Table 5: Topical Disagreement LU assignment per-
formance averages over 13 meso-topics discussed in 
three dialogues with combined duration of 4.5 hours 
with total of 19 participants (7, 5, and 7 per session). 

6. Conclusion 
In this paper we presented a preliminary 
design for modeling certain types of social 
phenomena in multi-party on-line dialogues. 
Initial, limited-scale evaluation indicates that 
the model can be effectively automated. 
Much work lies ahead, including large scale 
evaluation, testing index stability and 
resilience to NL component level error. 
Current performance of the system is based 
on only preliminary versions of linguistic 
modules (topic extraction, polarity 
assignments, etc.) which perform at only 
70-80% accuracy, so these need to be 
improved as well. Research on Urdu and 
Chinese dialogues is just starting. 
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Abstract 

We employ Maximum Entropy model to con-

duct sub-tree alignment between bilingual 

phrasal structure trees. Various lexical and 

structural knowledge is explored to measure the 

syntactic similarity across Chinese-English bi-

lingual tree pairs. In the experiment, we evalu-

ate the sub-tree alignment using both gold 

standard tree bank and the automatically parsed 

corpus with manually annotated sub-tree align-

ment. Compared with a heuristic similarity 

based method, the proposed method significant-

ly improves the performance with only limited 

sub-tree aligned data. To examine its effective-

ness for multilingual applications, we further at-

tempt different approaches to apply the sub-tree 

alignment in both phrase and syntax based SMT 

systems. We then compare the performance 

with that of the widely used word alignment. 

Experimental results on benchmark data show 

that sub-tree alignment benefits both systems by 

relaxing the constraint of the word alignment. 

1 Introduction 

Recent research in Statistical Machine Translation 

(SMT) tends to incorporate more linguistically 

grammatical information into the translation mod-

el known as linguistically motivated syntax-based 

models. To develop such models, the phrasal 

structure parse tree is usually adopted as the repre-

sentation of bilingual sentence pairs either on the 

source side (Huang et al., 2006; Liu et al., 2006) 

or on the target side (Galley et al., 2006; Marcu et 

al., 2006), or even on both sides (Graehl and 

Knight, 2004; Zhang et al., 2007). Most of the 

above models either construct a pipeline to trans-

form from/to tree structure, or synchronously gen-

erate two trees in parallel (i.e., synchronous pars-

ing). Both cases require syntactically rich transla-

tional equivalences to handle non-local reordering. 

However, most current works obtain the syntactic 

translational equivalences by initially conducting 

alignment on the word level. To employ word 

alignment as a hard constraint for rule extraction 

has difficulty in capturing such non-local phenom-

ena and will fully propagate the word alignment 

error to the later stage of rule extraction. 

Alternatively, some initial attempts have been 

made to directly conduct syntactic structure 

alignment. As mentioned in Tinsley et al. (2007), 

the early work usually constructs the structure 

alignment by hand, which is time-consuming. Re-

cent research tries to automatically align the bilin-

gual syntactic sub-trees. However, most of these 

works suffer from the following problems. Firstly, 

the alignment is conducted based on heuristic 

rules, which may lose extensibility and generality 

in spite of accommodating some common cases 

(Groves et al., 2004). Secondly, various similarity 

computation methods are used based merely on 

lexical translation probabilities (Tinsley et al., 

2007; Imamura, 2001) regardless of structural fea-

tures. We believe the structure information is an 

important issue to capture the non-local structural 

divergence of languages by modeling beyond the 

plain text.  

To address the above issues, we present a statis-

tical framework based on Maximum Entropy 

(MaxEnt) model. Specifically, we consider sub-

tree alignment as a binary classification problem 

and use Maximum Entropy model to classify each 

instance as aligned or unaligned. Then, we per-

form a greedy search within the reduced search 

space to conduct sub-tree alignment links based on 

the alignment probabilities obtained from the clas-

sifier. 

Unlike the previous approaches that can only 

measure the structural divergence via lexical fea-

tures, our approach can incorporate both lexical 

and structural features. Additionally, instead of 

explicitly describing the instances of sub-tree pairs 

as factorized sub-structures, we frame most of our 

features as score based feature functions, which 

helps solve the problem using limited sub-tree 

alignment annotated data. To train the model and 

evaluate the alignment performance, we adopt 
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HIT Chinese-English parallel tree bank for gold 

standard evaluation. To explore its effectiveness in 

SMT systems, we also manually annotate sub-tree 

alignment on automatically parsed tree pairs and 

perform the noisy data evaluation. Experimental 

results show that by only using limited sub-tree 

aligned data of both corpora, the proposed ap-

proach significantly outperforms the baseline 

method (Tinsley et al., 2007). The proposed fea-

tures are very effective in modeling the bilingual 

structural similarity. We further apply the sub-tree 

alignment to relax the constraint of word align-

ment for both phrase and syntax based SMT sys-

tems and gain an improvement in BLEU. 

2 Problem definition  

A sub-tree alignment process pairs up the sub-

trees across bilingual parse trees, whose lexical 

leaf nodes covered are translational equivalent, i.e., 

sharing the same semantics.  Grammatically, the 

task conducts links between syntactic constituents 

with the maximum tree structures generated over 

their word sequences in bilingual tree pairs.  

In general, sub-tree alignment can also be inter-

preted as conducting multiple links across internal 

nodes between sentence-aligned tree pairs as 

shown in Fig. 1. The aligned sub-tree pairs usually 

maintain a non-isomorphic relation with each oth-

er especially for higher layers. We adapt the same 

criteria as Tinsley et al. (2007) in our study: 

(i) a node can only be linked once; 

(ii) descendants of a source linked node may 

only link to descendants of its target 

linked counterpart; 

(iii) ancestors of a source linked node may on-

ly link to ancestors of its target linked 

counterpart. 

where the term “node” refers to root of a sub-

tree, which can be used to represent the sub-tree. 

3 Model  

We solve the problem as binary classification and 

employ MaxEnt model with a greedy search.  

Given a bilingual tree pair    and   ,    
{            } is the source tree consisting of   

sub-trees，where   is also the number of nodes in 

the source tree        {            } is the tar-

get tree consisting of   sub-trees, where   is also 

the number of nodes in the target tree   . 

For each sub-tree pair         in the given bilin-

gual parse trees         , the sub-tree alignment 

probability is given by: 

      ( |       )  
   [∑     

 
   (         )]

∑    [∑     
 
   (          )]  

   (1) 

where 

                 {
           (     )            

                               
                     (2) 

 

Feature functions are defined in a quadruple 

(         ).   is an additional variable to incorpo-

rate new dependencies other than the sub-tree 

pairs. For each feature function   (         ), a 

weight    is applied to tailor the distribution. 

After classifying the candidate sub-tree pairs as 

aligned or unaligned, we perform a greedy search 

within the reduced search space to conduct sure 

links based on the conditional probability 

  ( |       )  obtained from the classifier. The 

alignment probability is independently normalized 

for each sub-tree pair and hence suitable as a 

searching metric. 

The greedy search algorithm can be described 

as an automaton. A state in the search space is a 

partial alignment with respect to the given bilin-

gual tree pair. A transition is to add one more link 

of node pairs to the current state. The initial state 

has no link. The terminal state is a state where no 

more links can be added according to the defini-

tion in Section 2. We use greedy search to gener-

ate the best-links at the early stage. There are cas-

es that the correctly-aligned tree pairs have very 

few links, while we have a bunch of candidates 

with lower alignment probabilities. However, the 

sum of the lower probabilities is larger than that of 

the correct links’, since the number of correct 

links is much fewer. This makes the alignment 

results biased to be with more links. The greedy 

search helps avoid this asymmetric problem.  

4 Feature Functions 

In this section, we introduce a variety of feature 

functions to capture the semantically equivalent 
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Figure 1: Sub-tree alignment as referred to  
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counterparts and structural divergence across lan-

guages. For the semantic equivalence, we define 

lexical and word alignment feature functions. 

Since those feature functions are directional, we  

describe most of these functions as conditional 

feature functions based on the conditional lexical 

probabilities. We also introduce the tree structural 

features to deal with the structural divergence of 

bilingual parse trees. Inspired by Burkett and 

Klein (2008), we introduce the feature functions in 

an internal-external manner based on the fact that 

the feature scores for an aligned sub-tree pair tend 

to be high inside both sub-trees, while they tend to 

be low inside one sub-tree and outside the other. 

4.1 Internal Lexical Features  

We use this feature to measure the degree of se-

mantic equivalence of the sub-tree pair. According 

to the definition of sub-tree alignment in Section 2, 

the word sequence covered by the sub-tree pair 

should be translational equivalence. Therefore, the 

lexicons within the two corresponding sub-spans 

should be highly related in semantics. We define 

the internal lexical features as follows: 

 (  |  )  (∏ ∑                       
)

 

   (  )   

 (  |  )  (∏ ∑                       
)

 

   (  )   

where        refers to the lexical translation 

probability from the source word   to the target 

word   within the sub-tree spans, while        
refers to that from target to source;        refers to 

the word set for the internal span of the source 

sub-tree   , while   (  ) refers to that of the target 

sub-tree   . 

4.2 Internal-External Lexical Features  

Intuitively, lexical translation probabilities tend to 

be high within the translational equivalence, while 

low within the non-equivalent counterparts. Ac-

cording to this, we define the internal-external lex-

ical feature functions as follows: 
 

 (  |  )  
∑          (  )

{(             )
 
 }

    (  )

|  (  )|
  

 (  |   )  
∑    

      (  )
{(             )

 
 }    (  )

        
  

 

where         refers to the word set for the ex-

ternal span of the source sub-tree   , while         

refers to that of the target sub-tree   . We choose a 

representation different from the internal lexical 

feature scores, since for cases with small inner 

span and large outer span, the sum of internal-

external scores may be overestimated. As a result, 

we change the sum operation into max, which is 

easy to be normalized. 

4.3 Internal Word Alignment Features  

Although the word alignment information within 

bilingual sentence pairs is to some extent not reli-

able, the links of word alignment account much 

for the co-occurrence of the aligned terms. We 

define the internal word alignment features as fol-

lows: 

 (     )  
∑ ∑        (             )
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where 

                 {
                             
                                 

 

 

The binary function        is introduced to 

trigger the computation only when a word aligned 

link exists for the two words       within the sub-

tree span. 

4.4 Internal-External Word Alignment Fea-

tures  

Similar to lexical features, we also introduce in-

ternal-external word alignment features as follows: 
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4.5 Tree Structural Features 

In addition to the lexical correspondence, we also 

capture the structural divergence by introducing 

the tree structural features as follows: 

Span difference: Translational equivalent sub-

tree pairs tend to share similar length of spans. 

Thus the model will penalize the candidate sub-

tree pairs with largely different length of spans. 
 

 (     )  |
        

                  
 

   (  ) 

                   
|  

 

Number of Descendants: Similarly, the num-

ber of the root’s descendants of the aligned sub-

trees should also correspond. 
 

 (     )  |
       

                 
 

  (  ) 

                 
|  
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where      refers to the descendant set of the 

root to an individual sub-tree. 

Tree Depth difference: Intuitively, translation-

al equivalent sub-tree pairs tend to have similar 

depth from the root node of the parse tree. We can 

further allow the model to penalize the candidate 

sub-tree pairs with different distance from the root 

node. 

 (     )  |
         

      (  )
 

     (  )

      (  )
|  

4.6 Binary Grammatical Features 

In the previous sections, we design some score 

based feature functions to describe syntactic tree 

structural similarities, rather than directly using 

the substructures. This is because for limited anno-

tated tree alignment data, features like tokens and 

grammar rules are rather sparse. In spite of this, 

we still have a closed set of grammatical tags 

which can be covered by a small amount of data. 

Therefore, we use the combination of root gram-

mar tags of the sub-tree pairs as binary features. 

5 Training 

We train the sub-tree alignment model in two 

steps:  

Firstly, we learn the various feature functions. 

On one hand, GIZA++ is offline trained on a large 

amount of bilingual sentences to compute the lexi-

cal and word alignment features. On the other 

hand, the tree structural features, similar to word 

and phrase penalty features in phrase based SMT 

models, are computed online for both training and 

testing. 

Secondly, we train the MaxEnt model in Eq. 1, 

using the training corpus which consists of the 

bilingual parse tree pairs with manually annotated 

sub-tree alignment. We apply the widely used GIS 

(Generalized Iterative Scaling) algorithm (Darroch 

and Ratcliff, 1972) to optimize   
 . In practice, we 

modify Och’s implementation YASMET. 

Since we consider each sub-tree pair as an indi-

vidual instance, it is easy to see that the negative 

samples heavily overwhelm the positive ones. For 

GIS training, such a skewed distribution easily 

drives the parameters to facilitate the negative in-

stances. We address this problem by giving more 

weight to the positive training instances.  

6 Experiments on Sub-Tree Alignments 

We utilize two different corpora to evaluate the 

proposed sub-tree alignment method and its capa-

bility to plug in the related applications respective-

ly. One is HIT English Chinese parallel tree bank 

with both tree structure and sub-tree alignment 

manually annotated. The other is the automatically 

parsed bilingual tree pairs (allowing minor parsing 

errors) with manually annotated sub-tree align-

ment. The latter benefits MT task, since most lin-

guistically motivated syntax SMT systems require 

a held-out automatic parser to achieve rule induc-

tion. 

6.1 Data preparation 

For the gold standard corpus based experiment, we 

use HIT 1  Chinese-English parallel tree bank, 

which is collected from English learning text 

books in China as well as example sentences in 

dictionaries. It consists of 16131 gold standard 

parse tree pairs with manually annotated sub-tree 

alignments. The annotation strictly preserves the 

semantic equivalence, i.e., it only conducts sure 

links in the internal node level, while ignoring 

possible links adopted in word alignment. In con-

trast, in the POS level, n-to-n links are allowed in 

annotation. In order to be consistent with the defi-

nition in Section 2, we delete those n-to-n links in 

POS level. The word segmentation, tokenization 

and parse-tree in the corpus are manually con-

structed or checked. The Chinese parse tree in HIT 

tree bank adopts a different annotation criterion 

from the Penn TreeBank annotation, which is de-

signed by the HIT research team. The new criteri-

on can better facilitate the description of some rare 

structural phenomena in Chinese. The English 

parse tree still uses Penn TreeBank annotation. 

The statistics of HIT corpus is shown in Table 1. 
 

 Chinese English 

# of Sentence pair 16131 

Avg. Sentence Length 13.06 13.00 

Avg. # of sub-tree 21.60 23.74 

Avg. # of alignment 11.71 
 

Table 1. Statistics for HIT gold standard Tree bank  
 

Since the induction of sub-tree alignment is de-

signed to benefit the machine translation modeling, 

it is preferable to conduct the sub-tree alignment 

experiment on the corpus for MT evaluation. 

However, most syntax based SMT systems use an 

automatic parser to facilitate training and decoding, 

which introduces parsing errors. Additionally, the 

gold standard HIT corpus is not applicable for MT 

                                                 
1  HIT corpus is designed and constructed by HIT mitlab. 

http://mitlab.hit.edu.cn/index.php/resources.html .  We li-

censed the corpus from them for research usage. 
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experiment due to problems of domain divergence, 

annotation discrepancy (Chinese parse tree adopts 

a different grammar from Penn Treebank annota-

tions) and degree of tolerance for parsing errors. 

Due to the above issues, we annotate a new data 

set to apply the sub-tree alignment in machine 

translation. We randomly select 300 bilingual sen-

tence pairs from the Chinese-English FBIS corpus 

with the length     in both the source and target 

sides. The selected plain sentence pairs are further 

parsed by Stanford parser (Klein and Manning, 

2003) on both the English and Chinese sides. We 

manually annotate the sub-tree alignment for the 

automatically parsed tree pairs according to the 

definition in Section 2. To be fully consistent with 

the definition, we strictly preserve the semantic 

equivalence for the aligned sub-trees to keep a 

high precision. In other words, we do not conduct 

any doubtful links. The corpus is further divided 

into 200 aligned tree pairs for training and 100 for 

testing. Some initial statistic of the automatically 

parsed corpus is shown in Table 2. 

6.2 Baseline approach 

We implement the work in Tinsley et al. (2007) as 

our baseline methodology. 

Given a tree pair        , the baseline ap-

proach first takes all the links between the sub-tree 

pairs as alignment hypotheses, i.e., the Cartesian 

product of the two sub-tree sets: 

{            }  {            } 

 By using the lexical translation probabilities, 

each hypothesis is assigned an alignment score. 

All hypotheses with zero score are pruned out. 

Then the algorithm iteratively selects the link of 

the sub-tree pairs with the maximum score as a 

sure link, and blocks all hypotheses that contradict 

with this link and itself, until no non-blocked hy-

potheses remain. 

The baseline system uses many heuristics in 

searching the optimal solutions with alternative 

score functions. Heuristic skip1 skips the tied hy-

potheses with the same score, until it finds the 

highest-scoring hypothesis with no competitors of 

the same score. Heuristic skip2 deals with the 

same problem. Initially, it skips over the tied hy-

potheses. When a hypothesis sub-tree pair          

without any competitor of the same score is found, 

where neither    nor    has been skipped over, the 

hypothesis is chosen as a sure link. Heuristic 

span1 postpones the selection of the hypotheses 

on the POS level. Since the highest-scoring hy-

potheses tend to appear on the leaf nodes, it may 

introduce ambiguity when conducting the align-

ment for a POS node whose child word appears 

twice in a sentence. 

The baseline method proposes two score func-

tions based on the lexical translation probability. 

They also compute the score function by splitting 

the tree into the internal and external components. 

Tinsley et al. (2007) adopt the lexical transla-

tion probabilities dumped by GIZA++ (Och and 

Ney, 2003) to compute the span based scores for 

each pair of sub-trees. Although all of their heuris-

tics combinations are re-implemented in our study, 

we only present the best result among them with 

the highest Recall and F-value as our baseline, 

denoted as skip2_s1_span12. 

6.3 Experimental settings 

 To examine the effectiveness of the proposed 

features, we  

    (1) learn the word alignment using the combina-

tion of the 14k of HIT tree bank and FBIS (240k) 

corpus for both our approach and the baseline 

method, and divide the remaining HIT corpus as 

1k for training and 1k for testing. 

    (2) learn the word alignment on the entire FBIS 

training corpus (240k) for both our approach and 

the baseline method. We then train and test on 

FBIS corpus of 200 and 100 respectively as stated 

in Table 2. 

 In our task, annotating large amount of sub-tree 

alignment corpus is time consuming and more dif-

ficult compared with the tasks like sequence label-

ing. One of the important issues we are concerned 

about is whether we can achieve an acceptable 

performance with limited training data. We  

    (3) adopt the entire FBIS data (240k) to learn 

the word alignment and various amount of HIT 

gold standard corpus to train the MaxEnt model. 

Then we test the alignment performance on the 

same HIT test set (1k) as (1). 

                                                 
2 s1 denotes score function 1 in Tinsley et al. (2007) 

  Chinese English 

 # of Sentence pair 200 

Train Avg. Sentence Length 17 20.84 

 Avg. # of sub-tree 28.87 34.54 

 Avg. # of alignment 17.07 

Test # of Sentence pair 100 

 Avg. Sentence Length 16.84 20.75 

 Avg. # of sub-tree 29.18 34.1 

 Avg. # of alignment 17.75 
 

Table 2. FBIS selected Corpus Statistics 
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 We further test the robustness of our method 

under different amount of data to learn the lexical 

and word alignment feature functions. We gradu-

ally change the amount of FBIS corpus to train the 

word alignment. Then we  

    (4) use the same training (1k) and testing data 

(1k) with (1);  

    (5) use FBIS corpus 200 to train MaxEnt model 

and 100 for testing similar to (2). 

6.4 Experimental results 

We use Precision, Recall and F-score to measure 

the alignment performance and obtain the results 

as follows: 

 In Table 3 and 4 for Exp (1) and (2) respectively, 

we show that by incrementally adding new fea-

tures in a certain order, the F-value consistently 

increases and both outperform the baseline method. 

From both tables, we find that the Binary fea-

tures, with the combination of root grammar tags 

of the sub-tree pairs, significantly improve the 

alignment performance. We also try the different 

combinations of the parent, child or even siblings 

to the root nodes. However, all these derivative 

configurations decrease the performance. We at-

tribute the ineffectiveness to data sparseness. Fur-

ther exploration suggests that the binary feature in 

HIT gold standard corpus exhibits a substantially 

larger improvement against other features than 

FBIS corpus (Table 3 against Table 4). The reason 

could be that the grammar tags in the gold stand-

ard corpus are accurate, while FBIS corpus suffers 

from parsing errors. Apart from that, the lexi-

cal/word-alignment features in Table 3 do not per-

form well, since the word alignment is trained 

mainly on the cross domain FBIS corpus. This is 

also an important reason why there is a large gap 

in performance between Table 3 and 4, where the 

automatic parsed FBIS corpus performs better 

than HIT gold standard tree bank in all configura-

tions as well as the baseline. 

 In Fig. 2(a) for Exp (3), we examine perfor-

mance under different amount of training data 

from 1k to 15k. The results change very little with 

over the amount of 1k. Even with only 0.25k train-

ing data, we are able to gain a result close to the 

best performance. This suggests that by utilizing 

only a small amount of sub-tree aligned corpus, 

we can still achieve a satisfactory alignment result. 

The benefits come from the usage of the score 

based feature functions by avoiding using sub-

structures as binary features, which suffers from 

the data sparseness problem.  

 In Fig. 2(b-e) for Exp (4&5), we find that in-

creasing the amount of corpus to train GIZA++ 

does not improve much for the proposed method 

on both HIT gold standard corpus (Fig. 2: b, c) 

and the automatic parsed data (Fig. 2: d, e). This is 

due to the various kinds of features utilized by the 

MaxEnt model, which does not bet on the lexical 

and word alignment feature too much. As for the 

baseline method, we can only detect a relatively 

large improvement in the initial increment of cor-

pus, while later additions do not help. This result 

suggests that the baseline method is relatively less 

extensible since it works completely on the lexical 

similarities which can be only learned from the 

word alignment corpus.  

7 Experiments on Machine Translation 

In addition to the alignment evaluation, we con-

duct MT evaluation as well. We explore the effec-

tiveness of sub-tree alignment for both phrase and 

linguistically motivated syntax based systems. 

7.1 Experimental configuration 

In the experiments, we train the translation model 

on FBIS corpus (7.2M (Chinese) + 9.2M (English) 

words in 240,000 sentence pairs) and train a 4-

gram language model on the Xinhua portion of the 

English Gigaword corpus (181M words) using the 

SRILM Toolkits (Stolcke, 2002). We use these 

Features Precision Recall F-value 

   In Lexical 50.96 48.11 49.49 

+ InOut Lexical 55.26 53.84 54.54 

+ In word align 56.16 60.59 58.29 

+ InOut word align 55.80 62.25 58.85 

+ Tree Structure  57.64 63.11 60.25 

+ Binary Feature 73.14 85.11 78.67 
 Baseline [Tinsley 2007] 64.14 66.99 65.53 

 

Table 3. Sub-tree alignment of different feature  

combination for HIT gold standard test set 

Features Precision Recall F-value 

   In Lexical 63.53 54.87 58.88 

+ InOut Lexical 66.00 63.66 64.81 

+ In word align 70.89 75.88 73.30 

+ InOut word align 72.05 80.16 75.89 

+ Tree Structure  72.03 80.95 76.23 

+ Binary Feature 76.08 85.29 80.42 
  Baseline [Tinsley 2007] 70.48 78.70 74.36 

 

Table 4. Sub-tree alignment of different  

feature combination for FBIS test set 
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sentences with less than 50 characters from the 

NIST MT-2002 test set as the development set (to 

speed up tuning for syntax based system) and the 

NIST MT-2005 test set as our test set. We use the 

Stanford parser (Klein and Manning, 2003) to 

parse bilingual sentences on the training set and 

Chinese sentences on the development and test set. 

The evaluation metric is case-sensitive BLEU-4. 

For the phrase based system, we use Moses 

(Koehn et al, 2007) with its default settings. For 

the syntax based system, since sub-tree alignment 

can directly benefit Tree-2-Tree based systems, 

we apply the sub-tree alignment in an SMT system 

based on Synchronous Tree Substitution Grammar 

(STSG) (Zhang et al., 2007). The STSG based 

decoder uses a pair of elementary tree as a basic 

translation unit. Recent research on tree based sys-

tems shows that relaxing the restriction from tree 

structure to tree sequence structure (Synchronous 

Tree Sequence Substitution Grammar: STSSG) 

significantly improves the translation performance 

(Zhang et al., 2008). We implement the 

STSG/STSSG based model in Pisces decoder with 

the same features and settings in Sun et al. (2009). 

The STSSG based decoder translates each span 

iteratively in a bottom up manner which guaran-

tees that when translating a source span, any of its 

sub-spans has already been translated. The STSG 

based experiment can be easily achieved by re-

stricting the translation rule set in the STSSG de-

coder to be elementary tree pairs only. 

For the alignment setting of the baselines, we 

use the word alignment trained on the entire 

FBIS(240k) corpus by GIZA++ with heuristic 

grow-diag-final for Moses and the syntax systems 

and perform rule extraction constrained on the 

word alignment. As for the experiments adopting 

sub-tree alignment, we use the above word align-

ment to learn lexical/word alignment features, and 

train the sub-tree alignment model with FBIS 

training data (200).  

7.2 Experimental results 

Utilizing the syntactic rules only has been argued 

to be ineffective (Koehn et al., 2003). Therefore, 

instead of using the sub-tree aligned rules only, we 

try to improve the word alignment constrained 

rule set by sub-tree alignment as shown in Table 5.  

Firstly, we try to Directly Concatenate (DirC) 

the sub-tree alignment constraint rule set
3
 to the 

original syntax/phrase rule set based on word 

alignment. Then we re-train the MT model based 

                                                 
3 For syntax based system, it’s just the sub-tree pairs deducted 

from the sub-tree alignment; for phrase based system, it's the 

phrases with context equivalent to the aligned sub-tree pairs. 

 
                                    a                                                                                        b                                                                                     c 

 
             d         e 
 

Figure 2: a. Precision/Recall/F-score for various amount of training data (k).  

b~e. Various amount of data to train word alignment 

b. Precision/Recall for HIT test set. c. F-score for HIT test set.  

d. Precision/Recall for FBIS test set. e. F-score for FBIS test set. 
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on the obtained rule set. Tinsley et al. (2009) at-

tempts different duplication of sub-tree alignment 

constraint rule set to append to the original phrase 

rule set and reports positive results. However, as 

shown in Table 5, we only achieve very minor 

improvement (in STSSG based model the score 

even drops) by direct introducing the new rules.  

Secondly, we propose a new approach to utilize 

sub-tree alignment by modifying the rule extrac-

tion process. We allow the bilingual phrases which 

are consistent with Either Word alignment or Sub-

tree alignment (EWoS) instead of to be consistent 

with word alignment only. The results in Table 5 

show that EWoS achieves consistently better per-

formance than the baseline and DirC method. We 

also find that sub-tree alignment benefits the 

STSSG based model less compared with other 

systems. This is probably due to the fact that the 

STSSG based system relies much on the tree se-

quence rules. 

To benefit intuitive understanding, we provide 

two alignment snippets in the MT training corpus 

in Fig. 3, where the red lines across the non-

terminal nodes are the sub-tree aligned links con-

ducted by our model, while the purple lines across 

the terminal nodes are the word alignment links 

trained by GIZA++. In the first example, the word 

Israel is wrongly aligned to two “以色列”s by 

GIZA++, where the wrong link is denoted by the 

dash line. This is common, since in a compound 

sentence in English, the entities appeared more 

than once are often replaced by pronouns at its 

later appearances. Therefore, the syntactic rules 

constraint by NR1-NNP1, IP2-VP2 and PP3-VP3 

respectively cannot be extracted for syntax sys-

tems; while for phrase systems, context around the 

first “以色列” cannot be fully explored. In the 

second example, the empty word “了” is wrongly 

aligned, which usually occurs in Chinese-English 

word alignment. As shown in Fig. 3, both cases 

can be resolved by sub-tree alignment conducted 

by our model, indicating that sub-tree alignment is 

a decent supplement to the word alignment rule set.  

8 Conclusion 

In this paper, we propose a framework for bilin-

gual sub-tree alignment using Maximum Entropy 

model. We explore various lexical and structural 

features to improve the alignment performance. 

We also manually annotated the automatic parsed 

tree pairs for both alignment evaluation and MT 

experiment. Experimental results show that our 

alignment framework significantly outperforms 

the baseline method and the proposed features are 

very effective to capture the bilingual structural 

similarity. Additionally, we find that our approach 

can perform well using only a small amount of 

sub-tree aligned training corpus. Further experi-

ment shows that our approach benefits both phrase 

and syntax based MT systems. 

System Rules BLEU 

Moses BP* 23.86 

 DirC  24.12 

EWoS  24.45 

Syntax 

STSG 

STSG 24.71 

DirC  24.91 

 EWoS  25.21 

Syntax STSSG 25.92 

STSSG DirC  25.88 

 EWoS  26.12 
 

Table 5. MT evaluation on various systems 
BP* denotes bilingual phrases.  

BP, STSG, STSSG are baseline rule sets using word 

alignment to constrain rule extraction. 
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Abstract

Verb classes which integrate a wide range
of linguistic properties (Levin, 1993) have
proved useful for natural language pro-
cessing (NLP) applications. However,
the real-world use of these classes has
been limited because for most languages,
no resources similar to VerbNet (Kipper-
Schuler, 2005) are available. We apply
a verb clustering approach developed for
English to French – a language for which
no such experiment has been conducted
yet. Our investigation shows that not only
the general methodology but also the best
performing features are transferable be-
tween the languages, making it possible
to learn useful VerbNet style classes for
French automatically without language-
specific tuning.

1 Introduction

A number of verb classifications have been built to
support natural language processing (NLP) tasks
(Grishman et al., 1994; Miller, 1995; Baker et al.,
1998; Palmer et al., 2005; Kipper-Schuler, 2005;
Hovy et al., 2006). These include both syntactic
and semantic classifications, as well as ones which
integrate aspects of both. Classifications which in-
tegrate a wide range of linguistic properties can
be particularly useful for NLP applications suffer-
ing from data sparseness. One such classification
is VerbNet (Kipper-Schuler, 2005). Building on
the taxonomy of Levin (1993), VerbNet groups
verbs (e.g. deliver, post, dispatch) into classes
(e.g. SEND) on the basis of their shared mean-
ing components and syntactic behaviour, identi-
fied in terms of meaning preserving diathesis al-
ternations. Such classes can be identified across
the entire lexicon, and they may also apply across

languages, since their meaning components are
said to be cross-linguistically applicable (Jack-
endoff, 1990).

Offering a powerful tool for generalization, ab-
straction and prediction, VerbNet classes have
been used to support many important NLP

tasks, including e.g. computational lexicography,
parsing, word sense disambiguation, semantic
role labeling, information extraction, question-
answering, and machine translation (Swier and
Stevenson, 2004; Dang, 2004; Shi and Mihalcea,
2005; Abend et al., 2008). However, to date their
exploitation has been limited because for most
languages, no Levin style classification is avail-
able.

Since manual classification is costly (Kipper
et al., 2008) automatic approaches have been pro-
posed recently which could be used to learn novel
classifications in a cost-effective manner (Joanis
et al., 2008; Li and Brew, 2008; Ó Séaghdha
and Copestake, 2008; Vlachos et al., 2009; Sun
and Korhonen, 2009). However, most work on
Levin type classification has focussed on English.
Large-scale research on other languages such as
German (Schulte im Walde, 2006) and Japanese
(Suzuki and Fukumoto, 2009) has focussed on se-
mantic classification. Although the two classifica-
tion systems have shared properties, studies com-
paring the overlap between VerbNet and WordNet
(Miller, 1995) have reported that the mapping is
only partial and many to many due to fine-grained
nature of classes based on synonymy (Shi and Mi-
halcea, 2005; Abend et al., 2008).

Only few studies have been conducted on Levin
style classification for languages other than En-
glish. In their experiment involving 59 verbs and
three classes, Merlo et al. (2002) applied a su-
pervised approach developed for English to Ital-
ian, obtaining high accuracy (86.3%). In an-
other experiment with 60 verbs and three classes,
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they showed that features extracted from Chinese
translations of English verbs can improve English
classification. These results are promising, but
those from a later experiment by Ferrer (2004)
are not. Ferrer applied a clustering approach de-
veloped for English to Spanish, and evaluated it
against the manual classification of Vázquez et al.
(2000), constructed using criteria similar (but not
identical) to Levin’s. This experiment involving
514 verbs and 31 classes produced results only
slightly better than the random baseline.

In this paper, we investigate the cross-linguistic
potential of Levin style classification further. In
past years, verb classification techniques – in par-
ticular unsupervised ones – have improved con-
siderably, making investigations for a new lan-
guage more feasible. We take a recent verb clus-
tering approach developed for English (Sun and
Korhonen, 2009) and apply it to French – a ma-
jor language for which no such experiment has
been conducted yet. Basic NLP resources (cor-
pora, taggers, parsers and subcategorization ac-
quisition systems) are now sufficiently developed
for this language for the application of a state-of-
the-art verb clustering approach to be realistic.

Our investigation reveals similarities between
the English and French classifications, support-
ing the linguistic hypothesis (Jackendoff, 1990)
and the earlier result of Merlo et al. (2002)
that Levin classes have a strong cross-linguistic
basis. Not only the general methodology but
also best performing features are transferable be-
tween the languages, making it possible to learn
useful classes for French automatically without
language-specific tuning.

2 French Gold Standard

The development of an automatic verb classifi-
cation approach requires at least an initial gold
standard. Some syntactic (Gross, 1975) and se-
mantic (Vossen, 1998) verb classifications exist
for French, along with ones which integrate as-
pects of both (Saint-Dizier, 1998). Since none of
these resources offer classes similar to Levins’,
we followed the idea of Merlo et al. (2002) and
translated a number of Levin classes from English
to French. As our aim was to to investigate the
cross-linguistic applicability of classes, we took

an English gold standard which has been used to
evaluate several recent clustering works – that of
Sun et al. (2008). This resource includes 17 fine-
grained Levin classes. Each class has 12 member
verbs whose predominant sense in English (ac-
cording to WordNet) belongs to that class.

Member verbs were first translated to French.
Where several relevant translations were identi-
fied, each of them was considered. For each can-
didate verb, subcategorization frames (SCFs) were
identified and diathesis alternations were consid-
ered using the criteria of Levin (1993): alterna-
tions must result in the same or extended verb
sense. Only verbs sharing diathesis alternations
were kept in the class.

For example, the gold standard class 31.1
AMUSE includes the following English verbs:
stimulate, threaten, shock, confuse, upset, over-
whelm, scare, disappoint, delight, exhaust, in-
timidate and frighten. Relevant French transla-
tions were identified for all of them: abattre,
accabler, briser, déprimer, consterner, anéantir,
épuiser, exténuer, écraser, ennuyer, éreinter, inon-
der. The majority of these verbs take similar SCFs
and diathesis alternations, e.g. Cette affaire écrase
Marie (de chagrin), Marie est écrasée par le cha-
grin, Le chagrin écrase Marie. However, stim-
uler (stimulate) and menacer (threaten) do not,
and they were therefore removed.

40% of translations were discarded from
classes because they did not share the same aler-
nations. The final version of the gold stan-
dard (shown in table 1) includes 171 verbs in 16
classes. Each class is named according to the
original Levin class. The smallest class (30.3) in-
cludes 7 verbs and the largest (37.3) 16. The aver-
age number of verbs per class is 10.7.

3 Verb Clustering

We performed an experiment where we

• took a French corpus and a SCF lexicon au-
tomatically extracted from that corpus,

• extracted from these resources a range of fea-
tures (lexical, syntactic and semantic) – a
representative sample of those employed in
recent English experiments,
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Class No Class Verbs
9.1 PUT accrocher, déposer, mettre, placer, répartir, réintégrer, empiler, emporter, enfermer,

insérer, installer
10.1 REMOVE ôter, enlever, retirer, supprimer, retrancher, débarrasser, soustraire, décompter, éliminer
11.1 SEND envoyer, lancer, transmettre, adresser, porter, expédier, transporter, jeter, renvoyer, livrer
13.5.1 GET acheter, prendre, saisir, réserver, conserver, garder, préserver, maintenir, retenir, louer,

affréter
18.1 HIT cogner, heurter, battre, frapper, fouetter, taper, rosser, brutaliser, éreinter, maltraiter,

corriger,
22.2 AMALGAMATE incorporer, associer, réunir, mélanger, mêler, unir, assembler, combiner, lier, fusionner
29.2 CHARACTERIZE appréhender, concevoir, considérer, décrire, définir, dépeindre, désigner, envisager,

identifier, montrer, percevoir, représenter, ressentir
30.3 PEER regarder, écouter, examiner, considérer, voir, scruter, dévisager
31.1 AMUSE abattre, accabler, briser, déprimer, consterner, anéantir, épuiser, exténuer, écraser, en-

nuyer, éreinter, inonder,
36.1 CORRESPOND coopérer, participer, collaborer, concourir, contribuer, prendre part, s’associer, travaille
37.3 MANNER OF

SPEAKING
râler, gronder, crier, ronchonner, grogner, bougonner, maugréer, rouspéter, grommeler,
larmoyer, gémir, geindre, hurler, gueuler, brailler, chuchoter

37.7 SAY dire, révéler, déclarer, signaler, indiquer, montrer, annoncer, répondre, affirmer, certifier,
répliquer

43.1 LIGHT EMIS-
SION

briller, étinceler, flamboyer, luire, resplendir, pétiller, rutiler, rayonner., scintiller

45.4 CHANGE OF
STATE

mélanger, fusionner, consolider, renforcer, fortifier, adoucir, polir, atténuer, tempérer,
pétrir, façonner, former

47.3 MODES OF BE-
ING

trembler, frémir, osciller, vaciller, vibrer, tressaillir, frissonner, palpiter, grésiller, trem-
bloter, palpiter

51.3.2 RUN voyager, aller, se promener, errer, circuler, se déplacer, courir, bouger, naviguer, passer

Table 1: A Levin style gold standard for French

• clustered the features using a method which
has proved promising in both English and
German experiments: spectral clustering,

• evaluated the clusters both quantitatively (us-
ing the gold standard) and qualitatively,

• and compared the performance to that re-
cently obtained for English in order to gain
a better understanding of the cross-linguistic
and language-specific properties of verb clas-
sification

This work is described in the subsequent sections.

3.1 Data: the LexSchem Lexicon
We extracted the features for clustering from
LexSchem (Messiant et al., 2008). This large sub-
categorization lexicon provides SCF frequency in-
formation for 3,297 French verbs. It was acquired
fully automatically from Le Monde newspaper
corpus (200M words from years 1991-2000) us-
ing ASSCI – a recent subcategorization acquisi-
tion system for French (Messiant, 2008). Systems
similar to ASSCI have been used in recent verb
classification works e.g. (Schulte im Walde, 2006;

Li and Brew, 2008; Sun and Korhonen, 2009).
Like these other systems, ASSCI takes raw corpus
data as input. The data is first tagged and lemma-
tized using the Tree-Tagger and then parsed us-
ing Syntex (Bourigault et al., 2005). Syntex is
a shallow parser which employs a combination
of statistics and heuristics to identify grammati-
cal relations (GRs) in sentences. ASSCI considers
GRs where the target verbs occur and constructs
SCFs from nominal, prepositional and adjectival
phrases, and infinitival and subordinate clauses.
When a verb has no dependency, its SCF is con-
sidered as intransitive. ASSCI assumes no pre-
defined list of SCFs but almost any combination
of permitted constructions can appear as a candi-
date SCF. The number of automatically generated
SCF types in LexSchem is 336.

Many candidate SCFs are noisy due to process-
ing errors and the difficulty of argument-adjunct
distinction. Most SCF systems assume that true
arguments occur in argument positions more fre-
quently than adjuncts. Many systems also inte-
grate filters for removing noise from system out-
put. When LexSchem was evaluated after filter-
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ing its F-measure was 69 – which is similar to
that of other current SCF systems (Messiant et al.,
2008) We used the unfiltered version of the lexi-
con because English experiments have shown that
information about adjuncts can help verb cluster-
ing (Sun et al., 2008).

4 Features

Lexical entries in LexSchem provide a variety of
material for verb clustering. Using this material,
we constructed a range of features for experimen-
tation. The first three include basic information
about SCFs:

F1: SCFs and their relative frequencies with indi-
vidual verbs. SCFs abstract over particles and
prepositions.

F2: F1, with SCFs parameterized for the tense
(the POS tag) of the verb.

F3: F2, with SCFs parameterized for prepositions
(PP).

The following six features include informa-
tion about the lexical context (co-occurrences)
of verbs. We adopt the best method of Li and
Brew (2008) where collocations (COs) are ex-
tracted from the window of words immediately
preceding and following a lemmatized verb. Stop
words are removed prior to extraction.

F4, F6, F8: COs are extracted from the window
of 4, 6 and 8 words, respectively. The relative
word position is ignored.

F5, F7, F9: F4, F6 and F8 with the relative word
position recorded.

The next four features include information
about lexical preferences (LP) of verbs in argu-
ment head positions of specific GRs associated
with the verb:

F10: LP(PREP): the type and frequency of prepo-
sitions in the preposition (PREP) relation.

F11: LP(SUBJ): the type and frequency of nouns
in the subject (SUBJ) relation.

F12: LP(IOBJ): the type and frequency of nouns
in the object (OBJ) and indirect object (IOBJ)
relation.

F13: LP(ALL): the combination of F10-F13.

The final two features refine SCF features with
LPs and semantic information about verb selec-
tional preferences (SP):

F14-F16: F1-F3 parameterized for LPs.

F17: F3 refined with SPs.

We adopt a fully unsupervised approach to SP

acquisition using the method of Sun and Korho-
nen (2009), with the difference that we determine
the optimal number of SP clusters automatically
following Zelnik-Manor and Perona (2004). The
method is introduced in the following section. The
approach involves (i) taking the GRs (SUBJ, OBJ,
IOBJ) associated with verbs, (ii) extracting all the
argument heads in these GRs, and (iii) clustering
the resulting N most frequent argument heads into
M classes. The empirically determined N 200
was used. The method produced 40 SP clusters.

5 Clustering Methods

Spectral clustering (SPEC) has proved promising
in previous verb clustering experiments (Brew
and Schulte im Walde, 2002; Sun and Korho-
nen, 2009) and other similar NLP tasks involv-
ing high dimensional feature space (Chen et al.,
2006). Following Sun and Korhonen (2009) we
used the MNCut spectral clustering (Meila and
Shi, 2001) which has a wide applicability and
a clear probabilistic interpretation (von Luxburg,
2007; Verma and Meila, 2005). However, we ex-
tended the method to determine the optimal num-
ber of clusters automatically using the technique
proposed by (Zelnik-Manor and Perona, 2004).

Clustering groups a given set of verbs V =
{vn}Nn=1 into a disjoint partition of K classes.
SPEC takes a similarity matrix as input. All our
features can be viewed as probabilistic distribu-
tions because the combination of different fea-
tures is performed via parameterization. Thus we
use the Jensen-Shannon divergence (JSD) to con-
struct the similarity matrix. The JSD between
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two feature vectors v and v′ is djsd(v, v
′) =

1
2D(v||m)+ 1

2D(v′||m) where D is the Kullback-
Leibler divergence, and m is the average of the v
and v′.

The similarity matrix W is constructed where
Wij = exp(−djsd(v, v′)). In SPEC, the simi-
larities Wij are viewed as the connection weight
ij of a graph G over V . The similarity matrix
W is thus the adjacency matrix for G. The de-
gree of a vertex i is di =

∑N
j=1wij . A cut be-

tween two partitions A and A′ is defined to be
Cut(A,A′) =

∑
m∈A,n∈A′ Wmn.

The similarity matrix W is normalized into a
stochastic matrix P .

P = D−1W (1)

The degree matrix D is a diagonal matrix where
Dii = di.

It was shown by Meila and Shi (2001) that if P
has the K leading eigenvectors that are piecewise
constant1 with respect to a partition I∗ and their
eigenvalues are not zero, then I∗ minimizes the
multiway normalized cut(MNCut):

MNCut(I) = K −∑K
k=1

Cut(Ik,Ik)
Cut(Ik,I)

Pmn can be interpreted as the transition proba-
bility between vertices m,n. The criterion can
thus be expressed as MNCut(I) =

∑K
k=1(1 −

P (Ik → Ik|Ik)) (Meila, 2001), which is the sum
of transition probabilities across different clusters.
This criterion finds the partition where the random
walks are most likely to happen within the same
cluster. In practice, the leading eigenvectors of P
are not piecewise constant. But we can extract the
partition by finding the approximately equal ele-
ments in the eigenvectors using a clustering algo-
rithm like K-Means.

As the value of K is not known beforehand, we
use Zelnik-Manor and Perona (2004)’s method to
estimate it. This method finds the optimal value
by minimizing a cost function based on the eigen-
vector structure of W .

Like Brew and Schulte im Walde (2002), we
compare SPEC against a K-Means baseline. We
used the Matlab implementation with euclidean
distance as the distance measure.

1The eigenvector v is piecewise constant with respect to
I if v(i) = v(j)∀i, j ∈ Ik and k ∈ 1, 2...K

6 Experimental Evaluation

6.1 Data and Pre-processing
The SCF-based features (F1-F3 and F14-F17)
were extracted directly from LexSchem. The CO

(F4-F9) and LP features (F10-F13) were extracted
from the raw and parsed corpus sentences, respec-
tively, which were used for creating the lexicon.
Features that only appeared once were removed.
Feature vectors were normalized by the sum of the
feature values before clustering. Since our clus-
tering algorithms have an element of randomness,
we repeated clustering multiple times. We report
the results that minimize the distortion (the dis-
tance to cluster centroid).

6.2 Evaluation Measures
We employ the same measures for evaluation as
previously employed e.g. by Ó Séaghdha and
Copestake (2008) and Sun and Korhonen (2009).

The first measure is modified purity (mPUR) –
a global measure which evaluates the mean preci-
sion of clusters. Each cluster is associated with its
prevalent class. The number of verbs in a cluster
K that take this class is denoted by nprevalent(K).
Verbs that do not take it are considered as errors.
Clusters where nprevalent(K) = 1 are disregarded
as not to introduce a bias towards singletons:

mPUR =

∑
nprevalent(ki)>2

nprevalent(ki)

number of verbs
The second measure is weighted class accuracy
(ACC): the proportion of members of dominant
clusters DOM-CLUSTi within all classes ci.

ACC =

∑C
i=1 verbs in DOM-CLUSTi

number of verbs
mPUR and ACC can be seen as a measure of pre-
cision(P) and recall(R) respectively. We calculate
F measure as the harmonic mean of P and R:

F =
2 · mPUR · ACC

mPUR + ACC

The random baseline (BL) is calculated as fol-
lows: BL = 1/number of classes

7 Evaluation

7.1 Quantitative Evaluation
In our first experiment, we evaluated 116 verbs –
those which appeared in LexSchem the minimum
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of 150 times. We did this because English exper-
iments had shown that due to the Zipfian nature
of SCF distributions, 150 corpus occurrences are
typically needed to obtain a sufficient number of
frames for clustering (Sun et al., 2008).

Table 2 shows F-measure results for all the fea-
tures. The 4th column of the table shows, for com-
parison, the results of Sun and Korhonen (2009)
obtained for English when they used the same fea-
tures as us, clustered them using SPEC, and evalu-
ated them against the English version of our gold
standard, also using F-measure2.

As expected, SPEC (the 2nd column) outper-
forms K-Means (the 3rd column). Looking at the
basic SCF features F1-F3, we can see that they per-
form significantly better than the BL method. F3
performs the best among the three features both
in French (50.6 F) and in English (63.3 F). We
therefore use F3 as the SCF feature in F14-F17
(the same was done for English).

In French, most CO features (F4-F9) outper-
form SCF features. The best result is obtained
with F7: 55.1 F. This is clearly better than the
best SCF result 50.6 (F3). This result is interesting
since SCFs correspond better than COs with fea-
tures used in manual Levin classification. Also,
SCFs perform considerably better than COs in the
English experiment (we only have the result for F4
available, but it is considerably lower than the re-
sult for F3). However, earlier English studies have
reported contradictory results (e.g. Li and Brew
(2008) showed that CO performs better than SCF

in supervised verb classification), indicating that
the role of CO features in verb classification re-
quires further investigation.

Looking at the LP features, F13 produces the
best F (52.7) for French which is slightly better
than the best SCF result for the language. Also
in English, F13 performs the best in this feature
group and yields a higher result than the best SCF-
based feature F3.

Parameterizing the best SCF feature F3 with LPs
(F14-16) and SPs (F17) yields better performance

2Note that the results for the two languages are not mu-
tually comparable due to differences in test sets, data sizes,
and feature extraction systems (see Section 8 for discussion).
The results for English are included so that we can compare
the relative performance of individual features in the two lan-
guages in question.

in French. F15 and F17 have the F of 54.5 and
54.6, respectively. These results are so close to
the result of the best CO feature F7 (55.1 – which
is the highest result in this experiment) that the
differences are not statistically significant. In En-
glish, the results of F14-F17 are similarly good;
however, only F17 beats the already high perfor-
mance of F13.

On the basis of this experiment, it is difficult to
tell whether shallow CO features or more sophisti-
cated SCF-based features are better for French. In
the English experiment sophisticated features per-
formed better (the SCF-SP feature was the best).
However, the English experiment employed a
much larger dataset. These more sophisticated
features may suffer from data sparseness in our
French experiment since although we required the
minimum of 150 occurrences per verb, verb clus-
tering performance tends to improve when more
data is available, and given the fine-grained nature
of LexShem SCFs it is likely that more data is re-
quired for optimal performance.

We therefore performed another experiment
with French on the full set of 147 verbs, using
SPEC, where we investigated the effect of instance
filtering on the performance of the best features
from each feature group: F3, F7, F13 and F17.
The results shown in Table 3 reveal that the perfor-
mance of the features remains fairly similar until
the instance threshold of 1000. When 2000 occur-
rences per verb are used, the differences become
clearer, until at the threshold of 4000, it is obvious
that the most sophisticated SCF-SP feature F17 is
by far the best feature for French (65.4 F) and the
SCF feature F3 the second best (60.5 F). The CO-
feature F7 and the LP feature F13 are not nearly as
good (53.4 and 51.0 F).

Although the results at different thresholds are
not comparable due to the different number of
verbs and classes (see columns 2-3), the results
for features at the same threshold are. Those re-
sults suggest that when 2000 or more occurrences
per verb are used, most features perform like they
performed for English in the experiment of Sun
and Korhonen (2009), with CO being the least in-
formative3 and SCF-SP being the most informa-

3However, it is worth noting that CO is not a useless fea-
ture. As table 3 shows, when 150 or fewer occurrences are
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SPEC K Eng.
BL 6.7 6.7 6.7
F1 SCF 42.4 39.3 57.8
F2 SCF(POS) 45.9 40.3 46.7
F3 SCF(PP) 50.6 36.9 63.3
F4 CO(4) 50.3 38.2 40.9
F5 CO(4+loc) 48.8 26.3 -
F6 CO(6) 52.7 29.2 -
F7 CO(6+loc) 55.1 33.8 -
F8 CO(8) 54.2 36.4 -
F9 CO(8+loc) 54.6 37.2 -
F10 LP(PREP) 35.5 32.8 49.0
F11 LP(SUBJ) 33.7 23.6 -
F12 LP(OBJ) 50.1 33.3 -
F13 LP(ALL) 52.7 40.1 74.6
F14 SCF+LP(SUBJ) 50.3 40.1 71.7
F15 SCF+LP(OBJ) 54.5 35.6 74.0
F16 SCF+LP(SUBJ+OBJ) 53.4 36.2 73.0
F17 SCF+SP 54.6 39.8 80.4

Table 2: Results for all the features for French
(SPEC and K-means) and English (SPEC)

THR Verbs Cls F3 F7 F13 F17
0 147 15 43.7 57.5 43.3 50.1
50 137 15 47.9 56.1 44.8 49.1
100 125 15 49.2 54.3 44.8 49.5
150 116 15 50.6 55.1 52.7 54.6
200 110 15 54.9 52.9 49.7 52.5
400 96 15 52.7 52.9 43.9 53.2
1000 71 15 51.4 54.0 44.8 54.5
2000 59 12 52.3 45.9 42.7 53.5
3000 51 12 55.7 49.0 46.8 59.2
4000 43 10 60.5 53.4 51.0 65.4

Table 3: The effect of verb frequency

tive feature. The only exception is the LP feature
which performed better than CO in English.

7.2 Qualitative Evaluation

We conducted qualitative analysis of the clusters
for French: those created using SPEC with F17
and F3. Verbs in the gold standard classes 29.2,
36.1, 37.3, 37.7 and 47.3 (Table 1) performed
particularly well, with the majority of member
verbs found in the same cluster. These verbs
are ideal for clustering because they have distinc-
tive syntactic-semantic characteristics. For exam-
ple, verbs in 29.2 CHARACTERIZE class (e.g. con-
cevoir, considérer, dépeindre) not only have a very
specific meaning but they also take high frequency
SCFs involving the preposition comme (Eng. as)

available for a verb, CO outperforms all the other features in
French, compensating for data sparseness.

which is not typical to many other classes. Inter-
estingly, Levin classes 29.2, 36.1, 37.3, and 37.7
were among the best performing classes also in
the supervised verb classification experiment of
Sun et al. (2008) because these classes have dis-
tinctive characteristics also in English.

The benefit of sophisticated features which
integrate also semantic (SP) information (F17)
is particularly evident for classes with non-
distinctive syntactic characteristics. For example,
the intransitive verbs in 43.1 LIGHT EMISSION

class (e.g. briller, étinceler, flamboyer) are diffi-
cult to cluster based on syntax only, but semantic
features work because the verbs pose strong SPs
on their subjects (entities capable of light emis-
sion). In the experiment of Sun et al. (2008), 43.1
was the worst performing class, possibly because
no semantic features were used in the experiment.

The most frequent source of error is syntac-
tic idiosyncracy. This is particularly evident
for classes 10.1 REMOVE and 45.4 CHANGE OF

STATE. Although verbs in these classes can take
similar SCFs and alternations, only some of them
are frequent in data. For example, the SCF ôter X
à Y is frequent for verbs in 10.1, but not ôter X
de Y. Although class 10.1 did not suffer from this
problem in the English experiment of Sun et al.
(2008), class 45.4 did. Class 45.4 performs par-
ticularly bad in French also because its member
verbs are low in frequency.

Some errors are due to polysemy, caused partly
by the fact that the French version of the gold stan-
dard was not controlled for this factor. Some verbs
have their predominant senses in classes which are
missing in the gold standard, e.g. the most fre-
quent sense of retenir is memorize, not keep as in
the gold standard class 13.5.1. GET.

Finally, some errors are not true errors but
demonstrate the capability of clustering to learn
novel information. For example, the CHANGE

OF STATE class 45.4 includes many antonyms
(e.g. weaken vs. strenghten). Clustering (us-
ing F17) separates these antonyms, so that verbs
adoucir, atténuer and tempérer appear in one clus-
ter and consolider and renforcer in another. Al-
though these verbs share the same alternations,
their SPs are different. The opposite effect can be
observed when clustering maps together classes
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which are semantically and syntactically related
(e.g. 36.1 CORRESPOND and 37.7 SPEAK). Such
classes are distinct in Levin and VerbNet, al-
though should ideally be related. Cases such as
these show the potential of clustering in discover-
ing novel valuable information in data.

8 Discussion and Conclusion

When sufficient corpus data is available, there is
a strong correlation between the types of features
which perform the best in English and French.
When the best features are used, many individ-
ual Levin classes have similar performance in the
two languages. Due to differences in data sets
direct comparison of performance figures for En-
glish and French is not possible. When consid-
ering the general level of performance, our best
performance for French (65.4 F) is lower than the
best performance for English in the experiment of
Sun and Korhonen (2009). However, it does com-
pare favourably to the performance of other state-
of-the-art (even supervised) English systems (Joa-
nis et al., 2008; Li and Brew, 2008; Ó Séaghdha
and Copestake, 2008; Vlachos et al., 2009). This
is impressive considering that we experimented
with a fully unsupervised approach originally de-
veloped for another language.

When aiming to improve performance further,
employing larger data is critical. Most recent ex-
periments on English have employed bigger data
sets, and unlike us, some of them have only con-
sidered the predominant senses of medium-high
frequency verbs. As seen in section 7.1, such dif-
ferences in data can have significant impact on
performance. However, parser and feature ex-
traction performance can also play a big role in
overall accuracy, and should therefore be inves-
tigated further (Sun and Korhonen, 2009). The
relatively low performance of basic LP features
in French suggests that at least some of the cur-
rent errors are due to parsing. Future research
should investigate the source of error at different
stages of processing. In addition, it would be in-
teresting to investigate whether language-specific
tuning (e.g. using language specific features such
as auxiliary classes) can further improve perfor-
mance on French.

Earlier works most closely related to ours are

those of Merlo et al. (2002) and Ferrer (2004).
Our results contrast with those of Ferrer who
showed that a clustering approach does not trans-
fer well from English to Spanish. However, she
used basic SCF and named entity features only,
and a clustering algorithm less suitable for high
dimensional data. Like us, Merlo et al. (2002) cre-
ated a gold standard by translating Levin classes
to another language (Italian). They also applied a
method developed for English to Italian, and re-
ported good overall performance using features
developed for English. Although the experiment
was small (focussing on three classes and a few
features only) and involved supervised classifica-
tion, the results agree with ours.

These experiments support the linguistic hy-
pothesis that Levin style classification can be
cross-linguistically applicable. A clustering tech-
nique such as the one presented here could be used
as a tool for investigating whether classifications
are similar across a wider range of more diverse
languages. From the NLP perspective, the fact that
an unsupervised technique developed for one lan-
guage can be applied to another language with-
out the need for substantial tuning means that au-
tomatic techniques could be used to hypothesise
useful Levin style classes for further languages.
This, in turn, could facilitate the creation of mul-
tilingual VerbNets in the future.
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Abstract

Martins et al. (2008) presented what to
the best of our knowledge still ranks as
the best overall result on the CONLL-
X Shared Task datasets. The paper
shows how triads of stacked dependency
parsers described in Martins et al. (2008)
can label unlabeled data for each other in
a way similar to co-training and produce
end parsers that are significantly better
than any of the stacked input parsers.
We evaluate our system on five datasets
from the CONLL-X Shared Task and ob-
tain 10–20% error reductions, incl. the
best reported results on four of them.
We compare our approach to other semi-
supervised learning algorithms.

1 Introduction

Semi-supervised learning of structured variables
is a difficult problem that has received consid-
erable attention recently, but most results have
been negative (Abney, 2008). This paper uses
stacked learning (Wolpert, 1992) to reduce struc-
tured variables, i.e. dependency graphs, to multi-
nomial variables, i.e. attachment and labeling
decisions, which are easier to manage in semi-
supervised learning scenarios, and which can
later be combined into dependency trees using
parsing algorithms for arc-factored dependency
parsing. Our approach thus combines ensemble-
based methods and semi-supervised learning.

Ensemble-based methods such as stacked
learning are used to reduce the instability of clas-
sifiers, to average out their errors and to com-
bine the strengths of diverse learning algorithms.

Ensemble-based methods have attracted a lot of
attention in dependency parsing recently (Sagae
and Lavie, 2006; Hall et al., 2007; Nivre and
McDonald, 2008; Martins et al., 2008; Fishel
and Nivre, 2009; Surdeanu and Manning, 2010).
Nivre and McDonald (2008) were first to intro-
duce stacking in the context of dependency pars-
ing.

Semi-supervised learning is typically moti-
vated by data sparseness. For many classifi-
cation tasks in natural language processing, la-
beled data can be in short supply but unla-
beled data is more readily available. Semi-
supervised methods exploit unlabeled data in ad-
dition to labeled data to improve performance
on classification tasks. If the predictions of a
learnerl on unlabeled data are used to improve
a learnerl′ in semi-supervised learning, the ro-
bustness of learning will depend on the stabil-
ity of l. Combining ensemble-based and semi-
supervised methods may thus lead to more ro-
bust semi-supervised learning.

Ensemble-based and semi-supervised meth-
ods are some of the areas that receive most at-
tention in machine learning today, but relatively
little attention has been given tocombiningthese
methods (Zhou, 2009). Semi-supervised learn-
ing algorithms can be categorized with respect
to the number of views, i.e. the number of fea-
ture sets, and the number of learners used to in-
form each other (Hady and Schwenker, 2008).
Self-training and expectation maximization are
perhaps the best known semi-supervised learn-
ing algorithms (Abney, 2008). They are both
single-view and single-learner algorithms. Since
there is thus only a single perspective on data,
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selecting unlabeled data points with predictions
is a difficult task. There is an imminent danger
that the learner amplifies its previous mistakes,
and while several techniques such as balancing
and throttling have been developed to avoid such
caveats, using single-view and single-learner al-
gorithms often requires both caution and experi-
ence with the modeling task at hand.

Algorithms with multiple views on data are
known to be more robust. This insight led to the
development of co-training (Blum and Mitchell,
1998), a two-view method where views inform
each other, but it also paved the way for the inte-
gration of ensemble-based and semi-supervised
methods, i.e. for methods with multiple learners.
It was mentioned that relatively little work has
been devoted to this topic, but there are notable
exceptions:

Bennett et al. (2003) generalized boosting to
semi-supervised learning in a seminal paper,
where the idea of iterative or recursive ensembles
was also introduced. Li and Zhou (2005) intro-
ducetri-training, a form of co-training that trains
an ensemble of three learners on labeled data and
runs them on unlabeled data. If two learners
agree on their labeling of a data point, the data
point is added to the labeled data of the third
learner with the prediction of the first two. Di-
daci and Roli (2006) extend self-training and co-
training to multiple learners. Li and Zhou (2007)
generalize tri-training to larger ensembles of ran-
dom trees. The technique is also known as co-
forests. Hady and Schwenker (2008) general-
ize existing ensemble-based methods for semi-
supervised learning scenarios; in particular they
embed ensembles in a form of co-training that is
shown to maintain the diversity of the ensemble
over time. Milidiu and Duarte (2009) generalize
boosting at start to semi-supervised learning.

This paper applies a generalization of tri-
training to two classification problems, attach-
ment and labeling. The attachment classifier’s
weights are used for arc-factored dependency
parsing, and the labeling classifier’s weights are
then used to label the dependency tree delivered
by the parser.

Semi-supervised dependency parsing has at-

tracted a lot of attention recently (Koo et al.,
2008; Wang et al., 2008; Suzuki et al., 2009),
but there has, to the best of our knowledge, been
no previous attempts to apply tri-training or re-
lated combinations of ensemble-based and semi-
supervised methods to any of these tasks, ex-
cept for the work of Sagae and Tsujii (2007)
discussed in Sect. 2.6. However, tri-training
has been applied to Chinese chunking (Chen et
al., 2006), question classification (Nguyen et al.,
2008) and POS tagging (Søgaard, 2010).

We compare generalized tri-training to other
semi-supervised learning algorithms, incl. self-
training, the original tri-training algorithm based
on bootstrap samples (Li and Zhou, 2005),
co-forests (Li and Zhou, 2007) and semi-
supervised support vector machines (Sindhwani
and Keerthi, 2006).

Sect. 2 introduces dependency parsing and
stacked learning. Stacked learning is general-
ized to dependency parsing, and previous work is
briefly surveyed. We then describe how stacked
dependency parsers can be further stacked as in-
put for two end classifiers that can be combined
to produce dependency structures. These two
classifiers will learn multinomial variables (at-
tachment and labeling) from a combination of
labeled data and unlabeled data using a gener-
alization of tri-training. Sect. 3 describes our ex-
periments. We describe the data sets, and how
the unlabeled data was prepared. Sect. 4 presents
our results. Sect. 5 presents an error analysis and
discusses the results in light of other results in
the literature, and Sect. 6 concludes the paper.

2 Background and related work

2.1 Dependency parsing

Dependency parsing models a sentence as a tree
where words are vertices and grammatical func-
tions are directed edges (dependencies). Each
word thus has a single incoming edge, except
one called the root of the tree. Dependency pars-
ing is thus a structured prediction problem with
trees as structured variables. Each sentence has
exponentially many possible dependency trees.
Our observed variables are sentences with words
labeled with part-of-speech tags. The task for
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each sentence is to find the dependency tree that
maximizes an objective function which in our
case is learned from a combination of labeled
and unlabeled data.

More formally, a dependency tree for a
sentencex = w1, . . . , wn is a tree T =
〈{0, 1, . . . , n}, A〉 with A ⊆ V × V the set of
dependency arcs. Each vertex corresponds to
a word in the sentence, except 0 which is the
root vertex, i.e. for anyi ≤ n 〈i, 0〉 6∈ A.
Since a dependency tree is a tree it is acyclic.
A tree is projective if every vertex has a continu-
ous projection, i.e. if and only if for every arc
〈i, j〉 ∈ A and nodek ∈ V , if i < k < j
or j < k < i then there is a subset of arcs
{〈i, i1〉, 〈i1, i2〉, . . . , 〈ik−1, ik〉} ∈ A such that
ik = k.

In this paper we use a maximum spanning tree
algorithm, the so-called Chu-Liu-Edmonds algo-
rithm (CLE) (Edmonds, 1967) to turn the pre-
dictions of our semi-supervised classifiers into a
dependency tree.

2.2 Stacked learning

Stacked generalization, or simplystacking, was
first proposed by Wolpert (1992). Stacking is an
ensemble-based learning method where multiple
weak classifiers are combined in a strong end
classifier. The idea is to train the end classifier
directly on the predictions of the input classifiers.

Say each input classifierci with 1 ≤ i ≤
n receives an inputx and outputs a prediction
ci(x). The end classifier then takes as input
〈x, c1(x), . . . , cn(x)〉 and outputs a final predic-
tion c0(〈x, c1(x), . . . , cn(x)〉). Training is done
by cross-validation. In sum, stacking is training
a classifier on the output of classifiers.

2.3 Stacked dependency parsing

Stacked learning can be generalized to structured
prediction tasks such as dependency parsing. Ar-
chitectures for stacking dependency parsers typi-
cally only use one input parser, but otherwise the
intuition is the same: the input parser is used to
augment the dependency structures that the end
parser is trained and evaluated on.

Nivre and McDonald (2008) first showed how
the MSTParser (McDonald et al., 2005) and the

MaltParser (Nivre et al., 2007) could be im-
proved by stacking each parser on the predic-
tions of the other. Martins et al. (2008) general-
ized their work, considering more combinations
of parsers, and stacking the end parsers on non-
local features from the predictions of the input
parser, e.g. siblings and grand-parents. In this
work we use three stacked dependency parsers
for each language: mst2 (p1), malt/mst2 (p2) and
malt/mst1 (p3).

The notation ”malt/mst2” means that the
second-order MSTParser has been stacked on the
MaltParser. The capital letters refer to feature
configurations. Configuration D stacks a level 1
parser on several (non-local) features of the pre-
dictions of the level 0 parser (along with the in-
put features): the predicted edge, siblings, grand
parents and predicted head of candidate modifier
if predicted edge is 0. Configuration E stacks
a level 1 parser on the features in configuration
D and all the predicted children of the candi-
date head. The chosen parser configurations are
those that performed best in Martins et al. (2008)
across the different datasets.

2.4 Stacking stacked dependency parsing

The input features of the input classifiers in
stacked learningx can of course be removed
from the input of the end classifier. It is also
possible to stack stacked classifiers. This leaves
us with four strategies for recursive stacking;
namely to constantly augment the feature set,
with leveln classifiers trained on the predictions
of the classifiers at alln− 1 lower levels with or
without the input featuresx, or simply to train a
level n classifier on the predictions of the level
n− 1 classifiers with or withoutx.

In this work we stack stacked dependency
parsers by training classifiers on the output of
three stacked dependency parsers and POS tags.
Consequently, we use one of the features fromx.
Note that we train classifiers and not parsers on
this new level 2.

The reduction is done the following way: First
we train a classifier on the relative distance from
a word to its head to induce attachments. For
example, we may obtain the following features
from the predictions of our level 1 parsers:
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label p1 p2 p3 POS
1 1 -1 1 NNP
0 0 0 0 VBD

In the second row all input parsers,p1−3 in
columnsaa 2–4, agree that the verb is the root of
the sentence. Column 1 tells us that this is cor-
rect. In the first row, two out of three parsers
agree on attaching the noun to the verb, which
again is correct. We train level 2 classifiers on
feature vectors produced this way. Note that or-
acle performance of the ensemble is no upper
bound on the accuracy of a classifier trained on
level 1 predictions this way, since a classifier
may learn the right decision from three wrong
predictions and a POS tag.

Second we train a classifier to predict depen-
dency relations. Our feature vectors are similar
to the ones just described, but now contain de-
pendency label predictions, e.g.:

label p1 p2 p3 POS
SBJ SBJ SBJ SBJ NN

ROOT ROOT ROOT COORD VBN

2.5 Generalized tri-training

Tri-training was originally introduced in Li and
Zhou (2005). The method involves three learners
that inform each other.

Let L denote the labeled data andU the
unlabeled data. Assume that three classifiers
c1, c2, c3 have been trained onL. In the origi-
nal algorithm, the three classifiers are obtained
by applying the same learning algorithm to three
bootstrap samples of the labeled data; but in gen-
eralized algorithms, three different learning al-
gorithms are used. An unlabeled datapoint in
U is labeled for a classifier, sayc1, if the other
two classifiers agree on its label, i.e.c2 andc3.
Two classifiers inform the third. If the two clas-
sifiers agree on a labeling, we assume there is a
good chance that they are right. In the original
algorithm, learning stops when the classifiers no
longer change; in generalized tri-training, a fixed
stopping criterion is used. The three classifiers
are combined by voting. Li and Zhou (2005)
show that under certain conditions the increase
in classification noise rate is compensated by the
amount of newly labeled data points.

The most important condition is that the
three classifiers are diverse. If the three clas-

1: for i ∈ {1..3} do
2: ci ← train classifier (li, L)
3: end for
4: repeat
5: for i ∈ {1..3} do
6: for x ∈ U do
7: Li ← ∅
8: if cj(x) = ck(x)(j, k 6= i) then
9: Li ← Li ∪ {(x, cj(x)}

10: end if
11: end for
12: ci ← train classifier(li, L ∪ Li)
13: end for
14: until stopping criterion is met
15: applyc1

Figure 1: Generalized tri-training.

sifiers are identical, tri-training degenerates to
self-training. As already mentioned, Li and
Zhou (2005) obtain this diversity by training
classifiers on bootstrap samples. In their exper-
iments, they consider classifiers based on deci-
sion trees, BP neural networks and naı̈ve Bayes
inference.

In this paper we generalize the tri-training al-
gorithm and use three different learning algo-
rithms rather than bootstrap samples to create
diversity: a naı̈ve Bayes algorithm (no smooth-
ing), random forests (Breiman, 2001) (with 100
unpruned decision trees) and an algorithm that
induces unpruned decision trees. The overall al-
gorithm is sketched in Figure 1 withli a learning
algorithm.

Our weights are those of the random forest
classifier after a fixed number of rounds. The
attachment classifier iterates once over the unla-
beled data, while the dependency relations clas-
sifier uses three iterations. The optimal number
of iterations could of course be estimated on de-
velopment data instead. Given the weights for an
input sentence we use CLE to find its most likely
dependency tree.

2.6 Related work

This paper uses stacking rather than voting to
construct ensembles, but voting has been more
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widely used in dependency parsing than stack-
ing. Voting was first introduced in dependency
parsing in Zeman and Zabokrtsky (2005). Sagae
and Lavie (2006) later used weighted voting and
reparsing, i.e. using CLE to find the dependency
tree that reflects the maximum number of votes.
They also showed that binning the vote over
part-of-speech tags led to further improvements.
This set-up was adopted by Hall et al. (2007) in
the best performing system in the CONLL 2007
Shared Task. Fishel and Nivre (2009) later ex-
perimented with binning the vote on other fea-
tures with modest improvements.

Semi-supervised dependency parsing has only
recently been explored, and failures have been
more frequent than successes. There are,
however, noteable exceptions such as Koo et
al. (2008), Wang et al. (2008), Suzuki et
al. (2009) and Sagae and Gordon (2009).

The semi-supervised methods employed in
these experiments are very different from more
traditional scenarios such as self-training and co-
training. Two approaches (Koo et al., 2008;
Sagae and Gordon, 2009) use clusters obtained
from large amounts of unlabeled data to augment
their labeled data by introducing new features,
and two approaches (Wang et al., 2008; Suzuki et
al., 2009) combine probability distributions ob-
tained from labeled data with probability distri-
butions obtained from unlabeled data.

Successes with self-training and co-training
are rare, and several authors report negative re-
sults, e.g. Spreyer and Kuhn (2009). A note-
able exception in constituent-based parsing is the
work of McClosky et al. (2006) who show that
self-training is possible if a reranker is used to
inform the underlying parser.

Sagae and Tsujii (2007) participated in (and
won) the CONLL 2007 Shared Task on do-
main adaptation. They first trained a max-
imum entropy-based transition-based depen-
dency parser on the out-of-domain labeled data
and an SVM-based transition-based dependency
parser on thereversedout-of-domain labeled
data. The two parsers parse the in-domain la-
beled data (reversed, in the case of the SVM-
based parser). Identical analyses are added to the

original training set. The first parser is retrained
and used to parse the test data. In sum, the au-
thors do one round of co-training with the fol-
lowing selection criterion: If the two parsers pro-
duce the same dependency structures for a sen-
tence, the dependency structure is added to the
labeled data. This criterion is also the selection
criterion in tri-training.

3 Experiments

3.1 Data

We use five datasets from the CONLL-X Shared
Task (Buchholz and Marsi, 2006).1 Lemmas and
morphological features (FEATS) are ignored,
since we only add POS and CPOS tags to un-
labeled data. For German and Swedish, we
use 100,000 sentences from the Leipzig Corpora
Collection (Biemann et al., 2007) as unlabeled
data. For Danish, Dutch, and Portuguese we
use 100,000 sentences from the Europarl cor-
pus (Koehn, 2005). The data characteristics are
provided in Figure 2. The unlabeled data were
POS tagged using the freely available SVMTool
(Gimenez and Marquez, 2004) (model 4, left-
right-left).

3.2 Algorithm

Once our data has been prepared, we train the
stacked dependency parsers and use them to la-
bel training data for our classifiers (∼4,000 to-
kens), our test data and our unlabeled data. This
gives us three sets of predictions for each of the
three data sets. Using the features described in
Sect. 2.4 we then construct data for training our
two triads of classifiers (for attachment and de-
pendency relations). The entire architecture can
be depicted as in Figure 3.

We first stack three dependency parsers as
described in Martins et al. (2008). We then
stack three classifiers on top of these dependency
parsers (and POS tags): a naı̈ve Bayes classifier,
a random forest, and a decision tree. Finally,

1The CONLL-X Shared Task consists of 12 datasets,
but we did not have consistently tokenized unlabeled data
for Arabic, Chinese, Japanese, Slovene and Turkish. Mar-
tins et al. (2008) ignore Czech. Our experiment with the
Spanish dataset crashed unexpectedly. We will post results
on the website as soon as possible.
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tokens sents tokens/sents POSs DEPRELs
Danish train 94,386 5,190 18.2 24 52

unl (Europarl) 2,422,144 100,000 24.2 - -
test 5,852 322 18.2 - -

Dutch train 195,069 13,349 14.6 13 26
unl (Europarl) 2,336,176 100,000 23.4 - -
test 5,585 386 14.5 - -

German train 699,610 39,216 17.8 52 46
unl (LCC) 1,763,281 100,000 17.6 - -
test 5,694 357 15.9 - -

Portuguese train 206,678 9,071 22.3 21 55
unl (Europarl) 2,882,967 100,000 28.8 - -
test 5,867 288 22.8 - -

Swedish train 191,467 11,042 17.4 37 56
unl (LCC) 1,727,068 100,000 17.3 - -
test 5,656 389 14.5 - -

Figure 2: Characteristics of the data sets.

tri-training
...

nb forests tree

stacking

mst2/mst2 malt/mst2 malt/mst1

stacking

mst2 malt mst1

Figure 3: Tri-training stacked classifiers.

we tri-train these three stacked classifiers and for
each test sentence output the weights provided
by the random forest classifier. These weights
are used to find the best possible dependency tree
using CLE.

3.3 Baselines

The best of the stacked input parsers is of course
our natural baseline.

Since we have generalized tri-training, we
also compare generalized tri-training to the orig-
inal tri-training algorithm based on bootstrap
samples. The original tri-training algorithm
is run with the same decomposition and the
same features as our generalized tri-training al-
gorithm. We use the learning algorithm orig-
inally used in Li and Zhou (2005), namely
C4.5. We also compare our results to self-
training (no pool, no growth rate) and co-forests
(Li and Zhou, 2007). Finally, we compare our

results to semi-supervised support vector ma-
chines (S3VMs) (Sindhwani and Keerthi, 2006).
Since S3VMs produce binary classifiers, and
one-vs.-many combination would be very time-
consuming, we train a binary classifier that pro-
duces a probability that any candidate arc is cor-
rect and do greedy head selection. We optimized
the feature set and included a total of seven fea-
tures (head POS, dependent POS, dependent left
neighbor POS, distance+direction, predictions of
the three classifiers).

4 Results

Our results are presented in Figure 4. Labeled
(LAS) and unlabeled attachment scores (UAS)
and labeling accuracy (LA) are defined as usual
and include punctuation signs unless otherwise
noted. Difference (∆) in LAS, error reduction
andp-value compare our results to the best input
stacked parser (malt/mst2, excerpt for Swedish).

Generalized tri-training (tri-training-CLE),
i.e. using CLE to find the best well-formed de-
pendency trees given the weights provided by
our tri-trained random forest classifier, leads to
highly significant improvements onall data sets
(p < 0.001) with an average error reduction of
14,9%. The results for the other semi-supervised
learning algorithms are presented in Figure 5.
We only used 10% of the unlabeled data (10k
sentences) in this experiment and only did un-
labeled parsing, but it is quite evident that these
learning strategies seem less promising than gen-
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Danish LAS(%) UAS(%) LA(%) EM(%) ∆ LAS err.red(%) p-value
mst2 84.64 89.11 91.35 24.84
malt/mst2 86.36 90.50 92.09 27.64
malt/mst1 86.11 90.23 91.87 25.78
tri-training-CLE 87.76 92.11 92.87 27.95 1.40 10.26 <0.0001
tri-training-CLE (excl. pnc.) 87.54 92.61 91.68
CONLL-X best (excl. pnc.) 84.79 90.58 89.22
Martins et al. (excl. pnc.) 86.79 - -
Dutch
mst2 80.27 84.32 84.96 23.32
malt/mst2 81.00 84.58 85.46 24.35
malt/mst1 80.72 84.17 85.34 26.17
tri-training-CLE 83.42 88.18 87.82 28.00 2.42 12.74 <0.0001
tri-training-CLE (excl. pnc.) 81.73 86.97 86.61
CONLL-X best (excl. pnc.) 79.19 83.57 83.89
Martins et al. (excl. pnc.) 81.61 - -
German
mst2 87.32 89.88 93.05 35.85
malt/mst2 88.06 90.53 93.52 40.06
malt/mst1 88.04 90.50 93.48 38.10
tri-training-CLE 90.41 93.22 94.61 43.14 2.35 19.68 <0.0001
tri-training-CLE (excl. pnc.) 90.30 93.49 93.87
CONLL-X best (excl. pnc.) 87.34 90.38 92.11
Martins et al. (excl. pnc.) 88.66 - -
Portuguese
mst2 84.83 88.44 92.04 25.69
malt/mst2 85.39 88.80 92.59 28.13
malt/mst1 85.00 88.39 92.23 25.69
tri-training-CLE 88.03 91.89 93.54 29.86 2.64 18.07 <0.0001
tri-training-CLE (excl. pnc.) 89.18 93.69 92.43
CONLL-X best (excl. pnc.) 87.60 91.36 91.54
Martins et al. (excl. pnc.) 88.46 - -
Swedish
mst2 81.82 87.36 87.29 27.76
malt/mst2 84.42 89.57 88.68 31.62
malt/mst1 84.74 89.83 89.07 31.11
tri-training-CLE 86.83 92.04 90.65 32.65 2.09 13.70 <0.0001
tri-training-CLE (excl. pnc.) 86.66 92.45 89.58
CONLL-X best (excl. pnc.) 84.58 89.50 87.39
Martins et al. (excl. pnc.) 85.16 - -
AV 2.18 14.89

Figure 4: Results on CONLL-X datasets. Scores areincluding punctuation unless otherwise noted.
∆ andp-value is difference with respect to best input parser.

UAS malt-mst2 S3VMs self-training orig-tri-training co-forests tri-training tri-training[full]
Danish 90.50 90.47 89.68 89.66 88.79 90.60 92.21
Dutch 84.58 85.34 84.06 83.83 83.97 86.07 88.06
German 90.53 90.15 89.83 89.92 88.47 90.81 93.20
Portuguese 88.80 65.64 87.60 87.62 87.06 89.16 91.87
Swedish 89.83 81.46 89.09 89.20 88.65 90.22 92.24
AV 88.80 82.61 88.05 88.05 87.44 89.37 91.52

Figure 5: Comparison of different semi-supervised learning algorithms (10% of unlabeled data)
using 2-fold CV and no reparsing, UASincluding punctuation.
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eralized tri-training.

5 Error analysis and discussion

Error reductions are higher with dependencies
to the root node and long distance dependencies
than with local dependencies. The table below
lists the labeled attachment F1-scores for the five
datasets binned on dependency length. The av-
erage error reduction is the same for root depen-
dencies and long distance dependencies (length
>7), but significantly lower for local dependen-
cies. This seems to indicate that large amounts of
data are necessary for the parser to recover long
distance dependencies.

root 1 2 4–7 >7
Da(F1) 98.45 96.21 92.09 88.17 90.93
– err.red 41.34 10.69 13.92 15.75 21.92
Du(F1) 83.65 94.47 88.60 82.40 81.54
– err.red 28.39 16.74 20.72 17.00 31.88
Ge(F1) 97.33 96.47 94.28 92.42 93.94
– err.red 26.65 19.77 17.46 25.25 38.97
Po(F1) 96.23 97.05 95.17 84.80 87.11
– err.red 22.47 19.56 24.86 22.56 26.97
Sw(F1) 96.37 95.67 93.46 88.42 89.57
– err.red 32.85 14.10 15.04 25.97 31.50
AV err.red 30.34 16.17 18.40 21.31 30.25

Our results for Danish, Dutch, German and
Portuguese are to the best of our knowledge the
best reported results in the literature. Zhang and
Chan (2009) obtain a LAS of 87.20 for Swedish
with transition-based parsing based on reinforce-
ment learning. They evaluate their system on
a subset of the CONLL-X datasets and obtain
their (by far) best improvement on the Swedish
dataset. They speculate that ”the reason might
be that [long distance dependencies] are not pop-
ular in Swedish”. Since our parser is particu-
larly good at long distance dependencies, this
may also explain why a supervised parser outper-
forms our system on this dataset. Interestingly,
our unlabeled attachment score is a lot better
than the one reported by Zhang and Chan (2009),
namely 92.45 compared to 91.84.

Generally, our UASs are better than our LASs.
Since we separate attachment and labeling out
in two independent steps, improvements in UAS
and improvements in LA do not necessarily lead
to improvements in LAS. While our average er-
ror reduction in LAS is 14.9%, our average error
reductions in UAS is 23.6%. The average error

reduction in LA is 14.0%. In two-stage depen-
dency parsers or dependency parsers with joint
models, improvements in UAS are typically fol-
lowed by comparable improvements in LAS.

6 Conclusion

This paper showed how the stacked depen-
dency parsers introduced in Martins et al. (2008)
can be improved by inference from unlabeled
data. Briefly put, we stack three diverse clas-
sifiers on triads of stacked dependency parsers
and let them label unlabeled data for each
other in a co-training-like architecture. Our
average error reductions in LAS over the best
of our stacked input parsers is 14.9%; in
UAS, it is 23.6%. The code is available at
http://cst.dk/anders/tridep.html.
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Martins, André, Dipanjan Das, Noah Smith, and Eric
Xing. 2008. Stacking dependency parsers. In
EMNLP.

McClosky, David, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
HLT-NAACL.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov,
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���������� ��� �
!� �� ��#� �����
�%���� ��� 	���
DUC ����� ���
��� �� ��� ���� � !���
� �#�
����� �
��,��� �
� ��� Inspec ,�,���
�	��� ����,��� ��� ,���
���� �� ����
�� ����� �� ��� 	��� )8������� ��� ��
���
2::4B  ����� 2::3+&
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3 Terminology and Preliminaries

" �
�	�$,���� ����� �
 
��!��� !���
�� 
 ���$
������ ,� ����
������ �������� �
�	�� ��	
���� ��
���	�0 )�+ ��� �
����� � ��� �������� �
�	�� ���� !��$
�
�� 
 ��������� �� ��
������ ��� ����� ����
�����
,���� � � �������� ������
��� �����
� ,������ ��
$
����� )�&�& ������ 3&2+� ��� ),+ ��� ���	����� � � ���

 �#������ 
��!��� ���
���� ����� �����%�� ��� �
�	�
��
����
� ��� 
��!� ��� ����& ������ 3&� ���
�����
��� ���� ��
������& �� ������ 3&2 �� �#	���� ��
��� ��
� ���	 �� ��� ,� SemanticRank� ��� �� ������
3&3 �� 	
����� ����
�� ����
������� �
 ��� ����� ���	&

3.1 Terminology

�� ��� ������� �� ����� ���� T (ti, tj) � 	��
 �
��
�� ���� ���
 �� ��#� ������� T & .� ��� ������
���� T �� � ���,�
 � � ������� ��������D ����� ��
��	�� � �
 �����& O 
�	
������ ��� ���� !�������$
,��� )�&�&� ������
��� �������
�+B �� �
 ���� �� �
� ��$
��� �� ���� !�������$,����� ������ WordNet ���
Wikipedia& .��� SRO(ti, tj) �� ����� ��� ��������

���������� ,������ ��
�� ti ��� tj ����� O �
 ���
��	������� ��� SRS(A,B) 
�	
������ ��� ��������

���������� ,������ ��#� �������� A ��� B )�&�&� ��$
������� ���������+&
����
���� WordNet� Si )Sj+ 
�	
������ ��� ��� �

��� �����
��� �������� )������+ ���� ����� ti )tj+ ���
�		��
 �� O& Pij ������ ��� ��� � 	���� ���������
������ �� Si ���� ������ �� Sj � �� ����� ��� ,� ����
����� O& P k

ij 
�	
������ �� ���� 	��� �� ��� ��� �
	���� Pij � ������ ��� kth 	���& Sij ������ �
 ��� ��� �
��� 	���,�� ����� 	��
� ,������ ��� ��� � ������ Si ���
��� ��� � ������ Sj & ����� |Sij | = |Si| ∗ |Sj |& (��	��$
������� Sm

ij ������ �
 �� ���� ��,������� ������
���mth ��,������&
.��� 
���
�� � .�!�	����� W 
���
� � ��� ���

Wikipedia �
������& .��� ai �� ����� ��� Wikipedia
�
����� �
 ��
� ti& In(ai) �� ��� ��� � Wikipedia �
��$
���� ���� ������ �� ����� �� ���! � ai&
6������� �� di �� ��� ith ������� � D ��� ta �

��
� �� di� ���� �� ����� ���� TF-IDF(ta, di) =
Count(ta,di)

|di| · log2
Count(ta,D)+1

|D| ��� TF-IDF ������ �
ta �� di� ���
� |di| �� ��� ���,�
 � ��
� ���
$

����� �� di� |D| �� ��� ���,�
 � �������� �� D�
Count(ta, di) ��� ���,�
 � ���

����� � ta �� di�
��� Count(ta, D) ��� ���,�
 � �������� �� D ����
������ ta&

3.2 Creating Semantic Graphs from Text

" ���� ����� � ����
���
� ��� ,��� �
����� � ��
� ����
��� �������� �
�	�� ���
������ ��
��� �		��$
������� ���� �� �
� ����� �����,������� )"��

�
��� �
�� 2::=+� !���
� ��� �������� �#�
�����
)8������� ��� ��
��� 2::4B A����! ��� A���� 2::@B

C�� �� ��&� 2::@+� ��� ��	������ � �������� 
����$
������ 
 ������
��� ,������ ��
�� )-�,
������ ���
8�
!������ 2::;B >�������!� ���  �
��� 2::7B 8����
��� .������ 2::@+&
�� ���� �
! �� ��	� � �������� �
�	� ����
��$

��� ����� ����� �� �,�� � ��	��
� ��� �������� 
�$
��������� ,������ ��
��� �� ���� �� ��#� ��������& 6

�
 	�
	��� �� ��	� Omiotis� ��� �����
� 	
	���
,� ������
��� �� ��& )2:�:+ �� 
��
 � ����
��� ���
����� ��� ����� � ��� �������� �
�	�& Omiotis �� �
!�������$,���� �����
� � �������� 
���������� ����
��� ��	��
� ��� �������� 
���������� ,������ ,��
!���
�� ��� ��#� �������� )�&�&� ���������� ���$
�����+� ������� �� � ����
��� ,�� �������� !��$
�
� �
�	�� �
 !���
� �#�
������ ��� �������� ���$
����� �
�	�� �
 �������� �#�
����� ��� �����
�%�$
���& /�
 �������� ��� ���� �� ��� ���� ���� Omio-
tis ��� ,��� ���� � 	�
�
� ��
� ���� ��	�
�� �
���
 !��� �����
� � �������� 
���������� 
 ����$
��
��� �� ���!� ���� �� ��
�$�$��
� ������
��� )������$

��� �� ��&� 2:�:B >�������!� ���  �
��� 2::7+&  �$
���
� ����� Omiotis 
����� ����� �� WordNet� �� ��$
����� ��� ���
��� � SemanticRank ,� ��	������$
��� ��� ���� ��������� ���� �� ��������� Wikipedia$
,���� �����
�� ������ ��� �����
� 	
	��� ,�8����
��� .����� )MLN+ )2::@+& �� ������ 3&2&� �� �#	����
�� ����� �� �����
�� �
� ��,���� �� 
��
 � ��$
	��� ��� �������� 
���������� ,������ ��
��� ��� ��
������ 3&2&2 �� �#	���� �� �������� 
���������� ��
��	��
�� ,������ ���������&

3.2.1 Semantic Relatedness Between Terms

��� �����
� 	
������� �� )������
��� �� ��&� 2:�:+
������ ��� �������� 
���������� ,������ � 	��
 �
��
�� �� ���� �� D*����� �� ���
� ��� !�������$
,��� O �� WordNet )WN+&

SRWN(ti,tj)=maxm{maxk{SCM(Sm
ij ,P k

ij)·SPE(Sm
ij ,P k

ij)}} )�+

���
� SCM ��� SPE �
� ������ Semantic Compactness
��� Semantic Path Elaboration 
��	��������& ����

	
���� �����
�� ��� ������ � ��� 	��� ��������� ���
�� ������ �� Sm

ij � ��!��� ��� ������0 ��� 	��� �������
��� ��	� � ��� �������� ����� ��	
����� ��� ��� ���
��	�� � ��� ����
������� ���� �� ��� WN ������ ��$
�
�
���& ��� �������� 
���������� ,������ �� ��
��
ti, tj � ���� ti ∈ WN ��� tj /∈ WN� 
 ���� ��
��� ��
������
�� 0& ��� �������� ,����� D*����� � �� ����
��� �������� 
���������� ,������ �� ��
�� ����� ,�
��	���� ,���� � ��� highest value 	��� ���������
��� 	��
 � ������ � ��� �� ��
��& ��� ��	���$
��� � ��� value ��!�� ��� ������ �� ������ ��� �
��� ��
��������� ����
�&
�� 
��
 � ������� ��� ���
��� � ��� �����
� ��

D*����� �� �� ��,��� �� ���� ��� WLM Wikipedia$
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,���� �����
� � 8���� ��� .����� )2::@+� ����� ��
� ��$��� ������ �
 �����
��� 
���������� ,������
��
�� ����� ���Wikipedia �
������ ��� ���! ��
����
� ��
� !������� ,���& ��� �������� 
���������� ,������
�� ��
�� ti ��� tj ���
���� � WLM �� ������ ��
���� �� D*����� 2& ��� �������� ,����� ���� �
$
���� �� ���� ��� �������� ������
��� ,������ �� ��
��
,����� �����
� �� ��� ���,�
 � �
������ 	������ �
,�� 
��	������Wikipedia �
������ ���
����� )�&�&� �� ���
	�
������� � ��� �
������ ���!��� � ,�� 	���� ��$
	�
�� � ��� ���,�
 � �
������ ���!��� � �����
 � ����
���
�����+&

SRWiki(ti,tj)=
log(max{|In(ai)|,|In(aj)|})−log(|In(ai)∩In(aj)|)

log(|W |)−log(min{|In(ai)|,|In(aj)|}) )2+

.� ��,��� ��� �� �����
�� �� � ������ �����
�
SRT(ti, tj)� �� ���� �� D*����� 3& ��� 
���� ��
	
�
���%� SRWN(ti, tj) �
� SRWiki(ti, tj)� ���� ,��
��
�� �#��� �� WN� �� ,������ ��� �
��
 �����
� ���
���� ���� ,����
 	�
�
����� �� ��	��
��� ��� ��$
������ 
���������� ,������ ��
��&

SRT(ti, tj) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, ti = tj

SRWN(ti, tj), �� ti, tj ∈ WordNet
SRWiki(ti, tj), �� ti, tj ∈ Wikipedia
0, ���
����

)3+

3.2.2 Semantic Relatedness Between Texts

� *������� ��� �������� 
���������� �
 � 	��
 �
��#� ��������� �� ,���� �	� ��� SRT �����
�� ,��
��� ��!� ��� ������ ��� ����������� ��	
����� � ���
��
�� ���

��� �� ��� 
��	������ ��#��& -���� �� ��#�
�������� A ��� B� ��� �� ��
�� ta ∈ A ��� tb ∈ B�
� �����
� ���� ��,���� ��� ����������� ��	
����� �
ta ��� tb� ���
���� � )������
��� �� ��&� 2:�:+� �� ���
��
���� ���� � ����
 TF-IDF �������& .� �����
���� *������� �� λta,tb

& ���� �
 ���� ��
� ta ∈ A� ��
���
�� �
 ��� �

��	����� ��
� tb ∈ B� ����� ��
���,��%� ���� b∗� ���� ��#���%�� ��� 	
���� � ����

��,���� ����������� ��	
����� ��� �������� ������
$
���& �� �
 ����� b∗ �� ���� ,� D*����� 4& ������
��
�� ��� ��� �
 ���� tb ∈ B ��� �

��	����� a∗&

b∗ = arg max
tb∈B

{λta,tb
· SRT(ta, tb)} )4+

"���
 ������ ��� ��� � ��� b∗ ��� a∗ ��
��� ��� ��$
������ 
���������� ,������ ��� �� ��#�� A ��� B ��
��	���� �� ���� �� D*����� 5&

SRS(A,B) =
θ(A,B) + θ(B,A)

2
)5+

���
� θ(A,B) = 1
|A|

∑
ta∈A λta,b∗ · SRT(ta, b∗)� ���

θ(B,A) ��� ,� ��	���� 
��	��������& ��� �����
�

�� D*����� 5 �� ��� �����
� ���� ,� SemanticRank
� ����
��� ��� ����� ,������ �������� ��
����� �� ���
���� � ��� �������� �������� �
�	�� �
 ��#� �����$

�%����& (���
���� ����� ����� � ���� ��
� �� ����
�
 ��� ��	������ � ��� �������� 
���������� ����
��� ���
 ��
�� ��� ������ ���� ��#���%� ��� �����
�
�� D*����� 3 �
� 	��!�� �� ���� ����&

3.3 Ranking Nodes in Semantic Graphs

6
 ��� 	�
	��� � �
 �#	�
��������� �� ���� ,�
���������� SemanticRank ���� ��
������ � ��� !���
PageRank ��� HITS ���
�����& ��� � ���� ��
��$
���� �
� �		���� �
 ��� ��
� ���� �� ��� �
����
! �

��!��� ���� �� �������� �
�	��&  ����
� �� ���� ,�
�#	������ �� ������ 4� �� SemanticRank� ��� ������,��
��
��# 
��!��� �������� ��� ,� ���� �������&
��� 
������ ��
���� � PageRank ��� HITS 
��� �

��� ”rich get richer” ����� ����� �� ,���� � �#$
	����� ���!� ��� ���
�� ����� �������& 8
� �	����$
�������  ��� 	
�
���%�� �� ��,� ��� ����
������
���
��� E���(��! ���� � ���	����� ����
 )β+ �� 
$
��
 � ���� ���*�� �����!� ��� 	
��� ��� ����
�����
� ����&  ����
� �� ��� ���� � �
�	�� ���� ��	���$
���� ������� ���!�� ��!� �� �������� �
�	��� ��� �����
��

� �������� ����� ���� ,� ��!�� ��� ������& ��
���� ��
������ �� ��	�� � ������ ��
��� � ���

������ PageRank ���
����� ��
� ���
����� ,� 8�$
������ ��� ��
�� )2::4+& ��� ������ PageRank ��
���� �� D*����� 7&

WPR(i) = (1 − β) + β ·
∑

j∈IN(i)

wij · WPR(j)∑
k∈OUT(j) wjk

)7+

���
� i, j, k 
�	
����� ��
������ IN(i) ��� OUT(j) �
�
��� ���� � inlink ���� � i ��� outlink ���� � j 
�$
�	��������� ��� wij �� ��� ������ � ��� ���� ,������
���� i ��� j& �� ��� ���� � �������� �
�	�� ��$
��
����� �
 !���
� �#�
������ ���� �
� ��
��� ����
����� wij F SRT(ti, tj)& �� ��� ���� � �������� �
�	��
����
����� �
 ��#� �����
�%����� i ��� j �
� ���$
������� ���� ����� wij F SRS(i, j)&
������
�� � ��� ��������� ���� �� D*����� 7

�
 PageRank� �� ��� ����� � �������� ��
��� �
HITS& ��� 
��	������ authority ��� hub ��
�� �
�
���� �� D*������ ; ��� @&

authority(i) =
∑

j∈In(i)

wi,j · hub(j) );+

hub(i) =
∑

j∈Out(i)

wi,j · authority(j) )@+

��� ��
��������� ���������� ���� ,��� ��$

���� �		���� �� ��� 	��� �� ��� ���� � ��������
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�
�	��� ���� �		������� � !���
� �#�
����� ��� ��#�
�����
�%���� )8������� ��� ��
��� 2::4B 8��������
2::4+� ������� ����� �����
��� �������� �
�	��& 6

��� �#�
����� � ��� ��� ��	
���� ����� ��� ��$
���� PageRank ��
��� �� ���� � 
��! ��� ���� ��$
�
���� � ����
 ���� PageRank ������� ��� ��� ���$
��� HITS � 
��! ���� ���
���� � ����
 ���� author-
ity ������& �� ���� �
!� �� ��� ������
 ��� �����$
��� �� ��������� ���������� � PageRank �� 
��

� 
��! ��
����� �� ��� ���� � ��� �������� !���
�
�
�	��& ��� ��
� ���������� ���� �� ���� Averaged
PageRank Weighting )APW+ �� 	
������� �� D*�����
=� ��� �� ���� ����
 ��� �������� PageRank � D*�����
7 ��� �#������& ��� �������� ,����� APW �� ���� ����
��
��# ti �� ��� ���� � ��� !���
� �������� �
�	���
��� � !��� ��	
����� ,���� � ��� �
�*����� � �$
��

���� )TF-IDF ������+ ������ ��� ����� �������
�������� D& ����� APW ������
� ,�� ��� ��	
$
����� � ��
��# ti ������ ��� �������� �
�	�� ��� ������
��� ������� ��������&

APW(ti) =
1

2
(

WPR(ti)

WPRmax
+

TF-IDF(ti, dj)

TF-IDFmax
) )=+

���
� dj ��� �	����� ������� �
� ����� ��� �����$
��� !���
� �
�	� �� �
������ WPRmax �� ��� ��#����
PageRank ��
� ���� �� ���� �
�	�� ��� TF-IDFmax ��
��� ��#���� TF-IDF ������ ���� �� ������� dj &
��� ����� PageRank��������� ���� �� ��	����

�
 ��� ��
� ���� �� ��� ���� � �������� !���
�
�
�	�� �� ��� priors biased PageRank )P-PR+ ���������
�� ).���� ��� ������ 2::3+& ��� ���� �� ��
� ����$
��
 � ��� �
!� �� ) ���������� 2::2+ ��� )"��

� ���
�
�� 2::=+� ��� 	�
���� � 
��!��� ��� ���� �� ���
�
�	�� ���� 
���
�� � � ����� ��� � ���� ������ pri-
ors& �� ��
�� ����� PageRank 	
����� � ��,�� 
��!$
��� � ��� ���� �� ��� �
�	�� P-PR 	
����� � 
��!���
� ��� ���� ���� 
���
�� � ��� ��� � ��� ����� prior
����& ���� �� �#	
����� �� D*����� �:& ��� ��� ���$
��
���� ���� �*����� 7 �� ���� ���� ��� i ��� ��� ��
Grandom jumpG 	
,�,����� � ��� prior ����& �����
�
 ���� ��� i� P-PR ��� � βi� ����� �#	
����� ��
���� �� ��� '��	 ,��! � ��� ��� � ��� prior ����
�
� ��� i& ��� �������� ,����� priors �� ���� ��
$
���� ���� �� ��� �
�	� �
� ���
�� ������� ���
& �� �
!���
� �#�
����� ���! ��� priors ��� ��� ������ ���
!���
�� �		��
��� �� ��� �������1� �����&

P-PR(i) = (1−βi)+βi ·
∑

j∈IN(i)

wij · P-PR(j)∑
k∈OUT(j) wjk

)�:+

4 SemanticRank

�� ���� ������ �� 	
����� SemanticRank )������
����
�� "��
���� �+� �
 ���
���� �
 
��!��� ��
�� ���

Algorithm 1 ��������(��!)D�Mode+
�0 INPUT: " ��#� ������� �������� D� ��� �

Mode ����
20 OUTPUT: " 
��!��� R � ��� �������� �
�	�
���� �
 ���
� ������� dj ∈ D&
Execute(D,Mode)

30 if Mode �� Keywords then

40 �������� ��	���� ��
�� � ������ �	 � 5�
��
50 end if

70 ��	��� ��� ����# TF-IDF ������ �
 ��� ��
��
;0 for all dj ∈ D do

@0 G0 "� ��������� ��	�� �
�	�
=0 G F ����
��� �������� -
�	�)dj �Mode+
�:0 R F (��! ����)G+
��0 end for

Construct Semantic Graph(dj ,Mode)
�20 G0 �� ��������� ��	�� �
�	�
�30 if Mode �� Keywords then

�40 ��������%� G ����Kdj

�50 else

�70 ��������%� G ���� Sendj

�;0 end if

�@0 for all 	��
� � ��
����� (vi, vj) do

�=0 if Mode �� Keywords then

2:0 wi,j = wj,i = λvi,vj
· SRT(vi, vj)

2�0 else

220 wi,j = wj,i = SRS(vi, vj)
230 end if

240 end for

250 RETURN G
Rank Nodes(G)

270 D#����� .������� E���(��! �� G
2;0 R F (��! ��
����� � G �� ���������� 
��
 �

E���(��! ������
2@0 RETURN R ���� ����
 E���(��! ������

��������� ,���� � ����
 �������� 
����������& ���
��
� ���	 � SemanticRank �� ��� �������� �
�	� �
�$
����& �� ��� ���� � �������� !���
� �
�	��� ���
����� � ������� dj ����� ,����� �� � ������� ��$
������ D� �� � 	
�	
������� ���	� ��� ���
���� ��$
����� ��� n−�
��� � ��%� �	 � 5 �
�� ����� � ���$
����
� �!$�	 )�&�&� ,�� WordNet ��� Wikipedia+�
��� � ������� ������ �� 
��
 � �������� ���������
!���
��� ����� ��� ,� ����������� ��	���� ��
��&
��� 
�������� ��� � ��
�� )�&�&� ��� ,� ��
�� � 1 � 5
�
��+� ����� �� ����� �� Kdj

� �� ���� �
 ��� �
�$
���� � � �
�	� G ���� ��� ��
����� ,���� ��� ��� ���$
����� ��
�� ti ∈ Kdj

& "� ���� ������� wij Seman-
ticRank ���� SRT(ti, tj) ����� ��	��
�� ��� ��������

���������� ,������ ��
�� ti ��� tj &  ����
� ���$
���� �� ���� ��� ��!� � ���
	
��� �� wij ��� ���$
�������� ���
����� � ��
�� ti, tj ���� �� ���� �
�
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����
 �
�*����� � ���

���� ������ dj ��� D& �����
D*����� �� ���� ���� ��,������� ��� �� �� ��� �
$
���� ���
���� � ����� SemanticRank ��	���� ���
���� ������� wij �� ��� ���� � ��� �������� !���
�
�
�	��& �� ��� ���� � �������� �������� �
�	�� �
�$
����� SemanticRank ��������%�� G ���� ��� ��� ��������
��������� Seni �� dj �� ��
������ ��� �� ���� D*����� 5
� ��	��� ��� ������� ,������ ���
� 	��
 � ��
�����
)�&�&� ,������ ���
� 	��
 � ���������+& �� "��
���� �
�� ����� ��� ��� � �������� ��������� �� dj ���� Sendj

&

wij = λti,tj
· SRT(ti, tj) )��+

�� ,�� ������ �
 ��� ����� ������� dj � ��� ��$
��
 ��� �
����� � ��� �������� �
�	�� ���� ��� ,�

��!�� ���
���� � ��� ������ 	
����� ,� �		�����
�����
 D*����� 7� 
 D*������ ; ��� @& 6
 ��� ����
� �������� !���
� �
�	��� ��� �	$k 
��!�� ����
�
� �������� �� ��� ��� ��	
���� !���
�� � dj & 6

��� ���� � �������� �������� �
�	��� ��� �	$k 
��!��
���� �
� �������� �� ��� ��� � ���������� 	�� ������

� ��������� ��� ������������ ����
���� �����
� �
dj & �� "��
���� � �� ��� ��,������� ���� 26 ���� ���
� ��� 
��!��� 	���� ��������� �� ������ 3&3& "�
������ ��� ,� ��� �
��� ���� E���(��!1� random
surfer model� ���
� � ���
 ,
���� ��� .�, ,� ��$
����� ���!� �
� ��� ����� .�, 	���& �� ��� ����#�
� ��#� ��������� SemanticRank ��	������� ���� ��

���
 � �� text surfing� ����� 
������ � ��� ����	� �
��#� ������ ) ������� ���  ����� �=;7+� �&�&� �
� �
��
���� ����	� �� � ��#�� �� �
� ��!��� � follow G���!�G
� 
������ ����	��� ������� ����	�� ���� ���� ��#����

 �������� 
������ � ��� ��

��� ����	�&

5 Experimental Evaluation

��� �#	�
������� ��������� �� 	�
�
��� �� �� ���!�0
)�+ !���
� �#�
������ ��� ),+ ��#� �����
�%����& ��
,�� ����� �� �
���� � �������� �
�	� �
 ���� ��$
����� ��� �� 
��! ��� ���� ���
������� ����� "�$
�
���� �& 6
 �
 ��������� �� ��� ��� ��� 
��!$
��� ���
���� ����
������� ����
�,�� �� ������ 3&3�
��� ��	�
� 
������ ���� ����� � ��� �
� �		
�����
���� ��� ��� ���� 
��!��� ���
����� ,�� �����
���
�
�	� �
����� ��� ���� ��������� �		
�����& ���
��
��� ������ 
��!��� ����
������� �
�0 �������� Se-
manticRank )Sem+ ����� PageRank )WPR+� ��� HITS
)WHITS+� ��� ���������� SemanticRank )USem+ ��$
��� ��� 
������ ��
���� � PageRank )UPR+ ��� HITS
)UHITS+& �� ��� ���� � !���
� �#�
����� �� ����$
���� ����������� ��� Averaged PageRank Weighting
)APW+ ��� PageRank Priors )PPR+� ���
� ��� prior
���� ��
� ��� � ��� ��
�� ���

��� �� ���� �,��
���1�
�����&

Method P R F

��� )!F5+

.E( 0.396 0.121 0.1853
. ��� 0.348 0.088 0.14
"E. 0.556 0.185 0.278
E$E( 0.659 0.226 0.337

��� )!F�:+

.E( 0.368 0.2463 0.296
. ��� 0.335 0.138 0.195
"E. 0.498 0.331 0.398
E$E( 0.524 0.352 0.422

��� )!F�5+

.E( 0.371 0.364 0.368
. ��� 0.355 0.241 :&2@;
"E. 0.449 0.442 0.446
E$E( 0.451 0.441 0.446

��� )!F2:+
.E( 0.376 0.466 0.417
. ��� 0.374 :&3�2 0.34
"E. 0.421 0.532 0.47

E$E( 0.418 0.514 0.46

���� )!F5+
�E( :&:5; 0.046 0.048
� ��� :&:7� 0.053 0.055

���� )!F�:+
�E( :&:7 0.102 0.07
� ��� :&:7 0.108 0.072

���� )!F�5+
�E( :&:52 0.116 0.069
� ��� :&:54 0.123 0.072

���� )!F2:+
�E( :&:52 0.14 0.074
� ��� :&:53 0.151 0.076

8�������� )2::4+ 0.312 0.431 0.362
 ���� )2::3+ 0.252 0.517 0.339

��,�� �0 (������ � ��� !���
� �#�
����� ���! �� ���
���	�� ����,���&

5.1 Keyword Extraction

.� �		���� SemanticRank �� �� �������� !���
�
�#�
����� ���! � ��� ���	�� ����,���4& ��� ���	��
����,��� ��
�� �,��
���� � '�
��� 	�	�
� �
� ��$
	���
 ������� ��� ���
����� �������� ��� ��� !��$
�
� �#�
����� ���! ���� �� ��������� ��� ��� ��$
��
�	���� !���
�� �
 ���� �,��
���& D��� �,��
��� ���
,��� ��
���� �������� !���
�� ,� 	
�������� ����#$
�
�� ����� ��������� ��� ��� ������
�� �
 �������1
��	�
���& ��� ���� ���,�
 � �������� ��
�� 	�

�,��
��� �
� ��� �#	�
�� �� 7.63& ��� ��� �� � �#�
���
�� ���� � ��� !���
�� ��������� ,� ��� 	
��������
����#�
� �� 	���,�� �
 ���� �,��
���& �� ���� ���� ���
�
 
������ �
� ��
����� ��	�
�,�� � ��� �
!� �� )8�$
������ ��� ��
��� 2::4+ ��� ) ����� 2::3+&
.� �������� SemanticRank )Sem+ ����� ��
���� k

������ )5, 10, 15, ��� 20+� ���
� k ������ �
 ��� ���$
,�
 � !���
�� � ,� �#�
����� �
� ���� �,��
���& ��
��,�� � �� 
�	
� ��� 
������ � ���
$���
���� 	
�$

48��� ����!� � "�����  ���� �
 	
������ �� ��� ���� ��� ���� �� ��

!���
� �#�
����� �#	�
������&
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System F-Measure

Sem
.E( 0.40996)0.39067 − 0.4292+
. ��� 0.3651)0.3435 − 0.38609+

USem
�E( 0.2951)0.2727 − 0.3195+
� ��� 0.3132)0.2901 − 0.3375+

T 0.4131)0.3922 − 0.434+
P 0.4039)0.3843 − 0.4226+
O 0.3905)0.3663 − 0.4132+
V 0.3885)0.368 − 0.4085+
Q 0.3857)0.3616 − 0.4089+

Baseline 0.3549)0.3329 − 0.3756+

��,�� 20 (������ )6$8����
�+ � ��� ������$�������
�����
�%���� ���!� )��� 2::�+&

����� )P +� 
����� )R+� ��� 6$8����
� )F + ��
 ��� �,$
��
����& E
������ �
 ���� �,��
��� �� ��� ���,�
 �
�

����� �#�
����� !���
��� ������� ,� ��� ���,�

� �#�
����� !���
��� ��� 
����� �����
� ��� �� ���
��������
 )���,�
 � !���
�� ��������� ,� ���
����#�
�+& .� ��� 	
����� ��� ,��� 
�	
��� 
������
�
 ��� ���
����� �� )8������� ��� ��
��� 2::4+� ���
) ����� 2::3+&
(������ ��� ���� SemanticRank ���� ��������

PageRank ����� ,����
 6$8����
� �
� ��� �		
�����
�� )8������� ��� ��
��� 2::4+ ��� ) ����� 2::3+ �

k = 15 ��� k = 20 ��� ������ ,����
 �
� ��������
HITS& APW ��� P-PR ���� �����
 6$8����
� ����
WPR� ��������� �	 	�
�
����� ),�� ������+� ����
APW 	
������ ��� ,��� 6$8����
� �
 k = 20& �� ����
����� ��� �����
���� ,������ APW ��� TextRank� ,��
�� 	
������ ��� 
������ ��� ���� ������������� �������
���� �� ��� 0.95 �������� ������ ����� 6����
1� �#���
����& �� �������� �� ��� ,��
�� ���� ��� ����������
��
���� � PageRank ��� HITS 	
���� ��
� 	
 
�$
�����& ���� ���� ���� �
 ����� ,������ �
����� �
�
��� ��������� �����1 �������� ������&

5.2 Text Summarization

.� ��������� SemanticRank �� �� �����
��� ��#�
�����
�%���� ���!�0 ������$�������� ��� �����$
������� �����
�%����& "� �� ��� !���
� �#�
��$
��� ���!� �� �������� ,�� ��� �������� ��� ��� ��$
�������� ��
���� � SemanticRank )Sem ��� USem+
����� WPR� WHITS� UPR� ��� UHITS 
��	��������&
.� ��� ��	�
� ������� ����� � ��� �
� 
������ �� ���
���� ���� ����� ��� �� 
�	
� � 
������ �
� 
������
������ )�&�&� TextRank+ ���� 	���,��&

5.2.1 Single Document Summarization

�� ��� ������$������� �����
�%���� ���! �� ����
���� ��� ���� ���� � ��� Document Understanding
Conference )DUC+ �
� ��� 2::� ��� 2::2 ��	���$

System F-Measure

Sem
.E( 0.4971)0.4799 − 0.5164+
. ��� 0.3836)0.3815 − 0.4047+

USem
�E( 0.3086( :&2=;$:&32:@4)
� ��� 0.2851( :&2;35$:&2=;)

TextRank 0.4904
S27 0.5011
S31 0.4914
S28 0.489
S21 0.4869
S29 0.4681

Baseline 0.4779

��,�� 30 (������ )6$8����
�+ � ��� ������$�������
�����
�%���� ���!� )��� 2::2+&

����& ��� �� ���� ���� ��	
��� 308 ��� 567 ����
�
������ 
��	��������& 6
 ,�� ���� ����� �� 
���
����
�����
��� 	�
 ������� ��
� 	
�����& ��� ���! �

��� 	�
����	����� ������� �� ,�� ��	������� ��� �
	
���� �
 ���� ������� � �����
� � �� ��� 100
�
��& ����� �� �		�� SemanticRank ,� ��
� 
��!���
��������� ������� "��
���� �� ��� ���� ,� ��
�$
��� ����� ���
���� �
� ��� �	 
��!�� ���������� ��$
��� ��� 100 �
�� ����� �� 
������& 6
 ��� ������$
��� ������� ��� 
���
���� �����
���� �� �
� ����� ���
ROUGE ��!��� ����� �� ,���� � N−�
���� ��� ���
,��� ��� ������
� ��������� �������� �
 ��� ���$
��
�%���� ���! )A�� ���  ��� 2::3+ �� ��� ��� 
�$
���� ��� ��	�������& ����� �� DUC 2::� ��� DUC
2::2 ��� ROUGE ������ ��� �� ��� ������
� ������$
��� ��!��� �� ��	�������� ��� ��������� � ��� ��
���!� �� ROUGE& ��� ����	 �� ��	��� �
 (/�-D
��� )Ngram(1,1)� ������� �
�� ��� � ��	�
��+�
��������� � ��� �� ��	��� �� )8������� ��� ��
���
2::4+&

�� ��,�� 2 �� 	
����� ��� 6$8����
� ������ 	
$
����� �
� ROUGE �
 SemanticRank� ��� ��� �	
5 	�
�
���� ������� )	�
����	����� ������� T� P� O�
V� ��� Q+� �
 ��� 2::� ���� ���& ������
��� ��,��
3 	
������ ��� 
������ �
 ��� 2::2 ���� ���& �� ,��
����� �� 
�	
� ��� 	�
�
����� � � ���	�� ,�������
������ ���� ��!�� ��� ��
� ��������� �
� ���� �
������
����� ��� ����� � 100�
�� �� 
������& .��� ������,���
�� ��� 	
����� ��� 
������ �
� )8������� ��� ��
���
2::4+� ��� ��� ��� 0.95 �������� ����
���� �
 ��� 6$
8����
� ������� �� ����� ��
� ����
���� ,� ROUGE&
��� 
������ �� ��� �� ��,��� ��� ���� SemanticRank�
���� ��� �������� ��
��� � E���(��! �� ����� 	
$
����� ��
� ���� 6$8����
� ��
�& �� ,�� ������ �

������ 
��!� ���� ��� �	 2 ������� �� ��� ���!&
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System F (R-2) F (R-SU4)

Sem
.E( 0.093 0.133
. ��� 0.078 0.115

USem
�E( 0.031 0.069
� ��� 0.028 0.062

S40 0.111 0.143
S55 0.098 0.135
S45 0.096 0.132
S44 0.093 0.136
S47 0.093 0.130

Baseline 0.085 0.122

��,�� 40 (������ � ��� �����$������� �����
�%����
���! )��� 2::; �	���� ���!+&

5.2.2 Multi Document Summarization

6
 ��� ����� ������� �����
�%���� ���! �� ����
��� ���� �
� ��� DUC 2007 update task& ��� ����
��� ������� � 250 �������� 
����%�� �� �	���� ���
���� �	�� �� ��
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Abstract
Automated conversion has allowed the de-
velopment of wide-coverage corpora for a
variety of grammar formalisms without the
expense of manual annotation. Analysing
new languages also tests formalisms, ex-
posing their strengths and weaknesses.
We present Chinese CCGbank, a 760,000
word corpus annotated with Combinatory
Categorial Grammar (CCG) derivations, in-
duced automatically from the Penn Chi-
nese Treebank (PCTB). We design parsimo-
nious CCG analyses for a range of Chinese
syntactic constructions, and transform the
PCTB trees to produce them. Our process
yields a corpus of 27,759 derivations, cov-
ering 98.1% of the PCTB.

1 Introduction
An annotated corpus is typically used to develop
statistical parsers for a given formalism and lan-
guage. An alternative to the enormous cost  of
hand-annotating a corpus for a specific formalism
is to convert from an existing corpus.

The Penn Treebank (PTB; Marcus et al., 1994)
has been converted to HPSG (Miyao et al., 2004),
LFG (Cahill  et al.,  2002), LTAG (Xia, 1999), and
CCG (Hockenmaier, 2003). Dependency corpora,
e.g. the German Tiger corpus, have also been con-
verted (Hockenmaier, 2006). The Penn Chinese
Treebank (PCTB; Xue et al., 2005) provides analy-
ses for 770,000 words of Chinese. Existing PCTB
conversions have targeted TAG (Chen et al., 2005)
and LFG (Burke and Lam, 2004; Guo et al., 2007).

We present Chinese CCGbank, a Chinese cor-
pus of CCG derivations automatically induced from
the PCTB. Combinatory Categorial Grammar (CCG;
Steedman, 2000) is a lexicalised grammar formal-
ism offering a unified account of local and non-
local dependencies. We harness the facilities of

CCG to provide analyses of Chinese syntax includ-
ing topicalisation, pro-drop, zero copula, extrac-
tion, and the 把 ba- and 被 bei-constructions.

Pushing the boundaries of formalisms by sub-
jecting them to unfamiliar syntax also tests their
universality claims. The freer word order of Turk-
ish (Hoffman, 1996) and the complex morphology
of Korean (Cha et al., 2002) led to the development
of extensions to the CCG formalism.

We present our analysis of Chinese syntax un-
der CCG, and provide an algorithm, modelled af-
ter Hockenmaier and Steedman (2007), to incre-
mentally transform PCTB trees into CCG derivations.
The algorithm assigns CCG categories which di-
rectly encode head and subcategorisation informa-
tion. Instances of Chinese syntax demanding spe-
cial analysis, such as extraction, pro-drop or topi-
calisation, are pin-pointed and given elegant anal-
yses which exploit the expressivity of CCG.

Our conversion yields CCG analyses for 27,759
PCTB trees (98.1%). Coverage on lexical items,
evaluated by 10-fold cross-validation, is 94.46%
(by token) and 73.38% (by type).

We present  the  first CCG analysis  of  Chinese
syntax and obtain a wide-coverage CCG corpus of
Chinese. Highly efficient statistical parsing using
a CCGbank has recently been demonstrated for
English (Clark and Curran, 2007). Our Chinese
CCGbank will enable the development of similarly
efficient wide-coverage CCG parsers for Chinese.

2 Combinatory Categorial Grammar
CCG (Steedman,  2000) is  a  lexicalised grammar
formalism, with a transparent syntax-semantics in-
terface, a flexible view of constituency enabling
concise accounts of various phenomena, and a con-
sistent account of local/non-local dependencies.

It consists of categories, which encode the type
and number of arguments taken by lexical items,
and combinators, which govern the possible inter-
actions between categories.
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那 部 电影 我 已经 看 过 了
that MW movie I already see EXP SFP

(N/N)/M M N NP (S\NP)/(S\NP) (S[dcl]\NP)/NP (S\NP)\(S\NP) S\S
> <B×

N/N (S[dcl]\NP)/NP
>

N
>T >B

NP S/(S\NP) (S[dcl]\NP)/NP
Ttop >B

S/(S/NP) S[dcl]/NP
>

S[dcl]
<

S[dcl]

Figure 1: Chinese CCG derivation: “That movie, I’ve already seen.”
A CCG grammar defines atomic categories, e.g.

NP and S, which may be recursively constructed
into complex categories, e.g. N/N and S\NP.1
Figure 1 shows how combinators govern the inter-
action of categories for lexical items, while slashes
specify argument directionality.

The combinators allow us to reduce lexical am-
biguity, by preserving a word’s canonical category
even when displaced from its canonical position.
This facility is a strength of CCG, but elevates its
generative power to mild context-sensitivity.

Some combinators may be disabled in a given
language – the multi-modal CCG (Baldridge, 2002)
allows these distinctions to be lexically specified.

Introducing non-CCG rules decrease categorial
ambiguity at the expense of deviating from the for-
malism. Hockenmaier and Steedman (2002) show
that these greatly improve lexical coverage. Their
analysis of English employs non-CCG rules to co-
erce a verb phrase headed by a participle (category
S[ng]\NP) to a post-nominal modifier:

S[ng]\NP−→ NP\NP (1)

This frees verbs from having to possess a dis-
tinct category in each position, thus trading off lex-
ical ambiguity for derivational ambiguity. Honni-
bal and Curran (2009) extended CCG with hat cat-
egories, enabling the lexical specification of these
unary type-change rules.

Hockenmaier and Steedman (2002, 2007) de-
veloped CCGbank, the first wide-coverage English
CCG corpus, by converting 1.2 million words from
the Wall Street Journal section of the PTB. CCG-
bank has made possible the development of wide-
coverage statistical parsers for CCG in English, no-
tably C&C (Clark and Curran, 2007).

1Abbreviations in this paper: The directionless slash |
stands for one of {/,\}. We also use the verbal category ab-
breviations VP≡ S\NP and TV≡ (S\NP)/NP.

3 Penn Chinese Treebank
Xue  et al.  (2005)  developed  the  Penn  Chinese
Treebank (PCTB), the first syntactically annotated
corpus for Chinese. The corpus includes newswire
text, magazine articles, and transcribed speech.2

Xue et al.  establishes several principles for a
more disciplined and consistent style of annota-
tion compared to the original PTB.  These princi-
ples include complement/adjunct marking: allow-
ing the recovery of predicate-argument structure;
limited semantic role marking: the annotation of
modifier phrases with semantic roles; covert ar-
gument marking: the retention of traces of argu-
ments deleted through pro-drop; and NP internal
structure: bracketing of NP structure where the in-
tended interpretation is clear.

The one  relation  per  bracketing principle
unambiguously  encodes  a  grammatical  relation
(chiefly, predication, adjunction, or complementa-
tion) through the configuration of a node and its
children. Xue et al. developed this principle to as-
sist conversions from the PTB, e.g. Hockenmaier
(2003), in resolving argument/adjunct distinctions.

PCTB derivations  are  pre-segmented, pre-
tokenised, and POS tagged. Owing to the dearth
of  morphology in  Chinese, the  concept  of part
of speech is more fluid than that of English – the
word 比较 bijiao ‘compare’ might  be  glossed
as a verb, adjective, adverb, or noun depending
on  its  context. Noun/verb  mis-taggings  are  a
frequent error case for PCFG parsing on PCTB data,
compounded in Chinese by the lack of function
words  and  morphology  (Levy  and  Manning,
2003). This ambiguity is better handled by the
adaptive multitagging approach used by Clark and
Curran (2007) for CCG supertagging, in which each
lexical item is tagged with a set of CCG categories.

We present our CCG analysis of Chinese syntax
below, followed by our conversion algorithm.

2We use the Penn Chinese Treebank 6.0 (LDC2007T36).
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4 The syntax of Chinese
4.1 Basic clause structure
Chinese is typologically SVO, with some OV el-
ements  (relative  clauses, adjunct  PPs  and noun
modifiers precede their heads). Numbers and de-
terminers may not modify nouns directly; a mea-
sure word must intervene.

The  category  structure  of  the  grammar  may
be inferred directly from headedness information.
Heads subcategorise for the type, number and di-
rectionality of their arguments, while adjuncts re-
ceive modifier categories of the form X | X.

(2) 我
I
NP

在
at
(VP/VP)/NP

超市
supermarket
NP

买
buy
VP/NP

了
PERF
VP\VP

一
one
(N/N)/M

盒
box:MW
M

鸡蛋
eggs
N

I bought a box of eggs at the supermarket.

4.2 Topicalisation
In topic-prominent languages, the topic refers to
information which the speaker assumes is known
by the listener. In Mandarin, topicalisation mani-
fests as left-dislocation of the topic phrase (Li and
Thompson, 1989). We distinguish gap and non-
gap topicalisation depending on whether the topic
is co-referent with a gap in the sentence.3

For gapped topicalisation (cf. Figure 1), we
adopt the Steedman (1987) topicalisation analysis:

T → S/(S/T ) for parametrically licensed T (3)

For non-gap topicalisation (Example 5), we use
a variation of the analysis described in Hocken-
maier and Steedman (2005), which treats the topi-
calised constituent as a sentential modifier. Under
this analysis, the determiner in a topicalised NP re-
ceives (S/S)/N instead of its canonical category
NP/N. Instead, we propose a unary rule:

T → S/S for topicalisation candidate T (4)

This delays the coercion to sentential modifier type
(i.e. NP→ S/S) until after the NP has been con-
solidated, allowing the words under the topicalised
NP to preserve their canonical categories.

3Non-gap topicalisation is also known as the double sub-
ject construction (Li and Thompson, 1989).

(5) (As for) trade, it has developed rapidly.
贸易 发展 很 快
trade development very fast
NP NP VP/VP VP

T >T >
S/S S/(S\NP) S\NP

>
S

>
S

Topicalisation  is  far  less  marked  in  Chinese
than in English, and the structure of topicalised
constituents  is  potentially  quite  complex. The
additional  categorial  ambiguity  in  Hockenmaier
and Steedman (2005) compounds the data sparsity
problem, leading us to prefer the unary rule.
4.3 Pro-drop
Since Chinese exhibits radical pro-drop (Neele-
man and Szendrői, 2007), in which the viability of
the pro-drop is not conditioned on the verb, the cat-
egorial ambiguity resulting from providing an ad-
ditional argument-dropped category for every verb
is prohibitive.

Rather than engendering sparsity on verbal cate-
gories, we prefer derivational ambiguity by choos-
ing the unary rule analysis S[dcl] | NP→ S[dcl] to
capture Chinese pro-drop.
4.4 Zero copula
Although the Chinese copula 是 shi is obligatory
when equating NPs, it may be omitted when equat-
ing an NP and a QP or PP (Tiee and Lance, 1986).4

(6) 她
NP
3SG

今年
VP/VP
this-year

十八
(S\NP)/M
18

岁
M
years-old

She is 18 this year.
A solution  involving  a  binary  rule

NP QP→ S[dcl] is  not  properly  headed, and
thus  violates  the  Principle  of  Lexical  Head
Government  (Steedman,  2000). Conversely, a
solution  where, for  example, 十八 ‘18’ would
have to receive the category (S[dcl]\NP)/M in-
stead of its canonical category QP/M would lead
to  both  data  sparsity  and  over-generation, with
VP modifiers  becoming able  to  modify  the  QP
directly. Tentatively, we ignore the data sparsity
consequences, and  have 十八 ‘18’ receive  the
category (S[dcl]\NP)/M in this context.

4The copula is ungrammatical in predication on an adjec-
tival verb, such as 高兴 ‘happy’. However, we analyse such
words as verbs proper, with category S[dcl]\NP.
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4.5 把 ba- and 被 bei-constructions
被 bei and 把 ba introduce a family of passive-like
constructions in Chinese. Although superficially
similar, the resulting constructions exhibit distinct
syntax, as our CCG analysis reflects and clarifies.

In the 被 bei-construction, the patient argument
of a verb moves to subject position, while the agent
either becomes the complement of a particle 被 bei
(the long passive), or disappears (the short pas-
sive; Yip and Rimmington, 1997). Although the
two constructions are superficially similar (appar-
ently differing only by the deletion of the agent
NP), they behave differently in more complex con-
texts (Huang et al., 2008).

The long passive occurs with or without an ob-
ject gap (deleted by identity with the subject of
the matrix verb). We analyse this construction by
assigning 被 bei a category which permutes the
surface positions of the agent and patient. Co-
indexation  of  heads  allows  us  to  express  long-
distance dependencies.

Bei receives ((S\NPy)/((S\NPx)/NPy))/NPx
in  the  gapped  case  (cf.  Example 7)  and
((S\NP)/(S\NPx))/NPx in the non-gapped case.
(7) Zhangsan was beaten by Lisi.

张三 被 李四 打了
Z. BEI L. beat-PERF

NP (VP/TV )/NPy NP TV
>

(S\NPx)/((S\NPy)/NPx)
>

S\NPx
<

S

Short  passives also occur with or  without  an
object gap, receiving (S\NPx)/((S\NP)/NPx) in
the gapped case and (S\NP)\(S\NP) in the non-
gapped case. Our analysis agrees with Huang et al.
(2008)’s observation that short-bei is isomorphic
to English tough-movement: our short-bei cate-
gory is the same as Hockenmaier and Steedman
(2005)’s category for English tough-adjectives.

In the 把 ba construction, a direct object be-
comes the complement of the morpheme 把 ba,
and  gains  semantics  related  to  “being  affected,
dealt with, or disposed of” (Huang et al., 2008). As
for 被 bei, we distinguish two variants depending
on whether the object is deleted under coreference
with the complement of 把 ba.

Ba receives ((S\NPy)/((S\NPy)/NPx))/NPx
in  the  gapped  case  (cf.  Example 8), and
((S\NPy)/(S\NPy))/NP in the non-gapped case.

As Levy and Manning (2003) suggest, we re-
shape the PCTB analysis of the ba-construction so

Tag Headedness Example
VSB head-final 规划 建设 ‘plan [then] build’
VRD right-adjunction 煮 熟 ‘cook done’
VCP head-initial 确认 为 ‘confirm as’
VCD appositive 投资 设厂 ‘invest [&] build-factory’
VNV special 去 不 去 ‘go [or] not go’
VPT special 离 得 开 ‘leave able away’

Table 1: Verb compounds in PCTB

that ba subcategorises for its NP and VP, rather
than subcategorising for an IP sibling, which al-
lows the NP to undergo extraction.
(8) The criminals were arrested by the police.

警察 将 犯人 逮捕了
police BA criminal arrest-PERF

NP (VP/TV )/NP NP TV
>

(S\NPy)/((S\NPy)/NPx)
<

S\NPy
<

S

4.6 Verbal compounding
Verbs resulting from compounding strategies are
tagged and internally bracketed. Table 1 lists the
types distinguished by the PCTB, and the headed-
ness we assign to compounds of each type.

Modifier-head compounds (PCTB tag VSB) ex-
hibit clear head-final semantics, with the first verb
V1 causally or temporally precedingV2. Verb coor-
dination compounds (VCD) project multiple heads,
like ordinary lexical coordination.

In a resultative compound (VRD), the result or
direction ofV1 is indicated byV2, which we treat as
a post-verbal modifier. The V-not-V construction
(VNV) forms a yes/no question where V1 = V2. In
the V-bu/de-V or potential verb construction (VPT),
a disyllabic verbV =V1V2 receives the infix 得 de
or 不 bu with the meaning can/cannot V . In both
these cases, it is the infixed particle 得 de or 不 bu
which collects its arguments on either side.
4.7 Extraction
In the Chinese relative clause construction, the par-
ticle 的 de links a sentence with a subject or ob-
ject gap with a NP to which that gap co-refers,
in an analysis similar to the English construction
described by Hockenmaier and Steedman (2005),
mediated by the relative pronoun that.

As in the English object extraction case, forward
type-raising on the subject argument, and forward
composition into the verbal category allows us to
obtain the correct object gap category S/NP.
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4.8 Right node raising
Two coordinated verbs may share one or more con-
tiguous arguments under right node raising. This
analysis follows directly from the CCG definition of
coordination, requiring no new lexical categories.
(9) Scholars have formulated and are releasing
the documents.

学者 制定 和 推出 文件
scholar formulate and release document

NP VP/NP con j VP/NP NP
⟨Φ′⟩

(VP/NP)[con j]
⟨Φ′′⟩

VP/NP
>

S\NP
<

S

4.9 Apposition
Apposition is the juxtaposition of two phrases re-
ferring to the same entity. Unlike noun modifica-
tion, no clear modification relationship holds be-
tween the two phrases. The direct juxtaposition
rules out Hockenmaier’s (2003) analysis where a
delimiting comma mediates the apposition. Chi-
nese also allows full sentence/NP apposition:
(10) (用户

(users
浪费
waste

水)S
water)S

事件NP

incidentNP
incidents of users wasting water

This gives rise to the Chinese apposition binary
rules NP NP→ NP and S[dcl] NP→ NP.

5 The translation pipeline
5.1 Tagging
Each PCTB internal node structurally encodes a con-
figuration, which lets us distinguish head-initial
and head-final complementation from adjunction
and predication (Xue et al., 2000).

The tagging mechanism annotates the PCTB tag
of each internal node with a marker, which pre-
serves this headedness information, even after the
nodes are re-structured in the binarisation phase.

Hockenmaier’s  (2003)  conversion  algorithm
uses the Magerman (1994) head-finding heuristics,
a potential source of noise. Fortunately, the PCTB
encodes gold standard headedness data.

The  tagging  algorithm  is  straightforward: if
a  node  and  its  children  unify  with  one  of  the
schemata below, then the markers (e.g. :l or :n)
are attached to its children. The markers l and r
indicate complements left, or right of the head h;
adjuncts are marked with a.

Head-initial, -final complementation
XP

ZP:r . . .YP:rX:h

XP

X:hZP:l. . . YP:l
Adjunction, predication

XP

XP:hZP:a. . . YP:a

IP

YP:hXP-SBJ:l
Topicalisation (gap and non-gap)

IP

YP:rXP-SBJ:lZP-TPC(-i):T(t)
Coordination

XP

XP:c{CC,PU})+(XP:c({CC,PU})

Others identify nodes with special syntax, such
as topicalisation (t/T), apposition (A) or coordina-
tion (c), for special treatment in following phases.
NP internal structure
To speed annotation, NP internal structure is often
left underspecified in PCTB (Xue et al., 2005), as in
the Penn Treebank. As a result, 68% of non-trace
NPs in PCTB have only a flat bracketing.

We assume that the internal structure of flat NPs
is right-branching and head-final (Li and Thomp-
son, 1989), following Hockenmaier and Steedman
(2005), who assume this structure for English. A
re-analysis of PCTB, like Vadas and Curran (2007)
for the PTB, could restore this structure, and allow
our conversion algorithm to yield the correct CCG
analysis with no further modifications.

To obtain this default analysis, each node under
NP internal structure receives the marker n, except
the the final node, the head, which receives N.
5.2 Binarisation
CCG combinators take at most two categories, in-
ducing binary derivation trees. As such, PCTB trees
must be re-shaped to accommodate a CCG analysis.

Our markers control the shape of the binarised
structure: head-initial complementation yields a
left-branching tree, while head-final complemen-
tation, adjunction, predication, coordination, and
NP internal  structure  all  yield  right-branching
trees. Following Hockenmaier (2003), sentence-
final punctuation is attached high.

Although  the  distinction  between  word-level
tags (such as NN, VA) and phrasal tags (such as NP,
VP, LCP) enables the configurational encoding of
grammatical relations, it leaves a large number of
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VP ← VV,VE,VA,VRD ADJP ← JJ
ADVP ← AD, CS CLP ← M
LCP ← LC DP ← DT, OD
LST ← OD INTJ ← IJ
FLR ← any node PP ← P

Figure 2: Pruned unary projections

unary projections. While an intransitive verb (e.g.
睡觉 ‘sleep’) would carry the verbal PCTB tag VV,
and a transitive verb combined with its object (e.g.
吃了晚饭 ‘ate dinner’) is annotated as VP, under
CCG’s freer concept of constituency, both receive
the category S\NP.

Pruning the unary projections in Fig. 2 prevents
spurious category labellings in the next phase.
5.3 Labelling
We label each node of the binarised tree with CCG
categories, respecting the headedness information
encoded in the markers.
Atomic categories
The chosen mapping from PCTB tags to categories
defines the atomic category set for the grammar.
The richer representation in CCG categories permits
some constituents to be expressed using a smaller
set of atoms (e.g. an adjective is simply a noun
modifier – N/N). Despite their critical importance
in controlling the degree of under-/over-generation
in the corpus, little guidance exists as to the selec-
tion of atomic categories in a CCG grammar. We
observed the following principles:

Modifier proliferation: when  two  classes  of
words can be modified by the same class of modi-
fiers, they should receive a single category;

Over-generation: the atom set should not over-
generalise to accept ungrammatical examples;

Efficiency: the representation may be motivated
by the needs of applications such as parsers.

Table 2 shows the eight atomic categories cho-
sen for our corpus. Two of these categories: LCP
(localisers) and M (measure words) have variously
been argued to  be  special  sub-classes  of  nouns
(Huang et al., 2008). However, based on our over-
generation criterion, we decided to represent these
as atomic categories.

We  adopt  the  bare/non-bare  noun  distinction
from Hockenmaier and Steedman (2007) on pars-
ing efficiency grounds. Although they roughly
correspond to English PPs, the distributional dif-
ferences between PPs, LCPs and QPs justify their

LCP Localiser phrase PP Prepositional phrase
M Measure word QP Quantifier phrase
N Bare noun S Sentence

NP Noun phrase conj Conjunction word

Table 2: Chinese CCGbank atomic category set

inclusion as atoms in Chinese. Future work in
training a wide-coverage parser on Chinese CCG-
bank will evaluate the impact of these choices.
Labelling algorithm
We developed a recursive algorithm which applies
one of  several  labelling functions  based on the
markers on a node and its children.

The algorithm proceeds top-down and assigns
a CCG category to every node. The markers on a
node’s children are matched against the schema
of Table 3, applying the categories of the match-
ing schema to the children. The algorithm is then
called recursively on each child. If the algorithm
is called on an unlabelled node, the mapping from
PCTB tags is used to assign a CCG category.

Predication
C

C\LL
Left  absorp-
tion

C
Cp

Adjunction
C

CC/C:a
Right
absorption

C
pC

Right
adjunction

C
C\C:aC Coordination

C
C[conj]C:c

Head-initial
C

RC/R:h
Partial
coordination

C[conj]
C:cconj

Head-final
C
C\L:hL Apposition

NP
NPXP:A

Table 3: Category labelling schemata
Left-  and  right-absorption  are  non-CCG rules

which functionally ignore punctuation, assuming
that they project no dependencies and combine to
yield the same category as their non-punctuation
sibling (Hockenmaier and Steedman, 2007). In the
schema, p represents a PCTB punctuation POS tag.

NPs  receive  a  head-final  bracketing  (by  our
right-branching assumption), respecting NP inter-
nal structure where provided by PCTB:

N

N

结构 struct.
N

组织 org.
N/N

N/N

银行 bank
N/N

中国 China
(N/N)/(N/N)
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6 Post-processing
A number of cases remain which are either not
covered by the general translation algorithm, or
otherwise could be improved in a post-processing
step. The primary disharmony at this stage is the
presence of traces, the  empty categories  which
the PCTB annotation style uses to mark the canoni-
cal position of extraposed or deleted constituents.
19,781 PCTB derivations (69.9%) contain a trace.
Since CCG aims  to  provide  a  transparent  inter-
face between surface string syntax and semantics,
traces are expressly disallowed (Steedman, 2000).
Hence, we eliminate traces from the annotation, by
devising alternate analyses in terms of categories
and combinatory rules.
Subject/object extraction
8966 PCTB derivations (31.7%) contain a subject
extraction, while 3237 (11.4%) contain an object
extraction. Figure 3 shows the canonical represen-
tation of subject extraction in the PCTB annotation
style. The PCTB annotation follows the X ′ analysis
of the relative clause construction as described by
Wu (2004), which we transform into an equivalent,
trace-free CCG analysis.

NP (N)

文件
NP document

CP (N/N)
CP (N/N)

的
DEC

IP (S[dcl])
VP (S[dcl]\NP)

市場
NP market

规范
VV std.ize

NP-SBJ (NP)
*T*-i

WHNP-i

*OP*

Figure 3: ‘the document which standardises the
market’

First, the Spec trace, WHNP-i, coindexed with
the extracted argument(s), is deleted. Next, the
extracted argument(s) with matching indices are
deleted, and category structure is adjusted to gen-
erate the correct gap category.
Modifier categories
Under our analysis, aspect particles such as 了 le
(perfective) and 过 guo (experiential) are verbal
post-modifiers, corresponding to right adjunction
in Table 3. Accordingly, an aspect particle fol-
lowing a transitive verb VP/NP will receive the
modifier category (VP/NP)\(VP/NP). Under this
analysis, every verbal category gives rise to one
possible modifier category for each aspect particle,
leading to detrimental categorial ambiguity.

However, the  generalised  backward  crossed
composition  combinator  (Steedman,  2000)  lets
aspect  particles  retain  their  canonical  category
(S\NP)\(S\NP) regardless of the arity of the verb
they modify.
Transformations
The PCTB annotation style posits traces to account
for  gapping, control/raising, argument  sharing,
pro-drop and topicalisation. To effect the parsimo-
nious CCG analyses of Section 4, structural trans-
formations on the original PCTB trees are necessary
to accommodate the new analyses.

We  developed  a tgrep-like  language  which
identifies instances of Chinese constructions, such
as right node raising and pro-drop, whose PCTB an-
notation posits traces. The local trees are then re-
shaped to accommodate trace-free CCG analyses.

7 Evaluation
This  section  explores  the  coverage  characteris-
tics  of  Chinese  CCGbank, in  comparison  with
the English and German CCGbanks generated by
Hockenmaier. Our analysis follows Hockenmaier
(2006) in establishing coverage as the metric re-
flecting how well the target corpus has accounted
for constructions in the source corpus.
7.1 Corpus coverage
The Chinese CCGbank conversion algorithm com-
pletes  for  28,227  of  the  28,295  (99.76%) PCTB
trees. Annotation noise, and rare but legitimate
syntax, such as ellipsis, account for the coverage
lost in this phase. Following Hockenmaier and
Steedman (2005), we adjust the PCTB annotation
only for systematic tagging errors that lead to cat-
egory mis-assignments, maintaining as far as pos-
sible the PCTB bracketing.

269  derivations  (0.95%)  contain  unresolved
traces, resulting from annotation noise and rare
constructions (such as ellipsis) not currently han-
dled by our translation algorithm. In 468 (1.66%)
derivations, residues of PCTB tags not eliminated by
the translation algorithm generate malformed cate-
gories outside the allowed set (Table 2). Excluding
these cases, our conversion algorithm results in a
corpus of 27,759 (98.1%) valid derivations.
7.2 Category set
The Chinese CCGbank category set is compared
against existing CCG corpora derived from similar
automatic corpus conversions, to determine how
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well we have generalised over syntactic phenom-
ena in the source corpus.

A total of 1197 categories appear in the final
corpus, of which 329 occur at least ten times, and
478 are attested only once. By comparison, En-
glish CCGbank, contains 1286 categories, 425 of
which occur at least ten times, and 440 only once,
while German CCGbank has a category inventory
of 2506 categories, with 1018 attested only once.5

7.3 Lexicon coverage
Lexical  item coverage  establishes  the  extent  to
which data sparsity due to unseen words is prob-
lematic in the source corpus, and hence in any cor-
pus derived from it. Hockenmaier and Steedman
(2001) showed that formalisms with rich tagsets,
such as CCG, are particularly sensitive to this spar-
sity – while a lexical item may be attested in the
training data, it may lack the necessary category.

We divided the  27,759 valid  derivations  into
ten contiguous sections, performing ten-fold cross-
validation  to  determine  the  coverage  of  lexical
items and CCG categories in the resulting corpus.

Average coverage on lexical items is 73.38%,
while average coverage on categories is 88.13%.
94.46% of token types from the held-out set are
found in the training set. These figures compare to
86.7% lexical coverage (by type) and 92% (by to-
ken) in German CCGbank (Hockenmaier, 2006).
Although lexical coverage by token is comparable
to the German corpus, we observe a marked differ-
ence in coverage by type.

To explain this, we examine the most frequent
POS tags among the missing tokens. These are NN
(common nouns; 16,552 tokens), NR (proper noun;
8458), VV (verb; 6879), CD (numeral; 1814) and JJ
(adjective; 1257). The 100 most frequent missing
tokens across the ten folds comprise 48 NR tokens,
46 NR, 3 NT (temporal nouns), 2 JJ (adjectives) and
one VA (verbal adjective). Personal names are also
not tokenised into surnames and forenames in the
PCTB, increasing unseen NR tokens.

The  missing VVs  (verbs)  include  1342 four-
character compounds, fossilised idiomatic expres-
sions which are considered atomic verbs in the
PCTB annotation. Another  source  of  verb  spar-
sity stems from the PCTB analysis of verbal infix-
ation. Given a polysyllabic verb (e.g. 离开 leave-
away “leave”), we  can  add  the  adverbial  infix

5All German verbs having at least two categories to ac-
count for German verbal syntax contributes to the greater size
of the category set (Hockenmaier, 2006).

不 not to form a potential verb 离不开 leave-not-
away “unable to leave”. In the PCTB annotation,
however, this results in lexical items for the two
cleaved parts, even though 离 leave can no longer
stand alone as a verb in modern Chinese. In this
case, a morphologically decomposed representa-
tion which does not split the lexical item could mit-
igate against this sparsity. Alternatively, candidate
verbs for this construction could have the first verb
fragment subcategorise for the second.

8 Conclusion
We have developed the first analysis of Chinese
with Combinatory Categorial Grammar, crafting
novel CCG analyses for a range of constructions in-
cluding topicalisation, pro-drop, zero copula, verb
compounding, and the  long-range dependencies
resulting from the 把 ba- and 被 bei-constructions.

We have presented an elegant and economical
account of Chinese syntax that exploits the power
of CCG combinatory rules, supporting Steedman’s
claim to its language-independence.

We have designed a conversion algorithm to ex-
tract this analysis from an existing treebank, avoid-
ing the massive cost of hand re-annotation, creat-
ing a corpus of 27,759 CCG derivations, covering
98.1% of the PCTB. The corpus will be publicly re-
leased, together with the converter, providing the
tools to create CCGbanks in new languages.

At release, Chinese CCGbank will include gold-
standard head co-indexation data, as required for
the training and evaluation of head-driven depen-
dency parsers. Co-indexation analyses, like those
provided for the 把 ba- and 被 bei-constructions,
will be extended to all categories.

Future refinements which could be brought to
bear  on  Chinese  CCGbank include  the  integra-
tion of PropBank data into CCGbank (Honnibal
and Curran, 2007; Boxwell and White, 2008) us-
ing Chinese PropBank (Xue, 2008). The hat cat-
egories of Honnibal and Curran (2009) may bet-
ter  handle  form/function  discrepancies  such  as
the Chinese zero copula construction, leading to
cleaner, more general analyses.

We  have  presented  a  wide-coverage  Chinese
corpus which exploits the strengths of CCG to anal-
yse a range of challenging Chinese constructions.
We are now ready to develop rich NLP tools, includ-
ing efficient, wide-coverage CCG parsers, to ad-
dress the ever-increasing volumes of Chinese text
now available.
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Abstract

We propose a structure calleddependency
forest for statistical machine translation.
A dependency forest compactly represents
multiple dependency trees. We develop
new algorithms for extracting string-to-
dependency rules and training depen-
dency language models. Our forest-based
string-to-dependency system obtains sig-
nificant improvements ranging from 1.36
to 1.46 BLEU points over the tree-based
baseline on the NIST 2004/2005/2006
Chinese-English test sets.

1 Introduction

Dependency grammars have become increasingly
popular in syntax-based statistical machine trans-
lation (SMT). One important advantage of depen-
dency grammars is that they directly capture the
dependencies between words, which are key to re-
solving most parsing ambiguities. As a result, in-
corporating dependency trees proves to be effec-
tive in improving statistical machine translation
(Quirk et al., 2005; Ding and Palmer, 2005; Shen
et al., 2008).

However, most dependency-based translation
systems suffer from a major drawback: they only
use1-best dependency trees for rule extraction,
dependency language model training, and decod-
ing, which potentially introduces translation mis-
takes due to the propagation of parsing errors
(Quirk and Corston-Oliver, 2006). While the
treelet system (Quirk et al., 2005) takes a de-
pendency tree as input, the string-to-dependency
system (Shen et al., 2008) decodes on a source-
language string. However, as we will show, the
string-to-dependency system still commits to us-
ing degenerate rules and dependency language
models learned from noisy 1-best trees.

To alleviate this problem, an obvious solu-
tion is to offer more alternatives. Recent studies
have shown that SMT systems can benefit from
widening the annotation pipeline: using packed
forests instead of 1-best trees (Mi and Huang,
2008), word lattices instead of 1-best segmenta-
tions (Dyer et al., 2008), and weighted alignment
matrices instead of 1-best alignments (Liu et al.,
2009).

Along the same direction, we propose a struc-
ture calleddependency forest, which encodes ex-
ponentially many dependency trees compactly, for
dependency-based translation systems. In this pa-
per, we develop two new algorithms for extracting
string-to-dependency rules and for training depen-
dency language models, respectively. We show
that using the rules and dependency language
models learned from dependency forests leads to
consistent and significant improvements over that
of using 1-best trees on the NIST 2004/2005/2006
Chinese-English test sets.

2 Background

Figure 1 shows a dependency tree of an English
sentencehe saw a boy with a telescope. Arrows
point from the child to the parent, which is often
referred to as the head of the child. For example,
in Figure 1,sawis the head ofhe. A dependency
tree is more compact than its constituent counter-
part because there is no need to build a large su-
perstructure over a sentence.

Shen et al. (2008) propose a novel string-to-
dependency translation model that features two
important advantages. First, they define that
a string-to-dependency rule must have awell-
formed dependency structure on the target side,
which makes efficient dynamic programming pos-
sible and manages to retain most useful non-
constituent rules. A well-formed structure can be
either fixed or floating . A fixed structure is a
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saw

he boy with

a telescope

a

he saw a boy with a telescope

ta kandao yige dai wangyuanjing de nanhai

Figure 1: A training example for tree-based rule
extraction.

dependency tree with all the children complete.
Floating structures consist of sibling nodes of a
common head, but the head itself is unspecified
or floating. For example, Figure 2(a) and Figure
2(b) are two fixed structures while Figure 2(c) is a
floating one.

Formally, for a given sentencew1:l = w1 . . . wl,
d1 . . . dl represent the parent word IDs for each
word. If wi is a root, we definedi = 0.

Definition 1. A dependency structuredi..j is fixed
on headh, where h/∈ [i, j], or fixed for short, if
and only if it meets the following conditions

• dh /∈ [i, j]

• ∀k ∈ [i, j] andk 6= h, dk ∈ [i, j]

• ∀k /∈ [i, j], dk = h or dk /∈ [i, j]

Definition 2. A dependency structuredi..j is
floating with children C, for a non-empty set C
⊆ {i, ..., j}, or floating for short, if and only if it
meets the following conditions

• ∃h /∈ [i, j], s.t.∀k ∈ C, dk = h

• ∀k ∈ [i, j] andk /∈ C, dk ∈ [i, j]

• ∀k /∈ [i, j], dk /∈ [i, j]

A dependency structure iswell-formed if and
only if it is eitherfixed or floating.

2.1 Tree-based Rule Extraction

Figure 1 shows a training example consisting of an
English dependency tree, its Chinese translation,

boy

a

(a)

with

telescope

a

(b)

boy with

a telescope

a

(c)

Figure 2: Well-formed dependency structures cor-
responding to Figure 1. (a) and (b) are fixed and
(c) is floating.

and the word alignments between them. To facil-
itate identifying the correspondence between the
English and Chinese words, we also gives the En-
glish sentence. Extracting string-to-dependency
rules from aligned string-dependency pairs is sim-
ilar to extracting SCFG (Chiang, 2007) except that
the target side of a rule is a well-formed struc-
ture. For example, we can first extract a string-to-
dependency rule that is consistent with the word
alignment (Och and Ney, 2004):

with ((a) telescope) → dai wangyuanjing de

Then a smaller rule

(a) telescope→ wangyuanjing

can be subtracted to obtain a rule with one non-
terminal:

with (X1) → dai X1 de

whereX is a non-terminal and the subscript indi-
cates the correspondence between non-terminals
on the source and target sides.

2.2 Tree-based Dependency Language Model

As dependency relations directly model the se-
mantics structure of a sentence, Shen et al. (2008)
introducedependency language modelto better
account for the generation of target sentences.
Compared with the conventionaln-gram language
models, dependency language model excels at
capturing non-local dependencies between words
(e.g.,saw ... within Figure 1). Given a depen-
dency tree, its dependency language model prob-
ability is a product of three sub-models defined
between headwords and their dependants. For ex-
ample, the probability of the tree in Figure 1 can
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saw0,7

he0,1 boy2,4 with4,7

a2,3 telescope5,7

a5,6

(a)

saw0,7

he0,1 boy2,7

a2,3 with4,7

telescope5,7

a5,6

(b)

saw0,7

he0,1 boy2,4 boy2,7

with4,7

e1 e2

a2,3

e3 e4

telescope5,7

e5

a5,6

e6

(c)

Figure 3: (a) the dependency tree in Figure 1, (b) another dependency tree for the same sentence, and
(c) a dependency forest compactly represents the two trees.

be calculated as:

Prob = PT (saw)

×PL(he|saw-as-head)

×PR(boy|saw-as-head)

×PR(with|boy, saw-as-head)

×PL(a|boy-as-head)

×PR(telescope|with-as-head)

×PL(a|telescope-as-head)

wherePT (x) is the probability of wordx being
the root of a dependency tree.PL andPR are the
generative probabilities of left and right sides re-
spectively.

As the string-to-tree system relies on 1-best
trees for parameter estimation, the quality of rule
table and dependency language model might be
affected by parsing errors and therefore ultimately
results in translation mistakes.

3 Dependency Forest

We propose to encode multiple dependency trees
in a compact representation called dependency
forest, which offers an elegant solution to the
problem of parsing error propagation.

Figures 3(a) and 3(b) show two dependency
trees for the example English sentence in Figure
1. The prepositional phrasewith a telescopecould
either depend onsaw or boy. Figure 3(c) is a
dependency forest compactly represents the two
trees by sharing common nodes and edges.

Eachnode in a dependency forest is a word.
To distinguish among nodes, we attach aspan to
each node. For example, in Figure 1, the span of

the firsta is (2, 3) because it is the third word in
the sentence. As the fourth wordboy dominates
the nodea2,3, it can be referred to asboy2,4. Note
that the position ofboy itself is taken into consid-
eration. Similarly, the wordboyin Figure 3(b) can
be represented asboy2,7.

The nodes in a dependency forest are connected
by hyperedges. While an edge in a dependency
tree only points from a dependent to its head, a
hyperedge groups all the dependants that have a
common head. For example, in Figure 3(c), the
hyperedge

e1: 〈(he0,1, boy2,4, with4,7), saw0,7〉
denotes thathe0,1, boy2,4, andwith4,7 are depen-
dants (from left to right) ofsaw0,7.

More formally, adependency forestis a pair
〈V,E〉, where V is a set of nodes, andE
is a set of hyperedges. For a given sentence
w1:l = w1 . . . wl, each nodev ∈ V is in the
form of wi,j, which denotes thatw dominates
the substring from positionsi through j (i.e.,
wi+1 . . . wj). Each hyperedgee ∈ E is a pair
〈tails(e), head(e)〉, wherehead(e) ∈ V is the
head andtails(e) ∈ V are its dependants.

A dependency forest has a structure of ahy-
pergraphsuch as packed forest (Klein and Man-
ning, 2001; Huang and Chiang, 2005). However,
while each hyperedge in a packed forest naturally
treats the corresponding PCFG rule probability as
its weight, it is challenging to make dependency
forest to be a weighted hypergraph because depen-
dency parsers usually only output a score, which
can be either positive or negative, for each edge
in a dependency tree rather than a hyperedge in a
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saw0,7

he0,1 boy2,4 boy2,7

with4,7

e1 e2

a2,3

e3 e4

telescope5,7

e5

a5,6

e6

he saw a boy with a telescope

ta kandao yige dai wangyuanjing de nanhai

Figure 4: A training example for forest-based rule
extraction.

dependency forest. For example, in Figure 3(a),
the scores for the edgeshe → saw, boy → saw,
andwith → sawcould be 13, 22, and -12, respec-
tively.

To assign a probability to each hyperedge, we
can first obtain a positive number for a hyperedge
using the scores of the corresponding edges:1

c(e) = exp

(∑
v∈tails(e) s

(
v, head(e)

)

|tails(e)|

)
(1)

wherec(e) is the count of a hyperedgee, head(e)
is a head,tails(e) is a set of dependants of the
head,v is one dependant, ands(v, head(e)) is the
score of an edge fromv to head(e). For example,
the count of the hyperedgee1 in Figure 3(c) is

c(e1) = exp

(
13 + 22 − 12

3

)
(2)

Then, the probability of a hyperedge can be ob-
tained by normalizing the count among all hyper-
edges with the same head collected from a training
corpus:

p(e) =
c(e)∑

e′:head(e′)=head(e) c(e′)
(3)

Therefore, we obtain a weighted dependency
forest in which each hyperedge has a probability.

1It is difficult to assign a probability to each hyperedge.
The current method is arbitrary, and we will improve it in the
future.

Algorithm 1 Forest-based Initial Phrase Extrac-
tion

Input : a source sentenceψ, a forestF , an alignmenta,
andk
Output : minimal initial phrase setR

1: for each nodev ∈ V in a bottom-up orderdo
2: for each hyperedgee ∈ E andhead(e) = v do
3: W ← ∅
4: fixs← EnumFixed(v,modifiers(e))
5: floatings← EnumFloating(modifiers(e))
6: add structuresfixs, floatingstoW
7: for eachω ∈W do
8: if ω is consistent witha then
9: generate a ruler

10: R.append(r)
11: keepk-best dependency structures forv

4 Forest-based Rule Extraction

In tree-based rule extraction, one just needs to first
enumerate all bilingual phrases that are consis-
tent with word alignment and then check whether
the dependency structures over the target phrases
are well-formed. However, this algorithm fails to
work in the forest scenario because there are usu-
ally exponentially many well-formed structures
over a target phrase.

The GHKM algorithm (Galley et al., 2004),
which is originally developed for extracting tree-
to-string rules from 1-best trees, has been suc-
cessfully extended to packed forests recently (Mi
and Huang, 2008). The algorithm distinguishes
between minimal and composed rules. Although
there are exponentially many composed rules, the
number of minimal rules extracted from each node
is rather limited (e.g., one or zero). Therefore, one
can obtain promising composed rules by combin-
ing minimal rules.

Unfortunately, the GHKM algorithm cannot be
applied to extracting string-to-dependency rules
from dependency forests. This is because the
GHKM algorithm requires a complete subtree to
exist in a rule while neither fixed nor floating de-
pendency structures ensure that all dependants of
a head are included. For example, the floating
structure shown in Figure 2(c) actually contains
two trees.

Alternatively, our algorithm searches for well-
formed structures for each node in a bottom-up
style. Algorithm 1 shows the algorithm for ex-
tracting initial phrases, that is, rules without non-
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terminals from dependency forests. The algorithm
maintainsk-best well-formed structures for each
node (line 11). The well-formed structures of a
head can be constructed from those of its depen-
dants. For example, in Figure 4, as the fixed struc-
ture rooted attelescope5,7 is

(a) telescope

we can obtain a fixed structure rooted for the node
with4,7 by attaching the fixed structure of its de-
pendant to the node (EnumFixedin line 4). Figure
2(b) shows the resulting fixed structure.

Similarly, the floating structure for the node
saw0,7 can be obtained by concatenating the fixed
structures of its dependantsboy2,4 and with4,7

(EnumFloatingin line 5). Figure 2(c) shows the
resulting fixed structure. The algorithm is similar
to Wang et al. (2007), which binarize each con-
stituent node to create some intermediate nodes
that correspond to the floating structures.

Therefore, we can findk-best fixed and float-
ing structures for a node in a dependency forest
by manipulating the fixed structures of its depen-
dants. Then we can extract string-to-dependency
rules if the dependency structures are consistent
with the word alignment.

How to judge a well-formed structure extracted
from a node is better than others? We follow Mi
and Huang (2008) to assign afractional count to
each well-formed structure. Given a tree fragment
t, we use the inside-outside algorithm to compute
its posterior probability:

αβ(t) = α(root(t)) ×
∏

e∈t

p(e)

×
∏

v∈leaves(t)

β(v) (4)

whereroot(t) is the root of the tree,e is an edge,
leaves(t) is a set of leaves of the tree,α(·) is out-
side probability, andβ(·) is inside probability.

For example, the subtree rooted atboy2,7 in Fig-
ure 4 has the following posterior probability:

α(boy2,7) × p(e4) × p(e5)

×p(e6) × β(a2,3) × β(a5,6) (5)

Now the fractional count of the subtreet is

c(t) =
αβ(t)

αβ(TOP )
(6)

whereTOP denotes the root node of the forest.
As a well-formed structure might be non-

constituent, we approximate the fractional count
by taking that of the minimal constituent tree frag-
ment that contains the well-formed structure. Fi-
nally, the fractional counts of well-formed struc-
tures can be used to compute the relative frequen-
cies of the rules having them on the target side (Mi
and Huang, 2008):

φ(r|lhs(r)) =
c(r)∑

r′:lhs(r′)=lhs(r) c(r′)
(7)

φ(r|rhs(r)) =
c(r)∑

r′:rhs(r′)=rhs(r) c(r′)
(8)

Often, our approach extracts a large amount of
rules from training corpus as we usually retain ex-
ponentially many well-formed structures over a
target phrase. To maintain a reasonable rule ta-
ble size, we discard any rule that has a fractional
count lower that a thresholdt.

5 Forest-based Dependency Language
Model Training

Dependency language model plays an important
role in string-to-dependency system. Shen et
al. (2008) show that string-to-dependency system
achieves 1.48 point improvement in BLEU along
with dependency language model, while no im-
provement without it. However, the string-to-
dependency system still commits to using depen-
dency language model from noisy 1-best trees.
We now turn to dependency forest for it encodes
multiple dependency trees.

To train a dependency language model from a
dependency forest, we need to collect all heads
and their dependants. This can be easily done by
enumerating all hyperedges. Similarly, we use the
inside-outside algorithm to compute the posterior
probability of each hyperedgee,

αβ(e) = α(head(e)) × p(e)

×
∏

v∈tailes(e)

β(v) (9)

For example, the posterior probability of the hy-
peredgee2 in Figure 4 is calculated as

αβ(e2) = α(saw0,7) × p(e2)

×β(he0,1) × β(boy2,7) (10)
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Rule DepLM NIST 2004 NIST 2005 NIST 2006 time

tree tree 33.97 30.21 30.73 19.6

tree forest 34.42∗ 31.06∗ 31.37∗ 24.1
forest tree 34.60∗ 31.16∗ 31.45∗ 21.7
forest forest 35.33∗∗ 31.57∗∗ 32.19∗∗ 28.5

Table 1: BLEU scores and average decoding time (second/sentence) on the Chinese-English test sets.
The baseline system (row 2) used the rule table and dependency language model learned both from
1-best dependency trees. We use “ *” and “**” to denote a result is better than baseline significantly at
p < 0.05 andp < 0.01, respectively.

Then, we can obtain the fractional count of a
hyperedgee,

c(e) =
αβ(e)

αβ(TOP )
(11)

Eachn-gram (e.g., “boy-as-heada”) is assigned
the same fractional count of the hyperedge it be-
longs to.

We also tried training dependency language
model as in (Shen et al., 2008), which means
all hyperedges were on equal footing without re-
garding probabilities. However, the performance
is about 0.8 point lower in BLEU. One possbile
reason is that hyperedges with probabilities could
distinguish high quality structures better.

6 Experiments

6.1 Results on the Chinese-English Task

We used the FBIS corpus (6.9M Chinese words
+ 8.9M English words) as our bilingual train-
ing corpus. We ran GIZA++ (Och and Ney,
2000) to obtain word alignments. We trained a
4-gram language model on the Xinhua portion
of GIGAWORD corpus using the SRI Language
Modeling Toolkit (Stolcke, 2002) with modi-
fied Kneser-Ney smoothing (Kneser and Ney,
1995). We optimized feature weights using the
minimum error rate training algorithm (Och and
Ney, 2002) on the NIST 2002 test set. We evalu-
ated the translation quality using case-insensitive
BLEU metric (Papineni et al., 2002) on the NIST
2004/2005/2006 test sets.

To obtain dependency trees and forests, we
parsed the English sentences of the FBIS corpus
using a shift-reduce dependency parser that en-
ables beam search (Huang et al., 2009). We only

Rules Size New Rules
tree 7.2M -

forest 7.6M 16.86%

Table 2: Statistics of rules. The last column shows
the ratio of rules extracted from non 1-best parses
being used in 1-best derivations.

retained the best well-formed structure for each
node when extracting string-to-tree rules from de-
pendency forests (i.e.,k = 1). We trained two
3-gram depLMs (one from trees and another from
forests) on English side of FBIS corpus plus 2M
sentence pairs from other LDC corpus.

After extracting rules and training depLMs, we
ran our replication of string-to-dependency sys-
tem (Shen et al., 2008) to translate the develop-
ment and test sets.

Table 1 shows the BLEU scores on the test
sets. The first column “Rule” indicates where
the string-to-dependency rules are learned from:
1-best dependency trees or dependency forests.
Similarly, the second column “DepLM” also dis-
tinguish between the two sources for training de-
pendency language models. The baseline sys-
tem used the rule table and dependency lan-
guage model both learned from 1-best depen-
dency trees. We find that adding the rule table and
dependency language models obtained from de-
pendency forests improves string-to-dependency
translation consistently and significantly, ranging
from +1.3 to +1.4 BLEU points. In addition, us-
ing the rule table and dependency language model
trained from forest only increases decoding time
insignificantly.

How many rules extracted from non 1-best
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Rule DepLM BLEU

tree tree 22.31

tree forest 22.73∗

forest tree 22.80∗

forest forest 23.12∗∗

Table 3: BLEU scores on the Korean-Chinese test
set.

parses are used by the decoder? Table 2 shows the
number of rules filtered on the test set. We observe
that the rule table size hardly increases. One pos-
sible reason is that we only keep the best depen-
dency structure for each node. The last row shows
that 16.86% of the rules used in 1-best deriva-
tions are extracted from non 1-best parses in the
forests, indicating that some useful rules cannot
be extracted from 1-best parses.

6.2 Results on the Korean-Chinese Task

To examine the efficacy of our approach on differ-
ent language pairs, we carried out an experiment
on Korean-Chinese translation. The training cor-
pus contains about 8.2M Korean words and 7.3M
Chinese words. The Chinese sentences were used
to train a 5-gram language model as well as a 3-
gram dependency language model. Both the de-
velopment and test sets consist of 1,006 sentences
with single reference. Table 3 shows the BLEU
scores on the test set. Again, our forest-based ap-
proach achieves significant improvement over the
baseline (p < 0.01).

6.3 Effect ofK-best

We investigated the effect of differentk-best
structures for each node on translation quality
(BLEU scores on the NIST 2005 set) and the rule
table size (filtered for the tuning and test sets), as
shown in Figure 5. To save time, we extracted
rules just from the first 30K sentence pairs of the
FBIS corpus. We trained a language model and
depLMs on the English sentences. We used 10
different k: 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Ob-
viously, the higher thek is, the more rules are
extracted. Whenk=10, the number of rules used
on the tuning and test sets was 1,299,290 and the
BLEU score was 20.88. Generally, both the num-
ber of rules and the BLEU score went up with

20.4
20.5
20.6
20.7
20.8
20.9
21.0
21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

B
LE

U
 s

co
re

rule table size(M)

k=1,2,...,10

Figure 5: Effect ofk-best on rule table size and
translation quality.

20.4
20.5
20.6
20.7
20.8
20.9
21.0
21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8

0.98 1.00 1.02 1.04 1.06 1.08 1.10

B
LE

U
 s

co
re

rule table size(M)

t=1.0,0.9,...,0.1

Figure 6: Effect of pruning threshold on rule table
size and translation quality.

the increase ofk. However, this trend did not
hold within the range [4,10]. We conjecture that
when retaining more dependency structures for
each node, low quality structures would be intro-
duced, resulting in much rules of low quality.

An interesting finding is that the rule table grew
rapidly whenk is in range [1,4], while gradually
within the range [4,10]. One possible reason is
that there are limited different dependency struc-
tures in the spans with a maximal length of 10,
which the target side of rules cover.

6.4 Effect of Pruning Threshold

Figure 6 shows the effect of pruning threshold on
translation quality and the rule table size. We
retained 10-best dependency structures for each
node in dependency forests. We used 10 different
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pruning thresholds: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 1.0. Intuitively, the higher the prun-
ing threshold is, the less rules are extracted. When
t=0.1, the number of rules used on the tuning and
test sets was 1,081,841 and the BLEU score was
20.68.

Lots of rules are pruned when the pruning
threshold increases from 0.0 to 0.3 (around 20%).
After pruning away these rules, we achieved 0.6
point improvement in BLEU. However, when we
filtered more rules, the BLEU score went down.

Figures 5 and 6 show that using two parame-
ters that have to be hand-tuned achieves a small
improvement at the expense of an additional com-
plexity. To simplify the approach, we only keep
the best dependency structure for each node with-
out pruning any rule.

7 Related Works

While Mi and Huang (2008) and we both use
forests for rule extraction, there remain two ma-
jor differences. Firstly, Mi and Huang (2008) use
a packed forest, while we use a dependency forest.
Packed forest is a natural weighted hypergraph
(Klein and Manning, 2001; Huang and Chiang,
2005), for each hyperedge treats the correspond-
ing PCFG rule probability as its weight. However,
it is challenging to make dependency forest to be a
weighted hypergraph because dependency parsers
usually only output a score for each edge in a de-
pendency tree rather than a hyperedge in a depen-
dency forest. Secondly, The GHKM algorithm
(Galley et al., 2004), which is originally devel-
oped for extracting tree-to-string rules from 1-best
trees, has been successfully extended to packed
forests recently (Mi and Huang, 2008). Unfor-
tunately, the GHKM algorithm cannot be applied
to extracting string-to-dependency rules from de-
pendency forests, because the GHKM algorithm
requires a complete subtree to exist in a rule while
neither fixed nor floating dependency structures
ensure that all dependants of a head are included.

8 Conclusion and Future Work

In this paper, we have proposed to use dependency
forests instead of 1-best parses to extract string-to-
dependency tree rules and train dependency lan-
guage models. Our experiments show that our ap-

proach improves translation quality significantly
over a state-of-the-art string-to-dependency sys-
tem on various language pairs and test sets. We
believe that dependency forest can also be used to
improve the dependency treelet system (Quirk et
al., 2005) that takes 1-best trees as input.
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Abstract

A distributed system is described that re-
liably mines parallel text from large cor-
pora. The approach can be regarded
as cross-language near-duplicate detec-
tion, enabled by an initial, low-quality
batch translation. In contrast to other ap-
proaches which require specialized meta-
data, the system uses only the textual con-
tent of the documents. Results are pre-
sented for a corpus of over two billion web
pages and for a large collection of digi-
tized public-domain books.

1 Introduction

While the World Wide Web provides an abun-
dance of readily available monolingual text, par-
allel data is still a comparatively scarce resource,
yet plays a crucially important role in training sta-
tistical machine translation systems.

We describe an approach to mining document-
aligned parallel text to be used as training data
for a statistical machine translation system. Pre-
vious approaches have focused on rather homo-
geneous corpora and relied on metadata such as
publication dates (Munteanu and Marcu, 2005;
Munteanu and Marcu, 2006; Udupa et al., 2009;
Do et al., 2009; Abdul-Rauf and Schwenk, 2009)
or information about document structure (Resnik
and Smith, 2003; Chen and Nie, 2000). In large
and unstructured collections of documents such as
the Web, however, metadata is often sparse or un-
reliable. Our approach, in contrast, scales com-
putationally to very large and diverse collections
of documents and does not require metadata. It is

based solely on the textual contents of the input
documents.

Casting the problem as one of cross-language
near duplicate detection, we use a baseline ma-
chine translation system to translate all input doc-
uments into a single language. However, the
words and phrases that are most discriminatory
for the purposes of information retrieval and du-
plicate detection are the relatively rare ones, pre-
cisely those that are less likely to be translated
well by the baseline translation system.

Our approach to circumvent this problem and
to avoid the prohibitive quadratic computational
complexity of the naive approach of performing a
comparison of every possible pair of input docu-
ments is similar to previous work in near duplicate
detection (Broder, 2000; Henzinger, 2006; Man-
ber, 1994) and noisy data retrieval (Harding et al.,
1997).

We use shingles consisting of word n-grams to
construct relatively rare features from more com-
mon, in-vocabulary words. For each input doc-
ument, we identify a comparatively small set of
candidate pairings with documents sharing at least
a certain number of such features. We then per-
form a more expensive comparison between each
document and all documents in its candidate set
using lower order n-gram features that would typ-
ically be too frequent to be used efficiently in
forming candidate pairings, but provide a higher
coverage of the scored document pairs. Another
important aspect of our approach is that it can be
implemented in a highly parallel way, as we de-
scribe in the following section.

1101



2 System Description

The input is a set of documents from diverse
sources such as web pages and digitized books.
In a first stage, all documents are independently
translated into English using a baseline statistical
machine translation system.

We then extract two different sets of n-grams
from the translated documents: matching n-grams
that are used to construct the candidate sets as well
as scoring n-grams used only in the computation
of a score for a given pair of documents. This
stage generates two indexes: a forward index list-
ing all extracted scoring n-grams, indexed by doc-

Machine translate input data

Extract n-grams

Filter inverted index
by document frequency and 

number of original languages

Generate all pairs of documents 
sharing matching n-grams

Score unique document pairs,
querying the forward Index

Discard non-symmetric pairs

Join with original input data
Evaluate on reference document 

alignments

Fold global, per-scoring n-gram 
information from inverted index 

into forward index

Documents 
in Multiple 
Languages

English 
Translations

Forward Index

Inverted Index

Per-document n-best lists

Figure 1: Architecture of the Parallel Text Mining
System.

ument; and an inverted index referencing all doc-
uments from which we extracted a given match-
ing n-gram, indexed by n-grams. The inverted
index is also used to accumulate global informa-
tion about scoring n-grams, such as their docu-
ment frequency, yet for scoring n-grams we do
not accumulate a posting list of all documents in
which they occur.

In the next step, the system generates all possi-
ble pairs of documents for each matching n-gram
posting list in the inverted index. Since we keep
only those pairs of documents that originated in
different languages, we can discard posting lists
from the inverted index that contain only a single
document, i.e. those of singleton n-grams, or only
documents in a single language.

Crucially, we further discard posting lists for
matching n-grams whose frequency exceeds a
certain threshold. When choosing a sufficiently
large order for the matching n-grams, their long-
tailed distribution causes only a small fraction of
matching n-grams to be filtered out due to fre-
quency, as we show empirically in Section 5. It
is this filtering step that causes the overall runtime
of the system to be linear in the size of the input
data and allows the system to scale to very large
document collections.

In parallel, global information about scoring n-
grams accumulated in the inverted index that is
required for pairwise scoring, such as their doc-
ument frequency, is folded into the forward in-
dex by iterating over all forward index entries, re-
questing the respective per-feature quantities from
the inverted index and storing them with each oc-
currence of a scoring n-gram in an updated for-
ward index.

In the next stage, we compute pairwise scores
for all candidate document pairs, accessing the
forward index entry of each of the two scored doc-
uments to obtain the respective scoring n-grams.
Document pairs with a score below a given thresh-
old are discarded. For each input document, this
results in one n-best list per language. In the last
step we retain only those document pairs where
each document is contained in the n-best list of
the other document for its original language. Fi-
nally we perform a join of our identified transla-
tion pairs with the original text by making another
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pass over the original, untranslated input data
where the contents of document pairs with suffi-
ciently high scores are then aggregated and out-
put. Document pairings involving all languages
are identified simultaneously. Each stage of the
system fits well into the MapReduce program-
ming model (Dean and Ghemawat, 2004). The
general architecture is shown in Figure 1.

2.1 Pairwise Scoring

For scoring a pair of documents d and d′, the
forward index is queried for the entries for both
documents. Let Fd = {f1, f2, ...fn} and Fd′ =
{f ′1, f ′2, ...f ′n′} be the sets of scoring n-grams in
the forward index entries of d and d′, respectively.
Let idf(f) = log |D|

df(f) be the inverse document
frequency of a scoring n-gram f , where |D| is
the number of documents in the input corpus and
df(f) is the number documents from which we
extracted the feature f . Interpreting Fd and Fd′ as
incidence vectors in the vector space of n-grams
and replacing each non-zero component f with
idf(f), we compute the score of the document pair
as the inverse document frequency weighted co-
sine similarity of Fd and Fd′

score(d, d′) =
Fd · Fd′

||Fd|| · ||Fd′ ||
(1)

The per-document n-best lists are sorted ac-
cording to this score and document pairs for which
the score is below a threshold are discarded com-
pletely.

We do not use term frequency in the scoring
metric. In preliminary experiments, incorporat-
ing the term frequency to yield basic tf/idf as
well as using other information retrieval ranking
functions incorporating term frequencies such as
BM25 (Robertson et al., 1995) resulted in a degra-
dation of performance compared to the simpler
scoring function described above. We believe this
is due to the fact that, in contrast to the standard
information retrieval setting, the overall length of
our queries is on par with that of the documents in
the collection.

The scoring is completely agnostic regarding
the scoring n-grams’ positions in the documents.
Since especially for long documents such as

books this may produce spurious matches, we ap-
ply an additional filter to remove document pairs
for which the relative ordering of the matching
scoring n-grams is very different. Together with
each scoring n-gram we also extract its relative
position in each document and store it in the for-
ward index. When scoring a document pair, we
compute the normalized permutation edit distance
(Cormode et al., 2001) between the two sequences
of overlapping n-grams sorted by their position in
the respective document. If this distance exceeds
a certain threshold, we discard the document pair.

2.2 Computational Complexity
By limiting the frequency of matching n-grams,
the complexity becomes linear. Let the tunable
parameter c be the maximum occurrence count for
matching n-grams to be kept in the inverted in-
dex. Let m be the average number of matching
n-grams extracted from a single document whose
count is below c and D be the set of documents
in the input corpus. Then the system generates up
to |D| ·m · c candidate pairings. Scoring a given
candidate document pair according to cosine sim-
ilarity involves computing three dot-products be-
tween sparse vectors with one non-zero compo-
nent per scoring n-gram extracted and not filtered
from the respective document. Let s be the av-
erage number of such scoring n-grams per docu-
ment, which is bounded by the average document
length. Then the time complexity of the entire
document alignment is in

O(|D| ·m · c · s) (2)

and therefore linear in the number of input doc-
uments in the corpus and the average document
size.

The space complexity is dominated by the size
of the inverted and forward indexes, both of which
are linear in the size of the input corpus.

2.3 Sentence-Level Alignment
Further filtering is performed on a per-sentence
basis during per-document-pair sentence align-
ment of the mined text with a standard dynamic
programming sentence alignment algorithm using
sentence length and multilingual probabilistic dic-
tionaries as features. Afterwards we crudely align

1103



words within each pair of aligned source and tar-
get sentences. This crude alignment is used only
to filter nonparallel sentences. Let S be the set
of source words, T the set of target words and
S × T the set of ordered pairs. Let the source
sentence contain words S0 ⊂ S and the target
sentence contain words T0 ⊂ T . An alignment
A0 ⊂ S0 × T0 will be scored by

score(A0) =
∑

(s,t)∈A0

ln
p(s, t)

p(s) p(t)
(3)

where the joint probabilities p(s, t) and marginal
probabilities p(s), p(t) are taken to be the respec-
tive empirical distributions (without smoothing)
in an existing word aligned corpus. This is greed-
ily maximized and the result is divided by its ap-
proximate expected value

∑

(s,t)∈S0×T

p(s, t)

p(s)
ln

p(s, t)

p(s) p(t)
(4)

We discard sentence pairs for which the ratio be-
tween the actual and the expected score is less
than 1/3. We also drop sentence pairs for which
both sides are identical, or a language detector de-
clares them to be in the wrong language.

2.4 Baseline Translation System
To translate the input documents into English we
use phrase-based statistical machine translation
systems based on the log-linear formulation of the
problem (Och and Ney, 2002).

We train the systems on the Europarl Cor-
pus (Koehn, 2002), the DGT Multilingual
Translation Memory (European Commission
Directorate-General for Translation, 2007) and
the United Nations ODS corpus (United Nations,
2006). Minimum error rate training (Macherey
et al., 2008) under the BLEU criterion is used
to optimize the feature function weights on de-
velopment data consisting of the nv-dev2007 and
news-dev2009 data sets provided by the organiz-
ers of the 2007 and 2009 WMT shared translation
tasks1. We use a 4-gram language model trained
on a variety of large monolingual corpora. The
BLEU scores of our baseline translation system

1available at http://statmt.org

on the test sets from various WMT shared trans-
lation tasks are listed in Table 5. An empirical
analysis of the impact of the baseline translation
system quality on the data mining system is given
in Section 6.3.

3 Input Document Collections

We evaluate the parallel text mining system on
two input data sets:

web A collection of 2.5 Billion general pages
crawled from the Web, containing only pages
in Czech, English, French, German, Hungar-
ian and Spanish

books A collection of 1.5 Million public domain
books digitized using an optical character
recognition system. The collection consists
primarily of English, French and fewer Span-
ish volumes

3.1 Reference Sets

We created reference sets of groups of docu-
ments in multiple languages which are true trans-
lations of one another for both the web and the
books data set. Due to the presence of duplicates,
each reference pairing can contain more than a
single alternative translation per language. The
web reference set was constructed by exploiting
the systematic hyperlink structure of the web-site
http://america.gov/, that links pages in
one language to their respective translations into
one or more other languages. The resulting refer-
ence set contains documents in Arabic, Chinese,
English, French, Russian and Spanish, however,
for most English pages there is only one transla-
tion into one of the other languages. Overall, the
reference set contains 6,818 documents and 7,286
translation pairs.

The books reference set contains 30 manually
aligned groups of translations covering a total of
103 volumes in English and French.

4 Evaluation Metrics

The fact that the system outputs pairs of docu-
ments and the presence of duplicate documents in
the corpus motivate the use of modified versions
of precision and recall.
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Let C be a set of candidate parallel document
pairs and let R be a possibly incomplete reference
set of groups of parallel documents known to exist
in the corpus. Consider the following two subsets
of C:

• Matching pairs which are in some reference
cluster.

• Touching pairs which are non-matching but
have at least one document in some reference
cluster.

We define

Precision =
|CMatching|

|CMatching|+ |CTouching|
and

Recall =
|CMatching|
|R| (5)

5 Parameter Selection

We conducted a series of small-scale experiments
on only those documents contained in the web ref-
erence data set to empirically determine good set-
tings for the tunable parameters of the text min-
ing system. Among the most important parame-
ters are the orders of the n-grams used for pair-
ing documents as well as scoring them. Aside
from the obvious impact on the quality of the out-
put, these parameters have a very large influence
on the overall computational performance of the
system. The choice of the order of the extracted
matching n-grams is mainly a trade-off between
recall and efficiency. If the order is too large
the system will miss valid pairs; if too small the
the threshold on matching n-gram frequency will
need to be increased.

Figure 2 shows the F1-scores obtained run-
ning only on the documents contained in the web
reference set with different orders of matching
and scoring n-grams. Figure 3 shows the corre-
sponding number of pairwise comparisons made
when using different orders of matching n-grams.
While there is a drop of 0.01 in F1 score between
using 2-grams and 5-grams as matching n-grams,
this drop in quality seems to be well worth the 42-
fold reduction in resulting pairwise comparisons.
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Figure 2: F1 scores on the web reference set for
different scoring and matching n-gram orders.
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Figure 3: Number of pairwise comparisons made
when using matching n-grams of different orders.

The largest portion of the loss in F1 score is in-
curred when increasing the matching n-gram or-
der from 4 to 5, the reduction in pairwise compar-
isons, however, is still more than twofold.

Table 1 shows the precision and recall on the
web reference set when running only on docu-
ments in the reference set using 5-grams as match-
ing n-grams and bigrams for scoring for differ-
ent values of the threshold on the cosine similar-
ity score. In this setting as well as in large-scale
experiments on both complete data sets described
in section 6.1, a threshold of 0.1 yields the highest
F1 score.
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score threshold 0.06 0.10 0.12 0.16 0.20
precision 0.92 0.97 0.98 0.99 0.99
recall 0.91 0.91 0.90 0.89 0.83

Table 1: Precision and recall on the web reference
set when running only on documents contained in
the reference set.

6 Evaluation

We run the parallel text mining system on the web
and books data sets using 5-grams for matching
and bigrams for scoring. In both cases we discard
matching n-grams which occurred in more than
50 documents and output only the highest scoring
candidate for each document.

In case of the web data set, we extract every 5-
gram as potential matching feature. For the books
data set, however, we downsample the number
of candidate matching 5-grams by extracting only
those whose integer fingerprints under some hash
function have four specific bits set, thus keeping
on average only 1/16 of the matching n-grams.
Here, we also restrict the total number of match-
ing n-grams extracted from any given document
to 20,000. Scoring bigrams are dropped from
the forward index if their document frequency ex-
ceeds 100,000, at which point their influence on
the pairwise score would be negligible.

Running on the web data set, the system on
average extracts 250 matching 5-grams per doc-
ument, extracting a total of approximately 430
Billion distinct 5-grams. Of those, 78% are
singletons and 21% only occur in a single lan-
guage. Only approximately 0.8% of all match-
ing n-grams are filtered due to having a docu-
ment frequency higher than 50. The forward in-
dex initially contains more than 500 Billion bi-
gram occurrences; after pruning out singletons
and bigrams with a document frequency larger
than 100,000, the number of indexed scoring fea-
ture occurrences is reduced to 40%. During scor-
ing, approximately 50 Billion pairwise compar-
isons are performed.

In total the n-gram extraction, document scor-
ing and subsequent filtering takes less than 24
hours on a cluster of 2,000 state-of-the-art CPUs.

The number of words after sentence-level fil-
tering and alignment that the parallel text mining

baseline books web
Czech 27.5 M 0 271.9 M
French 479.8 M 228.5 M 4,914.3 M
German 54.2 M 0 3,787.6 M
Hungarian 26.9 M 0 198.9 M
Spanish 441.0 M 15.0 M 4,846.8 M

Table 2: The number of words per language in the
baseline training corpora and extracted from the
two different data sets.

system extracted for the different languages from
each dataset are listed in Table 2.

score threshold 0.06 0.10 0.12 0.16 0.20
precision 0.88 0.93 0.95 0.97 0.97
recall 0.68 0.65 0.63 0.52 0.38

Table 3: Precision and recall on the reference set
when running on the complete web data set with
different score thresholds.

score threshold 0.06 0.10 0.12 0.16 0.20
precision 0.95 1.00 1.00 1.00 1.00
recall 0.71 0.71 0.71 0.48 0.38

Table 4: Precision and recall on the reference set
when running on the complete books data set with
different score thresholds.

6.1 Precision and Recall
Tables 3 and 4 show precision and recall on the re-
spective reference sets for the web and the books
input data sets. While the text mining system
maintains a very high precision, recall drops sig-
nificantly compared to running only on the doc-
uments in the reference set. One reason for this
behavior is that the number of n-grams in the test
data set which are sufficiently rare to be used as
queries drops with increasing amounts of input
data and in particular short documents which only
share a small number of matching n-grams any-
way, may happen to only share matching n-grams
with a too high document frequency. Further anal-
ysis shows that another, more significant factor is
the existence of multiple, possibly partial transla-
tions and near-duplicate documents which cause
symmetrization to discard valid document pairs
because each document in the pair is determined
by the document pair score to be more similar to
a different translation of a near-duplicate or sub-
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Language Pair Training Data WMT 2007 news commentary WMT 2008 news WMT 2009 news

Czech English baseline 21.59 14.59 16.46
web 29.26 (+7.67) 20.16 (+5.57) 23.25 (+6.76)

German English baseline 27.99 20.34 20.03
web 32.35 (+4.36) 23.22 (+2.88) 23.35 (+3.32)

Hungarian English baseline - 10.21 11.02
web - 12.92 (+2.71) 14.68 (+3.66)

French English
baseline 34.26 22.14 26.39
books 34.73 (+0.47) 22.39 (+0.25) 27.15 (+0.76)
web 36.65 (+2.39) 23.22 (+1.08) 28.34 (+1.95)

Spanish English
baseline 43.67 24.15 26.88
books 44.07 (+0.40) 24.32 (+0.17) 27.16 (+0.28)
web 46.21 (+2.54) 25.52 (+1.37) 28.50 (+1.62)

English Czech baseline 14.78 12.45 11.62
web 20.65 (+5.86) 18.70 (+6.25) 16.60 (+4.98)

English German baseline 19.89 14.67 14.31
web 23.49 (+3.60) 16.78 (+2.11) 16.96 (+2.65)

English Hungarian baseline - 07.93 08.52
web - 10.16 (+2.23) 11.42 (+2.90)

English French
baseline 31.59 22.29 25.14
books 31.92 (+0.33) 22.42 (+0.13) 25.46 (+0.32)
web 34.35 (+2.76) 23.56 (+1.27) 27.05 (+1.91)

English Spanish
baseline 42.05 24.65 25.85
books 42.05 24.79 (+0.14) 26.07 (+0.22)
web 45.21 (+3.16) 26.46 (+1.81) 27.79 (+1.94)

Table 5: BLEU scores of the translation systems trained on the automatically mined parallel corpora
and the baseline training data.

set of the document. This problem seems to affect
news articles in particular where there are often
multiple different translations of large subsets of
the same or slightly changed versions of the arti-
cle.

6.2 Translation Quality

Arabic English NIST 2006 NIST 2008
Baseline (UN ODS) 44.31 42.79
Munteanu and Marcu 45.13 43.86
Present work 44.72 43.64
Chinese English NIST 2006 NIST 2008
Baseline (UN ODS) 25.71 19.79
Munteanu and Marcu 28.11 21.69
Present work 28.08 22.02

Table 6: BLEU scores of the Chinese and Arabic
to English translation systems trained on the base-
line UN ODS corpus and after adding either the
Munteanu and Marcu corpora or the training data
mined using the presented approach.

We trained a phrase-based translation system
on the mined parallel data sets and evaluated it
on translation tasks for the language pairs Czech,
French, German, Hungarian and Spanish to and
from English, measuring translation quality with

the BLEU score (Papineni et al., 2002). The trans-
lation tasks evaluated are the WMT 2007 news
commentary test set as well the WMT 2008 and
2009 news test sets.

The parallel data for this experiment was mined
using the general settings described in the previ-
ous section and a threshold of 0.1 on the pairwise
score. We ensure that the test data is not included
in the training data by filtering out all sentences
from the training data that share more than 30%
of their 6-grams with any sentence from one of
the test corpora.

Table 5 shows the BLEU scores of the differ-
ent translation systems. The consistent and signif-
icant improvements in BLEU score demonstrate
the usefulness of the mined document pairs in
training a translation system.

Even though the presented approach works
on a less granular level than the sentence-level
approach of Munteanu and Marcu (2005), we
compare results on the same input data2 used
by those authors to automatically generate the

2LDC corpora LDC2005T12, LDC2005T14 and
LDC2006T02, the second editions of the Arabic, Chinese
and English Gigaword corpora.
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Sampling Rate WMT 2007 news commentary WMT 2008 news WMT 2009 news
degraded Cz→En En→Cz degraded Cz→En En→Cz degraded Cz→En En→Cz

1.0 21.59 29.26 20.65 14.59 20.16 18.70 16.46 23.25 16.60
0.5 20.12 29.16 20.55 13.65 20.16 18.71 15.44 23.16 16.56
0.25 18.59 29.09 20.61 12.79 20.09 18.58 14.35 23.18 16.50
0.125 16.69 29.10 20.39 11.87 20.07 18.48 13.05 23.06 16.53
0.0625 14.72 29.04 20.44 10.87 20.06 18.49 11.62 23.11 16.44
0.0312 12.60 28.75 20.28 09.71 19.97 18.45 10.43 23.04 16.41

Table 7: BLEU scores of the degraded Czech to English baseline systems used for translating Czech
documents from the web data set as well as those of Czech to and from English systems trained on data
mined using translations of varying quality created by sampling from the training data.

Arabic English and Chinese English sentence-
aligned parallel LDC corpora LDC2007T08 and
LDC2007T09. We trained Arabic and Chinese
English baseline systems on the United Nations
ODS corpus (United Nations, 2006); we also use
these to translate the non-English portions of the
input data to English. We then evaluate the effects
of also training on either the LDC2007T08 and
LDC2007T09 corpora or the parallel documents
mined by our approach in addition to the United
Nations ODS corpus on the NIST 2006 and 2008
MT evaluation test sets. The results are presented
in Table 6.

The approach proposed in (Munteanu and
Marcu, 2005) relies critically on the existence
of publication dates in order to be computation-
ally feasible, yet it still scales superlinearly in the
amount of input data. It could therefore not easily
be applied to much larger and less structured input
data collections. While our approach neither uses
metadata nor operates on the sentence level, in all
but one of the tasks, the system trained on the data
mined using our approach performs similarly or
slightly better.

6.3 Impact of Baseline Translation Quality

In order to evaluate the impact of the translation
quality of the baseline system on the quality of
the mined document pairs, we trained artificially
degraded Czech to English translation systems by
sampling from the baseline training data at de-
creasing rates. We translate the Czech subset of
the web document collection into English with
each of the degraded systems and apply the paral-
lel data mining system in the same configuration.

Table 7 shows the BLEU scores of the degraded
baseline systems and those resulting from adding

the different mined data sets to the non-degraded
Czech English and English Czech systems. De-
grading the input data translation quality by up to
8.9% BLEU results in a consistent but only com-
paratively small decrease of less than 0.6% BLEU
in the scores obtained when training on the mined
document pairs. This does not only show that the
impact of variations of the baseline system quality
on the data mining system is limited, but also that
the data mining system will already work with a
rather low quality baseline system.

7 Conclusion

We presented a scalable approach to mining paral-
lel text from collections of billions of documents
with high precision. The system makes few as-
sumptions about the input documents. We demon-
strated that it works well on different types of
data: a large collection of web pages and a col-
lection of digitized books. We further showed that
the produced parallel corpora can significantly im-
prove the quality of a state-of-the-art statistical
machine translation system.
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Abstract

The precise identification of light verb
constructions is crucial for the successful
functioning of several NLP applications.
In order to facilitate the development of
an algorithm that is capable of recogniz-
ing them, a manually annotated corpus of
light verb constructions has been built for
Hungarian. Basic annotation guidelines
and statistical data on the corpus are also
presented in the paper. It is also shown
how applications in the fields of machine
translation and information extraction can
make use of such a corpus and an algo-
rithm.

1 Introduction

In this paper, we report a corpus containing light
verb constructions in Hungarian. These expres-
sions are neither productive nor idiomatic and
their meaning is not totally compositional (the
noun is usually taken in one of its literal senses but
the verb usually loses its original sense to some
extent), as it can be seen in the examples from dif-
ferent languages shown below. Since their mean-
ing is the same, only literal translations are pro-
vided:

• English: to give a lecture, to come into
bloom, the problem lies (in)

• German: halten eine Vorlesung to hold a pre-
sentation, in Blüte stehen in bloom to stand,
das Problem liegt (in) the problem lies (in)

• French: faire une présentation to make a pre-
sentation, être en fleur to be in bloom, le

problème réside (dans) the problem resides
(in)

• Hungarian: előadást tart presentation-
ACC holds, virágba borul bloom-ILL falls,
probléma rejlik (vmiben) problem hides (in
sg)

Several terms like complex verb structures, sup-
port verb constructions or light verb constructions
have been used1 for these constructions in the lit-
erature (Langer, 2004). In this paper, the term
light verb constructions will be employed.

The structure of the paper is as follows. First,
the importance of the special NLP treatment of
light verb constructions is emphasized in section
2. The precise identification of such constructions
is crucial for the successful functioning of NLP
applications, thus, it is argued that an algorithm
is needed to automatically recognize them (sec-
tion 4). In order to facilitate the development of
such an algorithm, a corpus of light verb construc-
tions has been built for Hungarian, which is pre-
sented together with statistical data in section 5.
Finally, it is shown how NLP applications in the
fields of machine translation and information ex-
traction can profit from the implementation of an
algorithm capable of identifying light verb con-
structions (section 6).

2 Light verb constructions in NLP

In natural language processing, one of the most
challenging tasks is the proper treatment of col-

1There might be slight theoretical differences in the usage
of these terms – e.g. semantically empty support verbs are
called light verbs in e.g. Meyers et al. (2004a), that is, the
term support verb is a hypernym of light verb. However,
these differences are not analyzed in detail in this paper.

1110



locations, which term comprises light verb con-
structions as well. Every multiword expression
is considered to be a collocation if its members
often co-occur and its form is fixed to some ex-
tent (Siepmann, 2005; Siepmann, 2006; Sag et al.,
2001; Oravecz et al., 2004; Váradi, 2006). Col-
locations are frequent in language use and they
usually exhibit unique behaviour, thus, they often
pose a problem to NLP systems.

Light verb constructions deserve special atten-
tion in NLP applications for several reasons. First,
their meaning is not totally compositional, that is,
it cannot be computed on the basis of the mean-
ings of the parts of the collocation and the way
they are related to each other. Thus, the result of
translating the parts of the collocation can hardly
be considered as the proper translation of the orig-
inal expression. Second, light verb constructions
(e.g. make a mistake) often share their syntac-
tic pattern with other constructions such as lit-
eral verb + noun combinations (e.g. make a cake)
or idioms (e.g. make a meal), thus, their identi-
fication cannot be based on solely syntactic pat-
terns. Third, since the syntactic and the seman-
tic head of the construction are not the same –
the syntactic head being the verb and the seman-
tic head being the noun –, they require special
treatment when parsing. It can be argued that
they form a complex verb similarly to phrasal or
prepositional verbs (as reflected in the term com-
plex verb structures). Thus, it is advisable to indi-
cate their special syntacto-semantic relationship:
in dependency grammars, the new role QUASI-
ARGUMENT might be proposed for this purpose.

3 Related work

Light verb constructions – as a subtype of multi-
word expressions – have been paid special atten-
tion in NLP literature. Sag et al. (2001) classify
them as a subtype of lexicalized phrases and flex-
ible expressions. They are usually distinguished
from productive or literal verb + noun construc-
tions on the one hand and idiomatic verb + noun
expressions on the other hand: e.g. Fazly and
Stevenson (2007) use statistical measures in order
to classify subtypes of verb + noun combinations
and Diab and Bhutada (2009) developed a chunk-
ing method for classifying multiword expressions.

Identifying multiword expressions in general
and light verb constructions in particular is not
unequivocal since constructions with similar syn-
tactic structure (e.g. verb + noun combinations)
can belong to different subclasses on the produc-
tivity scale (i.e. productive combinations, light
verb constructions and idioms). That is why well-
designed and tagged corpora of multiword ex-
pressions are invaluable resources for training and
testing algorithms that are able to identify multi-
word expressions. For instance, Grégoire (2007)
describes the design and implementation of a lexi-
con of Dutch multiword expressions. Focusing on
multiword verbs, Kaalep and Muischnek (2006;
2008) present an Estonian database and a corpus
and Krenn (2008) describes a database of German
PP-verb combinations. The Prague Dependency
Treebank also contains annotation for light verb
constructions (Cinková and Kolářová, 2005) and
NomBank (Meyers et al., 2004b) provides the ar-
gument structure of common nouns, paying atten-
tion to those occurring in support verb construc-
tions as well. On the other hand, Zarrieß and Kuhn
(2009) make use of translational correspondences
when identifying multiword expressions (among
them, light verb constructions). A further exam-
ple of corpus-based identification of light verb
constructions in English is described in Tan et al.
(2006).

Light verb constructions are considered to be
semi-productive, that is, certain verbs tend to co-
occur with nouns belonging to a given semantic
class. A statistical method is applied to measure
the acceptability of possible light verb construc-
tions in Stevenson et al. (2004), which correlates
reasonably well with human judgments.

4 Identifying light verb constructions

A database of light verb constructions and an an-
notated corpus might be of great help in the au-
tomatic recognition of light verb constructions.
They can serve as a training database when imple-
menting an algorithm for identifying those con-
structions.

The recognition of light verb constructions can-
not be solely based on syntactic patterns for other
(productive or idiomatic) combinations may ex-
hibit the same verb + noun scheme (see section
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2). However, in agglutinative languages such as
Hungarian, nouns can have several grammatical
cases, some of which typically occur in a light
verb construction when paired with a certain verb.
For instance, the verb hoz ’bring’ is a transitive
verb, that is, it usually occurs with a noun in the
accusative case. On the other hand, when it is pre-
ceded or followed by a noun in the sublative or
illative case (the typical position of the noun in
Hungarian light verb constructions being right be-
fore or after the verb2), it is most likely a light verb
construction. To illustrate this, we offer some ex-
amples:

vizet hoz

water-ACC bring

’to bring some water’

zavarba hoz

trouble-ILL bring

’to embarrass’

The first one is a productive combination (with
the noun being in the accusative form) while the
second one is a light verb construction. Note that
the light verb construction also has got an argu-
ment in the accusative case (syntactically speak-
ing, a direct object complement) as in:

Ez a megjegyzés mindenkit zavarba ho-
zott.

this the remark everyone-ACC trouble-
ILL bring-PAST-3SG

’This remark embarrassed everybody.’

Thus, the presence of an argument in the ac-
cusative does not imply that the noun + verb com-
bination is a light verb construction. On the other
hand, the presence of a noun in the illative or
sublative case immediately preceding or follow-
ing the verb strongly suggests that a light verb in-
stance of hoz is under investigation.

Most light verb constructions have a verbal
counterpart derived from the same stem as the
noun, which entails that it is mostly deverbal

2In a neutral sentence, the noun is right before the verb,
in a sentence containing focus, it is right after the verb.

nouns that occur in light verb constructions (as
in make/take a decision compared to decide or
döntést hoz vs. dönt in Hungarian). The identifi-
cation of such nouns is possible with the help of a
morphosyntactic parser that is able to treat deriva-
tion as well (e.g. hunmorph for Hungarian (Trón
et al., 2005)), and the combination of a possible
light verb and a deverbal noun typically results in
a light verb construction.

Thus, an algorithm that makes use of mor-
phosyntactic and derivational information and
previously given lists can be constructed to iden-
tify light verb constructions in texts. It is impor-
tant that the identification of light verb construc-
tions precedes syntactic parsing, for the noun and
the verb in the construction form one complex
predicate, which has its effects on parsing: other
arguments belong not solely to the verb but to the
complex predicate.

To the best of our knowledge, there are no cor-
pora of light verb constructions available for Hun-
garian. That is why we decided to build such a
corpus. The corpus is described in detail in sec-
tion 5. On the basis of the corpus developed, we
plan to design an algorithm to automatically iden-
tify light verb constructions in Hungarian.

5 The corpus

In order to facilitate the extraction and the NLP
treatment of Hungarian light verb constructions,
we decided to build a corpus in which light verb
constructions are annotated. The Szeged Tree-
bank (Csendes et al., 2005) – a database in which
words are morphosyntactically tagged and sen-
tences are syntactically parsed – constitutes the
basis for the annotation. We first selected the
subcorpora containing business news, newspaper
texts and legal texts for annotation since light verb
constructions are considered to frequently occur
in these domains (see B. Kovács (1999)). How-
ever, we plan to extend the annotation to other
subcorpora as well (e.g. literary texts) in a later
phase. Statistical data on the annotated subcor-
pora can be seen in Table 1.

5.1 Types of light verb constructions
As Hungarian is an agglutinative language, light
verb constructions may occur in various forms.
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sentences words
business news 9574 186030
newspapers 10210 182172
legal texts 9278 220069
total 29062 582871

Table 1: Number of sentences and words in the
annotated subcorpora

For instance, the verbal component may be in-
flected for tense, mood, person, number, etc.
However, these inflectional differences can be eas-
ily resolved by a lemmatizer. On the other hand,
besides the prototypical noun + verb combination,
light verb constructions may be present in differ-
ent syntactic structures, that is, in participles and
infinitives and they can also undergo nominaliza-
tion. These types are all annotated in the corpus
texts since they also occur relatively frequently
(see statistical data in 5.3). All annotated types
are illustrated below.

• Noun + verb combination <verb>

bejelentést tesz

announcement-ACC makes

’to make an announcement’

• Participles <part>

– Present participle
életbe lépő (intézkedés)
life-ILL stepping (instruction)
’(an instruction) taking effect’

– Past participle
csődbe ment (cég)
bankrupt-ILL gone (firm)
’(a firm) that went bankrupt’

– Future participle
fontolóra veendő (ajánlat)
consideration-SUB to be taken (offer)
’(an offer) that is to be taken into con-
sideration’

– Infinitive
forgalomba hozni
circulation-ILL bring-INF

’to put into circulation’

• Nominalization <nom>

bérbe vétel

rent-ILL taking

’hiring’

Split light verb constructions, where the noun
and the verb are not adjacent, are also annotated
and tagged. In this way, their identification be-
comes possible and the database can be used for
training an algorithm that automatically recog-
nizes (split) light verb constructions.

5.2 Annotation principles
Corpus texts contain single annotation, i.e. one
annotator worked on each text. Light verb con-
structions can be found in between XML tags
<FX></FX>. In order to decide whether a noun
+ verb combination is a light verb construction or
not, annotators were suggested to make use of a
test battery developed for identifying Hungarian
light verb constructions (Vincze, 2008).

The annotation process was carried out manu-
ally on the syntactically annotated version of the
Szeged Treebank, thus, phrase boundaries were
also taken into consideration when marking light
verb constructions. Since the outmost boundary
of the nominal component was considered to be
part of the light verb construction, in several cases
adjectives and other modifiers of the nominal head
are also included in the construction, e.g.:

<FX>nyilvános ajánlatot tesz</FX>

public offer-ACC make

’to make a public offer’

In the case of participles, NP arguments may
be also included (although in English, the same
argument is expressed by a PP):

<FX>Nyı́regyházán tartott
ülésén</FX>

Nyı́regyháza-SUP hold-PPT session-
3SGPOSS-SUP

’at its session held in Nyı́regyháza’

Constructions with a nominal component in the
accusative case can be nominalized in two ways
in Hungarian, as in:
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szerződést köt

contract-ACC bind

’to make a contract’

<FX>szerződéskötés</FX>

contract+bind-GERUND

’making a contract’

<FX>adásvételi szerződések
megkötése</FX>

sale contract-PL PREVERB-bind-
GERUND-3SGPOSS

’making of sales contracts’

Both types are annotated in the corpus.
Besides the prototypical occurrences of light

verb constructions (i.e. a bare common noun +
verb3), other instances were also annotated in the
corpus. For instance, the noun might be accompa-
nied by an article or a modifier (recall that phrase
boundaries were considered during annotation) or
– for word order requirements – the noun follows
the verb as in:

Ő hozta a jó döntést.

he bring-PAST-3SG-OBJ the good
decision-ACC

’It was him who made the good deci-
sion.’

For the above reasons, a single light verb con-
struction manifests in several different forms in
the corpus. However, each occurrence is manu-
ally paired with its prototypical (i.e. bare noun +
verb) form in a separate list, which is available at
the corpus website.

5.3 Statistics on corpus data

The database contains 3826 occurrences of 658
light verb constructions altogether in 29062 sen-
tences. Thus, a specific light verb construction

3As opposed to other languages where prototypical light
verb constructions consist of a verb + a noun in accusative or
a verb + a prepositional phrase (see e.g. Krenn (2008)), in
Hungarian, postpositional phrases rarely occur within a light
verb construction. However, annotators were told to annotate
such cases as well.

occurs 5.8 times in the corpus on average. How-
ever, the participle form irányadó occurs in 607
instances (e.g. in irányadó kamat ’prime rate’)
due to the topic of the business news subcorpus,
which may distort the percentage rates. For this
reason, statistical data in Table 2 are shown the
occurrences of irányadó excluded.

verb part nom split total
business 565 270 90 40 965
news 58.6% 28% 9.3% 4.1% 25.2%
news- 458 192 55 67 772
papers 59.3% 24.9% 7.1% 8.7% 20.2%
legal 640 504 709 236 2089
texts 30.7% 24.1% 33.9% 11.3% 54.6%
total 1663 966 854 236 3826

43.5% 25.2% 22.3% 9% 100%

Table 2: Subtypes of light verb constructions in
the corpus

It is revealed that although it is verbal occur-
rences that are most frequent, the percentage rate
of participles is also relatively high. The number
of nominalized or split constructions is consider-
ably lower (except for the law subcorpus, where
their number is quite high), however, those to-
gether with participles are responsible for about
55% of the data, which indicates the importance
of their being annotated as well.

As for the general frequency of light verb con-
structions in texts, we compared the number of
verb + argument relations found in the Szeged De-
pendency Treebank (Vincze et al., 2010) where
the argument was a common noun to that of light
verb constructions. It has turned out that about
13% of verb + argument relations consist of light
verb constructions. This again emphasizes that
they should be paid attention to, especially in the
legal domain (where this rate is as high as 36.8%).
Statistical data are shown in Table 3.

V + argument LVC
business news 9524 624 (6.6%)
newspapers 3637 539 (14.8%)
legal texts 2143 889 (36.8%)
total 15574 2052 (13.2%)

Table 3: Verb + argument relations and light verb
constructions

The corpus is publicly available for re-
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search and/or educational purposes at
www.inf.u-szeged.hu/rgai/nlp.

6 The usability of the corpus

As emphasized earlier, the proper treatment of
light verb constructions is of primary importance
in NLP applications. In order to achieve this,
their identification is essential. The corpus cre-
ated can function as the training database for the
implementation of an algorithm capable of recog-
nizing light verb constructions, which we plan to
develop in the near future. In the following, the
ways machine translation and information extrac-
tion can profit from such a corpus and algorithm
are shortly presented.

6.1 Light verb constructions and machine
translation

When translating collocations, translation pro-
grams face two main problems. On the one hand,
parts of the collocation do not always occur next
to each other in the sentence (split collocations).
In this case, the computer must first recognize that
the parts of the collocation form one unit (Oravecz
et al., 2004), for which the multiword context of
the given word must be considered. On the other
hand, the lack (or lower degree) of compositional-
ity blocks the possibility of word-by-word trans-
lation (Siepmann, 2005; Siepmann, 2006). How-
ever, a (more or less) compositional account of
light verb constructions is required for successful
translation (Dura and Gawrońska, 2005).

To overcome these problems, a reliable method
is needed to assure that the nominal and verbal
parts of the construction be matched. This re-
quires an algorithm that can identify light verb
constructions. In our corpus, split light verb con-
structions are also annotated, thus, it is possible to
train the algorithm to recognize them as well: the
problem of split collocations can be eliminated in
this way.

A comprehensive list of light verb construc-
tions can enhance the quality of machine transla-
tion – if such lists are available for both the source
and the target language. Annotated corpora (es-
pecially and most desirably, parallel corpora) and
explanatory-combinatorial dictionaries4 are possi-

4Explanatory combinatorial dictionaries are essential for

ble sources of such lists. Since in foreign language
equivalents of light verb constructions, the nomi-
nal components are usually literal translations of
each other (Vincze, 2009), by collating the cor-
responding noun entries in these lists the foreign
language variant of the given light verb construc-
tion can easily be found. On the other hand, in or-
der to improve the building of such lists, we plan
to annotate light verb constructions in a subcorpus
of SzegedParalell, a Hungarian-English manually
aligned parallel corpus (Tóth et al., 2008).

6.2 Light verb constructions and
information extraction

Information extraction (IE) seeks to process large
amounts of unstructured text, in other words, to
collect relevant items of information and to clas-
sify them. Even though humans usually overper-
form computers in complex information process-
ing tasks, computers also have some obvious ad-
vantages due to their capacity of processing and
their precision in performing well-defined tasks.

For several IE applications (e.g. relationship
extraction) it is essential to identify phrases in
a clause and to determine their grammatical role
(subject, object, verb) as well. This can be carried
out by a syntactic parser and is a relatively sim-
ple task. However, the identification of the syn-
tactic status of the nominal component is more
complex in the case of light verb constructions
for it is a quasi-argument of the verb not to be
confused with other arguments (Alonso Ramos,
1998). Thus, the parser should recognize the spe-
cial status of the quasi-argument and treat it in a
specific way as in the following sentences, one of
which contains a light verb construction while the
other one a verbal counterpart of the construction:

Pete made a decision on his future.

Pete decided on his future.

relation descriptions (up to the present, only fractions of the
dictionary have been completed for Russian (Mel’čuk and
Žolkovskij, 1984) and for French (see Mel’čuk et al. (1984
1999)), besides, trial entries have been written in Polish, En-
glish and German that contain the relations of a certain lexi-
cal unit to other lexemes given by means of lexical functions
(see e.g. Mel’čuk et al. (1995)). These dictionaries indicate
light verb constructions within the entry of the nominal com-
ponent.
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In the sentence with the verbal counterpart, the
event of deciding involves two arguments: he and
his future. In the sentence with the light verb con-
struction, the same arguments can be found, how-
ever, it is unresolved whether they are the argu-
ments of the verb (made) or the nominal compo-
nent (decision). If a precise syntactic analysis is
needed, it is crucial to know which argument be-
longs to which governor. Nevertheless, it is still
debated if syntactic arguments should be divided
between the nominal component and the verb (see
Meyers et al. (2004a) on argument sharing) and if
yes, how (Alonso Ramos, 2007).

For the purpose of information extraction, such
a detailed analysis is unnecessary and in general
terms, the nominal component can be seen as part
of the verb, that is, they form a complex verb sim-
ilarly to phrasal or prepositional verbs and this
complex verb is considered to be the governor
of arguments. Thus, the following data can be
yielded by the IE algorithm: there is an event
of decision-making, Pete is its subject and it is
about his future (and not an event of making
with the arguments decision, Pete and his fu-
ture). Again, the precise identification of light
verb constructions can highly improve the perfor-
mance of parsers in recognizing relations between
the complex verb and its arguments.

7 Conclusion

In this paper, we have presented the development
of a corpus of Hungarian light verb constructions.
Basic annotation guidelines and statistical data
have also been included. The annotated corpus
can serve as a training database for implementing
an algorithm that aims at identifying light verb
constructions. Several NLP applications in the
fields of e.g. machine translation and information
extraction may profit from the successful integra-
tion of such an algorithm into the system, which
we plan to develop in the near future.
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wards Automatic Translation of Support Verbs Con-
structions: the Case of Polish robic/zrobic and
Swedish göra. In Proceedings of the 2nd Language
& Technology Conference, pages 450–454, Poznań,
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Fazly, Afsaneh and Suzanne Stevenson. 2007. Distin-
guishing Subtypes of Multiword Expressions Using
Linguistically-Motivated Statistical Measures. In
Proceedings of the Workshop on A Broader Perspec-
tive on Multiword Expressions, pages 9–16, Prague,
Czech Republic, June. Association for Computa-
tional Linguistics.

1116
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szótárban [Noun + verb constructions in the dictio-
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Abstract

Syntax based reordering has been shown
to be an effective way of handling word
order differences between source and
target languages in Statistical Machine
Translation (SMT) systems. We present
a simple, automatic method to learn rules
that reorder source sentences to more
closely match the target language word or-
der using only a source side parse tree and
automatically generated alignments. The
resulting rules are applied to source lan-
guage inputs as a pre-processing step and
demonstrate significant improvements in
SMT systems across a variety of lan-
guages pairs including English to Hindi,
English to Spanish and English to French
as measured on a variety of internal test
sets as well as a public test set.

1 Introduction

Different languages arrange words in different or-
ders, whether due to grammatical constraints or
other conventions. Dealing with these word order
permutations is one of the fundamental challenges
of machine translation. Given an exceptionally
large training corpus, a phrase-based system can
learn these reordering on a case by case basis.
But, if our systems are to generalize to phrases not
seen in the training data, they must explicitly cap-
ture and model these reorderings. However, per-
mutations are difficult to model and impractical to
search.

Presently, approaches that handle reorderings

typically model word and phrase movements via
a distortion model and rely on the target language
model to produce words in the right order. Early
distortion models simply penalized longer jumps
more than shorter jumps (Koehn et al., 2003)
independent of the source or target phrases
in question. Other models (Tillman, 2004),
(Al-Onaizan and Papineni, 2006) generalize this
to include lexical dependencies on the source.

Another approach is to incorporate features,
based on the target syntax, during modeling and
decoding, and this is shown to be effective for var-
ious language pairs (Yamada and Knight, 2001),
(Zollmann and Venugopal, 2006). Hierarchical
phrase-based decoding (Chiang, 2005) also al-
lows for long range reordering without explic-
itly modeling syntax. While these approaches
have been shown to improve machine translation
performance (Zollmann et al., 2008) they usually
combine chart parsing with the decoding process,
and are significantly more computationally inten-
sive than phrase-based systems.

A third approach, one that has proved to be
useful for phrase-based SMT systems, is to re-
order each source-side sentence using a set of
rules applied to a parse tree of the source sen-
tence. The goal of these rules is to make the
word order of the source sentence more sim-
ilar to the expected target sentence word or-
der. With this approach, the reordering rules
are applied before training and testing with an
SMT system. The efficacy of these methods has
been shown on various language pairs including:
French to English (Xia and McCord, 2004), Ger-
man to English (Collins et al., 2005), English to
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Chinese, (Wang et al., 2007) and Hindi to English
(Ramanathan et al., 2008).

In this paper, we propose a simple model for re-
ordering conditioned on the source side parse tree.
The model is learned using a parallel corpus of
source-target sentence pairs, machine generated
word alignments, and source side parses. We ap-
ply the reordering model to both training and test
data, for four different language pairs: English
→ Spanish, English → French, English → Hindi,
and English → German. We show improvements
in machine translation performance for all of the
language pairs we consider except for English →
German. We use this negative result to propose
extensions to our reordering model. We note that
the syntax based reordering we propose can be
combined with other approaches to handling re-
ordering and does not have to be followed by an
assumption of monotonicity. In fact, our phrase-
based model, trained upon reordered data, retains
its reordering models and search, but we expect
that these facilities are employed much more spar-
ingly with reordered inputs.

2 Related work

There is a significant quantity of work in syntax
based reordering employed to improve machine
translation systems. We summarize our contribu-
tions to be:

• Learning the reordering rules based on train-
ing data (without relying on linguistic knowl-
edge of the language pair)

• Requiring only source side parse trees
• Experimental results showing the efficacy for

multiple language pairs
• Using a lexicalized distortion model for our

baseline decoder

There have been several studies that have
demonstrated improvements with syntax
based reordering based upon hand-written
rules. There have also been studies inves-
tigating the sources of these improvements
(Zwarts and Dras, 2007). Hand-written rules
depend upon expert knowledge of the linguis-
tic properties of the particular language pair.
Initial efforts (Niessen and Ney, 2001) were
made at improving German-English translation

by handling two phenomena: question inver-
sion and detachable verb prefixes in German.
In (Collins et al., 2005), (Wang et al., 2007),
(Ramanathan et al., 2008), (Badr et al., 2009)
rules are developed for translation from Ger-
man to English, Chinese to English, English
to Hindi, and English to Arabic respectively.
(Xu et al., 2009) develop reordering rules based
upon a linguistic analysis of English and Korean
sentences and then apply those rules to trans-
lation from English into Korean and four other
languages: Japanese, Hindi, Urdu and Turkish.
Unlike this body of work, we automatically learn
the rules from the training data and show efficacy
on multiple language pairs.

There have been some studies that try to learn
rules from the data. (Habash, 2007) learns re-
ordering rules based on a dependency parse and
they report a negative result for Arabic to En-
glish translation. (Zhang et al., 2007) learn re-
ordering rules on chunks and part of speech
tags, but the rules they learn are not hierarchi-
cal and would require large amounts of training
data to learn rules for long sentences. Addition-
ally, we only keep a single best reordering (in-
stead of a lattice with possible reorderings) which
makes the decoding significantly more efficient.
(Xia and McCord, 2004) uses source and target
side parse trees to automatically learn rules to re-
order French sentences to match English order.
The requirement to have both source and target
side parse trees makes this method inapplicable
to any language that does not have adequate tree
bank resources. In addition, this work reports re-
sults using monotone decoding, since their exper-
iments using non-monotone decoding without a
distortion model were actually worse.

3 Reordering issues in specific languages

In this section we discuss the reordering issues
typical of translating between English and Hindi,
French, Spanish and German which are the four
language pairs we experiment on in this paper.

3.1 Spanish and French

Typical word ordering patterns common to these
two European languages relate to noun phrases in-
cluding groups of nouns and adjectives. In con-
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trast to English, French and Spanish adjectives
and adjunct nouns follow the main noun, i.e. we
typically observe a reversal of word order in noun
phrases, e.g., “A beautiful red car” translates
into French as “Une voiture rouge beau”, and as
“Un coche rojo bonito” into Spanish. Phrase-
based MT systems are capable of capturing these
patterns provided they occur with sufficient fre-
quency for each example in the training data. For
rare noun phrases, however, the MT may pro-
duce erroneous word order that can lead to seri-
ous distortions in the meaning. Particularly dif-
ficult are nominal phrases from specialized do-
mains that involve challenging terminology, for
example: “group reference attribute” and “valida-
tion checking code”. In both instances, the base-
line MT system generated translations with an in-
correct word order and, consequently, possibly a
different meaning. We will return to these two ex-
amples in Section 5.1 to compare the output of a
MT system with and without reordering.

3.2 German

Unlike French and Spanish, German poses a con-
siderably different challenge with respect to word
ordering. The most frequent reordering in German
relates to verbs, particularly verb groups consist-
ing of auxiliary and main verbs, as well as verbs
in relative clauses. Moreover, reordering patterns
between German and English tend to span large
portions of the sentence. We included German in
our investigations to determine whether our auto-
mated rule extraction procedure can capture such
long distance patterns.

3.3 Hindi

Hindi word order is significantly different than
English word order; the typical order followed
is Subject Object Verb (although Object Subject
Verb order can be used if nouns are followed by
appropriate case markers). This is in contrast to
English which has a Subject Verb Object order.
This can result in words that are close in English
moving arbitrarily far apart in Hindi depending on
the length of the noun phrase representing the ob-
ject and the length of the verb phrase. These long
range reorderings are generally hard for a phrase
based system to capture. Another way Hindi and

English differ is that prepositions in English be-
come postpositions in Hindi and appear after the
noun phrase. Again, this reordering can lead to
long distance movements of words. We include
Hindi in our investigation since it has significantly
different structure as compared to English.

4 Learning reordering rules

In this section we describe how we learn rules that
transform source parse trees so the leaf word order
is more like the target language. We restrict our-
selves to reorderings that can be obtained by per-
muting child nodes at various interior nodes in a
parse tree. With many reordering phenomena dis-
cussed in Section 3 this is a fairly strong assump-
tion about pairs of languages, and there are exam-
ples in English→Hindi where such an assumption
will not allow us to generate the right reordering.
As an example consider the English sentence “I
do not want to play”. The sentence has a parse:

S

NP

PRP

I

VP

VBP

do

RB

not

VP

VB

want

S

VP

TO

to

VP

VB

play

The correct word order of the translation in Hindi
is “I to play not want” In this case, the word not
breaks up the verb phrase want to play and hence
the right Hindi word order cannot be obtained by
the reordering allowed by our model. We found
such examples to be rare in English→Hindi, and
we impose this restriction for the simplicity of the
model. Experimental results on several languages
show benefits of reordering in spite of this simpli-
fying assumption.

Consider a source sentence s and its corre-
sponding constituency parse tree S1. We set up
the problem in a probabilistic framework, i.e. we
would like to build a probabilistic model P (T |S)
that assigns probabilities to trees such that the

1In this paper we work with constituency parse trees. Ini-
tial experiments, applying similar techniques to dependency
parse trees did not yield improvements.
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word order in trees T which are assigned higher
probability match the order of words in the target
language. A parse tree, S is a set of nodes. Inte-
rior nodes have an ordered list of children. Leaf
nodes in the tree are the words in the sentence
s, and interior nodes are labeled by the linguis-
tic constituent that they represent. Each word has
a parent node (with only one child) labeled by the
part-of-speech tag of the word.

Our model assigns non-zero probabilities to
trees that can be obtained by permuting the child
nodes at various interior nodes of the tree S. We
assume that children of a node are ordered inde-
pendently of all other nodes in the tree. Thus

P (T |S) =
∏

n∈I(S)

P (π(cn)|S, n, cn),

where I(S) is the set of interior nodes in the tree
S, cn is the list of children of node n and π is a
permutation. We further assume that the reorder-
ing at a particular node is dependent only on the
labels of its children:

P (T |S) =
∏

n∈I(S)

P (π(cn)|cn).

We parameterize our model using a log-linear
model:

P (π(cn)|cn) =
1

Z(cn)
exp(λT f(π, cn)). (1)

We choose the simplest possible set of feature
functions: for each observed sequence of non-
terminals we have one boolean feature per per-
mutation of the sequence of non-terminals, with
the feature firing iff that particular sequence is ob-
served. Assuming, we have a training corpus C of
(T, S) tree pairs, we could optimize the parame-
ters of our model to maximize :

∏
S∈C P (T |S).

With the simple choice of feature functions de-
scribed above, this amounts to:

P (π(cn)|cn) =
count(π(cn))

count(cn)
,

where count(cn) is the number of times the se-
quences of nodes cn is observed in the training
data and count(π(cn)) is the number of times

that cn in S is permuted to π(cn) in T . In Sec-
tion 6, we show considering more general fea-
ture functions and relaxing some of the indepen-
dence might yield improvements on certain lan-
guage pairs.

For each source sentence s with parse S we find
the tree T that makes the given alignment for that
sentence pair most monotone. For each node n in
the source tree S let Dn be the set of words that
are descendants of n. Let us denote by tpos(n) the
average position of words in the target sentence
that are aligned to words in Dn. Then

tpos(n) =
1

|Dn|
∑

w∈Dn

a(w),

where a(w) is the index of the word on the target
side that w is aligned with. If a word w is not
aligned to any target word, we leave it out from
the mean position calculation above. If a word w
is aligned to many words we let a(w) be the mean
position of the words that w is aligned to. For each
node n in the tree we transform the tree by sorting
the list of children of n according to tpos. The
pairs of parse trees that we obtain (S, T ) in this
manner form our training corpus to estimate our
parameters.

In using our model, we once again go for the
simplest choice, we simply reorder the source side
sentences by choosing arg maxT P (T |S) both in
training and in testing; this amounts to reordering
each interior node based on the most frequent re-
ordering of the constituents seen in training. To
reduce the effect of noise in training alignments
we apply the reordering, only if we have seen the
constituent sequence often enough in our training
data (a count threshold parameter) and if the most
frequent reordering is sufficiently more frequent
than the next most frequent reordering (a signifi-
cance threshold).

5 Experiments

5.1 Results for French, Spanish, and German

In each language, the rule extraction was
performed using approximately 1.2M sen-
tence pairs aligned using a maxent aligner
(Ittycheriah and Roukos, 2005) trained using a
variety of domains (Europarl, computer manuals)
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and a maximum entropy parser for English
(Ratnaparkhi, 1999). With a significance thresh-
old of 1.2, we obtain about 1000 rules in the
eventual reordering process.

Phrase-based systems were trained for each lan-
guage pair using 11M sentence pairs spanning a
variety of publicly available (e.g. Europarl, UN
speeches) and internal corpora (IT technical and
news domains). The system phrase blocks were
extracted based on a union of HMM and max-
ent alignments with corpus-selective count prun-
ing. The lexicalized distortion model was used
as described in (Al-Onaizan and Papineni, 2006)
with a window width of up to 5 and a maximum
number of skipped (not covered) words during de-
coding of 2. The distortion model assigns a prob-
ability to a particular word to be observed with
a specific jump. The decoder uses a 5-gram in-
terpolated language model spanning the various
domains mentioned above. The baseline system
without reordering and a system with reordering
was trained and evaluated in contrastive experi-
ments. The evaluation was performed utilizing the
following (single-reference) test sets:

• News: 541 sentences from the news domain.
• TechA: 600 sentences from a computer-

related technical domain, this has been used
as a dev set.

• TechB: 1038 sentences from a similar do-
main as TechA used as a blind test.

• Dev09: 1026 sentences defined as the news-
dev2009b development set of the Workshop
on Statistical Machine Translation 2009 2.
This set provides a reference measurement
using a public data set. Previously published
results on this set can be found, for example,
in (Popovic et al., 2009).

In order to assess changes in word ordering pat-
terns prior to and after an application of the re-
ordering, we created histograms of word jumps
in the alignments obtained in the baseline as well
as in the reordered system. Given a source word
si at index i and the target word tj it is aligned
to at index j, a jump of 1 would correspond to
si+1 aligning to target word tj+1, while an align-
ment to tj−1 corresponds to a jump of -1, etc. A

2http://statmt.org/wmt09/
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Figure 1: Difference-histogram of word order
distortions for English→Spanish (upper), and
English→French (lower).

histogram over the jump values gives us a sum-
mary of word order distortion. If all of the jumps
were one, then there is no reordering between the
two languages. To gain insight into changes in-
troduced by our reordering we look at differences
of the two histograms i.e., counts after reordering
minus counts before reordering. We would hope
that after reordering most of the jumps are small
and concentrated around one. Figure 1 shows
such difference-histograms for the language pairs
English→Spanish and English→French, respec-
tively, on a sample of about 15k sentence pairs
held out of the system training data. Here, a pos-
itive difference value indicates an increased num-
ber after reordering. In both cases a consistent
trend toward monotonicity is observed, i.e more
jumps of size one and two, and fewer large jumps.
This confirms the intended reordering effect and
indicates that the reordering rules extracted gen-
eralize well.

Table 1 shows the resulting uncased BLEU
scores for English-Spanish and English-French.

In both cases the reordering has a consistent
positive effect on the BLEU scores across test sets.
In examining the sources of improvement, we no-
ticed that word order in several noun phrases that
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System News TechA TechB Dev09

Baseline 0.3849 0.3371 0.3483 0.2244

S
pa

ni
sh

Reordered 0.4031 0.3582 0.3605 0.2320

Baseline 0.5140 0.2971 0.3035 0.2014

F
re

nc
h

Reordered 0.5242 0.3152 0.3154 0.2092

Baseline 0.2580 0.1582 0.1697 0.1281

G
er

m
an

Reordered 0.2544 0.1606 0.1682 0.1271

Baseline 20.0

H
in

di

Reordered 21.7

Table 1: Uncased BLEU scores for phrase-based
machine translation.

were not common in the training data were fixed
by use of the reordering rules.

Table 1 shows the BLEU scores for the
English→German language pair, for which a
mixed result is observed. The difference-
histogram for English→German, shown in Figure
2, differs from those of the other languages with
several increases in jumps of large magnitude, in-
dicating failure of the extracted rules to general-
ize.

The failure of our simple method to gain con-
sistent improvements comparable to Spanish and
French, along with our preliminary finding that a
relatively few manually crafted reordering rules
(we describe these in Section 6.4) tend to outper-
form our method, leads us to believe that a more
refined approach is needed in this case and will be
subject of further discussion below.

5.2 Results for Hindi

Our Hindi-English experiments were run with
an internal parallel corpus of roughly 250k sen-
tence pairs (5.5M words) consisting of various
domains (including news). To learn reordering
rules we used HMM alignments and a maxent
parser (Ratnaparkhi, 1999), with a count thresh-
old of 100, and a significance threshold of 1.7
(these settings gave us roughly 200 rules). We also
experimented with other values of these thresh-
olds and found that the performance of our sys-
tems were not very sensitive to these thresholds.
We trained Direct Translation Model 2 (DTM)
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Figure 2: Difference-histogram of word order dis-
tortions for English→German.

systems (Ittycheriah and Roukos, 2007) with and
without source reordering and evaluated on a test
set of 357 sentences from the News domain.
We note that the DTM baseline includes features
(functions of target words and jump size) that al-
low it to model lexicalized reordering phenomena.
The reordering window size was set to +/- 8 words
for the baseline and system with reordered in-
puts. Table 1 shows the uncased BLEU scores for
English-Hindi, showing a gain from using the re-
ordering rules. For the reordered case, the HMM
alignments are rederived, but the accuracy of these
were no better than those of the unreordered in-
put and experiments showed that the gains in per-
formance were not due to the effect on the align-
ments.

Figure 3 shows difference-histograms for the
language pair English→Hindi, on a sample of
about 10k sentence pairs held out of the system
training data. The histogram indicates that our
reordering rules generalize and that the reordered
English is far more monotonic with respect to the
Hindi.

6 Analysis of errors and future
directions

In this section, we analyze some of the sources of
errors in reordering rules learned via our model, to
better understand directions for further improve-
ment.
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Figure 3: Difference-histogram of word order dis-
tortions for English→Hindi.

6.1 Model weakness

In our initial experiments, we noticed that for the
most frequent reordering rules in English→Hindi
(e.g that IN NP or NP PP flips in Hindi) the prob-
ability of a reordering was roughly 65%. This
was concerning since it meant that on 35% of the
data we would be making wrong reordering deci-
sions by choosing the most likely reordering. To
get a better feel for whether we needed a stronger
model (e.g by lexicalization or by looking at larger
context in the tree rather than just the children),
we analyzed some of the cases in our training data
where (IN,NP), (NP, PP) pairs were left unaltered
in Hindi. In doing that analysis, we noticed exam-
ples involving negatives that our model does not
currently handle. The first issue was mentioned
in Section 4, where the assumption that we can
achieve the right word order by reordering con-
stituent phrases, is incorrect. The second issue
is illustrated by the following sentences: I have
some/no books, which have similar parse struc-
tures, the only difference being the determiner
some vs the determiner no. In Hindi, the order
of the fragments some books and the fragment
no books are different (in the first case the words
stay in order, in the second the flip). Handling
this example would need our model to be lexical-
ized. These issue of negatives requiring special
handling also came up in our analysis of German
(Section 6.4). Other than the negatives (which re-
quire a lexicalized model), the major reason for
the lack of sharpness of the reordering rule proba-
bility was alignment errors and parser issues. We

Aligner
Number of
Sentences fMeasure BLEU score

HMM 250k 62.4 21.7
MaxEnt 250k 76.6 21.4
Manual 5k - 21.3

Table 2: Using different alignments

look at these topics next.

6.2 Alignment accuracy

Since we rely on automatically generated align-
ments to learn the rules, low accuracy of
the alignments could impact the quality of
the rules learned. This is especially a con-
cern for English→Hindi since the quality of
HMM alignments are fairly low. To quan-
tify this effect, we learn reordering rules us-
ing three sets of alignments: HMM alignments,
alignments from a supervised MaxEnt aligner
(Ittycheriah and Roukos, 2005), and hand align-
ments. Table 2 summarizes our results using
aligners with differing alignment qualities for our
English→Hindi task and shows that quality of
alignments in learning the rules is not the driving
factor in affecting rule quality.

6.3 Parser accuracy

Accuracy of the parser in the source language is
a key requirement for our reordering method, be-
cause we choose the single best reordering based
on the most likely parse of the source sentence.
This would especially be an issue in translat-
ing from languages other than English, where the
parser would not be of quality comparable to the
English parser.

In examining some of the errors in reordering
we did observe a fair fraction attributable to
issues in parsing, as seen in the example sentence:
The rich of this country , corner almost 90% of
the wealth .
The second half of the sentence is parsed by the
Berkeley parser (Petrov et al., 2006) as:

FRAG

NP-SBJ

NN

corner

ADVP

RB

almost

NP-SBJ

NP

CD

90%

PP

IN

of

NP

DT

the

NN

wealth
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and by IBM’s maximum entropy
parser parser (Ratnaparkhi, 1999) as:

VP

VB

corner

NP

NP

QP

RB

almost

CD

90%

PP

IN

of

NP

DT

the

NN

wealth

With the first parse, we get the right Hindi order
for the second part of the sentence which is: the
wealth of almost 90% corner . To investigate the
effect of choice of parser we compared using the
Berkeley parser and the IBM parser for reorder-
ing, and we found the BLEU score essentially
unchanged: 21.6 for the Berkeley parser and
21.7 for the IBM parser. A potential source of
improvements might be to use alternative parses
(via different parsers or n-best parses) to generate
n-best reorderings both in training and at test.

6.4 Remarks on German reordering

Despite a common heritage, German word order is
distinct from English, particularly regarding verb
placement. This difference can be dramatic, if an
auxiliary (e.g. modal) verb is used in conjunction
with a full verb, or the sentence contains a subor-
dinate clause. In addition to our experiments with
automatically learned rules, a small set of hand-
crafted reordering rules was created and evalu-
ated. Our preliminary results indicate that the lat-
ter rules tend to outperform the automatically de-
rived ones by 0.5-1.0 BLEU points on average.
These rules are summarized as follows:

1. In a VP immediately following an NP, move
the negation particle to main verb.

2. Move a verb group away from a modal verb;
to the end the of a VP. Negation also moves
along with verb.

3. Move verb group to end of an embed-
ded/relative clause.

4. In a VP following a subject, move negation
to the end of VP (handling residual cases)

The above hand written rules show several weak-
nesses of our automatically learned rules for re-
ordering. Since our model is not lexicalized, nega-
tions are not handled properly as they are tagged

RB (along with other adverbs). Another limitation
apparent from the first rule above (the movement
of verbs in a verb phrase depends on the previous
phrase being a noun phrase) is that the automatic
reordering rule for a node’s children depends only
on the children of that node and not a larger con-
text. For instance, a full verb following a modal
verb is typically parsed as a VP child node of the
modal VP node, hence the automatic rule, as cur-
rently considered, will not take the modal verb
(being a sibling of the full-verb VP node) into ac-
count. We are currently investigating extensions
of the automatic rule extraction alorithm to ad-
dress these shortcomings.

6.5 Future directions

Based on our analysis of the errors and on the
hand designed German rules we would like to ex-
tend our model with more general feature func-
tions in Equation 1 by allowing features: that
are dependent on the constituent words (or head-
words), that examine a large context than just a
nodes children (see the first German rule above)
and that fire for all permutations when the con-
stituent X is moved to the end (or start). This
would allow us to generalize more easily to learn
rules of the type “move X to the end of the
phrase”. Another direction that we feel should be
explored, is the use of multiple parses to obtain
multiple reorderings and combine these at a later
stage.

7 Conclusions

In this paper we presented a simple method to
automatically derive rules for reordering source
sentences to make it look more like target
language sentences. Experiments (on inter-
nal and public test sets) indicate performance
gains for English→French, English→Spanish,
and English→Hindi. For English→German we
did not see improvements with automatically
learned rules while a few hand designed rules did
give improvements, which motivated a few direc-
tions to explore.
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Abstract

Strategic business decision making in-
volves the analysis of market forecasts.
Today, the identification and aggregation
of relevant market statements is done by
human experts, often by analyzing doc-
uments from the World Wide Web. We
present an efficient information extrac-
tion chain to automate this complex nat-
ural language processing task and show
results for the identification part. Based
on time and money extraction, we iden-
tify sentences that represent statements on
revenue using support vector classifica-
tion. We provide a corpus with German
online news articles, in which more than
2,000 such sentences are annotated by do-
main experts from the industry. On the
test data, our statement identification al-
gorithm achieves an overall precision and
recall of 0.86 and 0.87 respectively.

1 Introduction

Touch screen market to hit$9B by 2015. 50 sup-
pliers provide multi-touch screens, and that num-
ber is likely to rise.1

Strategic business decision making is a highly
complex process that requires experience as well
as an overall view of economics, politics, and
technological developments. Clearly, for the time
being this process cannot be done by a computer at
the level of a human expert. However, important
tasks may be automated such as market forecast-
ing, which relies on identifying and aggregating
relevant information from the World Wide Web
(Berekoven et. al., 2001). An analyst who inter-
prets the respective data can get a reasonable idea
about the future market volume, for example. The

1Adapted from http://industry.bnet.com.

problem is that a manually conducted Web search
is time-consuming and usually far from being ex-
haustive. With our research we seek to develop
an efficient system that finds and analyzes market
forecast information with retrieval, extraction and
natural language processing (NLP) techniques.

We contribute to the following situation. For a
given product, technology, or industry sector we
identify and aggregate statements on its market
development found on relevant websites. In par-
ticular, we extract time information (“by 2015”)
and money information (“$9B”) and use support
vector classification to identify sentences that rep-
resent market statements. The statements’ sub-
jects (“touch screen”) are found by relating recog-
nized named entities to the time and money infor-
mation, which we then normalize and aggregate.
In this paper we report on results for the statement
identification. To the best of our knowledge no
data for the investigation of such market analysis
tasks has been made publicly available until now.
We provide such a corpus with statements on rev-
enue annotated in news articles from the Web; the
corpus was created in close collaboration with our
industry partnerResolto Informatik GmbH.

We pursue two objectives, namely, to support
human experts with respect to the effectiveness
and completeness of their analysis, and to estab-
lish a technological basis upon which more intri-
cate analysis tasks can be automated. To summa-
rize, the main contributions of this paper are:

1. We show how to decompose the identifi-
cation and aggregation of forecasts into re-
trieval, extraction, and normalization tasks.

2. We introduce a manually annotated German
corpus for computational linguistics research
on market information.

3. We offer empirical evidence that classifica-
tion and extraction techniques can be com-
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bined to precisely identify statements on rev-
enue.

1.1 Related Work

Stein et. al. (2005) were among the first to con-
sider information extraction for automatic mar-
ket forecasting. Unlike us, the authors put much
emphasis on retrieval aspects and applied depen-
dency grammar parsing to identify market state-
ments. As a consequence their approach suffers
from the limitation to a small number of prede-
fined sentence structures.

While we obtain market forecasts by extract-
ing expert statements from the Web, related ap-
proaches derive them from past market behavior
and quantitative news data. Koppel and Shtrim-
berg (2004) studied the effect of news on finan-
cial markets. Lavrenko et al. (2000) used time-
series analysis and language models to predict
stock market prices and, similarly, Lerman et al.
(2008) proposed a system for forecasting public
opinion based on concurrent modeling of news ar-
ticles and market history. Another related field is
opinion mining in the sense that it relies on the ag-
gregation of individual statements. Glance et al.
(2005) inferred marketing intelligence from opin-
ions in online discussions. Liu et al. (2007) exam-
ined the effect of Weblogs on box office revenues
and combined time-series with sentiment analysis
to predict the sales performance of movies.

The mentioned approaches are intended to re-
flect or to predict present developments and,
therefore, primarily help foroperative decision
making. In contrast, we aim at predicting long-
term market developments, which are essential for
strategicdecision making.

2 The Problem

Market forecasts depend on two parameters, the
topic of interest and thecriterion to look at. A
topic is either an organization or a market. Under
a market we unite branches, products, and tech-
nologies, because the distinction between these is
not clear in general (e.g., for semiconductors). In
contrast, we define a criterion to be a metric at-
tribute that can be measured over time. Here we
are interested in financial criteria such as revenue,

profit, and the like. The ambitious overall task that
we want to solve is as follows:

Task description: Given a topicτ and a finan-
cial criterionχ, find information forτ on the de-
velopment ofχ. Aggregate the found values onχ
with respect to time.

We omit the limitation to forecasts because we
could miss useful information otherwise:

(1) In 2008, the Egyptian automobile industry
achievedUS$ 9.96bnin sales.

(2) Egypt’s automotive sales will riseby 97%
from 2008 to 2013.

Both sentences have the same topic. In Particu-
lar, the 2008 amount of money from example (1)
can be aggregated with the forecast in (2) to infer
the predicted amount in 2013.

As in these examples, market information can
often only be found in running text; the major
source for this is the Web. Thus, we seek to
find web pages with sentences that representstate-
ments on a financial criterionχ and to make
these statements processable. Conceptually, such
a statement is a 5-tupleSχ = (S, g, T,M, td),
whereS is the topical subject, which may have a
geographic scopeg, T is a period of time,M con-
sists of a growth rate and/or an amount of money
to be achieved duringT with respect toχ, andtd
is the statement time, i.e., the point in time when
the statement was made.

3 Approach

Our goal is to find and aggregate statements on
a criterionχ for a topicτ . In close collaboration
with two companies from the semantic technology
field, we identified eight high-level subtasks in the
overall process as explained in the following. An
overview is given in Table 1.

3.1 Find Candidate Documents

To find web pages that are likely to contain state-
ments onχ andτ , we propose to perform a meta-
search by starting from a set of characteristic
terms of the domain and then using query expan-
sion techniques such as local context analysis (Xu
and Croft, 2000). As Stein et. al. (2005) describe,
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Subtask Applied technologies

1 Find candidate documents meta-search, query expansion, genre analysis
2 Preprocess content content extraction, sentence splitting, tokenization, POS tagging and chunking
3 Extract entities time and money extraction, named entity recognition of organizations and markets
4 Identify statements statistical classification based on lexical and distance features
5 Determine statement type relation extraction based on dependency parse trees, matching of word lists
6 Fill statement templates template filling, anaphora resolution, matching of word lists
7 Normalize values time and money normalization, coreference resolution
8 Aggregate information chronological merging and averaging, inference from subtopic to topic

Table 1: Subtasks of the identification and aggregation of market statements for a specified topic.
Experiments in this paper cover the subtasks written in black.

a genre analysis, which classifies a document with
respect to its form, style, and targeted audience,
may be deployed afterwards to further improve
the quality of the result list efficiently. In this way,
we only maintain candidate documents that look
promising on the surface.

3.2 Preprocess Content

Preprocessing is needed for accurate access to the
document text. Our overall task incorporates re-
lating information from different document areas,
so mixing up a web page’s main frame and side-
bars should be avoided. We choose Document
Slope Curve (DSC) for content detection, which
looks for plateaus in the HTML tag distribution.
Gottron (2007) has offered evidence that DSC
is currently the best algorithm in terms of pre-
cision. Afterwards, the sentences are split with
rules that consider the specific characteristics of
reports, press releases and the like, such as head-
lines between short paragraphs. In succeeding
subtasks, tokens as well as their Part-of-Speech
and chunk tags are also used, but we see no point
in not relying on standard algorithms here.

3.3 Extract Entities

The key to identify a statementSχ on a finan-
cial criterionχ is the extraction of temporal and
monetary entities. Recent works report that sta-
tistical approaches to this task can compete with
hand-crafted rules (Ahn et. al., 2005; Cramer et.
al., 2007). In the financial domain, however, the
focus is only on dates and periods as time infor-
mation, along with currency numbers, currency
terms, or fractions as money information. We
found that with regular expressions, which rep-

resent the complex but finite structures of such
phrases, we can achieve nearly perfect recall in
recognition (see Section 5).

We apply named entity recognition (NER) of
organizations and markets in this stage, too, so we
can relate statements to the appropriate subjects,
later on. Note that market names do not follow a
unique naming scheme, but we observed that they
often involve similar phrase patterns that can be
exploited as features. NER is usually done by se-
quence labeling, and we use heuristic beam search
due to our effort to design a highly efficient overall
system. Ratinov and Roth (2009) have shown for
the CoNLL-2003 shared task that Greedy decod-
ing (i.e., beam search of width 1) is competitive
to the widely used Viterbi algorithm while being
over 100 times faster at the same time.

3.4 Identify Statements

Based on time and money information, sentences
that represent a statementSχ can be identified.
Such a sentence gives us valuable hints on which
temporal and monetary entity stick together and
how to interpret them in relation. Additionally,
it serves as evidence for the statement’s correct-
ness (or incorrectness). Every sentence with at
least one temporal and one monetary entity is a
candidate. Criteria such as revenue usually imply
small core vocabulariesLpos, which indicate that
a sentence is on that criterion or which often ap-
pear close to it. On the contrary, there are sets of
wordsLneg that suggest a different criterion. For
a given text collection with known statements on
χ, bothLpos andLneg can be found by computing
the most discriminant terms with respect toχ. A
reasonable first approach is then to filter sentences
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that contain terms fromLpos and lack terms from
Lneg, but problems arise when terms from differ-
ent vocabularies co-occur or statements on differ-
ent criteria are attached to one another.

Instead, we propose a statistical learning ap-
proach. Support Vector Machines (SVMs) have
been proven to yield very good performance in
both general classification and sentence extraction
while being immune to overfitting (Steinwart and
Christmann, 2008; Hirao et. al., 2001). For our
candidates, we compute lexical and distance fea-
tures based onLpos, Lneg, and the time and money
information. Then we let an SVM use these fea-
tures to distinguish between sentences with state-
ments onχ and others. At least for online news
articles, this works reasonably well as we demon-
strate in Section 5. Note that classification is not
used to match the right entities, but to filter the
small set of sentences onχ.

3.5 Determine Statement Type

The statement type implies what information we
can process. If a sentence contains more than one
temporal or monetary entity, we need to relate the
correctT andM to eachSχ, now. The type ofSχ

then depends on the available money information,
its trendand thetime direction.

We consider four types of money information.
χ refers to a period of time that results in anew
amountA of money in contrast to itspreceding
amountAp. The difference betweenA and Ap

may be specified as anincremental amount∆A

or as arelative growth rater. M can span any
combination ofA, Ap, ∆A andr, and at leastA
andr constitute a reasonable entity on their own.
Sometimes the trend ofr (i.e. decreasing or in-
creasing) cannot be derived from the given val-
ues. However, this information can mostly be ob-
tained from a nearby indicator word (e.g. “plus” or
“decreased”) and, therefore, we address this prob-
lem with appropriate word lists. Once the trend is
known, any two types imply the others.

Though we are predominantly interested in
forecasts, statements also often represent adecla-
ration on achieved results. This distinction is es-
sential and can be based on time-directional indi-
cators (e.g. “next”) and the tense of leading verbs.
For this, we test both feature and kernel methods

on dependency parse trees, thereby determiningT
andM at the same time. We only parse the iden-
tified sentences, though. Hence, we avoid running
into efficiency problems.

3.6 Fill Statement Templates

The remaining subtasks are ongoing work, so we
only present basic concepts here.

BesidesT andM , the subjectS and the state-
ment timetd have to be determined.S may be
found within the previously extracted named enti-
ties using the dependency parse tree from Section
3.5 or by anaphora resolution. Possible limitations
to a geographic scopeg can be recognized with
word lists. In market analysis, the approximate
td suffices, and for most news articlestd is simi-
lar to their release date. Thus, if no date is in the
parse tree, we search the extracted temporal enti-
ties for the release date, which is often mentioned
at the beginning or end of the document’s content.
We fill one template(S, g, T,M, td) for eachSχ

where we have at leastS, T , andM .

3.7 Normalize Values

Since we base the extraction on regular expres-
sions, we can normalize most monetary entities
with a predefined set of rules. Section 3.5 implies
that M∗ = (A∗, r∗) is a reasonable normalized
form whereA∗ is A specified in million US-$ and
r∗ is r as percentage with a fixed number of deci-
mals.2 Time normalization is more complex. Any
period should be transformed toT ∗ = (t∗s, t

∗
e)

consisting of the start datet∗s and end datet∗e.
Following Ahn et. al. (2005), we consider fully
qualified, deictic and anaphoric periods. While
normalization of fully qualified periods like “from
Apr to Jun 1999” is straightforward, deictic (e.g.
“since 2005”, “next year”) and anaphoric men-
tions (e.g. “in the reported time”) require a refer-
ence time. Approaches to resolve such references
rely on dates or fully qualified periods in the pre-
ceding text (Saquete et. al., 2003; Mani and Wil-
son, 2000).3

2Translating the currency requires exchange rates at state-
ment time. We need access to such information or omit the
translation if only one currency is relevant.

3References to fiscal years even involve a whole search
problem if no look-up table on such data is available.
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Figure 2: Example for the inference of relative in-
formation from absolute values.

If we cannot normalizeM or T , we discard the
corresponding statement templates. For the oth-
ers, we have to resolve synonymous co-references
(e.g. “Loewe AG” and “Loewe”) before we can
proceed to the last step.

3.8 Aggregate Information

We can aggregate the normalized values in either
two or three dimensions depending on whether
to separate statements with respect totd. Aggre-
gation then incorporates two challenges, namely,
how to merge values and how to infer information
on a topic from values of a subtopic.

We say that two statements on the same topic
τ and criterionχ interfere if the contained peri-
ods of time intersect and the according monetary
values do not coincide. In case of declarations,
this means that we extracted incorrect values or
extracted values incorrectly. For forecasts, on the
contrary, we are exactly onto such information.
In both cases, an intuitive solution is to compute
the average (or median) and deviations. Figure 1
graphically illustrates such merging. The subtopic
challenge is based on the assumption that a mean-
ingful number of statements on a certain subtopic
of τ implies relative information onτ , as shown in
Figure 2. One of the most interesting relations are
organizations as subtopics of markets they pro-
duce for, because it is quite usual to search for

Statements Total Forecasts Declarations

Complete corpus 2075 523 (25.2%) 1552 (74.8%)

Training set 1366 306 (22.4%) 1060 (77.6%)
Validation set 362 113 (31.2%) 249 (68.8%)
Test set 347 104 (30.0%) 243 (70.0%)

Table 2: Statements on revenue in the corpus.

information on a market, but only receive state-
ments on companies. Approaches to this relation
may rely e.g. on the web page co-occurrence and
term frequencies of the markets and companies.

Altogether, we return the aggregated values
linked to the sentences in which we found them.
In this way, we make the results verifiable and,
thereby, compensate for possible inaccuracies.

4 Corpus

To evaluate the given and related tasks, we built
a manually annotated corpus with online news ar-
ticles on the revenues of organizations and mar-
kets. The compilation aims at being representa-
tive for target documents, a search engine returns
to queries on revenue. The purpose of the corpus
is to investigate both the structure of sentences on
financial criteria and the distribution of associated
information over the text.

The corpus consists of 1,128 German news ar-
ticles from the years 2003 to 2009, which were
taken from 29 news websites likewww.spiegel.de
or www.capital.de. The content of each document
comes as unicode plain text with appended URL
for access to the HTML source code. Annotations
are given in a standard XMI file preformatted for
theUnstructured Information Management Archi-
tecture(Ferrucci and Lally, 2004). We created a
split, in which 2/3 of the documents constitute the
training set and each 1/6 refers to the validation
and test set. To simulate real conditions, the train-
ing documents were randomly chosen from only
the seven most represented websites, while the
validation and test data both cover all 29 sources.
Table 2 shows some corpus statistics, which give
a hint that the validation and test set differ sig-
nificantly from the training set. The corpus is
free for scientific use and can be downloaded at
http://infexba.upb.de.
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Loewe AG: Vorläufige Neun-Monats-Zahlen

Kronach, [6. November 2007]REF — Das Ergebnis vor

Zinsen und Steuern (EBIT) des Loewe Konzerns konnte

in den ersten 9 Monaten 2007 um 41% gesteigert wer-

den. Vor diesem Hintergrund hebt die [Loewe AG]ORG

ihre EBIT-Prognose für das laufende Geschäftsjahr auf

20 Mio. Euro an. Beim Umsatz strebt Konzernchef

[Rainer Hecker]AUTH [für das Gesamtjahr]TIME ein

höher als ursprünglich geplantes [Wachstum]TREND

[von 10% auf ca. 380 Mio. Euro]MONEY an. (...)

Figure 3: An annotated document in the corpus.
The text is taken fromwww.boerse-online.de, but
has been modified for clarification.

4.1 Annotations

In each document, every sentence that includes a
temporal entityT and a monetary entityM and
that represents aforecastor declaration on the
revenue of an organization or market is marked
as such.T andM are annotated themselves and
linked to the sentence. Accordingly, thesubject
is tagged (and linked) within the sentence bound-
aries if available, otherwise its last mention in the
preceding text. The same holds for optional en-
tities, namely areference time, a trend indicator
and theauthor of a statement. Altogether, 2,075
statements are tagged in this way. As in Figure
3, only information that refers to a statement on
revenue (typed in bold face) is annotated. These
annotations may be spread across the text.

The source documents were manually selected
and prepared by our industrial partners, and two
of their employees annotated the plain document
text. With respect to the statement annotations,
a preceding pilot study yielded substantial inter-
annotator agreement, as indicated by the value
κ = 0.79 of the conservative measureCohen’s
Kappa (Carletta, 1996). Additionally, we per-
formed a manual correction process for each an-
notated document to improve consistency.

5 Experiments

We now present experiments for the statement
identification, which were conducted on our cor-
pus. The goal was to evaluate whether our com-
bined extraction and classification approach suc-
ceeds in the precise identification of sentences that

comprise a statement on revenue, while keeping
recall high. Only exact matches of the annotated
text spans were considered to be correct identifi-
cations. Unlike in Section 3, we only worked on
plain text, though.

5.1 Experimental Setup

To find candidate sentences, we implemented a
sentence splitter that can handle article elements
such as subheadings, URLs, or bracketed sen-
tences. We then constructed sophisticated, but
efficient regular expressions for time and money.
They do not represent correct language, in gen-
eral, but model the structure of temporal and mon-
etary entities, and use word lists provided by do-
main experts on the lowest level.4 For feature
computation, we assumed that the closest pair of
temporal and monetary entity refers to the enclos-
ing candidate sentence.5 Since only positive in-
stancesIP of statements on revenue are annotated
in our corpus, we declared all candidates, which
have no counterpart in the annotated data, to con-
stitute the negative classIN , and balancedIP and
IN by “randomly” (seed 42) removing instances
from IN .6

For the vocabulariesLpos = {P1, P2} we first
counted the frequencies of all words in the unbal-
anced setsIP and IN . From these, we deleted
named entities, numbers and adjectives. If the pre-
fix (e.g. “Umsatz”) of a word (“Umsatzplus”) oc-
curred, we only kept the prefix. We then filtered
all terms that appeared in at least1.25% of the in-
stances inIP and more than 3.5 times as much in
IP as inIN . The remaining words were manually
partitioned into two lists:

P1 = {umgesetzt, Umsatz, Umsätze, setzte} (all
of these are terms for revenue)

P2 = {Billionen, meldet, Mitarbeiter, Verband}
(trillions, announce, employee, association)

Lneg = {N1, N2} was built accordingly. In ad-
dition, we set up a listG1 with genitive pronouns

4More details are given at http://infexba.upb.de.
555% of the candidate sentences in the training set con-

tain more than one temporal and/or monetary entity, so this
assumption may lead to errors.

6We both tested undersampling and oversampling tech-
niques but saw no effective differences in the results.
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and determiners. Based onLpos, Lneg and G1,
we computed the following 43 features for every
candidate sentences:

• 1-8: Number of terms fromP1 (N1) in s as
well as in the two preceding sentences and in
the following sentence.

• 9-10: Number of terms fromP2 (N2) in s.

• 11: Occurrence of term fromG1 next to the
monetary entity.

• 12-19: Forward (backward) distance in to-
kens between the monetary (temporal) entity
in s and a term fromP1 (N1).

• 20-27: Forward (backward) distance in num-
ber of symbols fromO1 = {‘.’,‘?’,‘!’ } be-
tween the monetary (temporal) entity ins
and a term fromP1 (N1).

• 28-43: Same as 20-27 forO2 = {‘:’,‘;’ } and
O3 = {‘,’ }, respectively.

We trained a linear SVM with cost parameter
C = 0.3 (selected during validation) on these fea-
tures using theWekaintegration ofLibSVM(Hall
et. al., 2009; Fan et. al., 2001). Further features
were evaluated, e.g. occurrences of contraposi-
tions or comparisons, but they did not improve the
classifier. Instead, we noticed that we can avoid
some complex cases when we apply two rules af-
ter entity extraction:

R1: Delete temporal and monetary entities that
are directly surrounded by brackets.

R2: Delete temporal entities that contain the
word “Vorjahr” (“preceding year”).

Now, we evaluated the following five statement
identification algorithms:

• Näıve: Simply return all candidate sentences
(to estimate the relative frequency of state-
ments on revenue in the corpus).

• Baseline:Return all candidate sentences that
contain a term from the listP1.

• NEG: Use the results from Baseline. Return
all sentences that lack terms fromN1.

Recall Training Validation Test

Sentences 0.98 0.98 0.96
Temporal entities 0.97 (0.95) 0.97 (0.94) 0.98 (0.96)
Monetary entities 0.96 (0.96) 0.96 (0.96) 0.95 (0.94)

Table 3: Recall of sentence and entity extraction.
In brackets: Recall after applyingR1 andR2.

• RB: Filter candidates usingR1 andR2. Then
apply NEG.

• SVM: Filter candidates usingR1 and R2.
Then classify sentences with the SVM.

5.2 Results

Table 3 shows that we found at least95% of the
sentences, time and money information, which re-
fer to a statement on revenue, in all datasets.7 We
could not measure precision for these since not all
sentences and entities are annotated in the corpus,
as mentioned in Section 4.

Results for the statement identification are
given in Figure 4. Generally, the test values are
somewhat lower than the validation values, but
analog in distribution. Nearly all statements were
recognized by the Naı̈ve algorithm, but only with
a precision of 0.35. In contrast, both for Baseline
and NEG already around 80% of the found state-
ments were correct. The latter paid a small gain in
precision with a significant loss in recall. While
RB and SVM both achieved86% precision on the
test set, SVM tends to be a little more precise as
suggested by the validation results. In terms of re-
call, SVM clearly outperformed RB with values
of 89% and 87% and was only a little worse than
the Baseline. Altogether, theF1-Measure values
show that SVM was the best performing algorithm
in our evaluation.

5.3 Error Analysis

To assess the influence of the sentence, time and
money extraction, we compared precision and re-
call of the classifier on the manually annotated and
the extracted data, respectively. Table 4 shows

7We intentionally did not search for unusual entities like
“am 1. Handelstag nach dem Erntedankfest” (“the 1st trading
day after Thanksgiving”) in order not to develop techniques
that are tailored to individual cases. Also, money amounts
that lack a currency term were not recognized.
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Figure 4: Precision, recall andF1-Measure of the five evaluated statement identification algorithms.
SVM is best in precision both on validation and test data and outperforms RB in recall significantly.

that only recall differs significantly. We found that
false statement identifications referred to the fol-
lowing noteworthy error cases.

False match: Most false positives result from
matchings of temporal and monetary entities that
actually do not refer to the same statement.

Missing criterion: Some texts describe the de-
velopment of revenue without ever mentioning
revenue. Surrogate words like “market” may be
used, but they are not discriminative enough.

Multiple criteria: Though we aimed at dis-
carding sentences, in which revenue is mentioned
without comprising a statement on it, in some
cases our features did not work out, mainly due
to intricate sentence structure.

Traps: Some sentences contain numeric values
on revenue, but not the ones looked for, as in “10%
of the revenue”. We tackled these cases, but had
still some false classifications left.

Hidden boundaries: Finally, we did not find
all correct sentence boundaries, which can lead to
both false positives and false negatives. The pre-
dominant problem was to separate headlines from
paragraph beginnings and is partly caused by the
missing access to markup tags.

5.4 Efficiency

We ran the identification algorithm on the whole
corpus using a2 GHz Intel Core 2 Duo MacBook
with 4 GB RAM. The 1,128 corpus documents
contain 33,370 sentences as counted by our algo-
rithm itself. Tokenization, sentence splitting, time
and money extraction took only 55.2 seconds, i.e.,
more than 20 documents or 600 sentences each
second. Since our feature computation is not op-
timized yet, the complete identification process is
a little less efficient with 7.35 documents or 218

Candidates Data Precision Recall

Annotated validation data 0.91 0.94
test data 0.87 0.93

Extracted validation data 0.90 0.89
test data 0.86 0.87

Table 4: Precision and recall of the statement
identification on manually annotated data and on
automatically extracted data, respectively.

sentences per second. However, it is fast enough
to be used in online applications, which was our
goal in the end.

6 Conclusion

We presented a multi-stage approach for the au-
tomatic identification and aggregation of market
statements and introduced a manually annotated
German corpus for related tasks. The approach
has been influenced by industry and is oriented
towards practical applications, but is, in general,
not specific to the German language. It relies on
efficient retrieval, extraction and NLP techniques.
By now, we can precisely identify most sentences
that represent statements on revenue. This already
allows for the support of strategists, e.g. by high-
lighting such sentences in web pages, which we
currently implement as a Firefox extension. The
overall problem is complex, though, and we are
aware that human experts can do better at present.
Nevertheless, time-consuming tasks can be auto-
mated and, in this respect, the results on our cor-
pus are very promising.

Acknowledgement: This work was funded by
the project “InfexBA” of the German Federal Min-
istry of Education and Research (BMBF) under
contract number 01IS08007A.
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Abstract 

Single-document summarization and multi-
document summarization are very closely re-
lated tasks and they have been widely investi-
gated independently.  This paper examines 
the mutual influences between the two tasks 
and proposes a novel unified approach to si-
multaneous single-document and multi-
document summarizations. The mutual influ-
ences between the two tasks are incorporated 
into a graph model and the ranking scores of a 
sentence for the two tasks can be obtained in 
a unified ranking process. Experimental re-
sults on the benchmark DUC datasets demon-
strate the effectiveness of the proposed ap-
proach for both single-document and multi-
document summarizations.  

1 Introduction 

Single-document summarization aims to pro-
duce a concise and fluent summary for a single 
document, and multi-document summarization 
aims to produce a concise and fluent summary 
for a document set consisting of multiple related 
documents. The two tasks are very closely re-
lated in both task definition and solution method. 
Moreover, both of them are very important in 
many information systems and applications. For 
example, given a cluster of news articles, a 
multi-document summary can be used to help 
users to understand the whole cluster, and a sin-
gle summary for each article can be used to help 
users to know the content of the specified article.  

To date, single-document and multi-document 
summarizations have been investigated exten-
sively and independently in the NLP and IR 
fields. A series of special conferences or work-
shops on automatic text summarization (e.g. 

SUMMAC, DUC, NTCIR and TAC) have ad-
vanced the technology and produced a couple of 
experimental online systems. However, the two 
summarization tasks have not yet been simulta-
neously investigated in a unified framework.  

Inspired by the fact that the two tasks are very 
closely related and they can be used simultane-
ously in many applications, we believe that the 
two tasks may have mutual influences on each 
other. In this study, we propose a unified ap-
proach to simultaneous single-document and 
multi-document summarizations. The mutual 
influences between the two tasks are incorpo-
rated into a graph-based model. The ranking 
scores of sentences for single-document summa-
rization and the ranking scores of sentences for 
multi-document summarization can boost each 
other, and they can be obtained simultaneously 
in a unified graph-based ranking process. To the 
best of our knowledge, this study is the first at-
tempt for simultaneously addressing the two 
summarization tasks in a unified graph-based 
framework. Moreover, the proposed approach 
can be easily adapted for topic-focused summa-
rizations.  

Experiments have been performed on both the 
single-document and multi-document summari-
zation tasks of DUC2001 and DUC2002. The 
results demonstrate that the proposed approach 
can outperform baseline independent methods 
for both the two summarization tasks. The two 
tasks are validated to have mutual influences on 
each other.  

The rest of this paper is organized as follows: 
Section 2 introduces related work. The details of 
the proposed approach are described in Section 
3. Section 4 presents and discusses the evalua-
tion results. Lastly we conclude our paper in 
Section 5. 
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2 Related Work 

Document summarization methods can be either 
extraction-based or abstraction-based. In this 
section, we focus on extraction-based methods.  

Extraction-based methods for single-
document summarization usually assign a sali-
ency score to each sentence in a document and 
then rank and select the sentences. The score is 
usually computed based on a combination of 
statistical and linguistic features, such as term 
frequency, sentence position, cue words and 
stigma words (Luhn, 1969; Edmundson, 1969; 
Hovy and Lin, 1997). Machine learning tech-
niques have also been used for sentence extrac-
tion (Kupiec et al., 1995; Conroy and O’Leary, 
2001; Shen et al., 2007; Li et al., 2009). The 
mutual reinforcement principle has been ex-
ploited to iteratively extract key phrases and 
sentences from a document (Zha, 2002; Wan et 
al, 2007a). Wan et al. (2007b) propose the Col-
labSum algorithm to use additional knowledge 
in a cluster of documents to improve single 
document summarization in the cluster.   

In recent years, graph-based ranking methods 
have been investigated for document summari-
zation, such as TextRank (Mihalcea and Tarau, 
2004; Mihalcea and Tarau, 2005) and LexPag-
eRank (ErKan and Radev, 2004). Similar to 
PageRank (Page et al., 1998), these methods 
first build a graph based on the similarity rela-
tionships between the sentences in a document 
and then the saliency of a sentence is determined 
by making use of the global information on the 
graph recursively. The basic idea underlying the 
graph-based ranking algorithm is that of “vot-
ing” or “recommendation” between sentences.  

Similar methods have been used for generic 
multi-document summarization. A typical 
method is the centroid-based method (Radev et 
al., 2004). For each sentence, the method com-
putes a score based on each single feature (e.g. 
cluster centroids, position and TFIDF) and then 
linearly combines all the scores into an overall 
sentence score. Topic signature is used as a 
novel feature for selecting important content in 
NeATS (Lin and Hovy, 2002). Various sentence 
features have been combined by using machine 
learning techniques (Wong et al., 2008). A 
popular way for removing redundancy between 
summary sentences is the MMR algorithm (Car-
bonell and Goldstein, 1998). Themes (or topics, 

clusters) in documents have been discovered and 
used for sentence selection (Harabagiu and La-
catusu, 2005). Hachey (2009) investigates the 
effect of various source document representa-
tions on the accuracy of the sentence extraction 
phase of a multi-document summarization task. 
Graph-based methods have also been used to 
rank sentences in a document set. The methods 
first construct a graph to reflect sentence rela-
tionships at different granularities, and then 
compute sentence scores based on graph-based 
learning algorithms. For example, Wan (2008) 
proposes to use only cross-document relation-
ships for graph building and sentence ranking. 
Cluster-level information has been incorporated 
in the graph model to better evaluate sentences 
(Wan and Yang, 2008).  

For topic-focused multi-document summari-
zation, many methods are extensions of generic 
summarization methods by incorporating the 
information of the given topic or query into ge-
neric summarizers. In recent years, a few novel 
methods have been proposed for topic-focused 
summarization (Daumé and Marcu, 2006; Wan 
et al., 2007c; Nastase 2008; Li et al., 2008; 
Schilder and Kondadadi, 2008; Wei et al., 2008).   

The above previous graph-based summariza-
tion methods aim to address either single-
document summarization or multi-document 
summarization, and the two summarization tasks 
have not yet been addressed in a unified graph-
based framework.  

3 The Unified Summarization Ap-
proach 

3.1 Overview 

Given a document set, in which the whole docu-
ment set and each single document in the set are 
required to be summarized, we use local sali-
ency to indicate the importance of a sentence in 
a particular document, and use global saliency 
to indicate the importance of a sentence in the 
whole document set. 

In previous work, the following two assump-
tions are widely made for graph-based summari-
zation models: 

Assumption 1: A sentence is locally impor-
tant in a particular document if it is heavily 
linked with many locally important sentences in 
the same document.  
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Assumption 2: A sentence is globally impor-
tant in the document set if it is heavily linked 
with many globally important sentences in the 
document set.  
   The above assumptions are the basis for Pag-
eRank-like algorithms for single document 
summarization and multi-document summariza-
tion, respectively.  In addition to the above two 
assumptions, we make the following two as-
sumptions to consider the mutual influences be-
tween the two summarization tasks: 

Assumption 3: A sentence is locally impor-
tant in a particular document, if it is heavily 
linked with many globally important sentences 
in the document set.   

The above assumption is reasonable because 
the documents in the set are relevant and the 
globally important information in the document 
set will be expressed in many single documents. 
Therefore, if a sentence is salient in the whole 
document set, the sentence may be salient in a 
particular document in the set. 

Assumption 4: A sentence is globally impor-
tant in the document set, if it is heavily linked 
with many locally important sentences.  

The above assumption is reasonable because 
the documents in the set are relevant and the 
globally important information in the whole set 
is the aggregation of the locally important in-
formation in each single document. Therefore, if 
a sentence is salient in a particular document, 
the sentence has the potential to be salient in the 
whole document set. 

In brief, the local saliency and global saliency 
of a sentence can mutually influence and boost 
each other: high local saliency will lead to high 
global saliency, and high global saliency will 
lead to high local saliency.  

Based on the above assumptions, our pro-
posed approach first builds affinity graphs (each 
graph is represented by an affinity matrix) to 
reflect the different kinds of relationships be-
tween sentences, respectively, and then itera-
tively computes the local saliency scores and the 
global saliency scores of the sentences based on 
the graphs. Finally, the algorithm converges and 
the local saliency score and global saliency 
score of each sentence are obtained. The sen-
tences with high local saliency scores in a par-
ticular document are chosen into the summary of 
the single document, and the sentences with 

high global saliency scores in the set are chosen 
into the summary of the document set.  

Note that for both summarization tasks, after 
the saliency scores of sentences have been ob-
tained, the greedy algorithm used in (Wan et al., 
2007c) is applied to remove redundancy and 
finally choose both informative and novel sen-
tences into the summary. 

3.2 Algorithm Details 

Formally, the given document set is denoted as 
D={di|1≤i≤m}, and the whole sentence set is 
denoted as S={si|1≤i≤n}.  We let Infosingle(si)  
denote the local saliency score of sentence si in a 
particular document d(si)∈D, and it is used to 
select summary sentences for the single docu-
ment d(si).   And we let Infomulti(si) denote the 
global saliency score of sentence si in the whole 
document set D,  and it is used to select sum-
mary sentences for the document set D.  

The four assumptions in Section 3.1 can be 
rendered as follows: 

∑∝
j jglejiAigle sInfoWsInfo )()()( sinsin

 (1) 

∑∝
j jmultijiBimulti sInfoWsInfo )()()(  (2) 

∑∝
j jmultijiCigle sInfoWsInfo )()()(sin

 (3) 

∑∝
j jglejiDimulti sInfoWsInfo )()()( sin

 (4) 
where WA, WB, WC, WD are n×n affinity matrices 
reflecting the different kinds of relationships 
between sentences in the document set, where n 
is the number of all sentences in the document 
set. The detailed derivation of the matrices will 
be presented later. 

After fusing the above equations, we can ob-
tain the following unified forms: 
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sinµ

µ
 

 
  (6) 

However, the above summarization method 
ignores the feature of sentence position, which 
has been validated to be very important for 
document summarizations. In order to incorpo-
rate this important feature, we add one prior 
score to each computation as follows: 

)()()(

)()()(

sin

sinsin

iglej jmultijiC

j jglejiAigle

spriorsInfoW

sInfoWsInfo

⋅++

=

∑
∑

γβ

α   
(7) 
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sin imultij jglejiD

j jmultijiBimulti

spriorsInfoW

sInfoWsInfo

⋅++

=

∑
∑

γβ

α  
 

  (8) 

where α, β, γ∈[0,1] specify the relative contri-
butions to the final saliency scores from the dif-
ferent factors, and we have α+β+γ=1. pri-
orsingle(si) is the prior score for the local saliency 
of sentence si, and here priorsingle(si)  is com-
puted based on sentence position of si in the par-
ticular document d(si). priormulti(si) is the prior 
score for the global saliency of sentence si, and 
we also compute priormulti(si) based on sentence 
position of si. 

We use two column vectors 
ur =[Infosingle(si)]n×1 and vr =[Infomulti(si)]n×1 to 
denote the local and global saliency scores of all 
the sentences in the set, respectively. And the 
matrix forms of the above equations are as fol-
lows: 

gle
TT γβα

CA sinpvWuWu rrrr
++=   (9) 

multi
TT γβα

DB
puWvWv rrrr

++=    (10) 
where 

1sinsin )]([ ×= niglegle spriorpr and 

1)]([ ×= nimultimulti spriorpr  are the prior column vec-
tors. 

The above matrices and prior vectors are con-
structed as follows, respectively: 
WA: This affinity matrix aims to reflect the 

local relationships between sentences in each 
single document, which is defined as follows: 

   
Otherwise   0,

ji  and                                   

 )d( )d( if  ),,(

)(
cos

⎪
⎩

⎪
⎨

⎧

≠

=

=
jijiine

ijA

sssssim

W  
  

(11) 

where d(si) refers to the document containing 
sentence si. simcosine(si,sj) is the cosine similarity 
between sentences si and sj.  

ji

ji
jiine ss

ss
sssim rr

rr

×

⋅
=),(cos

  
(12) 

where isr  and jsr are the corresponding term vec-
tors of si and sj. Note that we have (WA)ij = (WA)ji, 
and we have (WA)ii =0 to avoid self loops.  
   We can see that the matrix contains only the 
within-document relationships between sen-
tences.  
WB: This affinity matrix aims to reflect the 

global relationships between sentences in the 
document set, which is defined as follows: 

    
Otherwise   0,

 )d( )d( if  ),,(
)( cos

⎩
⎨
⎧ ≠

= jijiine
ijB

sssssim
W

  
(13) 

    We can see that the matrix contains only the 
cross-document relationships between sentences. 
We do not include the within-document sen-
tence relationships in the matrix because it has 
been shown that the cross-document relation-
ships are more appropriate to reflect the global 
mutual influences between sentences than the 
within-document relationships in (Wan, 2008). 
WC: This affinity matrix aims to reflect the 

cross-document relationships between sentences 
in the document set. However, the relationships 
in this matrix are used for carrying the influ-
ences of the sentences in other documents on the 
local saliency of the sentences in a particular 
document. If we directly use Equation (13) to 
compute the matrix, the mutual influences 
would be overly used. Because other documents 
might not be sampled from the same generative 
model as the specified document, we probably 
do not want to trust them so much as the speci-
fied document. Thus a confidence value is used 
to reflect out belief that the document is sampled 
from the same underlying model as the specified 
document. Heuristically, we use the cosine simi-
larity between documents as the confidence 
value. And we use the confidence value as the 
decay factor in the matrix computation as fol-
lows: 

   
Otherwise   0,

    )d( )d( if                                     

)),(),((),(

)(
coscos

⎪
⎩

⎪
⎨

⎧

≠

×

= ji

jiinejiine

ijc ss

sdsdsimsssim

W
  

(14) 

WD: This affinity matrix aims to reflect the 
within-document relationships between sen-
tences. Thus we have WD=WA, which means that 
the global saliency score of a sentence is influ-
enced only by the local saliency scores of the 
sentences in the same document, without con-
sidering the sentences in other documents.  

Note that the above four matrices are symmet-
ric and we can replace T

AW , T
BW , T

CW and T
DW  

by WA, WB, WC and WD in Equations (9) and 
(10), respectively. 
priorsingle(si): It is computed under the as-

sumption that the first sentences in a document 
are usually more important than other sentences.  

1)(
15.0)(sin +

+=
i

igle sposition
sprior   

(15) 
where position(si) returns the position number of 
sentence si in its document d(si). For example, if 
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si is the first sentence in its document, position(si) 
is 1.  

The  prior weight is then normalized by: 

∑
=

i igle

igle
igle sprior

sprior
sprior

)(
)(

)(
sin

sin
sin

  
(16) 

priormulti(si): We also let the prior weight re-
flect the influence of sentence position. 

)()( sin igleimulti spriorsprior =  (17) 
And then the prior weight is normalized in the 
same way. 

The above definitions are for generic docu-
ment summarizations and the above algorithm 
can be easily adapted for topic-focused summa-
rizations. Given a topic q, the only change for 
the above computation is priormulti(si). The topic 
relevance is incorporated into the prior weight as 
follows: 

),()( cos qssimsprior iineimulti =  (18) 

∑
=

i imulti

imulti
imulti sprior

spriorsprior
)(

)()(   
(19) 

In order to solve the iterative problem defined 
in Equations (9) and (10), we let TT ]  [ Tvur rrr

= , 

T]  [ T
multi

T
single ppp rrr γγ= , 
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   , and 

then the iterative equations correspond to the 
following linear system: 

prWr rrr
+=  (20) 
prWI rr

=− )(  (21) 
To guarantee the solution of the above linear 

system, W is normalized by columns. If all the 
elements of a column are zero, we replace the 
elements with 1/(2n), where 2n equals to the 
element number of the column. We then multi-
ply W by a decay factor θ (0<θ<1) to scale down 
each element in W, but remain the meaning of 
W. Here, θ is empirically set to 0.61. Finally, 
Equation (21) is rewritten as follows: 

prWI rr
=⋅− )( θ  (22) 

Thus, the matrix (I-θW) is a strictly diago-
nally dominant matrix and the solution of the 
linear system exists and we can apply the Gauss-
Seidel method used in (Li et al., 2008) to solve 
the linear system. The GS method is a well-
know method for numeric computation in 

                                                 
1  In our pilot study, we can observe good performance 

when θ is in a wide range of [0.4, 0.8]. 

mathematics and the details of the method is 
omitted here.  

4 Empirical Evaluation 

4.1 Dataset and Evaluation Metric 

Generic single-document and multi-document 
summarizations have been the fundamental tasks 
in DUC 2001 and DUC 2002 (i.e. tasks 1 and 2 
in DUC 2001 and tasks 1 and 2 in DUC 2002), 
and we used the two datasets for evaluation. 
DUC2001 provided 309 articles, which were 
grouped into 30 document sets. Generic sum-
mary of each article was required to be created 
for task 1, and generic summary of each docu-
ment set was required to be created for task 2. 
The summary length was 100 words or less. 
DUC 2002 provided 59 document sets consist-
ing of 567 articles (D088 is excluded from the 
original 60 document sets by NIST) and generic 
summaries for each article and each document 
set with a length of approximately 100 words 
were required to be created. The sentences in 
each article have been separated and the sen-
tence information has been stored into files.  The 
summary of the two datasets are shown in Table 
1.  

 DUC 2001 DUC 2002
Task Tasks 1, 2 Tasks 1, 2 
Number of documents 309 567 
Number of clusters 30 59 
Data source TREC-9 TREC-9 
summary length 100 words 100 words 

  Table 1. Summary of datasets  

We used the ROUGE toolkit2  (Lin and Hovy, 
2003) for evaluation, which has been widely 
adopted by DUC for automatic summarization 
evaluation. It measured summary quality by 
counting overlapping units such as the n-gram, 
word sequences and word pairs between the 
candidate summary and the reference summary.  

The ROUGE toolkit reported separate recall-
oriented scores for 1, 2, 3 and 4-gram, and also 
for longest common subsequence co-
occurrences. We showed three of the ROUGE 
metrics in the experimental results: ROUGE-1 
(unigram-based), ROUGE-2 (bigram-based), 
and ROUGE-W (based on weighted longest 
common subsequence, weight=1.2). In order to 
truncate summaries longer than the length limit, 
                                                 
2 We used ROUGEeval-1.4.2 in this study. 
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we used the “-l 100” option in ROUGE toolkit. 
We also used the “-m” option for word stem-
ming. 

4.2 Evaluation Results 

4.2.1 System Comparison 

In the experiments, the combination weight γ for 
the prior score is fixed at 0.15, as in the PageR-
ank algorithm. Therefore, we have α+β=0.85. 
Here, we use α/(α+β) to indicate the relative 
contributions of the first two parts in Equations 
(9) and (10). We empirically set α/(α+β)=0.4 in 
the experiments.  The proposed unified approach 
(i.e. UnifiedRank) is compared with a few base-
line approaches and the top three participating 
systems.  

The graph-based baselines for single-
document summarization are described as fol-
lows: 

BasicRank: This baseline approach adopts 
the basic PageRank algorithm to rank sentences 
based on all sentence relationships in a single 
document, similar to previous work (Mihalcea 
and Tarau, 2004).  

PositionRank: This baseline approach im-
proves the basic PageRank algorithm by using 
the position weight of a sentence as the prior 
score for the sentence. The position weight of a 
sentence is computed by using Equation (15). 

CollabRank1: This baseline approach is the 
“UniformLink(Gold)” approach proposed in 
(Wan et al. 2007b).  It uses a cluster of multiple 
documents to improve single document summa-
rization by constructing a global affinity graph.   

CollabRank2: This baseline approach is the  
“UnionLink(Gold)” approach proposed in (Wan 
et al. 2007b).  

The graph-based baselines for multi-
document summarization are described as fol-
lows: 

BasicRank: This baseline approach adopts 
the basic PageRank algorithm to rank sentences 
based on all sentence relationships in document 
set. Both within-document and cross-document 
sentence relationships are used for constructing 
the affinity graph. 

PositionRank: Similarly, this baseline ap-
proach improves the basic PageRank algorithm 
by using the position weight of a sentence as the 
prior score for the sentence.  

TwoStageRank: This baseline approach lev-
erages the results of single document summari-
zation for multi-document summarization. It 
first computes the score of each sentence within 
each single document by using the PositionRank 
method, and then computes the final score of 
each sentence within the document set by con-
sidering the document-level sentence score as 
the prior score in the improved PageRank algo-
rithm.  

The top three systems are the systems with 
highest ROUGE scores, chosen from the partici-
pating systems on each task, respectively. Ta-
bles 2 and 3 show the comparison results for 
single-document summarization on DUC2001 
and DUC2002, respectively. Tables 4 and 5 
show the comparison results for multi-document 
summarization on DUC2001 and DUC2002, 
respectively. In the tables, SystemX (e.g. Sys-
tem28, SystemN) represents one of the top per-
forming systems. The systems are sorted by de-
creasing order of the ROUGE-1 scores.  

For single-document summarization, the pro-
posed UnifiedRank approach always outper-
forms the four graph-based baselines over all 
three metrics on both two datasets. The per-
formance differences are all statistically signifi-
cant by using t-test (p-value<0.05). The 
ROUGE-1 score of UnifiedRank is higher than 
that of the best participating systems and the 
ROUGE-2 and ROUGE-W scores of Unifie-
dRank are comparable to that of the best partici-
pating systems.  

For multi-document summarization, the pro-
posed UnifiedRank approach outperforms all the 
three graph-based baselines over all three met-
rics on the DUC2001 dataset, and it outperforms 
the three baselines over ROUGE-1 and 
ROUGE-W on the DUC2002 dataset. In particu-
lar, UnifiedRank can significantly outperform 
BasicRank and TwoStageRank over all three 
metrics on the DUC2001 dataset (t-test, p-
value<0.05). Moreover, the ROUGE-1 and 
ROUGE-W scores of UnifiedRank are higher 
than that of the best participating systems and 
the ROUGE-2 score of UnifiedRank is compa-
rable to that of the best participating systems. 

The results demonstrate that the single-
document and multi-document summarizations 
can benefit each other by making use of the mu-
tual influences between the local saliency and 
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global saliency of the sentences. Overall, the 
proposed unified graph-based approach is effec-
tive for both single document summarization 
and multi-document summarization. However, 
the performance improvement for single-
document summarization is more significant 
than that for multi-document summarization, 
which shows that the global information in a 
document set is very beneficial to summariza-
tion of each single document in the document 
set.  

 
System ROUGE-1 ROUGE-2 ROUGE-W

UnifiedRank 0.45377 0.17649 0.14328 
CollabRank2 0.44038 0.16229 0.13678 
CollabRank1 0.43890 0.16213 0.13676 
PositionRank 0.43596 0.15936 0.13684 

BasicRank 0.43407 0.15696 0.13629 
Table 2. Comparison results for single-document 

summarization on DUC20013 

System ROUGE-1 ROUGE-2 ROUGE-W
UnifiedRank 0.48478 0.21462 0.16877 

System28 0.48049 0.22832 0.17073 
System21 0.47754 0.22273 0.16814 

CollabRank1 0.47187 0.20102 0.16318 
CollabRank2 0.47028 0.20046 0.16260 
PositionRank 0.46618 0.19853 0.16180 

System31 0.46506 0.20392 0.16162 
BasicRank 0.46261 0.19457 0.16018 
Table 3. Comparison results for single-document 

summarization on DUC2002 

System ROUGE-1 ROUGE-2 ROUGE-W
UnifiedRank 0.36360 0.06496 0.10950 
PositionRank 0.35733 0.06092 0.10798 

BasicRank 0.35527 0.05608 0.10641 
TwoStageRank 0.35221 0.05500 0.10515 

SystemN 0.33910 0.06853 0.10240 
SystemP 0.33332 0.06651 0.10068 
SystemT 0.33029 0.07862 0.10215 

Table 4. Comparison results for multi-document 
summarization on DUC2001 

System ROUGE-1 ROUGE-2 ROUGE-W
UnifiedRank 0.38343 0.07855 0.12341 
PositionRank 0.38056 0.08238 0.12292 

TwoStageRank 0.37972 0.08166 0.12261 
BasicRank 0.37595 0.08304 0.12173 
System26 0.35151 0.07642 0.11448 
System19 0.34504 0.07936 0.11332 
System28 0.34355 0.07521 0.10956 
Table 5. Comparison results for multi-document 

summarization on DUC2002 

                                                 
3 The summarization results for participating systems on 

DUC2001 are incomplete. 

4.2.2 Influences of Combination Weight 

In the above experiments, the relative contribu-
tions from the first two parts in Equations (9) 
and (10) are empirically set as α/(α+β)=0.4. In 
this section, we investigate how the relative con-
tributions influence the summarization perform-
ance by varying α/(α+β) from 0 to 1. A small 
value of α/(α+β) indicates that the contribution 
from the same kind of saliency scores of the sen-
tences is less important than the contribution 
from the different kind of saliency scores of the 
sentences, and vice versa. Figures 1-8 show the 
ROUGE-1 and ROUGE-W curves for single-
document summarization and multi-document 
summarization on DUC2001 and DUC2002, 
respectively.  

For single document summarization, very 
small value or very large value for α/(α+β) will 
lower the summarization performance values on 
the two datasets. The results demonstrate that 
both the two kinds of contributions are impor-
tant to the final performance of single document 
summarization. 

For multi-document summarization, a rela-
tively large value (≥0.4) for α/(α+β) will lead to 
relatively high performance values on the 
DUC2001 dataset, but a very large value for 
α/(α+β) will decrease the performance values. 
On the DUC2002 dataset, a relatively small 
value (≤0.4) will lead to relatively high per-
formance values, but a very small value for 
α/(α+β) will decrease the performance values. 
Though the trends of the curves on the 
DUC2001 and DUC2002 datasets are not very 
consistent with each other, the results show that 
both the two kinds of contributions are benefi-
cial to the final performance of multi-document 
summarization. 

5 Conclusion and Future Work 

In this study, we propose a novel unified ap-
proach to simultaneous single-document and 
multi-document summarization by making using 
of the mutual influences between the two tasks. 
Experimental results on the benchmark DUC 
datasets show the effectiveness of the proposed 
approach.  

In future work, we will perform comprehen-
sive experiments for topic-focused document 
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summarizations to show the robustness of the 
proposed approach.  
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Figure 1. ROUGE-1 vs. combination weight for sin-
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Figure 2. ROUGE-W vs. combination weight for 

single-document summarization on DUC2001 
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Figure 3. ROUGE-1 vs. combination weight for sin-

gle-document summarization on DUC2002 
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Figure 4. ROUGE-W vs. combination weight for 

single-document summarization on DUC2002 
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Figure 5. ROUGE-1 vs. combination weight for 
multi-document summarization on DUC2001 
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Figure 6. ROUGE-W vs. combination weight for 
multi-document summarization on DUC2001 
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Figure 7. ROUGE-1 vs. combination weight for 
multi-document summarization on DUC2002 
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Figure 8. ROUGE-W vs. combination weight for 

multi-document summarization on DUC2002 
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Abstract 

Discriminating vandalism edits from 

non-vandalism edits in Wikipedia is a 

challenging task, as ill-intentioned edits 

can include a variety of content and be 

expressed in many different forms and 

styles. Previous studies are limited to 

rule-based methods and learning based 

on lexical features, lacking in linguistic 

analysis. In this paper, we propose a 

novel Web-based shallow syntactic-

semantic modeling method, which utiliz-

es Web search results as resource and 

trains topic-specific n-tag and syntactic 

n-gram language models to detect van-

dalism. By combining basic task-specific 

and lexical features, we have achieved 

high F-measures using logistic boosting 

and logistic model trees classifiers, sur-

passing the results reported by major 

Wikipedia vandalism detection systems.  

1 Introduction 

Online open collaboration systems are becoming 

a major means of information sharing on the 

Web. With millions of articles from millions of 

resources edited by millions of people, Wikipe-

dia is a pioneer in the fast growing, online know-

ledge collaboration era. Anyone who has Inter-

net access can visit, edit and delete Wikipedia 

articles without authentication. 

A primary threat to this convenience, however, 

is vandalism, which has become one of Wikipe-

dia’s biggest concerns (Geiger, 2010). To date, 

automatic countermeasures mainly involve rule-

based approaches and these are not very effec-

tive. Therefore, Wikipedia volunteers have to 

spend a large amount of time identifying vanda-

lized articles manually, rather than spending 

time contributing content to the articles. Hence, 

there is a need for more effective approaches to 

automatic vandalism detection. 

In contrast to spam detection tasks, where a 

full spam message, which is typically 4K Bytes 

(Rigoutsos and Huynh, 2004), can be sampled 

and analyzed (Itakura and Clarke, 2009), Wiki-

pedia vandals typically change only a small 

number of words or sentences in the targeted 

article. In our preliminary corpus (Potthast et al., 

2007), we find the average size of 201 vanda-

lized texts to be only 1K Byte. This leaves very 

few clues for vandalism modeling. The question 

we address in this paper is: given such limited 

information, how can we better understand and 

model Wikipedia vandalism? 

Our proposed approach establishes a novel 

classification framework, aiming at capturing 

vandalism through an emphasis on shallow syn-

tactic and semantic modeling. In contrast to pre-

vious work, we recognize the significance of 

natural language modeling techniques for Wiki-

pedia vandalism detection and utilize Web 

search results to construct our shallow syntactic 

and semantic models. We first construct a base-

line model that captures task-specific clues and 

lexical features that have been used in earlier 

work (Potthast et al., 2008; Smets et al., 2008) 

augmenting these with shallow syntactic and 

semantic features.  Our main contributions are: 

 Improvement over previous modeling me-

thods with three novel lexical features 

 Using Web search results as training data 

for syntactic and semantic modeling 

 Building topic-specific n-tag syntax models 

and syntactic n-gram models for shallow 

syntactic and semantic modeling 
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2 Related Work 

So far, the primary method for automatic 

vandalism detection in Wikipedia relies on rule-

based bots. In recent years, however, with the 

rise of statistical machine learning, researchers 

have begun to treat Wikipedia vandalism 

detection task as a classification task. To the best 

of our knowledge, we are among the first to 

consider the shallow syntactic and semantic 

modeling using Natural Language Processing 

(NLP) techniques, utilizing the Web as corpus to 

detect vandalism. 

ClueBot (Carter, 2007) is one of the most ac-

tive bots fighting vandalism in Wikipedia. It 

keeps track of the IP of blocked users and uses 

simple regular expressions to keep Wikipedia 

vandalism free. A distinct advantage of rule-

based bots is that they have very high precision. 

However they suffer from fixed-size knowledge 

bases and use only rigid rules. Therefore, their 

average recall is not very high and they can be 

easily fooled by unseen vandalism patterns. Ac-

cording to Smets et al., (2008) and Potthast et al., 

(2008), rule-based bots have a perfect precision 

of 1 and a recall of around 0.3. 

The Wikipedia vandalism detection research 

community began to concentrate on the machine 

learning approaches in the past two years. Smets 

et al. (2008) wrapped all the content in diff text 

into a bag of words, disregarding grammar and 

word order. They used Naïve Bayes as the 

classification algorithm. Compared to rule-based 

methods, they show an average precision of 0.59 

but are able to reach a recall of 0.37. Though 

they are among the first to try machine learning 

approaches, the features in their study are the 

most straightforward set of features. Clearly, 

there is still room for improvement. 

More recently, Itakura and Clarke (2009) have 

proposed a novel method using Dynamic Mar-

kov Compression (DMC). They model their ap-

proach after the successful use of DMC in Web 

and Mail Spam detection (Bratko et al., 2006). 

The reported average precision is 0.75 and ave- 

rage recall is 0.73.  

To the best of our knowledge, Potthast et al., 

(2008) report the best result so far for Wikipedia 

vandalism detection. They craft a feature set that 

consists of interesting task-specific features. For 

example, they monitor the number of previously 

submitted edits from the same author or IP, 

which is a good feature to model author contri-

bution. Their other contributions are the use of a 

logistic regression classifier, as well as the use 

of lexical features. They successfully demon-

strate the use of lexical features like vulgarism 

frequency.  Using all features, they reach an av-

erage precision of 0.83 and recall of 0.77.  

In addition to previous work on vandalism de-

tection, there is also earlier work using the web 

for modeling. Biadsy et al. (2008) extract pat-

terns in Wikipedia to generate biographies au-

tomatically. In their experiment, they show that 

when using Wikipedia as the only resource for 

extracting named entities and corresponding col-

locational patterns, although the precision is typ-

ically high, recall can be very low. For that rea-

son, they choose to use Google to retrieve train-

ing data from the Web. In our approach, instead 

of using Wikipedia edits and historical revisions, 

we also select the Web as a resource to train our 

shallow syntactic and semantic models. 

3 Analysis of  Types of Vandalism 

In order to better understand the characteristics 

of vandalism cases in Wikipedia, we manually 

analyzed 201 vandalism edits in the training set 

of our preliminary corpus.  In order to concen-

trate on textual vandalism detection, we did not 

take into account the cases where vandals hack 

the image, audio or other multimedia resources 

contained in the Wikipedia edit. 

We found three main types of vandalism, 

which are shown in Table 1 along with corres-

ponding examples. These examples contain both 

the title of the edit and a snippet of the diff-ed 

content of vandalism, which is the textual differ-

ence between the old revision and the new revi-

sion, derived through the standard diff algorithm 

(Heckel, 1978). 

 Lexically ill-formed 

This is the most common type of vandal-

ism in Wikipedia. Like other online van-

dalism acts, many vandalism cases in 

Wikipedia involve ill-intentioned or ill-

formed words such as vulgarisms, invalid 

letter sequences, punctuation misuse and 

Web slang. An interesting observation is 

that vandals almost never add emoticons 

in Wikipedia. For the first example in  
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Table 1: Vandalism Types and Examples 

Table 1, vulgarism and punctuation mi-

suse are observed. 

 Syntactically ill-formed 

Most vandalism cases that are lexically 

ill-intentioned tend to be syntactically ill-

formed as well. It is not easy to capture 

these cases by solely relying on lexical 

knowledge or rule-based dictionaries and 

it is also very expensive to update dictio-

naries and rules manually. Therefore, we 

think that is crucial to incorporate more 

syntactic cues in the feature set in order to 

improve performance. Moreover, there are 

also some cases where an edit could be 

lexically well-intentioned, yet syntactical-

ly ill-formed. The first example of syntac-

tic ill-formed in Table 1 is of this kind. 

     Table 2: Feature Sets and Corresponding          

Features of Our Vandalism Detection System 

 Lexically and syntactically well 

formed, but semantically ill-

intentioned 

This is the trickiest type of vandalism to 

identify. Vandals of this kind might have 

good knowledge of the rule-based vandal-

ism detecting bots. Usually, this type of 

vandalism involves off-topic comments, 

inserted biased opinions, unconfirmed in-

formation and lobbying using very subjec-

tive comments. However, a common cha-

racteristic of all vandalism in this category 

is that it is free of both lexical and syntac-

tic errors. Consider the first example of 

semantic vandalism in Table 1 with edit 

title “Global Warming”: while the first 

sentence for that edit seems to be fairly 

normal (the author tries to claim another 

explanation of the global warming effect), 

the second sentence makes a sudden tran-

sition from the previous topic to mention 

a basketball star and makes a ridiculous 

conclusion in the last sentence.  

In this work, we realize the importance of in-

corporating NLP techniques to tackle all the 

above types of vandalism, and our focus is on 

the syntactically ill-formed and semantically ill-

intentioned types that could not be detected by 

rule-based systems and straightforward lexical 

features.  

Vandalism 

Types 

Examples 

Lexically 

ill-formed 

Edit Title:  IPod 

shit!!!!!!!!!!!!!!!!!!!!!! 

 

 

Syntactically 

ill-formed 

Edit Title: Rock music 

DOWN WITH SOCIETY 

MADDISON STREET RIOT 

FOREVER. 

Edit Title: Vietnam War 

Crabinarah sucks dont buy it 

 

 

 

 

 

 

Lexically + 

syntactically  

well-formed, 

semantically  

ill-intentioned 

Edit Title: Global Warming 

Another popular theory in-

volving global warming is 

the concept that global 

warming is not caused by 

greenhouse gases. The theory 

is that Carlos Boozer is the 

one preventing the infrared 

heat from escaping the at-

mosphere. Therefore, the 

Golden State Warriors will 

win next season. 

Edit Title: Harry Potter 

Harry Potter is a teenage 

boy who likes to smoke 

crack with his buds. They 

also run an illegal smuggling 

business to their headmaster 

dumbledore. He is dumb! 

 

Feature 

Sets 

Features 

Task-

specific 

Number of Revisions; 

Revisions Size Ratio; 

Lexical Vulgarism; Web Slang;  

Punctuation Misuse; 

Comment Cue Words; 

Syntactic Normalized Topic-specific N-tag 

Log Likelihood and Perplexity  

Semantic Normalized Topic-specific  

Syntactic N-gram Log  

Likelihood and Perplexity 
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4 Our System 

We propose a shallow syntactic-semantic fo-

cused classification approach for vandalism de-

tection (Table 2). In contrast to previous work, 

our approach concentrates on the aspect of using 

natural language techniques to model vandalism. 

Our shallow syntactic and semantic modeling 

approaches extend the traditional n-gram lan-

guage modeling method with topic-specific n-

tag (Collins et al., 2005) syntax models and top-

ic-specific syntactic n-gram semantic models. 

Moreover, in the Wikipedia vandalism detection 

task, since we do not have a sufficient amount of 

training data to model the topic of each edit, we 

propose the idea of using the Web as corpus by 

retrieving search engine results to learn our top-

ic-specific n-tag syntax and syntactic n-gram 

semantic models. The difference between our 

syntactic and semantic modeling is that n-tag 

syntax models only model the order of sentence 

constituents, disregarding the corresponding 

words. Conversely, for our syntactic n-gram 

models, we do keep track of words together with 

their POS tags and model both the word and 

syntactic compositions as a sequence. The detail 

of our shallow syntactic-semantic modeling me-

thod will be described in subsection 4.4. 

We use our shallow syntactic-semantic model 

to augment our base model, which builds on ear-

ly work. For example, when building one of our 

task-specific features, we extract the name of the 

author of this revision to query Wikipedia about 

the historical behavior of this author. This kind 

of task-specific global feature tends to be very 

informative and thus forms the basis of our sys-

tem. For lexical level features, we count vulgar-

ism frequencies and also introduce three new 

lexical features: Web slang, punctuation misuse 

and comment cue words, all of which will be 

described in detail in 4.2 and 4.3.  

4.1 Problem Representation 

The vandalism detection task can be formu-

lated as the following problem. Let’s assume we 

have a vandalism corpus C, which contains a set 

of Wikipedia edits S. A Wikipedia edit is de-

noted as ei. In our case, we have S = {e1, e2…,en}. 

Each edit e has two consecutive revisions (an old 

revision Rold and a new revision Rnew) that are 

unique in the entire data set. We write that e = 

{Rold, Rnew}. With the use of the standard diff 

algorithm, we can produce a text Rdiff, showing 

the difference between these two revisions, so 

that e = {Rold, Rnew, Rdiff }.  Our task is: given S, 

to extract features from edit e ∈S and train a 

logistic boosting classifier. On receiving an edit 

e from the test set, the classifier needs to decide 

whether this e is a vandalism edit or a non-

vandalism edit. e→{1,0}.  

4.2 Basic Task-specific and Lexical Fea-

tures  

Task-specific features are domain-dependent and 

are therefore unique in this Wikipedia vandalism 

detection task. In this work, we pick two task-

specific features and one lexical feature that 

proved effective in previous studies. 

 Number of Revisions 

This is a very simple but effective feature 

that is used by many studies (Wilkinson 

and Huberman, 2007; Adler et al., 2008; 

Stein and Hess, 2007). By extracting the 

author name for the new revision Rnew, we 

can easily query Wikipedia and count how 

many revisions the author has modified in 

the history. 

 Revision Size Ratio 

Revision size ratio measures the size of 

the new revision versus the size of the old 

revision in an edit. This measure is an in-

dication of how much information is 

gained or lost in the new revision Rnew, 

compared to the old revision Rold, and can 

be expressed as: 

   RevRatio(𝒆)  =  
 Count (w)w  ϵ R  new

  Count (w)w  ϵ R  old
 

 

where W represents any word token of a 

revision. 

 Vulgarism Frequency 

Revision size ratio measures the size of 

the new revision versus the Vulgarism 

frequency was first introduced by Potthast 

et al. (2008). However, note that not all 

vulgarism words should be considered as 

vandalism and sometime even the Wiki-

pedia edit’s title and content themselves 

contain vulgarism words.  
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For each diff text in an edit e, we count 

the total number of appearances of vulgar-

ism words v where v is in our vulgarism 

dictionary
1
. 

VulFreq 𝒆 =  Count(𝑣)

𝑣∈Rdiff

 

4.3 Novel Lexical Features 

In addition to previous lexical features, we pro-

pose three novel lexical features in this paper: 

Web slang frequency, punctuation misuse, and 

comment cue words frequency.  

 Web Slang and Punctuation Misuse  

Since Wikipedia is an open Web applica-

tion, vandalism also contains a fair 

amount of Web slang, such as, “haha”, 

“LOL” and “OMG”. We use the same me-

thod as above to calculate Web slang fre-

quency, using a Web slang dictionary
2
. In 

vandalism edits, many vandalism edits al- 

                                                 
1
 http://www.noswearing.com/dictionary 

2
 http://www.noslang.com/dictionary/full 

so contain punctuation misuse, for exam-

ple, “!!!” and “???”. However, we have 

not observed a significant amount of emo-

ticons in the vandalism edits. Based on 

this, we only keep track of Web slang fre-

quency and the occurrence of punctuation 

misuse. 

 Comment Cue Words 

Upon committing each new revision in 

Wikipedia, the author is required to enter 

some comments describing the change. 

Well-intentioned Wikipedia contributors 

consistently use these comments to ex-

plain the motivation for their changes. For 

example, common non-vandalism edits 

may contain cue words and phrases like 

“edit revised, page changed, item cleaned 

up, link repaired or delinked”. In contrast, 

vandals almost never take their time to 

add these kinds of comments. We can 

measure this phenomenon by counting the 

frequency of comment cue words.  
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4.4 Topic-specific N-tag Syntax Models and 

Syntactic N-grams for Shallow Syntac-

tic and Semantic Modeling 

In Figure 1, we present the overview of our ap-

proach, which uses Web-trained topic-specific 

training for both: (1) n-tag syntax models for 

shallow syntactic modeling and (2) syntactic n-

gram models for shallow semantic modeling.  

For each Wikipedia edit, we consider its title 

as an approximate semantic representation, using 

it as a query to build topic-specific models.  In 

addition, we also use the title information to 

model the syntax of this topic.  

Given Rdiff, we produce the syntactic version 

of the diff-ed text using a probabilistic POS tag-

ger (Toutanova and Manning, 2000; Toutanova 

et al., 2003). The edit title is extracted from the 

corpus (either Rnew or Rold) and is used to query 

multiple Web search engines in order to collect 

the n-tag and n-gram training data from the top-k 

results. Before we start training language models, 

we tag the top-k results using the POS tagger. 

Note that when modeling n-tag syntax models, it 

is necessary to remove all the words. With the 

POS-only sequences, we train topic-specific n-

tag models to describe the syntax of normal text 

on the same topic associated with this edit. With 

the original tagged sequences, we train syntactic 

n-gram models to represent the semantics of the 

normal text of this edit. 

After completing the training stage, we send 

the test segment (i.e. the diff-ed text sequence) to 

both the learned n-tag syntax models and the 

learned syntactic n-gram models. For the n-tag 

syntax model, we submit the POS tag-only ver-

sion of the segment. For the syntactic n-gram 

model, we submit a version of the segment 

where each original word is associated with its 

POS-tag. In both cases we compute the log-

likelihood and the perplexity of the segment.  

Finally, we normalize the log likelihood and 

perplexity scores by dividing them by the length 

of Rdiff, as this length varies substantially from 

one edit to another. 
3
 We expect an edit that has 

low log likelihood probability and perplexity to 

be vandalism, and it is very likely to be unre-

lated to the syntax and semantic of the normal 

text of this Wikipedia edit. In the end, the nor-

malized log probability and perplexity scores 

will be incorporated into our back-end classifier 

with all task-specific and lexical features. 

Web as Corpus: In this work, we leverage 

Web search results to train the syntax and se-

mantic models. This is based on the assumption 

that the Web itself is a large corpus and Web 

search results can be a good training set to ap-

proximate the semantics and syntax of the query.    

Topic-specific Modeling: We introduce a 

topic-specific modeling method that treats every 

edit in Wikipedia as a unique topic. We think 

that the title of each Wikipedia edit is an approx-

imation of the topic of the edit, so we extract the 

title of each edit and use it as keywords to re-

trieve training data for our shallow syntactic and 

semantic modeling. 

Topic-specific N-tag and Syntactic N-gram: 

In our novel approach, we tag all the top-k query 

results and diff text with a probabilistic POS tag-

ger in both the training and test set of the vandal-

ism corpus. Figure 2(a) is an example of a POS-

tagged sequence in a top-k query result.  

For shallow syntactic modeling, we use an n-

tag modeling method (Collins et al., 2005). Giv-

en a tagged sequence, we remove all the words 

and only keep track of its POS tags: tagi-2 tagi-1 

                                                 
3
 Although we have experimented with using the 

length of Rdiff as a potential feature, it does not appear 

to be a good indicator of vandalism. 

(a) 

Rock/NNP and/CC roll/NN -LRB-/-LRB- 

also/RB spelled/VBD Rock/NNP 'n'/CC 

Roll/NNP 

(b) 

NNP CC NN -LRB- RB VBD NNP CC 

NNP 

(c) 

Rock/NNP !/. !/. !/. and/CC roll/VB 

you/PRP !/. !/. !/. 

(d) 

NNP . . . CC VB PRP . . . 

 

Figure 2. Topic-specific N-tag and Syntactic 

N-gram modeling for the edit “Rock and 

Roll” in Wikipedia (a) The Web-derived 

POS tagged sequence (b) The Web-derived 

POS tag-only sequence (c) A POS tagged 

vandalism diff text Rdiff (d) A POS tag-only 

vandalism Rdiff 
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tagi. This is similar to n-gram language modeling, 

but instead, we model the syntax using POS tags, 

rather than its words. In this example, we can 

use the system in Figure 2 (b) to train an n-tag 

syntactic model and use the one in Figure 2 (d) 

to test. As we see, for this test segment, it be-

longs to the vandalism class and has very differ-

ent syntax from the n-tag model. Therefore, the 

normalized log likelihood outcome from the n-

tag model is very low. 

In order to model semantics, we use an im-

proved version of the n-gram language modeling 

method. Instead of only counting wordi-2 wordi-1 

wordi, we model composite tag/word feature, e.g. 

tagi-2wordi-2 tagi-1wordi-1 tagiwordi. This syntactic 

n-gram modeling method has been successfully 

applied to the task of automatic speech recogni-

tion (Collins et al., 2005). In the example in Fig-

ure 2, the vandalism diff text will probably score 

low, because although it shares an overlap bi-

gram “and roll” with the phrase “rock and roll” 

in training text, once we apply the shallow syn-

tactic n-gram modeling method, the POS tag 

bigram “and/CC roll/VB” in diff text will be dis-

tinguished from the “and/CC roll/NN” or 

“and/CC roll/NNP” in the training data. 

5 Experiments 

To evaluate the effectiveness of our approach, 

we first run experiments on a preliminary corpus 

that is also used by previous studies and com-

pare the results. Then, we conduct a second ex-

periment on a larger corpus and analyze in detail 

the features of our system. 

5.1 Experiment Setup 

In our experiments, we use a Wikipedia vandal-

ism detection corpus (Potthast et al., 2007) as a 

preliminary corpus. The preliminary corpus con-

tains 940 human-assessed edits from which 301 

edits are classified as vandalism. We split the 

corpus and keep a held-out 100 edits for each 

class in testing and use the rest for training. In 

the second experiment, we adopt a larger corpus 

(Potthast et al., 2010) that contains 15,000 edits 

with 944 marked as vandalism. The split is 300 

edits for each class in held-out testing and the 

rest used for training. In the description of the 

second corpus, each edit has been reviewed by at 

least 3 and up to 15 annotators. If more than 2/3 

of the annotators agree on a given edit, then the 

edit is tagged as one of our target classes. Only 

11 cases are reported where annotators fail to 

form a majority inter-labeler agreement and in 

those cases, the class is decided by corpus au-

thors arbitrarily.    

In our implementation, the Yahoo!
4
 search 

engine and Bing
5
 search engine are the source 

for collecting top-k results for topic-specific n-

gram training data, because Google has a daily 

query limit. We retrieve top-100 results from 

Yahoo!, and combine them with the top-50 re-

sults from Bing.   

For POS tagging, we use the Stanford POS 

Tagger (Toutanova and Manning, 2000; Touta-

nova et al., 2003) with its attached wsj3t0-18- 

bidirectional model trained from the Wall Street 

Journal corpus. For both shallow syntactic and 

semantic modeling, we train topic-specific tri-

gram language models on each edit using the 

SRILM toolkit (Stolcke, 2002). 

In this classification task, we used two logistic 

classification methods that haven’t been used 

before in vandalism detection. Logistic model 

trees (Landwehr et al., 2005) combine tree in-

duction with linear modeling. The idea is to use 

the logistic regression to select attributes and 

build logistic regression at the leaves by incre-

mentally refining those constructed at higher 

levels in the tree. The second method we used, 

logistic boosting (Friedman et al., 2000), im-

proves logistic regression with boosting. It 

works by applying the classification algorithm to 

reweighted versions of the data and then taking a 

weighted majority vote of the sequence of clas-

sifiers thus produced.    

5.2 Preliminary Experiment 

In the preliminary experiment, we tried logistic 

boosting classifiers and logistic model trees as 

classifiers with 10-fold cross validation. The 

rule-based method, ClueBot, is our baseline.  

We also implemented another baseline system, 

using the bag of words (BoW) and Naive Bayes 

method (Smets et al., 2008) and the same toolkit 

(McCallum, 1996) that Smets et al. used. Then, 

we compare our result with Potthast et al. (2008), 

who used the same corpus as us. 

 

                                                 
4
 http://www.yahoo.com 

5
 http://www.bing.com 
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Table 3: Preliminary Experiment Results; The 

acronyms: BoW: Bag of Words, LMT: Logistic 

Model Trees, LB: Logistic Boosting, Task-

specific + Lexical: features in section 4.1 and 4.2 

 

As we can see in Table 3, the ClueBot has a 

F-score (F1) of 0.43. The BoW + Naïve Bayes 

approach improved the result and reached an F1 

of 0.75. Compared to these results, the system of 

Potthast et al. (2008) is still better and has a F1 

of 0.80. 

For the results of our system, LMT gives us a 

0.89 F1 and LogitBoost (LB) gives a 0.95 F1. A 

significant F1 improvement of 15% was 

achieved in comparison to the previous study 

(Potthast et al., 2008). Another finding is that we 

find our shallow syntactic-semantic modeling 

method improves 2-4% over our task-specific 

and lexical features.  

5.3 Results and Analysis 

In the second experiment, a notable difference 

from the preliminary evaluation is that we have 

an unbalanced data problem. So, we use random 

down-sampling method to resample the majority 

class into balanced classes in the training stage. 

Then, we also use the two classifiers with 10-

fold cross validation. 

The F1 result reported by our BoW + Naïve 

Bayes baseline is 0.68. Next, we test our task-

specific and lexical features that specified in sec-

tion 4.1 and 4.2. The best result is a F1 of 0.82, 

using logistic boosting. Finally, with our topic-

specific shallow syntactic and semantic model- 

 

Table 4: Second Experiment Results 

 

ing features, we have a precision of 0.86, a recall 

of 0.85 and F1 of 0.85. 

Though we are surprised to see the overall F1 

for the second experiment are not as high as the 

first one, we do see that the topic-specific shal-

low syntactic and semantic modeling methods 

play an important role in improving the result.  

Looking back at the related work we men-

tioned in section 2, though we use newer data 

sets, our overall results still seem to surpass ma-

jor vandalism detection systems. 

6 Conclusion and Future Works 

We have described a practical classification 

framework for detecting Wikipedia vandalism 

using NLP techniques and shown that it outper-

forms rule-based methods and other major ma-

chine learning approaches that are previously 

applied in the task.  

In future work, we would like to investigate 

deeper syntactic and semantic cues to vandalism. 

We hope to improve our models using shallow 

parsing and full parse trees. We may also try 

lexical chaining to model the internal semantic 

links within each edit. 
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Systems Recall Precision F1 

ClueBot 0.27 1 0.43 

BoW + 

Naïve Bayes 

0.75 0.74 0.75 

Potthast 

et. al., 2008 

0.77 0.83 0.80 

Task-specific 

+Lexical 

(LMT) 

0.87 0.87 0.87 

Task-specific 

+Lexical (LB) 

0.92 0.91 0.91 

Our System 

 (LMT) 

0.89 0.89 0.89 

Our System 

(LB) 
0.95 0.95 0.95 

 

Features Recall Precision F1 

BoW +  

Naïve Bayes 

0.68 0.68 0.68 

Task-specific 

(LMT) 

0.81 0.80 0.80 

Task-specific 

+Lexical(LMT) 

0.81 0.81 0.81 

Our System 

(LMT) 

0.84 0.83 0.83 

Task-specific 

(LB) 

0.81 0.80 0.80 

Task-specific + 

Lexical (LB) 

0.83 0.82 0.82 

Our System 

(LB) 
0.86 0.85 0.85 
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Abstract

Question detection serves great purposes
in the cQA question retrieval task. While
detecting questions in standard language
data corpus is relatively easy, it becomes
a great challenge for online content. On-
line questions are usually long and infor-
mal, and standard features such as ques-
tion mark or 5W1H words are likely to be
absent. In this paper, we explore ques-
tion characteristics in cQA services, and
propose an automated approach to detect
question sentences based on lexical and
syntactic features. Our model is capable
of handling informal online languages.
The empirical evaluation results further
demonstrate that our model significantly
outperforms traditional methods in de-
tecting online question sentences, and it
considerably boosts the question retrieval
performance in cQA.

1 Introduction

Community-based Question Answering services
(cQA) such as Yahoo! Answers have emerged
as popular means of information exchange on the
web. They not only connect a network of people
to freely ask and answer questions, but also allow
information seekers to search for relevant histori-
cal questions in the cQA archive (Agichtein et al.,
2008; Xue et al., 2008; Wang et al., 2009).

Many research works have been proposed to
find similar questions in cQA. The state-of-the-art
retrieval models include the vector space model
(Duan et al., 2008), language model (Duan et al.,
2008; Jeon et al., 2005), Okapi model (Jeon et al.,
2005), translation model (Jeon et al., 2005; Rie-

zler et al., 2007; Xue et al., 2008), and syntac-
tic tree matching model(Wang et al., 2009). Al-
though experimental studies in these works show
that the proposed models are capable of improv-
ing question retrieval, they did not give clear ex-
planation on which portion of the question that
the user query is actually matched against. A
question thread from cQA usually comprises sev-
eral sub-questions conveying different informa-
tion needs, and it is highly desirable to identify
individual sub-questions and match each of them
to the user query. Getting sub-questions clearly
identified not only helps the retrieval system to
match user query to the most desirable content but
also improves the retrieval efficiency.

However, the detection of sub-question is non-
trivial. Question sentences in cQA are usually
mixed with various description sentences, and
they usually employ informal languages, where
standard features such as question mark or ut-
terance are likely to be absent. As such, simple
heuristics using question mark or 5W1H words
(who, what, where, why, how) may become in-
adequate. The demand of special techniques in
detecting question sentences online arises due to
three particular reasons. First, the question mark
could be missing at the end of a question1, or
might be used in cases other than questions such
as “Really bad toothache?”. Second, some ques-
tions such as “I’d like to know the expense of re-
moving wisdom teeth” are expressed in a declar-
ative form, which neither contains 5W1H words
nor is neccessarily ended with “?”. Third, some
question-like sentences do not carry any actual in-
formation need, such as “Please help me?”. Fig-
ure 1 illustrates an example of a question thread

1It is reported (Cong et al., 2008) that 30% of online
questions do not end with question marks.
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S1: What do you guys do when you find that the 'plastic 

protection seal' is missing or disturbed. 

S2: Throw it out, buy a new one.. or just use it anyways?

S3: Is it really possible or likely that the item you purchased was 

tampered with??

S4: The box was in a plastic wrap but the item itself inside did 

not having the protection seal (box says it should) so I 

couldn't have inspected it before I bought it.

S5: Please suggest?… thanks!

Figure 1: An example of a question thread ex-
tracted from Yahoo! Answers

from Yahoo! Answers, where sub-questions S1
and S2 are posted in non-standard forms, and S5
is merely a question-like simple sentence. To the
best of our knowledge, none of the existing ques-
tion retrieval systems are equipped with a com-
prehensive question detector module to handle
various question forms online, and limited effort
has been devoted to this direction.

In this paper, we extensively explore character-
istics of questions in cQA, and propose a fully
automated approach to detecting question sen-
tences. In particular, we complement lexical pat-
terns with syntactic patterns, and use them as fea-
tures to train a classification model that is capable
of handling informal online languages. To save
human annotations, we further propose to employ
one-class SVM algorithm for model learning, in
which only positive examples are used as opposed
to requiring both positive and negative examples.

The rest of the paper is organized as follows:
Section 2 presents the lexical and syntactic pat-
terns as used for question detection. Section 3
describes the learning algorithm for the classifi-
cation model. Section 4 shows our experimental
results. Section 5 reviews some related work and
Section 6 concludes this paper.

2 Pattern Mining for Question Detection

As has been discussed, human generated content
on the Web are usually not well formatted, and
naive methods such as the use of question mark
and 5W1H words are not adequate to correctly
detect or capture all online questions. Methods
based on hand-crafted rules also fail to cope with
various question forms as randomly appeared on
the Web. To overcome the shortcomings of these
traditional methods, we propose to extract a set
of salient patterns from online questions and use

them as features to detect question sentences.
In this study, we mainly focus on two kinds

of patterns – sequential pattern at the lexical
level and syntactic shallow pattern at the syntac-
tic level. Sequential patterns have been well dis-
cussed in many literature, including the identifi-
cation of comparative sentences (Jindal and Liu,
2006), the detection of erroneous sentences (Sun
et al., 2007) and question sentences (Cong et al.,
2008) etc. However, works on syntactic patterns
have only been partially explored (Zaki and Ag-
garwal, 2003; Sun et al., 2007; Wang et al., 2009).
Grounded on these previous works, we next ex-
plain our mining approach of the sequential and
syntactic shallow patterns.

2.1 Sequential Pattern Mining

Sequential Pattern is also referred to as Labeled
Sequential Pattern (LSP) in the literature. It is
in the form of S⇒C , where S is a sequence
{t1, . . . , tn}, and C is the class label that the se-
quence S is classified to. In the problem of ques-
tion detection, a sequence is defined to be a se-
ries of tokens from questions, and the class labels
are {Q,NQ}, which stand for question and non-
question respectively.

The purpose of sequential pattern mining is to
extract a set of frequent subsequence of words
that are indicative of questions. For example,
the word subsequence “anyone know what . . .
to” could be a good indication to characterize the
question sentence “anyone know what I can do to
make me less tired.”. Note that the mined sequen-
tial tokens need not to be contiguous as appeared
in the original text.

There is a handful of algorithms available for
frequent subsequence extraction. Pei et al. (2001)
observed that all occurrences of a frequent pattern
can be classified into groups (approximated pat-
tern) and proposed a Prefixspan algorithm. The
Prefixspan algorithm quickly finds out all rela-
tive frequent subsequences by a pattern growth
method, and determines the approximated pat-
terns from those subsequences. We adopt this al-
gorithm in our work due to its high reported effi-
ciency. We impose the following additional con-
straints for better control over the significance of
the mined patterns:
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1. Maximum Pattern Length: It limits the maxi-
mum number of tokens in a mined sequence.

2. Maximum Token Distance: The two adjacent
tokens tn and tn+1 in the pattern need to be
within a threshold window in the original text.

3. Minimum Support: The minimum percentage
of sentences in Q containing the pattern p.

4. Minimum Confidence: The probability of a
pattern p⇒Q being true in the whole database.

To overcome the word sparseness problem, we
generalize each sentence by applying the Part-of-
Speech (POS) tags to all tokens except some in-
dicative keywords such as 5W1H words, modal
words, stopwords etc. For instance, the question
sentence “How can I quickly tell if my wisdom
teeth are coming” is converted to “How can I RB
VBP if my NN NNS VBP VBG”, on top of which
the pattern mining is conducted. To further cap-
ture online language patterns, we mine a set of
frequent tokens that are unique to cQA such as
“any1”, “im” and “whats”, and keep them from
being generalized. The reason to hold back this
set of tokens is twofold. First, conventional POS
taggers are trained from standard English corpus,
and they could mis-tag these non-standard words.
Second, the special online tokens are analogue to
standard stopwords, and having them properly ex-
cluded could help reflect the online users’ textual
questioning patterns.

It is expected that the converted patterns pre-
serve the most representative features of online
questions. Each discovered pattern makes up a
binary feature for the classification model that we
will introduce in Section 3.

2.2 Syntactic Shallow Pattern Mining

The sequential patterns represent features at the
lexical level, but we found that lexical patterns
might not always be adequate to categorize ques-
tions. For example, the pattern {when, do} could
presume the non-question “Levator scapulae is
used when you do the traps workout” to be a ques-
tion, whereas the question “know someone with
an eating disorder?” could be overlooked due to
the lack of indicative lexical patterns.

These limitations, however, could be allevi-
ated by syntactic features. The syntactic pattern
(SBAR(WHADVP(WRB))(S(NP)(VP))) extracted

S

NP VP

NN VBP NP

Anyone try

NP

weight

NNS

watchers

S

NP VP

NN VBP NP

Someone need

DT

a

NNP

diet

NN

motivator?

.

?

.

Anyone try weight watchers? Someone need a diet motivator?

Figure 2: An example of common syntactic pat-
terns observed in two different question sentences

from the former example has the order of NP
and VP being switched, which could indicate
the sentence to be a non-question, whereas the
pattern (VP(VB)(NP(NP)(PP))) may be evidence
that the latter example is indeed a question,
because this pattern is commonly witnessed in
the archived questions. Figure 2 shows an ex-
ample that two questions bear very different
wordings but share the same questioning pat-
tern (S(NP(NN))(VP(VPB)(NP))) at the syntactic
level. In view of the above, we argue that pat-
terns at the syntactic level could complement lex-
ical patterns in identifying question sentences.

To our knowledge, the mining of salient pat-
terns at the syntactic level was limited to a few
tasks. Zaki and Aggarwal (2003) employed tree
patterns to classify XML data, Sun et al. (2007)
extracted all frequent sub-tree structures for erro-
neous sentences detection, and Wang et al. (2009)
decomposed the parsing tree into fragments and
used them to match similar questions. Our work
differs from these previous works in that: (1) we
also utilize syntactic patterns for the question de-
tection; and (2) we do not blindly extract all pos-
sible sub-tree structures, but focus only on certain
portions of the parsing tree for better pattern rep-
resentation and extraction efficiency.

Given a syntactic tree T , we define syntac-
tic pattern as a part of sub-structures of T such
that the production rule for each non-leaf node in
the patterns is intact. For example, the pattern
(S(NP(NN))(VP(VPB)(NP))) in Figure 2 is con-
sidered to be a valid syntactic pattern, whereas
(S(NP(NN))(VP(VPB))) is not, since the produc-
tion rule VP→VPB·NP is not strictly complied.

We take the following measures to mine salient
syntactic patterns: First, we limit the depth of
each syntactic pattern to be within a certain range.

1157



SBARQ

WHADVP SQ

WRB MD NP ADVP VP

Q: How can I quickly tell if my wisdom teeth are coming?

SQ

MD NP ADVP VP

RBPRP SBARVB

Generalization

Decomposition

…

…

…

VP

VB SBAR

S

SBAR

IN S

VPNP

SBARQ

WHADVP SQ

WRB MD NP VP

SQ

MD NP VP

PRP SBARVB

…

…

…

VP

VB SBAR

S

SBAR

IN S

VPNP

(a) (b) (c) (d)

(a’) (b’) (c’) (d’)

…

…

Figure 3: Illustration of syntactic pattern extrac-
tion and generalization process

It is believed that the syntax structure will become
too specific if it is extended to a deeper level or
too general if the depth is too shallow, neither of
which produces good representative patterns. We
therefore set the depth D of each syntactic pattern
to be within a reasonable range (2≤D≤4). Sec-
ond, we prune away all leaf nodes as well as the
production rules at the POS tag level. We believe
that nodes at the bottom levels do not carry much
useful structural information favored by question
detector. For example, the simple grammar rule
NP→DT·NN does not give any insight to use-
ful question structures. Third, we relax the def-
inition of syntactic pattern by allowing the re-
moval of some nodes denoting modifiers, prepo-
sition phrases, conjunctions etc. The reason is
that these nodes are not essential in representing
the syntactic patterns and are better excluded for
generalization purpose. Figure 3 gives an illus-
tration of the process for pattern extraction and
generalization. In this example, several syntac-
tic patterns are generated from the question sen-
tence “How can I quickly tell if my wisdom teeth
are coming?”, and the tree patterns (a) and (b) are
generalized into (a’) and (b’), in which the redun-
dant branch (ADVP(RB)) that represents the ad-
verb “quickly” is detached.

Contents on the Web are prone to noise, and
most off-the-shelf parsers are not well-trained to
parse online questions. For example, the parsing
tree of the question “whats the matter with it?”
will be very different from that of the question
“what is the matter with it?”. It would certainly
be nice to know that “whats” is a widely used
short form of the phrase “what is” on the Web,

but we are lack of this kind of thesaurus. Nev-
ertheless, we argue that the parsing errors would
not hurt the question detector performance much
as long as the mining database is large enough.
The reason is that if certain irregular forms fre-
quently occur on the Web, there will be statisti-
cal evidences that the syntactic patterns derived
from it, though not desired, will commonly occur
as well. In other words, we take the wrong pat-
terns and utilize them to detect questions in the
irregular forms. Our approach differs from other
systems in that we do not intentionally try to rec-
tify the grammatical errors, but leave the errors as
they are and use the statistical based approach to
capture those informal patterns.

The pattern extraction process is outlined in Al-
gorithm 1. The overall mining strategy is analo-
gous to the mining of sequential patterns, where
support and confidence measures are taken into
account to control the significance of the mined
patterns. All mined syntactic patterns together
with the lexical patterns will be used as features
for learning the classification model.

Algorithm 1 ExtractPattern(S, D)
Input: A set of syntactic trees for sentences (S); the depth
range (D)
Output: A set of sub-tree patterns extracted from S

1: Patterns = {}
2: for all Syntactic tree T ∈ S do
3: Nodes ← Top-down level order traversal of T
4: for all node n ∈ Nodes do
5: Extract subtree p rooted under node n, with depth

within the range D
6: p ← generalize(p)
7: Patterns.add(p)
8: end for
9: end for

10: return Patterns

3 Learning the Classification Model

Although Conditional Random Fields (CRF) is
good sequential learning algorithm and has been
used in other related work (Cong et al., 2008),
here we select Support Vector Machines (SVM)
as an alternative learner. The reason is that our
task not only deals with sequential patterns but
also involves syntactic patterns that possess no
sequential criteria. Additionally, SVM has been
widely shown to provide superior results com-
pared to other classifiers.
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The input to a SVM binary classifier normally
consists of both positive and negative examples.
While it is easy to discover certain patterns from
questions, it is unnatural to identify character-
istics for non-questions, as they usually do not
share such common lexical and syntactic patterns.
The lack of good negative examples leads tra-
ditional SVM to perform poorly. To adapt the
imbalanced input data, we proposed to employ
a one-class SVM method (Manevitz and Yousef,
2002) for learning. The basic idea of one-class
SVM is to transform features from only positive
examples via a kernel to a hyper-plane and treats
the origin as the only member of the second class.
It uses relaxation parameters to separate the posi-
tive examples from the origin, and finally applies
the standard two-class SVM techniques to learn
a decision boundary. As a result, anything out-
side the boundary are considered to be outliers
(i.e. non-questions in this problem).

More formally, given n training samples
x1, . . . , xn of one class, the hyperplane separating
them from the origin is constructed by solving

min
1

2
‖w‖2 +

1

νn

n∑

i=1

ξi − ρ (1)

subject to: w · Φ(xi) ≥ ρ − ξi, where Φ is a ker-
nel function, ξi is the slack variable, and ν is the
parameter controlling the upper bound percentage
of outliers. If w and ρ solve this problem, the de-
cision function f(x) = sign(w ·Φ(x)−ρ) will be
positive for most examples xi in the training set.

Supervised learning methods usually require
training data to be manually annotated. To save
labeling efforts, we take a shortcut by treating all
sentences ending with question marks as an initial
positive examples. This assumption is acceptable,
as Cong et al. (2008) reported that the rule-based
method using only question mark achieves a very
high precision of over 97% in detecting questions.
It in turn indicates that questions ending with “?”
are highly reliable to be real questions.

However, the initial training data still contain
many sentences ending with “?” but are not true
questions. These possible outliers will shift the
decision boundary away from the optimal one,
and we need to remove them from the training
dataset for better classification. Many prepro-
cessing strategies are available for training data

Good positive examples

(true questions)

Bad positive examples 

(non-questions)

Origin

(i) (ii) (iii)

Iterations for training 

data refinement

(i)

Decision

Boundary

Iterations

Figure 4: Illustration of one-class SVM classifi-
cation with training data refinement (conceptual
only). Three iterations (i) (ii) (iii) are presented.

refinement, including bootstrapping, condensing,
and editing etc. In this work, we employ a SVM-
based data editing and classification method pro-
posed by Song et al. (2008), which iteratively sets
a small value to the parameter ν of the one-class
SVM so as to continuously refine the decision
boundary. The algorithm could be better visual-
ized with Figure 4. In each iteration, a new de-
cision boundary will be determined based on the
existing set of data points, and a portion of pos-
sible outliers will be removed from the training
set. It is expected that the learned hyperplane will
eventually be very close to the optimal one.

We use the freely available software LIBSVM2

to conduct the one-class SVM training and test-
ing. A linear kernel is used, as it is shown to be
superior in our experiments. In each refinement
iteration, the parameter ν is conservatively set to
0.02. The number of iteration is dynamically de-
termined according to the algorithm depicted in
(Song et al., 2008). Other parameters are all set to
default. The refined decision boundary from the
training dataset will be applied to classify ques-
tions from non-questions. The question detector
model learned will serve as a component for the
cQA question retrieval system in our experiments.

4 Experiments

In this section, we present empirical evaluation
results to assess the effectiveness of our ques-
tion detection model. In particular, we first ex-
amine the effects of the number of patterns on
question detection performance. We further con-
duct experiments to show that our question de-

2Available at: http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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# of Lexical Confidence # of Syntactic Confidence
Patterns 60% 65% 70% 75% 80% Patterns 60% 65% 70% 75% 80%

Su
pp

or
t 0.40% 1685 1639 1609 1585 1545

Su
pp

or
t 0.03% 916 758 638 530 453

0.45% 1375 1338 1314 1294 1277 0.04% 707 580 488 402 341
0.50% 1184 1151 1130 1113 1110 0.05% 546 450 375 308 261
0.55% 1037 1007 989 975 964 0.06% 468 379 314 260 218

Table 1: Number of lexical and syntactic patterns mined over different support and confidence values

Lexical
Patterns

Confidence Syntactic
Patterns

Confidence
65% 70% 75% 60% 65% 70%

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Su
pp

or
t 0.40% 85.7 90.7 88.1 86.9 88.6 87.7 87.8 86.6 87.2

Su
pp

or
t 0.03% 80.4 83.3 81.9 85.1 77.5 81.1 90.7 70.2 79.1

0.45% 86.6 90.2 88.4 88.9 88.5 88.7 89.6 86.7 88.2 0.04% 79.0 86.1 82.4 90.1 78.2 83.7 90.8 70.8 79.6
0.50% 88.5 91.6 88.4 86.4 89.0 87.7 86.2 87.9 87.0 0.05% 80.3 82.5 81.4 88.8 78.4 83.3 89.9 69.0 78.1
0.55% 86.5 89.9 88.1 88.1 87.5 87.8 88.0 89.2 88.6 0.06% 83.0 83.2 83.1 88.5 77.2 82.4 86.7 75.8 80.9

Table 2: Question detection performance over different sets of lexical patterns and syntactic patterns

tection model combining both lexical and syntac-
tic features outperforms traditional rule-based or
lexical-based methods. We finally demonstrate
that our question detection model gives additional
performance boosting to question matching.

4.1 Performance Variation over Different
Pattern Sets

The performance of the question detection model
can be sensitive to the number of features used for
learning. To find the optimal number of features
used for model training, we examine the perfor-
mance variation over different amount of lexical
and syntactic patterns undertaken for training.

Dataset: We collected a total of around 800k
question threads from Yahoo! Answers Health-
care domain. From the collected data, we gener-
ated the following three datasets:

- Pattern Mining Set: Comprising around 350k
sentences from 60k question threads, where
those ending with “?” are treated as questions
and others as non-questions.

- Training Set: Positive examples comprising
around 130k sentences ending with “?” from
another 60k question threads for the one-class
SVM learning algorithm.

- Testing Set: Two annotators are asked to tag
randomly picked sentences from the remaining
set. A total of 2,004 question sentences and
2,039 non-question sentences are annotated.

Methods & Results: We use different combi-
nations of support and confidence values to gen-
erate different set of patterns. The support value
ranges from 0.40% to 0.55% for lexical patterns

with a step size of 0.05%, and ranges from 0.03%
to 0.06% for syntactic patterns with a step size
of 0.01%. The confidence value for both patterns
ranges from 60% to 80% with a step size of 5%.
These value ranges are empirically determined.
Table 1 presents the number of lexical and syn-
tactic patterns mined against different support and
confidence value combinations.

For each set of lexical or syntactic patterns
mined, we use them as features for model train-
ing. We convert the training sentences into a set
of feature vectors and employ the one-class SVM
algorithm to train a classifier. The classifier will
then be applied to predict the question sentences
in the testing set. To evaluate each question de-
tection model, we employ Precision (P ), Recall
(R), and F1 as performance metrics, and Table 2
presents the results3.

We observe from Table 2 that given a fixed sup-
port level, the precision generally increases with
the confidence level for both lexical and syntactic
patterns, but the recall drops. The lexical feature
set comprising 1,314 sequential patterns as gen-
erated with {sup=0.45%, conf=70%} gives the
best F1 score of 88.7%, and the syntactic feature
set comprising 580 syntactic patterns generated
from {sup=0.04%, conf=65%} gives the best F1

score of 83.7%. It is noted that the sequential
patterns give relatively high recall while the syn-
tactic patterns give relatively high precision. Our
reading is that the sequential patterns are capable
of capturing most questions, but it may also give
wrong predictions to non-questions such as “Lev-

3The results for certain confidence levels are not very
promising and are not shown in the table due to lack of space.
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ator scapulae is used when you do the traps work-
out” that bears the sequential pattern {when, do}.
On the other hand, the syntactic patterns could
give reliable predictions, but its coverage could
suffer due to the limited number of syntactic pat-
terns. We conjecture that a combination of both
features could further improve the performance.

4.2 Performance Comparison with
Traditional Question Detection Methods

We next conduct experiments to compare the per-
formance of our question detection model to tra-
ditional rule-based or lexical-based methods.

Methods & Results: We set up five different
systems for meaningful comparisons:

1. 5W1H (baseline1): a rule-based method using
5W1H to determine a question sentence.

2. Question Mark (baseline2): a method using the
question mark “?” to judge a question.

3. SeqPattern: Using only the set of 1,314 se-
quential patterns as features.

4. SynPattern: Using only the set of 580 syntactic
patterns as features.

5. SeqPattern+SynPattern: Merging both lexical
and syntactic patterns and use them as a set of
features for question detection.

We again employ Precision (P ), Recall (R),
and F1 as performance metrics to evaluate each
question detection system, and tabulate the com-
parison results in Table 3. From the Table, we
observe that 5W1H performs poorly in both preci-
sion and recall, and question mark based method
gives relatively low recall although the precision
is the highest amongst all the methods evaluated.
This is in line with the results as observed in
(Cong et al., 2008). SeqPattern outperforms the
two baseline systems in both R and F1 scores,
and its combination with SynPattern augments
the performance in both precision and recall by
a lot. It also achieves statistically significant im-
proved results (t-test, p-value<0.05) as compared
to other four systems. These results are consistent
with our intuition that syntactic patterns can lever-
age sequential patterns in improving the question
detection performance.

It is noted that SeqPattern+SynPattern exhibits
the highest recall (R) amongst all the systems.
The significance test further suggests that many

System Combination P (%) R(%) F1(%)
(1) 5W1H 75.37 49.50 59.76
(2) Question Mark 94.12 77.50 85.00
(3) SeqPattern 88.92 88.47 88.69
(4) SynPattern 90.06 78.19 83.71
(5) SeqPattern+SynPattern 92.11 89.67 90.87

Table 3: Performance comparisons for question
detection on different system combinations

question sentences miss-detected by 5W1H or
Question Mark method could be properly cap-
tured by our model. This improvement is mean-
ingful, as the question coverage is also an im-
portant factor in the cQA question retrieval task,
where high recall implies that more similar ques-
tions could be matched and returned, hence im-
proving the question retrieval performance.

4.3 Performance Evaluation on Question
Retrieval with Question Detection Model

To further demonstrate that our question detection
model can improve question retrieval, we incor-
porate it into different question retrieval systems.

Methods: We select a simple bag-of-word
(BoW) system retrieving questions at the lexical
level, and a syntactic tree matching (STM) model
matching questions at the syntactic level (Wang et
al., 2009) as two baselines. For each baseline, we
further set up two different combinations:

- Baseline+QM: Using question mark to detect
question sentences, and perform question re-
trieval on top of the detected questions.

- Baseline+QD: Using our proposed model to
detect question sentences, and perform ques-
tion retrieval on top of the detected questions.

This gives rise to additional 4 different system
combinations for comparison.

Dataset: We divide the dataset from Yahoo!
Answers into a question repository set (750k) and
a test set (50k). For the baseline systems, all the
repository sentences containing both questions
and non-questions are indexed, whereas for sys-
tems equipped with QM or QD, only the detected
question sentences are indexed for retrieval. We
randomly select 250 single-sentence questions
from the test set as queries, and for each query, the
retrieval system will return a list of top 10 ques-
tion matches. We combine the retrieved results
from different systems and ask two annotators to
label each result to be either “relevant” or “irrel-
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System BoW BoW BoW STM STM STM
Combination +QM +QD +QM +QD
MAP (%) 58.07 59.89 60.68 66.53 68.41 69.85
% improvement
of MAP over:
Baseline N.A. +3.13 +4.49 N.A. +2.83 +4.99
Baseline+QM N.A. N.A. +1.32 N.A. N.A. +2.10
P@1 (%) 59.81 61.21 63.55 63.08 64.02 65.42

Table 4: Question retrieval performance on differ-
ent system combinations measured by MAP and
P@1 (Baseline is either BoW or STM)

evant” without telling them which system the re-
sult is generated from. By eliminating some query
questions that have no relevant matches, the final
testing set contains 214 query questions.

Metrics & Results: We evaluate the question
retrieval performance using two metrics: Mean
Average Precision (MAP) and Top One Precision
(P@1). The results are presented in Table 4.

We can see from Table 4 that STM outper-
forms BoW. Applying QM or QD over BoW and
STM boosts the system performance in terms of
both MAP and P@1. They also achieve statis-
tical significance as judged by paired t-test (p-
value<0.05). More specifically, the MAP on
QM coupled systems improves by 3.13% and
2.83% respectively over BoW and STM. This is
evidence that having question sentences clearly
identified could help to retrieve relevant ques-
tions more precisely, as without question detec-
tion, the user query is likely to be matched to ir-
relevant description sentences. Our question de-
tection model (QD) further improves the MAP
by 1.32% and 2.1% respectively over BoW+QM
and STM+QM, and it also yields better top one
precision by correctly retrieving questions at the
first position on 136 and 140 questions respec-
tively, out of a total of 214 questions. These im-
provements are in line with our expectation that
our model incorporating salient features at both
the lexical and syntactic levels is comprehensive
enough to capture various forms of questions on-
line, and hence improve the performance of ques-
tion matching.

5 Related Work

Research on detecting question sentences can
generally be classified into two categories. The
first category simply employs rule-based methods
such as question mark, 5W1H words, or hand-

crafted regular expressions to detect questions.
As discussed, these conventional methods are not
adequate to cope with online questions.

The second category uses machine learning ap-
proaches to detect question sentences. Shrestha
and McKeown (2004) proposed a supervised rule
induction method to detect interrogative questions
in email conversations based on part-of-speech
features. Yeh and Yuan (2003) used a statistical
approach to extract a set of question-related words
and derived some syntax and semantic rules to
detect mandarin question sentences. Cong et al.
(2008) extracted labeled sequential patterns and
used them as features to learn a classifier for ques-
tion detection in online forums.

Question pattern mining is also closely related
to the learning of answer patterns. Work on an-
swer patterns includes the web based pattern min-
ing (Zhang and Lee, 2002; Du et al., 2005) and a
combination of syntactic and semantic elements
(Soubbotin and Soubbotin, 2002) etc.

In contrast to previous work, we do not only fo-
cus on standard language corpus, but extensively
explore characteristics of online questions. Our
approach exploits salient question patterns at both
the lexical and syntactic levels for question detec-
tion. In particular, we employ the one-class SVM
algorithm such that the learning process is weakly
supervised and no human annotation is involved.

6 Conclusion

This paper proposed a new approach to detecting
question sentences in cQA. We mined both lexical
and syntactic question patterns, and used them as
features to build classification models. The min-
ing and leaning process is fully automated and re-
quires no human intervention. Empirical evalua-
tion on the cQA archive demonstrated the effec-
tiveness of our model as well as its usefulness in
improving question retrieval performance.

We are still investigating other features that are
helpful to detect questions. One promising direc-
tion for future work is to also employ lexical and
syntactic patterns to other related areas such as
question type classification etc. It is also interest-
ing to employ a hybrid of CRF and SVM learning
methods to boost the accuracy and scalability of
the classifier.
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Abstract

A range of Natural Language Process-
ing tasks involve making judgments about
the semantic relatedness of a pair of sen-
tences, such as Recognizing Textual En-
tailment (RTE) and answer selection for
Question Answering (QA). A key chal-
lenge that these tasks face in common
is the lack of explicit alignment annota-
tion between a sentence pair. We capture
the alignment by using a novel probabilis-
tic model that models tree-edit operations
on dependency parse trees. Unlike previ-
ous tree-edit models which require a sep-
arate alignment-finding phase and resort
to ad-hoc distance metrics, our method
treats alignments as structured latent vari-
ables, and offers a principled framework
for incorporating complex linguistic fea-
tures. We demonstrate the robustness of
our model by conducting experiments for
RTE and QA, and show that our model
performs competitively on both tasks with
the same set of general features.

1 Introduction

Many complex Natural Language Processing
(NLP) applications can be broken down to a sub-
task of evaluating the semantic relationship of
pairs of sentences (e.g., in Question Answering,
answer selection involve comparing each answer
candidate against the question). This means that
research aiming at analyzing pairs of semanti-
cally related natural language sentences is promis-
ing because of its reusability: it is not tied to
a particular internal representation of meanings,

but it nevertheless serves as a first step towards
full meaning understanding, which is applicable
to a number of applications. At the same time,
this paradigm clearly defines the input and output
space, facilitating system comparison and stan-
dard evaluation. Tasks of this paradigm have
drawn much of the focus in recent NLP research,
including Recognizing Textual Entailment (RTE),
answer selection for Question Answering (QA),
Paraphrase Identification (PI), Machine Transla-
tion Evaluation (MTE), and many more.

In each of these tasks, inputs to the systems are
pairs of sentences that may or may not convey the
desired semantic property (e.g., in RTE, whether
the hypothesis sentence can be entailed from the
premise sentence; in QA, whether the answer can-
didate sentence correctly answers the question),
and the output of the system is a binary classifi-
cation decision (or a regression score,as in MTE).

Earlier studies in these domains have concluded
that simple word overlap measures (e.g., bag of
words, n-grams) have a surprising degree of util-
ity (Papineni et al., 2002; Jijkoun and de Ri-
jke, 2005b), but are nevertheless not sufficient for
these tasks (Jijkoun and de Rijke, 2005a). A com-
mon problem identified in these earlier systems is
the lack of understanding of the semantic relation
between words and phrases. Later systems that
include more linguistic features extracted from re-
sources such as WordNet have enjoyed more suc-
cess (MacCartney et al., 2006). Studies have also
shown that certain prominent syntactic features
are often found beneficial (Snow et al., 2006).
More recent studies gained further leverage from
systematic exploration of the syntactic feature
space through analysis of parse trees (Wang et al.,
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2007; Das and Smith, 2009).
There are two key challenges imposed by these

tasks. The first challenge has to do with the hidden
alignment structures embedded in the sentence
pairs. It is straightforward to see that in order
to extract word-matching and/or syntax-matching
features, inevitably one has to consider the align-
ment between words and/or syntactic parts. These
alignments are not given as inputs, and it is a
non-trivial task to decide what the correct align-
ment is. Alignment-based approach have been
proven effective by many RTE, QA and MTE sys-
tems (Haghighi et al., 2005; Wang et al., 2007;
MacCartney et al., 2008; Das and Smith, 2009,
inter alia). Although alignment is a commonly
used approach, it is not the only one. Other stud-
ies have successfully applied theorem proving and
logical induction techniques, translating both sen-
tences to knowledge representations and then do-
ing inference on these representations (Moldovan
et al., 2003; Raina et al., 2005; de Salvo Braz
et al., 2005; MacCartney and Manning, 2007, in-
ter alia).

A second challenge arises when a system needs
to combine various sources of evidence (i.e., sur-
face text features, semantic features, and syntactic
features) to make a global classification decision.
Quite often these features are heavily overlapping
and sometimes contradicting, and thus a robust
learning scheme that knows when to activate what
feature is desired. Traditional approaches employ
a two-stage or multi-stage model where tasks are
broken down into alignment finding, feature ex-
traction, and feature learning subtasks (Haghighi
et al., 2005; MacCartney et al., 2008). The align-
ment finding task is typically done by commit-
ting to a one best alignment, and subsequent fea-
tures are extracted only according to this align-
ment. A large body of literature in joint learning
has demonstrated that such an approach can suffer
from cascaded errors at testing, and does not ben-
efit from the potential for joint learning (Finkel et
al., 2006).

In this paper, we present a novel undirected
graphical model to address these challenges. A
promising approach to these challenges is model-
ing the alignment as an edit operation sequence
over parse tree representation, an approach pio-

neered by (Punyakanok et al., 2004; Kouylekov
and Magnini, 2006; Harmeling, 2007; Mehdad,
2009). We improve upon this earlier work by
showing how alignment structures can be inher-
ently learned as structured latent variables in our
model. Tree edits are represented internally as
state transitions in a Finite-State Machine (FSM),
and our model is parameterized as a Condi-
tional Random Field (CRF) (Lafferty et al., 2001),
which allows us to incorporate a diverse set of ar-
bitrarily overlapping features.

In comparison to previous work that exploits
various ad-hoc or heuristic ways of incorporating
tree-edit operations, our model provides an ele-
gant and much more principled way of describing
tree-edit operations in a probabilistic setting.

2 Tree-edit CRF for Classification

A training instance consists of a pair of sentences
and an associated binary judgment. In RTE, for
example, the input sentence pairs is made up of
a text sentence (e.g., Gabriel Garcia Marquez is
a novelist and winner of the Nobel prize for lit-
erature.) and a hypothesis sentence (e.g., Gabriel
Garcia Marquez won the Nobel for Literature.).
The pair is judged to be true if the hypothesis can
be entailed from the text (e.g., the answer is true
for the example sentence pair).

Formally, we denote the text sentence as txt and
the hypothesis sentence as hyp, and denote their
labeled dependency parse trees as τt and τh, re-
spectively. We use the binary variable z ∈ {0,1}
to denote the judgment.

The generative story behind our model is a
parse tree transformation process. τt is trans-
formed into τh through a sequence of tree ed-
its. Examples of tree edits are delete child, in-
sert parent, and substitute current. An edit se-
quence e = e1 . . .em is valid if τt can be success-
fully turned into τh according to e. An example of
a trivial valid edit sequence is one that first deletes
all nodes in τt then inserts all nodes in τh.

Delete, insert and substitute form the three ba-
sic edit operations. Each step in an edit sequence
is also linked with current edit positions in both
trees, denoted as e.p = e1.p . . .em.p. We index
the tree nodes using a level-order tree traversal
scheme (i.e., root is visited first and assigned in-
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dex 0, then each one of the first level children
of the root is visited in turn, and assigned an in-
dex number incremented by 1). It is worth noting
that every valid edit sequence has a correspond-
ing alignment mapping. Nodes that are inserted
or deleted are aligned to null, and nodes that are
substituted are aligned. One can find many edit
sequence for the same alignment, by altering the
order of edit operations.

We extend these basic edit operations into more
elaborate edit operations based on the linguistic
and syntactic properties of the current tree nodes
that they fire on. For example, the following are
all possible edit operations: delete a noun that is
SUB of the root, delete a named-entity of type
PERSON, substitute roots of the tree. In our
experiments, we designed a set of 45 edit op-
erations (12 delete, 12 insert and 21 substitute).
More details of the edit operations are described
in §4. Depending on the specific application do-
main, more sophisticated and verbose tree edit op-
erations can be designed and easily incorporated
into our model. In particular, tree edit opera-
tions involving deleting, inserting or substituting
entire treelets seem interesting and promising, re-
quiring merely a simple extension to the forward-
backward dynamic programming.

Next, we design a Finite-State Machine (FSM)
in which each edit operation is mapped to a unique
state, and an edit sequence is mapped into a tran-
sition sequence among states (denoted as e.a =
e1.a . . .em.a). In brief, an edit sequence is as-
sociated with a sequence of edit positions in the
trees (e.p = e1.p . . .em.p), as well as a transition
sequence among states (e.a = e1.a . . .em.a).

The probability of an edit sequence e given the
parse trees is defined as:

P(e | τt,τh) =
1
Z

|e|
∏
i=1

exp θ · f(ei−1,ei,τt,τh) (1)

where f are feature functions, θ are associated fea-
ture weights, and Z is the partition function to be
defined next.

Recall that our training data is composed of not
only positive examples but also negative exam-
ples. In order to take advantage of this label in-
formation, we adopt an interesting discriminative
learning framework first introduced by McCallum

et al. (2005). We call the FSM state set described
above the positive state set (S1), and duplicate the
exact same set of states, and call the new set nega-
tive state set (S0). We then add a starting state(Ss),
and add non-deterministic transitions from Ss to
every state in S1. We then add the same transi-
tions for S0. We now arrive at a new FSM struc-
ture where upon arriving at the starting state, one
makes a non-deterministic decision to enter either
the positive set or the negative set and stay in that
set until reaching the end of the edit sequence,
since no transitions are allowed across the positive
and negative set. Each edit operation sequence
can now be associated with a sequence of posi-
tive states as well as a sequence of negative states.
The intuitive idea is that during training, we want
to maximize the weights of the positive examples
in the positive state set and minimize their weights
in the negative state set, and vice versa. In other
words, we want the positive state set to attract
positive examples but push away negative exam-
ples. Figure 1 illustrates two example valid edit
sequences in the FSM, one in the positive state set
and one in the negative state set.

Formally, the partition function Z in (1) is de-
fined as the sum of weights of all valid edit se-
quences in both the positive set and negative set.
Features extracted from positive states are disjoint
from features extracted from negative states.

Z = ∑
e: e.a⊆Ss+{S0

⋃
S1}∗

|e|
∏
i=1

exp θ · f(ei−1,ei,τt,τh)

Recall z ∈ {0,1} is the binary judgment indi-
cator variable. The conditional probability of z is
obtained by marginalizing over all edit sequences
that have state transitions in the state set corre-
sponding to z:

P(z | τt,τh) = ∑
e: e.a⊆Ss+S∗z

P(e | τt,τh) (2)

The L2-norm penalized log-likelihood over n
training examples (L) is our training objective
function:

L=
n

∑
j=1

log(P(z( j) | τ( j)
t ,τ( j)

h ))− ‖θ‖
2

2σ2 (3)

At test time, the z with higher probability is taken
as our prediction outcome.
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Figure 1: This diagram illustrates the FSM architecture. There is a single start state, and we can transit into either the positive
state set (nodes that are not shaded), or the negative state set (shaded nodes). Here we show two examples of valid edit
sequences. They result in the same alignment structure as show in the bottom half of the diagram (dotted lines across the two
sentences are alignment links). Numbers over the arcs in the state diagram denote the edit sequence index, and numbers under
each word in the parse tree diagram denote each node’s level-order index number.

3 Parameter Estimation

We used Expectation Maximization method since
the objective function given in (3) is non-convex.
In the M-step, finding the optimal parameters un-
der the current model expectation involves com-
puting forward-backward style dynamic program-
ming (DP) in a three-dimensional table (two for
inputs and one for states) and optimization using
L-BFGS method. In practice the resulting DP ta-
ble can be quite large (for a sentence pair of length
100, and 2 sets of 45 states, we obtain 900,000 en-
tries). We improved efficiency by pruning out par-
tial sequences that do not lead to a complete valid
sequence and pre-compute the state-transition ta-
ble and features.

4 Edit Operations

Table 1 lists the groups of edit operations we de-
signed and their descriptions. Not shown in the
table are three default edits ( insert, delete and
substitute), which fire when none of the more spe-
cific edit operations match. Edit operations listed
in the the top-left section capture basic match-
ing, deletion and insertion of surface text, part-of-
speech tags and named-entity tags. The top-right
section capture alignments of semantically related

words, based on relational information extracted
from various linguistic resources, such as Word-
Net and NomBank. And the bottom section cap-
ture syntactic edits. Note that multiple edit opera-
tions can fire at the same edit position if conditions
are matched (e.g., we can choose to delete if there
are more words to edit in txt, or to insert if there
are more words to edit in hyp).

5 Features

One of the most distinctive advantages of our
model compared to previous tree-edit based mod-
els is the ability to include a wide range of non-
independent, rich linguistic features. The features
we employed can be broken down into two cat-
egories. The first category is zero-order features
that model the current edit step. They consist of
a conditioning property of the current edit, and
the current state in the FSM. The second cate-
gory is first-order features that capture state tran-
sitions, by concatenating the current FSM state
with the previous FSM state. One simple form of
zero-order feature is the current FSM state itself.
The FSM states already carry a lot of information
about the current edits. Conditioning properties
are used to further describe the current edit. They
are often more fine-grained and complex (e.g.,
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Surface edits Semantic edits

{I,D,S}-{POS} insert/delete/substitute words of a POS type, S-SYNONYM substitute two words that are synonyms
where POS is noun, verb or proper noun S-HYPERNYM substitute two words that are hypernyms

{I,D,S}-NE insert/delete/substitute named-entity words S-ANTONYM substitute two words that are antonyms

{I,D,S}-LIKE insert/delete/substitute words that expresses likeli-
hood, e.g., maybe, possibly

S-ACRONYM
substitute two words in which one is an acronym of
the other

{I,D,S}-MODAL insert/delete/substitute modal verbs, e.g., can,
could, may

S-NOMBANK
substitute two words that are related according to
NomBank

S-{SAME/DIFF} the words being substituted are the same or differ-
ent

S-NUM-0,1
substitute two words that are both numerical val-
ues, and 1 if they match, 0 if they mismatch

Syntactic edits
{I,D,S}-ROOT insert/delete/substitute root of the trees
{I,D,S}-{REL} insert/delete/substitute a tree node of grammatical relation type, where REL is either SUB, OBJ, VC or PRD

Table 1: List of edit operations. I for INSERT, D for DELETE, and S for SUBSTITUTE.

syntactic-matching conditions listed below). To
give an example, in Figure 1, the second edit oper-
ation in the example sequence is S-NE. A match-
ing condition feature that fires with this state could
be substitute NE type PERSON, which tells us
exactly what type of named-entity is being sub-
stituted.

It is notable that in designing edit operations
and features, there is a continuum of choice in
terms of how much information to be encoded as
features versus edit operations. To better illustrate
the trade-off, consider the two extreme cases of
this continuum. At one extreme, we can design a
system where there are only three basic edit op-
erations, and all extra information in our current
set of edit operations can be encoded as features.
For example, in this case edit operation S-NE
would become S with feature substitute NE. The
other extreme is to encode every zero-order fea-
ture as a separate edit operation. The amount
of information encoded in the zero-order features
and edit operations is the same in both cases, but
the difference lies in first-order features and ef-
ficiency. When encoding more information as
edit operations (and thus more states in FSM),
first-order features become much more expres-
sive; whereas when encoding more information
as features, computation becomes cheaper as the
number of possible state transition sequences is
reduced. In our experiments, we aim to keep a
minimal set of edit operations that are meaning-
ful but not overly verbose, and encode additional
information as features. Each feature is a binary
feature initialized with weight 0.

Due to space limitation, we list the most im-

portant zero-order features. Many of these fea-
tures are inspired by MacCartney et al. (2006)
and Snow et al. (2006), but not as sophisticated.
Word matching features. These features detect
if a text word and a hypothesis word match the
following conditions:
1. have the same lemma

2. one is a phrase and contains the other word

3. are multi-word phrases and parts match

4. have the same/different named-entity type(s) + the

named-entity type(s)

Tree structure features. These features try to
capture syntactic matching/mismatching informa-
tion from the labeled dependency parse trees. 1.

whether the roots of the two trees are aligned

2. parent-child pair match

3. (2.) and labels also match

4. (2.) and labels mismatch

5. (4.) and detailing the mismatching labels

6. parent+label match, child mismatch

7. child and label match, parents are {hyper/syno/anto}nym

8. looking for specific SUB/OBJ/PRD construct as in Snow

et al. (2006).

6 Preprocessing

In all of our experiments, each input pair of
text and hypothesis sentence is preprocessed as
following: Sentences were first tokenized by
the standard Penn TreeBank tokenization script,
and then we used MXPOST tagger (Ratnaparkhi,
1996) for part-of-speech (POS) tagging. POS
tagged sentences were then parsed by MST-
Parser (McDonald et al., 2005) to produce labeled
dependency parse trees. The parser was trained
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on the entire Penn TreeBank. The last step in the
pipeline is named-entity tagging using Stanford
NER Tagger (Finkel et al., 2005).

7 RTE Experiments

Given an input text sentence and a hypothesis
sentence, the task of RTE is to make predictions
about whether or not the hypothesis can be en-
tailed from the text sentence. We use standard
evaluation datasets RTE1-3 from the Pascal RTE
Challenges (Dagan et al., 2006). For each RTE
dataset, we train a tree-edit CRF model on the
training portion and evaluate on the testing por-
tion. We report accuracy of classification results,
and precision and recall for the true entailment
class. There is a balanced positive-negative sam-
ple distribution in each dataset, so a random base-
line gives 50% classification accuracy. We used
RTE1 for feature selection and tuning σ in the L2
regularizer (σ = 5 was used). RTE2 and RTE3
were reserved for testing.

Our system is compared with four systems
on RTE2 and three other systems on the RTE3
dataset.1 We chose these systems for compari-
son because they make use of syntactic depen-
dencies and lexical semantic information. No-
tably other systems that give state-of-the-art per-
formance on RTE use non-comparable techniques
such as theorem-proving and logical induction,
and often involve significant manual engineering
specifically for RTE, thus do not make meaningful
comparison to our model.

For RTE2, Kouylekov and Magnini (2006) ex-
perimented with various TED cost functions and
found a combination scheme to work the best for
RTE. Vanderwende et al. (2006) used syntactic
heuristic matching rules with a lexical-similarity
back-off model. Nielsen et al. (2006) extracted
features from dependency path, and combined
them with word-alignment features in a mixture of
experts classifier. Zanzotto et al. (2006) proposed
a syntactic cross-pair similarity measure for RTE.

For RTE3, Harmeling (2007) took a similar
classification-based approach with transformation
sequence features. Marsi et al. (2007) described
a system using dependency-based paraphrasing

1Different systems are used for comparison because none
of these systems reported performance on both datasets.

RTE2 Acc.% Prec.% Rec.%
Vanderwende et al., 2006 60.2 59.0 67.0
K&M, 2006 60.5 58.9 70.0
Nielsen et al., 2006 61.1 59.0 73.3
Zanzotto et al., 2006 63.9 60.8 78.0
Tree-edit CRF 63.0 61.7 68.5
RTE3 Acc.% Prec.% Rec.%
Marsi et al., 2007 59.1 - -
Harmeling, 2007 59.5 - -
de Marneffe et al., 2006 60.5 61.8 60.2
Tree-edit CRF 61.1 61.3 65.3

Table 2: Results on RTE2 and RTE3 dataset. Results for de
Marneffe et al. (2006) were reported by MacCartney and
Manning (2008).

techniques for RTE. de Marneffe et al. (2006) de-
scribed a system where best alignments between
the sentence pairs were first found, then classifi-
cation decisions were made based on these align-
ments.

Table 2 presents RTE results. Our model per-
forms competitively on both datasets. On RTE2,
our model gives second best performance among
the methods we compare against, and the differ-
ence in accuracy from the best system is quite
small (7 out of 800 examples). We observe a
larger gap in recall, suggesting our method tends
to give higher precision, which is also commonly
found in other syntax-based systems (Snow et al.,
2006). It is worth noting that Zanzotto et al.
(2006) achieved second place in the official RTE2
evaluation. On RTE3, our model outperforms the
other syntax-based systems compared. In partic-
ular, out system gives the same precision level as
the second best system (de Marneffe et al., 2006)
without sacrificing as much recall, which is the
most common drawback found in syntax-based
systems.

8 QA Experiments

A second Tree-edit CRF model was trained for
the task of answer selection for Question Answer-
ing. In this task, the input pair consists of a short
factoid question (e.g., Who beat Floyd Patterson
to take the title away?) and an answer candidate
sentence (e.g., He saw Ingemar Johansson knock
down Floyd Patterson seven times there in win-
ning the heavyweight title.). The pair is judged
positive if the answer candidate sentence correctly
answers the question and provides sufficient con-
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System MAP MRR
Punyakanok et al., 2004 0.4189 0.4939
Cui et al., 2005 0.4350 0.5569
Wang et al., 2007 0.6029 0.6852
H&S, 2010 0.6091 0.6917
Tree-edit CRF 0.5951 0.6951

Table 3: Results on QA task reported in Mean Average Pre-
cision (MAP) and Mean Reciprocal Rank (MRR).

textual support (i.e., does not merely contain the
answer key, for example, ”Ingemar Johansson
was a world heavyweight champion” would not
be a correct answer). We followed the same ex-
perimental setup as Wang et al. (2007) and Heil-
man and Smith (2010). The training portion of
the dataset consists of 5919 manually judged Q/A
pairs from previous QA tracks at Text REtrieval
Conference (TREC 8–12). There are also 1374
Q/A pairs for development and 1866 Q/A pairs
for testing, both from the TREC 3 evaluation. The
task is framed as a sentence retrieval task, and thus
Mean Average Precision (MAP) and Mean Recip-
rocal Rank (MRR) are reported for the ranked list
of most probable answer candidates. We com-
pare out model with four other systems. Wang et
al. (2007) proposed a Quasi-synchronous Gram-
mar formulation of the problem which also mod-
els alignment as structured latent variables, but in
a generative probabilistic model. Their method
gives the current state-of-the-art performance on
this task. Heilman and Smith (2010) presented
a classification-based approach with tree-edit fea-
tures extracted from a tree kernel. Cui et al.
(2005) developed a dependency-tree based in-
formation discrepancy measure. Punyakanok et
al. (2004) used a generalized Tree-edit Distance
method to score mappings between dependency
parse trees. All systems were evaluated against
the same dataset as the one we used. Results of
replicated systems for the last two were reported
by Wang et al. (2007), with lexical-semantic aug-
mentation from WordNet.

Results in Table 3 show that our model gives the
same level of performance as Wang et al. (2007),
with no statistically significant difference (p > 5
in sign test). Both systems out-perform the other
two earlier systems significantly.

9 Discussion

Our experiments on RTE and QA applications
demonstrated that Tree-edit CRF models provide
results competitive with previous syntax-based
methods. Even though the improvements were
quite moderate in some cases, the important point
is that our model provides a novel principled
framework. It works across different problem do-
mains with minimal domain knowledge and fea-
ture engineering, whereas previous methods are
only engineered for a particular task and are hard
to generalize to new problems.

While the current Tree-edit CRF model can
model a large set of linguistic phenomenon and
tree-transformations, it has some clear limitations.
One of the biggest drawbacks is the lack of sup-
port for modeling phrasal re-ordering, which is a
very common and important linguistic phenom-
ena. It is not straightforward to implement re-
ordering in the current model because it breaks
the word-order constraint which admits tractable
forward-backward style dynamic programming.
However, this shortcoming can be addressed par-
tially by extending the model to deal with con-
strained re-ordering per Zhang (1996).

10 Related Work

Tree Edit Distance (TED) have been studied
extensively in theoretical and algorithmic re-
search (Klein, 1989; Zhang and Shasha, 1989;
Bille, 2005). In recent years we have seen many
work on applying TED based methods for NLP-
related tasks (Punyakanok et al., 2004; Kouylekov
and Magnini, 2006; Harmeling, 2007; Mehdad,
2009). Mehdad (2009) proposed a method based
on particle swarm optimization technique to au-
tomatically learn the TED cost function. Another
work that also developed an interesting approach
to stochastic tree edit distance is Bernard et al.
(2008), but unfortunately experiments in the pa-
per were limited to digit recognition and tasks on
small artificial datasets.

Many different approaches to modeling
sentence alignment have been proposed be-
fore (Haghighi et al., 2005; MacCartney et al.,
2008). Haghighi et al. (2005) treated alignment
finding in RTE as a graph matching problem
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between sentence parse trees. MacCartney et
al. (2008) described a phrase-based alignment
model for MT, trained by the Perceptron learning
algorithm. A line of work that offers similar
treatment of alignment to our model is the
Quasi-synchronous Grammar (QG) (Smith and
Eisner, 2006; Wang et al., 2007; Das and Smith,
2009). QG models alignments between two parse
trees as structured latent variables. The generative
story of QG describes one that builds the parse
tree of one sentence, loosely conditioned on the
parse tree of the other sentence. This formalism
prefers but is not confined to tree isomorphism,
therefore possesses more model flexibility than
synchronous grammars.

The work of McCallum et al. (2005) inspired
the discriminative training framework that we
used in our experiments. They presented a String
Edit Distance model that also learns alignments as
hidden structures for simple tasks such as restau-
rant name matching.

Our work is also closely related to other re-
cent work on learning probabilistic models involv-
ing structural latent variables (Clark and Curran,
2004; Petrov et al., 2007; Blunsom et al., 2008;
Chang et al., 2010). The Tree-edit CRF model we
present here is a new addition to this family of in-
teresting models for discriminative learning with
structural latent variables.

11 Conclusion

We described a Tree-edit CRF model for predict-
ing semantic relatedness of pairs of sentences.
Our approach generalizes TED in a principled
probabilistic model that embeds alignments as
structured latent variables. We demonstrate a
wide-range of lexical-semantic and syntactic fea-
tures can be easily incorporated into the model.
Discriminatively trained, the Tree-edit CRF led to
competitive performance on the task of Recogniz-
ing Textual Entailment and answer selection for
Question Answering.
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Abstract 

The character-based tagging approach 
is a dominant technique for Chinese 
word segmentation, and both discrimi-
native and generative models can be 
adopted in that framework. However, 
generative and discriminative charac-
ter-based approaches are significantly 
different and complement each other. 
A simple joint model combining the 
character-based generative model and 
the discriminative one is thus proposed 
in this paper to take advantage of both 
approaches. Experiments on the Sec-
ond SIGHAN Bakeoff show that this 
joint approach achieves 21% relative 
error reduction over the discriminative 
model and 14% over the generative one. 
In addition, closed tests also show that 
the proposed joint model outperforms 
all the existing approaches reported in 
the literature and achieves the best F-
score in four out of five corpora. 

1 Introduction 

Chinese word segmentation (CWS) plays an 
important role in most Chinese NLP applica-
tions such as machine translation, information 
retrieval and question answering. Many statis-
tical methods for CWS have been proposed in 
the last two decades, which can be classified as 
either word-based or character-based. The 
word-based approach regards the word as the 
basic unit, and the desired segmentation result 
is the best word sequence found by the search 
process. On the other hand, the character-based 
approach treats the word segmentation task as 
a character tagging problem. The final segmen-

tation result is thus indirectly generated ac-
cording to the tag assigned to each associated 
character. Since the vocabulary size of possible 
character-tag-pairs is limited, the character-
based models can tolerate out-of-vocabulary 
(OOV) words and have become the dominant 
technique for CWS in recent years. 

On the other hand, statistical approaches can 
also be classified as either adopting a genera-
tive model or adopting a discriminative model. 
The generative model learns the joint probabil-
ity of the given input and its associated label 
sequence, while the discriminative model 
learns the posterior probability directly. Gen-
erative models often do not perform well be-
cause they make strong independence assump-
tions between features and labels. However, 
(Toutanova, 2006) shows that generative mod-
els can also achieve very similar or better per-
formance than the corresponding discrimina-
tive models if they have a structure that avoids 
unrealistic independence assumptions.  

In terms of the above dimensions, methods 
for CWS can be classified as:  

1) The word-based generative model (Gao et 
al., 2003; Zhang et al., 2003), which is a well-
known approach and has been used in many 
successful applications;  

2) The word-based discriminative model 
(Zhang and Clark, 2007), which generates 
word candidates with both word and character 
features and is the only word-based model that 
adopts the discriminative approach； 

3) The character-based discriminative model 
(Xue, 2003; Peng et al., 2004; Tseng et al., 
2005; Jiang et al., 2008), which has become 
the dominant method as it is robust on OOV 
words and is capable of handling a range of 
different features, and it has been adopted in 
many previous works;  
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4) The character-based generative model 
(Wang et al., 2009), which adopts a character-
tag-pair-based n-gram model and achieves 
comparable results with the popular character-
based discriminative model. 

In general, character-based models are much 
more robust on OOV words than word-based 
approaches do, as the vocabulary size of char-
acters is a closed set (versus the open set of 
that of words). Furthermore, among those 
character-based approaches, the generative 
model and the discriminative one complement 
each other in handling in-vocabulary (IV) 
words and OOV words. Therefore, a character-
based joint model is proposed to combine them. 

This proposed joint approach has achieved 
good balance between IV word recognition 
and OOV word identification. The experiments 
of closed tests on the second SIGHAN Bakeoff 
(Emerson, 2005) show that the joint model 
significantly outperforms the baseline models 
of both generative and discriminative ap-
proaches. Moreover, statistical significance 
tests also show that the joint model is signifi-
cantly better than all those state-of-the-art sys-
tems reported in the literature and achieves the 
best F-score in four of the five corpora tested. 

2 Character-Based Models for CWS 

The goal of CWS is to find the corresponding 
word sequence for a given character sequence. 
Character-based model is to find out the corre-
sponding tags for given character sequence. 

2.1 Character-Based Discriminative Model 

The character-based discriminative model 
(Xue, 2003) treats segmentation as a tagging 
problem, which assigns a corresponding tag to 
each character. The model is formulated as: 

1
1 1 1 1 2

1 1

( ) ( , ) (
n n

n n k n k
k k

k k

P t c P t t c P t c−
−

= =

= ≈∏ ∏ 2 )k
+        (1) 

Where tk is a member of {Begin, Middle, End, 
Single} (abbreviated as B, M, E and S from 
now on) to indicate the corresponding position 
of character ck in its associated word. For ex-
ample, the word “北京市 (Beijing City)” will 
be assigned with the corresponding tags as: “北
/B (North) 京/M (Capital) 市/E (City)”.  

Since this tagging approach treats characters 
as basic units, the vocabulary size of those 
possible character-tag-pairs is limited. There-

fore, this method is robust to OOV words and 
could possess a high recall of OOV words 
(ROOV). Although the dependency between ad-
jacent tags/labels can be addressed, the de-
pendency between adjacent characters within a 
word cannot be directly modeled under this 
framework. Lower recall of IV words (RIV) is 
thus usually accompanied (Wang et al., 2009).  

In this work, the character-based discrimina-
tive model is implemented by adopting the fea-
ture templates given by (Ng and Low, 2004), 
but excluding those ones that are forbidden by 
the closed test regulation of SIGHAN (e.g., 
Pu(C0): whether C0 is a punctuation). Those 
feature templates adopted are listed below: 

1

1 1

( ) ( 2, 1,0,1, 2);
( ) ( 2, 1,0,1);
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n

n n

a C n
b C C n
c C C

+

−

= − −

= − −  

For example, when we consider the third 
character “奥” in the sequence “北京奥运会”, 
template (a) results in the features as following: 
C-2=北, C-1=京, C0=奥, C1=运, C2=会, and tem-
plate (b) generates the features as: C-2C-1=北京, 
C-1C0=京奥, C0C1=奥运, C1C2=运会, and tem-
plate (c) gives the feature C-1C1=京运. 

2.2 Character-Based Generative Model 

To incorporate the dependency between adja-
cent characters in the character-based approach, 
(Wang et al., 2009) proposes a character-based 
generative model. In this approach, word wi is 
first replaced with its corresponding sequence 
of [character, tag] (denoted as [c, t]), where tag 
is the same as that adopted in the above char-
acter-based discriminative model. With this 
representation, this model can be expressed as:  

 1 1 1 1

1 1 1 1

( ) ([ , ] )

( [ , ] ) ([ , ] ) ( )

m n n n

n n n n

P w c P c t c

P c c t P c t P c

≡

= ×
                   (2) 

Since 1 1( [ , ] ) 1n nP c c t ≡  and  is the same for 

various candidates, only should be 
considered. It can be further simplified with 
Markov Chain assumption as: 

1( )nP c

([ ,P c 1] )nt

 1
1

1

([ , ] ) ([ , ] [ , ] ).
n

n
i i k

i

P c t P c t c t −
−

=

≈∏ i                     (3) 

Compared with the character-based dis-
criminative model, this generative model keeps 
the capability to handle OOV words because it 
also regards the character as basic unit. In ad-
dition, the dependency between adjacent 
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宿 Gold and Discriminative Tag: M Generative Trigram Tag: E 
Tag probability:  B/0.0333 E/0.2236 M/0.7401 S/0.0030 

Feature 
Tag C-2 C-1 C0 C1 C2 C-2C-1 C-1C0 C0C1 C1C2 C-1C1

B -1.4375 0.1572 0.0800 0.2282 0.7709 0.2741 0.0000 0.0000 -0.6718 0.0000
E 1.3558 0.1910 0.7229 -1.2696 -0.5970 0.0049 0.0921 0.0000 0.8049 0.0000
M 1.1071 -0.5527 -0.3174 2.9422 0.4636 -0.1708 0.0000 0.0000 -0.9700 0.0000
S -1.0254 0.2046 -0.4856 -1.9008 -0.6375 0.0000 0.0000 0.0000 0.8368 0.0000
者 Gold and Discriminative Tag: E Generative Trigram Tag: S 

Tag probability:  B/0.0009 E/0.8138 M/0.0012 S/0.1841 
Feature 

Tag C-2 C-1 C0 C1 C2 C-2C-1 C-1C0 C0C1 C1C2 C-1C1

B 0.3586 0.4175 0.0000 -0.7207 0.4626 0.0085 0.0000 0.0000 0.0000 0.0000
E 0.3666 0.0687 4.5381 2.8300 -0.0846 0.0000 0.0000 -1.0279 0.6127 0.0000
M -0.5657 -0.4330 1.8847 0.0000 -0.0918 0.0000 0.0000 0.0000 0.0000 0.0000
S -0.1595 -0.0532 2.7360 1.8223 -0.2862 -0.0024 0.0000 1.0494 0.7113 0.0000

Table 1: The corresponding lambda weight of features for “露宿者” in the sentence “[該] [處] [的] [露宿者] 
[只] [有] [數] [人]”. In the Feature column and Tag row, the value is the corresponding lambda weight for 
the feature and tag under ME framework. The meanings of those features are explained in Section 2.1. 

 
characters is now directly modeled. This will 
give sharper preference when the history of 
assignment is given. Therefore, this approach 
not only holds robust IV performance but also 
achieves comparable results with the discrimi-
native model. However, the OOV performance 
of this approach is still lower than that of the 
discriminative model (see in Table 5), which 
would be discussed in the next section. 

3 Problems with the Character-Based 
Generative Model 

The character-based generative model can 
handle the dependency between adjacent char-
acters and thus performs well on IV words. 
However, this generative trigram model is de-
rived under the second order Markov Chain 
assumption. Future character context (i.e., C1 
and C2) is thus not utilized in the model when 
the tag of the current character (i.e., t0) is de-
termined. Nevertheless, the future context 
would help to select the correct tag when the 
associated trigram has not been observed in the 
training-set, which is just the case for those 
OOV words. In contrast, the discriminative 
one could get help from the future context in 
this case. The example given in the next para-
graph clearly shows the above situation. 

At the sentence “該(that) 處(place) 的(of) 露
宿者(street sleeper) 只(only) 有(have) 數(some) 
人(person) (There are only some street sleepers 
in that place)” in the CITYU corpus, “露/B宿

/M者/E(street sleeper)” is observed to be an 
OOV word, while “露 /B宿 /E(sleep on the 
street)” is an IV word, where the associated tag 
of each character is given after the slash sym-
bol. The character-based generative model 
wrongly splits “露宿者” into two words “露/B
宿/E” and “者/S (person)”, as the associated 
trigram for “露宿者” is not seen in the training 
set. However, the discriminative model gives 
the correct result for “宿/M” and the dominant 
features come from its future context “者” and 
“只”. Similarly, the future context “只” helps 
to give the correct tag to “者/E”. Table 1 gives 
the corresponding lambda feature weights (un-
der the Maximum Entropy (ME) (Ratnaparkhi, 
1998) framework) for “露宿者” in the dis-
criminative model. It shows that in the column 
of “C1” below “宿”, the lambda value associ-
ated with the correct tag “M” is 2.9422, which 
is the highest value in that column and is far 
greater than that of the wrong tag “E” (i.e., -
1.2696) assigned by the generative model. 
Which indicates that the future feature “C1” is 
the most useful feature for tagging “宿”. 

The above example shows the character-
based generative model fails to handle some 
OOV words such as “露宿者” because this ap-
proach cannot utilize future context when it is 
indeed required. However, the future context 
for the generative model scanning from left to 
right is just its past context when it scans from 
right to left. It is thus expected that this kind of 

1175



errors will be fixed if we let the model scans 
from both directions, and then combine their 
results. Unfortunately, it is observed that these 
two scanning modes share over 90% of their 
errors. For example, in CITYU corpus, the 
left-to-right scan generates 1,958 wrong words 
and the right-to-left scan results 1,947 ones, 
while 1,795 of them are the same. Similar be-
havior can also be observed on other corpora. 

To find out what are the problems, 10 errors 
that are similar to “露宿者” are selected to ex-
amine. Among those errors, only one of them 
is fixed, and “露宿者” still cannot be correctly 
segmented. Having analyzed the scores of the 
model scanning from both directions, we found 
that the original scores (from left-to-right scan) 
at the stages “者” and “宿” indeed get better if 
the model scans from right-to-left. However, 
the score at the stage “露” deteriorates because 
the useful feature “者” (a past non-adjacent 
character for “露” when scans form right-to-
left) still cannot be utilized when the past con-
text “宿者” as a whole is unseen, when the re-
lated probabilities are estimated via modified 
Kneser-Ney smoothing (Chen and Goodman, 
1998) technique. 

Two scanning modes seem not complement-
ing each other, which is out of our original ex-
pectation. However, we found that the charac-
ter-based generative model and the discrimina-
tive one complement each other much more 
than the two scanning modes do. It is observed 
that these two approaches share less than 50% 
of their errors. For example, in CITYU corpus, 
the generative approach generates 1,958 wrong 
words and the discriminative one results 2,338 
ones, while only 835 of them are the same. 

The statistics of the remaining errors re-
sulted from the generative model and the dis-
criminative model is shown in Table 2. As 
shown in the table, it can be seen that the gen-
erative model and the discriminative model 
complement each other on handling IV words 
and OOV words (In the “IV Errors” column, 
the number of “G+D-” is much more than the 
“G-D+”, while the behavior is reversed in the 
“OOV Errors” column). 

4 Proposed Joint Model 

Since the performance of both IV words and 
OOV words are important for real applications, 

IV Errors OOV Errors 
G+D- G-D+ G-D- G+D- G-D+ G-D-
12,027 4,723 7,481 2,384 6,139 3,975

Table 2: Statistics for remaining errors of the char-
acter-based generative model and the discriminative 
one on the second SIGHAN Bakeoff (“G+D-” in 
the “IV Errors” column means that the generative 
model segments the IV words correctly but the dis-
criminative one gives wrong results. The meanings 
of other abbreviations are similar with this one.). 

we need to combine the strength from both 
models. Among various combining methods, 
log-linear interpolation combination is a sim-
ple but effective one (Bishop, 2006). Therefore, 
the following character-based joint model is 
proposed, and a parameter α  is used to weight 
the generative model in a cross-validation set. 

 
1
2

2
2

( ) log( ([ , ] [ , ] ))

(1 ) log( ( ))

k
k k

k
k k

Score t P c t c t

P t c

α

α

−
−

+
−

= ×

+ − ×

k            (4) 

Where tk indicates the corresponding position 
of character ck, and (0.0 1.0)α α≤ ≤  is the 
weight for the generative model. Score(tk) will 
be used during searching the best sequence. It 
can be seen that these two models are inte-
grated naturally as both are character-based. 

Generally speaking, if the “G(or D)+” has a 
strong preference on the desired candidate, but 
the “D(or G)-” has a weak preference on its 
top-1 incorrect candidate, then this combining 
method would correct most “G+D- (also  G-
D+)” errors. On the other hand, the advantage 
of combining two models would vanish if the 
“G(or D)+” has a weak preference while the 
“D(or G)-” has a strong preference over their 
top-1 candidates. In our observation, these two 
models meet this requirement quite well. 

5 Weigh Various Features Differently 

For a given observation, intuitively each 
feature should be trained only once under the 
ME framework and its associated weight will 
be automatically learned from the training cor-
pus. However, when we repeat the work of 
(Jiang et al., 2008), which reports to achieve 
the state-of-art performance in the data-sets 
that we adopt, it has been found that some fea-
tures (e.g., C0) are unnoticeably trained several 
times in their model (which are implicitly gen-
erated from different feature templates used in 
the paper). For example, the feature C0 actually 
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Corpus Abbrev. Encoding Training Size
(Words/Type)

Test Size 
(Words/Type) OOV Rate

Academia Sinica (Taipei) AS Unicode/Big5 5.45M/141K 122K/19K 0.046 
City University of Hong Kong CITYU Unicode/Big5 1.46M/69K 41K/9K 0.074 
Microsoft Research (Beijing) MSR Unicode/CP936 2.37M/88K 107K/13K 0.026 

PKU(ucvt.) Unicode/CP936 1.1M/55K 104K/13K 0.058 Peking University PKU(cvt.) Unicode/CP936 1.1M/55K 104K/13K 0.035 

Table 3: Corpus statistics for the second SIGHAN Bakeoff 
 

appears twice, which is generated from two 
different templates Cn (with n=0, generates C0) 
and [C0Cn] (used in (Jiang et al., 2008), with 
n=0, generates [C0C0]). The meanings of fea-
tures are illustrated in Section 2.1. Those re-
petitive features also include [C-1C0] and 
[C0C1], which implicitly appear thrice. And it 
is surprising to discover that its better perform-
ance is mainly due to this implicit feature repe-
tition but the authors do not point out this fact. 
As all the features adopted in (Jiang et al., 
2008) possess binary values, if a binary feature 
is repeated n times, then it should behave like a 
real-valued feature with its value to be “n”, at 
least in principle. Inspired by the above dis-
covery, accordingly, we convert all the binary-
value features into their corresponding real-
valued features. After having transformed bi-
nary features into their corresponding real-
valued ones, the original discriminative model 
is re-trained under the ME framework. 

This new implementation, which would be 
named as the character-based discriminative-
plus model, just weights various features dif-
ferently before conducting ME training. Af-
terwards, it is further combined with the gen-
erative trigram model, and is called the charac-
ter-based joint-plus model. 

6 Experiments 

The corpora provided by the second SIGHAN 
Bakeoff (Emerson, 2005) were used in our ex-
periments. The statistics of those corpora are 
shown in Table 3. 

Note that the PKU corpus is a little different 
from others. In the training set, Arabic num-
bers and English characters are in full-width 
form occupying two bytes. However, in the 
testing set, these characters are in half-width 
form occupying only one byte. Most research-
ers in the SIGHAN Bakeoff competition per-
formed a conversion before segmentation 
(Xiong et al., 2009). In this work, we conduct 

the tests on both unconverted (ucvt.) case and 
converted (cvt.) case. After the conversion, the 
OOV rate of converted corpus is obviously 
lower than that of unconverted corpus. 

To fairly compare the proposed approach 
with previous works, we only conduct closed 
tests1. The metrics Precision (P), Recall (R), 
F-score (F) (F=2PR/(P+R)), Recall of OOV 
(ROOV) and Recall of IV (RIV) are used to 
evaluate the results. 

6.1 Character-Based Generative Model 
and Discriminative Model 

As shown in (Wang et al., 2009), the character-
based generative trigram model significantly 
exceeds its related bigram model and performs 
the same as its 4-gram model. Therefore,  SRI 
Language Modeling  Toolkit2 (Stolcke, 2002) 
is used to train the trigram model with modi-
fied Kneser-Ney smoothing (Chen and Good-
man, 1998). Afterwards, a beam search de-
coder is applied to find out the best sequence. 

For the character-based discriminative 
model, the ME Package3 given by Zhang Le is 
used to conduct the experiments. Training was 
done with Gaussian prior 1.0 and 300, 150 it-
erations for AS and other corpora respectively.  
Ta

                                                

ble 5 gives the segmentation results of both 
the character-based generative model and the 
discriminative model. From the results, it can 
be seen that the generative model achieves 
comparable results with the discriminative one 
and they outperform each other on different 
corpus. However, the generative model ex-
ceeds the discriminative one on RIV (0.973 vs. 
0.956) but loses on ROOV (0.511 vs. 0.680). It 
illustrates that they complement each other. 

 
1 According to the second Sighan Bakeoff regulation, the 
closed test could only use the training data directly pro-
vided. Any other data or information is forbidden, includ-
ing the knowledge of characters set, punctuation set, etc. 
2 http://www.speech.sri.com/projects/srilm/ 
3 http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html 
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Joint model performance on Development sets

0.9300

0.9400

0.9500

0.9600

0.9700

0.9800

0.9900

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

alpha

F
-
s
c
or
e

AS

CITYU

MSR

PKU

 
Figure 1: Development sets performance of Charac-
ter-based joint model. 

Corpus Set Words  OOV Num OOV Rate
Development 17,243 445 0.026  AS 
Testing 122,610 5,308/5,311 0.043/0.043
Development 17,324 355 0.020 MSR 
Testing 106,873 2,829/2,833 0.026/0.027
Development 12,075 537 0.044 CITYU 
Testing 40,936 3,028/3,034 0.074/0.074
Development 13,576 532 0.039 
Testing (ucvt.) 104,372 6,006/6,054 0.058/0.058PKU 

Testing (cvt.) 104,372 3,611/3,661 0.035/0.035

Table 4: Corpus statistics for Development sets and 
Testing sets. A “/” separates the OOV number (or 
OOV rate) with respect to the original training sets 
and the new training sets. 

6.2 Character-Based Joint Model 

For the character-based joint model, a devel-
opment set is required to obtain the weight α  
for its associated generative model. A small 
portion of each original training corpus is thus 
extracted as the development set and the re-
maining data is regarded as the new training-
set, which is used to train two new parameter-
sets for both generative and discriminative 
models associated.  

The last 2,000, 600, 400, and 300 sentences 
for AS, MSR, CITYU, and PKU are extracted 
from the original training corpora as their cor-
responding development sets. The statistics for 
new data sets are shown in Table 4. It can be 
seen that the variation of the OOV rate could 
be hardly noticed. The F-scores of the joint 
model, versus different α , evaluated on four 
development sets are shown in Figure 1. It can 
be seen that the curves are not sharp but flat 
near the top, which indicates that the character-
based joint model is not sensitive to the α  
value selected. From those curves, the best 
suitable α  for AS, CITYU, MSR and PKU are 
found to be 0.30, 0.60, 0.60 and 0.60, respec-

Corpus Model R P F ROOV RIV

tively. Those alpha values will then be adopted 
to conduct the experiments on the testing sets. 

G 0.958 0.938 0.948 0.518 0.978
D 0 0.946 0  0.967.955 .951 0.707 
D-Plus 0.960 0.948 0.954 0.680 0.973
J 0.962 0.950 0.956 0.679 0.975

AS 

J-Plus 0.963 0.949 0.956 0.652 0.977
G 0.951 0.937 0.944 0.609 0.978
D 0.941 0.944 0.942 0.708 0.959
D-Plus 0.951 0.952 0.952 0.720 0.970
J 0.957 0.951 0.954 0.691 0.979

CITYU

J-Plus 0.959 0.952 0.956 0.700 0.980
G 0.974 0.967 0.970 0.561 0.985
D 0.957 0.962 0.960 0.719 0.964
D-Plus 0.965 0.967 0.966 0.675 0.973
J 0.974 0.971 0.972 0.659 0.983

MSR 

J-Plus 0.975 0.970 0.972 0.632 0.984
G 0.929 0.933 0.931 0.435 0.959
D 0.922 0.941 0.932 0.620 0.941
D-Plus 0.934 0.949 0.941 0.649 0.951
J 0.935 0.946 0.941 0.561 0.958

PKU 
(ucvt.) 

J-Plus 0.937 0.947 0.942 0.556 0.960
G 0.952 0.951 0.952 0.503 0.968
D 0.940 0.951 0.946 0.685 0.949
D-Plus 0.949 0.958 0.953 0.674 0.958
J 0.954 0.958 0.956 0.616 0.966

PKU 
(cvt.) 

J-Plus 0.955 0.958 0.957 0.610 0.967
G 0.953 0.946 0.950 0.511 0.973
D 0.944 0.950 0.947 0.680 0.956
D-Plus 0.952 0.955 0.953 0.676 0.965
J 0.957 0.955 0.956 0.633 0.971

Overall

J-Plus 0.958 0.955 0.957 0.621 0.973

Table 5: ent e
based m n t G  

ificantly outperforms both the character-
ba

 Segm
odels o

ation r sults of various character-
he second SI HAN Bakeoff, the

generative trigram model (G), the discriminative 
model (D), the discriminative-plus model (D-Plus), 
the joint model (J) and the joint-plus model (J-Plus). 

 
As shown in Table 5, the joint model sig-

n
sed generative model and the discriminative 

one in F-score on all the testing corpora. Com-
pared with the generative approach, the joint 
model increases the overall ROOV from 0.510 to 
0.633, with the cost of slightly degrading the 
overall RIV from 0.973 to 0.971. This shows 
that the joint model holds the advantage of the 
generative model on IV words. Compared with 
the discriminative model, the proposed joint 
model improves the overall RIV from 0.956 to 
0.971, with the cost of degrading the overall 
ROOV from 0.680 to 0.633. It clearly shows that 
the joint model achieves a good balance be-
tween IV words and OOV words and achieves 
the best F-scores obtained so far (21% relative 
error reduction over the discriminative model 
and 14% over the generative model). 
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6.3 Weigh Various Features Differently 

Inspired by (Jiang et al., 2008), we set the real-
d 

 

Although Table 5 has shown that the proposed 
all the 

value of C0 to be 2.0, the value of C-1C0 an
C0C1 to be 3.0, and the values of all other fea-
tures to be 1.0 for the character-based dis-
criminative-plus model. Although it seems rea-
sonable to weight those closely relevant fea-
tures more (C0 should be the most relevant fea-
ture for assigning tag t0), both implementations 
seem to be equal if their corresponding 
lambda-values are also updated accordingly. 
However, Table 5 shows that this new dis-
criminative-plus implementation (D-Plus) sig-
nificantly outperforms the original one (overall 
F-score is raised from 0.947 to 0.953) when 
both of them adopt real-valued features. It is 
not clear how this change makes the difference. 

Similar improvements can be observed with 
two other ME packages. One anonymous re-
viewer pointed out that the duplicated features 
should not make difference if there is no regu-
larization. However, we found that the dupli-
cated features would improve the performance 
whether we give Gaussian penalty or not. 

Afterwards, this new implementation and 
the generative trigram model are further com-
bined (named as the joint-plus model). Table 5 
shows that this joint-plus model also achieves 
better results compared with the discrimina-
tive-plus model, which illustrates that our joint 
approach is an effective and robust method for 
CWS. However, compared with the original 
joint model, the new joint-plus approach does 
not show much improvement, regardless of the 
significant improvement made by the discrimi-
native-plus model, as the additional benefit 
generated by the discriminative-plus model has 
already covered by the generative approach 
(Among the 6,965 error words corrected by the 
discriminative-plus model, 6,292 (90%) of 
them are covered by the generative model). 

7 Statistical Significance Tests 

joint (joint-plus) model outperforms 
baselines mentioned above, we want to know 
if the difference is statistically significant 
enough to make such a claim. Since there is 
only one testing set for each training corpus, 
the bootstrapping technique (Zhang et al., 2004) 
is adopted to conduct the tests: Giving an  

Models  
A B AS CITYU MSR PKU 

(ucvt.) 
PKU
(cvt.)

G D <  ~ >  ~ >  
D-Plus G >  >  <  >  >  
D-Plus D >  >  >  >  >  
J G >  >  >  >  >  
J D >  >  >  >  >  
J-Plus G >  >  >  >  >  
J-Plus D-Plus >  >  >  ~ >  
J-Plus J ~ >  ~ >  >  

Table 6 atistic sign anc est F- e 
 v er-b d m ls. 

f T0) will 
be generated by repeatedly re-sampling data 

eas-
 the dis-
he confi-

 

the pro-
po

e-
ng 
d. 

tegory 
includes (Asahara et al., 2005) (denoted as 

: St al ific e t of scor
among arious charact ase ode

testing-set T0, additional M-1 new testing-sets 
T0,…,TM-1 (each with the same size o

from T0. Then, we will have a total of M 
testing-sets (M=2000 in our experiments). 

7.1 Comparisons with Baselines 

We then follow (Zhang et al., 2004) to m
ure the 95% confidence interval for
crepancy between two models. If t
dence interval does not include the origin point,
we then claim that system A is significantly 
different from system B. Table 6 gives the re-
sults of significant tests among various models 
mentioned above. In this table, “>” means that 
system A is significantly better than B, where 
as “<” denotes that system A is significantly 
worse than B, and “~” indicates that these two 
systems are not significantly different. 

As shown in Table 6, the proposed joint 
model is significantly better than the two base-
line models on all corpora. Similarly, 

sed joint-plus model also significantly out-
performs the generative model and the dis-
criminative-plus model on all corpora except 
on the PKU(ucvt.). The comparison shows that 
the proposed joint (also joint-plus) model in-
deed exceeds each of its component models. 

7.2 Comparisons with Previous Works 

The above comparison mainly shows the sup
riority of the proposed joint model amo
those approaches that have been implemente
However, it would be interesting to know if the 
joint (and joint-plus) model also outperforms 
those previous state-of-the-art systems.  

The systems that performed best for at least 
one corpus in the second SIGHAN Bakeoff are 
first selected for comparison. This ca
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A

-sets. In-
st

th

                                                

sahara05) and (Tseng et al., 2005) 4  
(Tseng05). (Asahara et al., 2005) achieves the 
best result in the AS corpus, and (Tseng et al., 
2005) performs best in the remaining three 
corpora. Besides, those systems that are re-
ported to exceed the above two systems are 
also selected. This category includes (Zhang et 
al., 2006) (Zhang06), (Zhang and Clark, 2007) 
(Z&C07) and (Jiang et al., 2008) (Jiang08). 
They are briefly summarized as follows. 
(Zhang et al., 2006) is based on sub-word tag-
ging and uses a confidence measure method to 
combine the sub-word CRF (Lafferty et al., 
2001) and rule-based models. (Zhang and 
Clark, 2007) uses perceptron (Collins, 2002) to 
generate word candidates with both word and 
character features. Last, (Jiang et al., 2008)5  
adds repeated features implicitly based on (Ng 
and Low, 2004). All of the above models, ex-
cept (Zhang and Clark, 2007), adopt the char-
acter-based discriminative approach. 

All the results of the systems mentioned 
above are shown in Table 7. Since the systems 
are not re-implemented, we cannot generate 
paired samples from those M testing

ead, we calculate the 95% confidence inter-
val of the joint (also joint-plus) model. After-
wards, those systems can be compared with 
our proposed models. If the F-score of system 
B does not fall within the 95% confidence in-
terval of system A (joint or joint-plus), then 
they are statistically significantly different. 

Table 8 gives the results of significant tests 
for those systems mentioned in this section. It 
shows that both our joint-plus model and joint 
model exceed (or are comparable to) almost all 

e state-of-the-art systems across all corpora, 
except (Zhang and Clark, 2007) at PKU(ucvt.). 
In that special case, (Zhang and Clark, 2007) 

 
4 We are not sure whether (Asahara et al., 2005) and 
(Tseng et al., 2005) performed a conversion before seg-
mentation in PKU corpus. In this paper, we followed 
previous works, which cited and compared with them. 
5 The data for (Jiang et al., 2008) given at Table 7 are 
different from what were reported at their paper. In the 
communication with the authors, it is found that the script 
for evaluating performance, provided by the SIGHAN 
Bakeoff, does not work correctly in their platform. After 
the problem is fixed, the re-evaluated real performances 
reported here deteriorate from their original version. 
Please see the announcement in Jiang’s homepage 
(http://mtgroup.ict.ac.cn/~jiangwenbin/papers/error_corre
ction.pdf). 

Corpus
Participants AS CITYU MSR PKU 

(ucvt.) 
PKU
(cvt.)

Asahara05 0.952 0.941 0.958 N/A 0.941
Tseng05 0.947 0.943 0.964 N/A 0.950
Zhang06 0.951 0.951 0.971 N/A 0.951
Z&C07 0.946 0.951 0.972 0.945 N/A
Jiang08 0.953 0.948 0.966 0.937 N/A
Our Joint 0.956 0.954 0.972 0.941 0.956
Our Joint-Plus 0.956 0.956 0.972 0.942 0.957
Table 7: Compari r  p u

the-art sy
sons of F-sco e with revio s 

state-of- stems. 

Systems 
A B AS CITYU MSR (ucvt.)

PKU 
 (cvt.)
PKU

Asahara05 > > > N/A > 
Tseng05 > > > N/A > 
Zhang06 > ~ ~ N/A > 
Z&C07 > > ~ < N/A

J 

Jiang08 > > > > N/A
Asahara05 > > > N/A > 
Tseng05 > > > N/A > 
Zhang06 > > ~ N/A > 
Z&C07 > > ~ < N/A

J-Plus

Jiang08 ~ > > > N/A
Table al s ific e te of r 

f-the  syst s. 

outpe he jo -plu model by .3%  

 and 0.5%, re-

ne, 
e two models complement 
dling IV words and OOV 

e-
nomenon.  

8: Statistic ign anc st  F-score fo
previous state-o -art em

rforms t int s  0  on
F- score (0.4% for the joint model). However, 
our joint-plus model exceeds it more over AS 
and CITYU corpora by 1.0%
spectively (1.0% and 0.3% for the joint model). 
Thus, it is fair to say that both our joint model 
and joint-plus model are superior to the state-
of-the-art systems reported in the literature. 

8 Conclusion 

From the error analysis of the character-based 
generative model and the discriminative o
we found that thes
each other on han
words. To take advantage of these two ap-
proaches, a joint model is thus proposed to 
combine them. Experiments on the Second 
SIGHAN Bakeoff show that the joint model 
achieves 21% error reduction over the dis-
criminative model (14% over the generative 
model). Moreover, closed tests on the second 
SIGHAN Bakeoff corpora show that this joint 
model significantly outperforms all the state-
of-the-art systems reported in the literature. 

Last, it is found that weighting various fea-
tures differently would give better result. How-
ever, further study is required to find out the 
true reason for this strange but interesting ph
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Abstract

We explore the near-synonym lexical
choice problem using a novel representa-
tion of near-synonyms and their contexts
in the latent semantic space. In contrast to
traditional latent semantic analysis (LSA),
our model is built on the lexical level
of co-occurrence, which has been empir-
ically proven to be effective in provid-
ing higher dimensional information on the
subtle differences among near-synonyms.
By employing supervised learning on the
latent features, our system achieves an ac-
curacy of 74.5% in a “fill-in-the-blank”
task. The improvement over the current
state-of-the-art is statistically significant.

We also formalize the notion of subtlety
through its relation to semantic space di-
mensionality. Using this formalization
and our learning models, several of our
intuitions about subtlety, dimensionality,
and context are quantified and empirically
tested.

1 Introduction

Lexical choice is the process of selecting content
words in language generation. Consciously or
not, people encounter the task of lexical choice
on a daily basis — when speaking, writing, and
perhaps even in inner monologues. Its applica-
tion also extends to various domains of natural
language processing, including Natural Language
Generation (NLG, Inkpen and Hirst 2006), writ-
ers’ assistant systems (Inkpen, 2007), and sec-
ond language (L2) teaching and learning (Ouyang
et al., 2009).

In the context of near-synonymy, the process
of lexical choice becomes profoundly more com-
plicated. This is partly because of the subtle nu-
ances among near-synonyms, which can arguably
differ along an infinite number of dimensions.
Each dimension of variation carries differences in
style, connotation, or even truth conditions into
the discourse in question (Cruse, 1986), all mak-
ing the seemingly intuitive problem of “choosing
the right word for the right context” far from triv-
ial even for native speakers of a language. In
a widely-adopted “fill-in-the-blank” task, where
the goal was to guess missing words (from a set
of near-synonyms) in English sentences, two hu-
man judges achieved an accuracy of about 80%
(Inkpen, 2007). The current state-of-the-art accu-
racy for an automated system is 69.9% (Islam and
Inkpen, 2010).

When the goal is to make plausible or even
elegant lexical choices that best suit the con-
text, the representation of that context becomes a
key issue. We approach this problem in the la-
tent semantic space, where transformed local co-
occurrence data is capable of implicitly inducing
global knowledge (Landauer and Dumais, 1997).
A latent semantic space is constructed by reduc-
ing the dimensionality of co-occurring linguistic
units — typically words and documents as in La-
tent Semantic Analysis (LSA). We refer to this
level of association (LoA) as document LoA here-
after. Although document LoA can benefit topical
level classification (e.g., as in document retrieval,
Deerwester et al. 1990), it is not necessarily suit-
able for lexical-level tasks which might require in-
formation on a more fine-grained level (Edmonds
and Hirst, 2002). Our experimental results show
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noticeable improvement when the co-occurrence
matrix is built on a lexical LoA between words
within a given context window.

One intuitive explanation for this improvement
is that the lexical-level co-occurrence might have
helped recover the high-dimensional subtle nu-
ances between near-synonyms. This conjecture
is, however, as imprecise as it is intuitive. The
notion of subtlety has mostly been used qualita-
tively in the literature to describe the level of dif-
ficulty involved in near-synonym lexical choice.
Hence, we endeavor to formalize the concept of
subtlety computationally by using our observa-
tions regarding the relationship between “subtle”
concepts and their lexical co-occurrence patterns.

We introduce related work on near-synonymy,
lexical choice, and latent semantic space models
in the next section. Section 3 elaborates on lexical
and contextual representations in latent semantic
space. In Section 4, we formulate near-synonym
lexical choice as a learning problem and report our
system performance. Section 5 formalizes the no-
tion of subtlety and its relation to dimensionality
and context. Conclusions and future work are pre-
sented in Section 6.

2 Related Work

2.1 Near-Synonymy and Nuances

Near-synonymy is a concept better explained by
intuition than by definition — which it does not
seem to have in the existing literature. We thus
borrow Table 1 from Edmonds and Hirst (2002) to
illustrate some basic ideas about near-synonymy.
Cruse (1986) compared the notion of plesionymy
to cognitive synonymy in terms of mutual entail-
ment and semantic traits, which, to the best of our
knowledge, is possibly the closest to a textbook
account of near-synonymy.

There has been a substantial amount of inter-
est in characterizing the nuances between near-
synonyms for a computation-friendly representa-
tion of near-synonymy. DiMarco et al. (1993)
discovered 38 dimensions for differentiating near-
synonyms from dictionary usage notes and cat-
egorized them into semantic and stylistic varia-
tions. Stede (1993) focused on the latter and fur-
ther decomposed them into seven scalable sub-

Table 1: Examples of near-synonyms and dimen-
sion of variations (Edmonds and Hirst, 2002).

Types of variation Examples
Continuous, intermittent seep:drip
Emphasis enemy:foe
Denotational, indirect error:mistake
Denotational, fuzzy woods:forest
Stylistic, formality pissed:drunk:inebriated
Stylistic, force ruin:annihilate
Expressed attitude skinny:thin:slim:slender
Emotive daddy:dad:father
Collocational task:job
Selectional pass away:die
Sub-categorization give:donate

categories. By organizing near-synonym vari-
ations into a tree structure, Inkpen and Hirst
(2006) combined stylistic and attitudinal varia-
tion into one class parallel to denotational differ-
ences. They also incorporated this knowledge of
near-synonyms into a knowledge base and demon-
strated its application in an NLG system.

2.2 Lexical Choice Evaluation

Due to their symbolic nature, many of the early
studies were only able to provide “demo runs” in
NLG systems rather than any empirical evalua-
tion. The study of near-synonym lexical choice
had remained largely qualitative until a “fill-in-
the-blank” (FITB) task was introduced by Ed-
monds (1997). The task is based on sentences col-
lected from the 1987 Wall Street Journal (WSJ)
that contain any of a given set of near-synonyms.
Each occurrence of the near-synonyms is removed
from the sentence to create a “lexical gap”, and the
goal is to guess which one of the near-synonyms is
the missing word. Presuming that the 1987 WSJ
authors have made high-quality lexical choices,
the FITB test provides a fairly objective bench-
mark for empirical evaluation for near-synonym
lexical choice. The same idea can be applied to
virtually any corpus to provide a fair amount of
gold-standard data at relatively low cost for lexi-
cal choice evaluation.

The FITB task has since been frequently
adopted for evaluating the quality of lexical choice
systems on a standard dataset of seven near-
synonym sets (as shown in Table 2). Edmonds
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(1997) constructed a second-order lexical co-
occurrence network on a training corpus (the 1989
WSJ). He measured the word-word distance us-
ing t-score inversely weighted by both distance
and order of co-occurrence in the network. For
a sentence in the test data (generated from the
1987 WSJ), the candidate near-synonym minimiz-
ing the sum of its distance from all other words in
the sentence (word-context distance) was consid-
ered the correct answer. Average accuracy on the
standard seven near-synonym sets was 55.7%.

Inkpen (2007) modeled word-word distance
using Pointwise Mutual Information (PMI) ap-
proximated by word counts from querying the
Waterloo Multitext System (Clarke et al., 1998).
Word-context distance was the sum of PMI scores
between a candidate and its neighboring words
within a window-size of 10. An unsuper-
vised model using word-context distance directly
achieved an average accuracy of 66.0%, while a
supervised method with lexical features added to
the word-context distance further increased the
accuracy to 69.2%.

Islam and Inkpen (2010) developed a system
which completed a test sentence with possible
candidates one at a time. The candidate gener-
ating the most probable sentence (measured by
a 5-gram language model) was proposed as the
correct answer. N-gram counts were collected
from Google Web1T Corpus and smoothed with
missing counts, yielding an average accuracy of
69.9%.

2.3 Lexical Choice Outside the
Near-synonymy Domain

The problem of lexical choice also comes in many
flavors outside the near-synonymy domain. Reiter
and Sripada (2002) attributed the variation in lexi-
cal choice to cognitive and vocabulary differences
among individuals. In their meteorology domain
data, for example, the term by evening was inter-
preted as before 00:00 by some forecasters but
before 18:00 by others. They claimed that NLG
systems might have to include redundancy in their
output to tolerate cognitive differences among in-
dividuals.

2.4 Latent Semantic Space Models and LoA

LSA has been widely applied in various fields
since its introduction by Landauer and Dumais
(1997). In their study, LSA was conducted on
document LoA on encyclopedic articles and the
latent space vectors were used for solving TOEFL
synonym questions. Rapp (2008) used LSA
on lexical LoA for the same task and achieved
92.50% in accuracy in contrast to 64.38% given
by Landauer and Dumais (1997). This work con-
firmed our early postulation that document LoA
might not be tailored for lexical level tasks, which
might require lower LoAs for more fine-grained
co-occurrence knowledge. Note, however, that
confounding factors might also have led to the dif-
ference in performance, since the two studies used
different weighting schemes and different corpora
for the co-occurrence model1. In Section 3.2 we
will compare models on the two LoAs in a more
controlled setting to show their difference in the
lexical choice task.

3 Representing Words and Contexts in
Latent Semantic Space

We first formalize the FITB task to facili-
tate later discussions. A test sentence t =
{w1, . . . ,w j−1,si,w j+1, . . . ,wm} contains a near-
synonym si which belongs to a set of synonyms
S = {s1, . . . ,sn},1 ≤ i ≤ n. A FITB test case is
created by removing si from t, and the context (the
incomplete sentence) c = t−{si} is presented to
subjects with a set of possible choices S to guess
which of the near-synonyms in S is the missing
word.

3.1 Constructing the Latent Space
Representation

The first step in LSA is to build a co-occurrence
matrix M between words and documents, which is
further decomposed by Singular Value Decompo-
sition (SVD) according to the following equation:

Mv×d =Uv×kΣk×kV T
k×d

1The former used Groliers Academic American Encyclo-
pedia with weights divided by word entropy, while the latter
used the British National Corpus with weights multiplied by
word entropy.
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Here, subscripts denote matrix dimensions, U , Σ,
and V together create a decomposition of M, v and
d are the number of word types and documents,
respectively, and k is the number of dimensions
for the latent semantic space. A word w is repre-
sented by the row in U corresponding to the row
for w in M. For a context c, we construct a vector c
of length v with zeros and ones, each correspond-
ing to the presence or absence of a word wi with
respect to c, i.e.,

ci =

{
1 if wi ∈ c
0 otherwise

We then take this lexical space vector cv×1 as a
pseudo-document and transform it into a latent se-
mantic space vector ĉ:

ĉ = Σ−1UT c (1)

An important observation is that this represen-
tation is equivalent to a weighted centroid of the
context word vectors: when c is multiplied by
Σ−1UT in Equation (1), the product is essentially
a weighted sum of the rows in U corresponding to
the context words. Consequently, simple modifi-
cations on the weighting can yield other interest-
ing representations of context. Consider, for ex-
ample, the weighting vector wk×1 = (σ1, · · · ,σk)

T

with
σi =

1
|2(pgap− i)−1|

where pgap is the position of the “gap” in the test
sentence. Multiplying w before Σ−1 in Equation
(1) is equivalent to giving the centroid gradient-
decaying weights with respect to the distance be-
tween a context word and the near-synonym. This
is a form of a Hyperspace Analogue to Language
(HAL) model, which is sensitive to word order, in
contrast to a bag-of-words model.

3.2 Dimensionality and Level of Association
The number of dimensions k is an important
choice to make in latent semantic space mod-
els. Due to the lack of any principled guideline
for doing otherwise, we conducted a brute force
grid search for a proper k value for each LoA, on
the basis of the performance of the unsupervised
model (Section 4.1 below).

Figure 1: FITB Performance on different LoAs as
a function of the latent space dimensionality.

In Figure 1, performance on FITB using this
unsupervised model is plotted against k for doc-
ument and lexical LoAs. Document LoA is very
limited in the available number of dimensions2;
higher dimensional knowledge is simply unavail-
able from this level of co-occurrence. In contrast,
lexical LoA stands out around k = 550 and peaks
around k = 700. Although the advantage of lexi-
cal LoA in the unsupervised setting is not signif-
icant, later we show that lexical LoA nonetheless
makes higher-dimensional information available
for other learning methods.

Note that the scale on the y-axis is stretched to
magnify the trends. On a zero-to-one scale, the
performance of these unsupervised methods is al-
most indistinguishable, indicating that the unsu-
pervised model is not capable of using the high-
dimensional information made available by lexi-
cal LoA. We will elaborate on this point in Section
5.2.

2The dimensions for document and lexical LoAs on our
development corpus are 55,938×500 and 55,938×55,938,
respectively. The difference is measured between v× d and
v× v (Section 3.1).
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4 Learning in the Latent Semantic Space

4.1 Unsupervised Vector Space Model

When measuring distance between vectors, LSA
usually adopts regular vector space model dis-
tance functions such as cosine similarity. With the
context being a centroid of words (Section 3.1),
the FITB task then becomes a k-nearest neighbor
problem in the latent space with k = 1 to choose
the best near-synonym for the context:

s∗ = argmax
si

cos(UrowId(v(si),M), ĉ)

where v(si) is the corresponding row for near-
synonym si in M, and rowId(v,M) gives the row
number of a vector v in a matrix M containing v
as a row.

In a model with a cosine similarity distance
function, it is detrimental to use Σ−1 to weight the
context centroid ĉ. This is because elements in Σ
are the singular values of the co-occurrence matrix
along its diagonal, and the amplitude of a singular
value (intuitively) corresponds to the significance
of a dimension in the latent space; when the in-
verted matrix is used to weight the centroid, it will
“misrepresent” the context by giving more weight
to less-significantly co-occurring dimensions and
thus sabotage performance. We thus use Σ instead
of Σ−1 in our experiments. As shown in Figure
1, the best unsupervised performance on the stan-
dard FITB dataset is 49.6%, achieved on lexical
LoA at k = 800.

4.2 Supervised Learning on the Latent
Semantic Space Features

In traditional latent space models, the latent space
vectors have almost invariantly been used in the
unsupervised setting discussed above. Although
the number of dimensions has been reduced in the
latent semantic space, the inter-relations between
the high-dimension data points may still be com-
plex and non-linear; such problems lend them-
selves naturally to supervised learning.

We therefore formulate the near-synonym lex-
ical choice problem as a supervised classification
problem with latent semantic space features. For
a test sentence in the FITB task, for example, the
context is represented as a latent semantic space

vector as discussed in Section 3.1, which is then
paired with the correct answer (the near-synonym
removed from the sentence) to form one training
case.

We choose Support Vector Machines (SVMs) as
our learning algorithm for their widely acclaimed
classification performance on many tasks as well
as their noticeably better performance on the lex-
ical choice task in our pilot study. Table 2 lists
the supervised model performance on the FITB
task together with results reported by other related
studies. The model is trained on the 1989 WSJ
and tested on the 1987 WSJ to ensure maximal
comparability with other results. The optimal k
value is 415. Context window size3 around the
gap in a test sentence also affects the model per-
formance. In addition to using the words in the
original sentence, we also experiment with enlarg-
ing the context window to neighboring sentences
and shrinking it to a window frame of n words
on each side of the gap. Interestingly, when mak-
ing the lexical choice, the model tends to favor
more-local information — a window frame of size
5 gives the best accuracy of 74.5% on the test.
Based on binomial exact test4 with a 95% confi-
dence interval, our result outperforms the current
state-of-the-art with statistical significance.

5 Formalizing Subtlety in the Latent
Semantic Space

In this section, we formalize the notion of sub-
tlety through its relation to dimensionality, and
use the formalization to provide empirical support
for some of the common intuitions about subtlety
and its complexity with respect to dimensionality
and size of context.

5.1 Characterizing Subtlety Using
Collocating Differentiator of Subtlety

In language generation, subtlety can be viewed as
a subordinate semantic trait in a linguistic realiza-

3Note that the context window in this paragraph is im-
plemented on FITB test cases, which is different from the
context size we compare in Section 5.3 for building co-
occurrence matrix.

4The binomial nature of the outcome of an FITB test case
(right or wrong) makes binomial exact test a more suitable
significance test than the t-test used by Inkpen (2007).
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Table 2: Supervised performance on the seven standard near-synonym sets in the FITB task. 95%
Confidence based on Binomial Exact Test.

Near-synonyms
Co-occur. SVMs 5-gram SVMs on
network & PMI language model latent vectors

(Edmonds, 1997) (Inkpen, 2007) (Islam and Inkpen, 2010) (Section 4.2)

difficult, hard, tough 47.9% 57.3% 63.2% 61.7%
error, mistake, oversight 48.9% 70.8% 78.7% 82.5%
job, task, duty 68.9% 86.7% 78.2% 82.4%
responsibility, burden, 45.3% 66.7% 72.2% 63.5%
obligation, commitment

material, stuff, substance 64.6% 71.0% 70.4% 78.5%
give, provide, offer 48.6% 56.1% 55.8% 75.4%
settle, resolve 65.9% 75.8% 70.8% 77.9%
Average 55.7% 69.2% 69.9% 74.5%
Data size 29,835 31,116 31,116 30,300
95% confidence 55.1–56.3% 68.7–69.7% 69.3–70.4% 74.0–75.0%

tion of an intention5. A key observation regard-
ing subtlety is that it is non-trivial to characterize
subtle differences between two linguistic units by
their collocating linguistic units. More interest-
ingly, the difficulty in such characterization can
be approximated by the difficulty in finding a third
linguistic unit satisfying the following constraints:

1. The unit must collocate closely with at least
one of the two linguistic units under differ-
entiation;

2. The unit must be characteristic of the differ-
ence between the pair.

Such approximation is meaningful in that it trans-
forms the abstract characterization into a concrete
task of finding this third linguistic unit. For ex-
ample, suppose we want to find out whether the
difference between glass and mug is subtle. The
approximation boils the answer down to the dif-
ficulty of finding a third word satisfying the two
constraints, and we may immediately conclude
that the difference between the pair is not subtle
since it is relatively easy to find wine as the quali-
fying third word, which 1) collocates closely with
glass and 2) characterizes the difference between

5The same principle applies when we replace “genera-
tion” with “understanding” and “an intention” with “a cogni-
tion”.

the pair by instantiating one of their major differ-
ences — the purpose of use. The same reasoning
applies to concluding non-subtlety for word pairs
such as pen and pencil with sharpener, weather
and climate with forecast, watch and clock with
wrist, etc.

In contrast, for the pair forest and woods, it
might be easy to find words satisfying one but not
both constraints. Consequently, the lack of such
qualifying words — or at least the relative diffi-
culty for finding one — makes the difference be-
tween this pair more subtle than in the previous
examples.

We call a linguistic unit satisfying both con-
straints a collocating differentiator of subtlety
(CDS). Notably, the second constraint puts an im-
portant difference between CDSs and the conven-
tional sense of collocation. On the lexical level,
CDSs are not merely words that collocate more
with one word in a pair than with the other; they
have to be characteristic of the differences be-
tween the pair. In the example of forest and
woods, one can easily find a word exclusively col-
locating with one but not the other — such as na-
tional forest but not *national woods; however,
unlike the CDSs in the previous examples, the
word national does not characterize any of the dif-
ferences between the pair in size, primitiveness,
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proximity to civilization, or wildness (Edmonds
and Hirst, 2002), and consequently fails to satisfy
the second constraint.

5.2 Relating Subtlety to Latent Space
Dimensionality6

As mentioned in Section 4.1, elements of a latent
space vector are in descending order in terms of
co-occurrence significance, i.e., the information
within the first few dimensions is obtained from
more closely collocating linguistic units. From
the two constraints in the previous section, it fol-
lows that it should be relatively easier to find a
CDS for words that can be well distinguished in a
lower-dimensional sub-space of the latent seman-
tic space, and the difference among such words
should not be considered subtle.

We thus claim that co-occurrence-based infor-
mation capable of characterizing subtle differ-
ences must then reside in higher dimensions in
the latent space vectors. Furthermore, our intu-
ition on the complexity of subtlety can also be
empirically tested by comparing the performance
of supervised and unsupervised models at differ-
ent k values. One of the differences between the
two types of models is that supervised models are
better at unraveling the convoluted inter-relations
between high-dimensional data points. Under this
assumption, if we hypothesize that subtlety is a
certain form of complex, high-dimensional rela-
tion between semantic elements, then the differ-
ence in performance between the supervised and
unsupervised model should increase as the former
recovers subtle information in higher dimensions.

As shown in Figure 2, performance of both
models is positively correlated to the number of
dimensions in the latent semantic space (with cor-
relation coefficient ρ = 0.95 for supervised model
and ρ = 0.81 for unsupervised model). This sug-
gests that the lexical choice process is indeed
“picking up” implicit information about subtlety
in the higher dimensions of the latent vectors.
Meanwhile, the difference between the perfor-
mance of the two models correlates strongly to k
with ρ = 0.95. Significance tests on the “differ-

6In order to keep the test data (1987 WSJ) unseen before
producing the results in Table 2, models in this section were
trained on The Brown Corpus and tested on 1988–89 WSJ.

Figure 2: Supervised performance increasing fur-
ther from unsupervised performance in higher di-
mensions.

ence of difference”7 between their performances
further reveal increasing difference in growth rate
of their performance. Significance is witnessed in
both the F-test and the paired t-test,8 indicating
that the subtlety-related information in the higher
dimensions exhibits complex clustering patterns
that are better recognized by SVMs but beyond
the capability of the KNN model.

5.3 Subtlety and the Level of Context
Our previous models on lexical LoA associated
words within the same sentence to build the co-
occurrence matrix. Lexical LoA also allows us
to associate words that co-occur in different lev-
els of context (LoC) such as paragraphs or docu-
ments. This gives an approximate measurement
of how much context a lexical LoA model uses
for word co-occurrence. Intuitively, by looking at
more context, higher LoC models should be better
at differentiating more subtle differences.

We compare the performance of models with
different LoCs in Figure 3. The sentence LoC
model constantly out-performs the paragraph LoC
model after k = 500, indicating that, by inter-
model comparison, larger LoC models do not
necessarily perform better on higher dimensions.
However, there is a noticeable difference in the
optimal dimensionality for the model perfor-
mances. Sentence LoC performance peaks around

7The italicized difference is used in its mathematical
sense as the discrete counterpart of derivative.

8F-test: f (1,16) = 9.13, p < 0.01. Paired t-test: t(8) =
4.16 with two-tailed p = 0.0031. Both conducted on 10 data
points at k = 50 to 500 with a step of 50.
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Figure 3: LoC in correlation to latent space di-
mensionality for optimal model performance.

k = 700 — much lower than that of paragraph
LoC which is around k = 1,100. Such differ-
ence may suggest that, by intra-model compari-
son, each model may have its own “comfort zone”
for the degree of subtlety it differentiates; models
on larger LoC are better at differentiating between
more subtle nuances, which is in accordance with
our intuition.

One possible explanation for sentence LoC
models outperforming paragraph LoC models is
that, although the high-dimensional elements are
weighed down by Σ due to their insignificance in
the latent space, their contribution to the output
of distance function is larger in paragraph LoC
models because the vectors are much denser than
that in the sentence LoC model; since the unsuper-
vised method is incapable of recognizing the clus-
tering patterns well in high-dimensional space,
the “amplified” subtlety information is eventually
taken as noise by the KNN model. An interesting
extension to this discussion is to see whether a su-
pervised model can consistently perform better on
higher LoC in all dimensions.

6 Conclusions and Future Work

We propose a latent semantic space representa-
tion of near-synonyms and their contexts, which
allows a thorough investigation of several aspects

of the near-synonym lexical choice problem. By
employing supervised learning on the latent space
features, we achieve an accuracy of 74.5% on the
“fill-in-the-blank” task, outperforming the current
state-of-the-art with statistical significance.

In addition, we formalize the notion of subtlety
by relating it to the dimensionality of the latent se-
mantic space. Our empirical analysis suggests that
subtle differences between near-synonyms reside
in higher dimensions in the latent semantic space
in complex clustering patterns, and that the degree
of subtlety correlates to the level of context for co-
occurrence. Both conclusions are consistent with
our intuition.

As future work, we will make better use of the
easy customization of the context representation
to compare HAL and other models with bag-of-
words models. The correlation between subtlety
and dimensionality may lead to many interesting
tasks, such as measuring the degree of subtlety for
individual near-synonyms or near-synonym sets.
With regard to context representation, it is also
intriguing to explore other dimensionality reduc-
tion methods (such as Locality Sensitive Hashing
or Random Indexing) and to compare them to the
SVD-based model.
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Abstract

Dynamic sentiment ambiguous
adjectives (DSAAs) like “large, small,
high, low” pose a challenging task on
sentiment analysis. This paper proposes a
knowledge-based method to
automatically determine the semantic
orientation of DSAAs within context.
The task is reduced to sentiment
classification of target nouns, which we
refer to sentiment expectation instead of
semantic orientation widely used in
previous researches. We mine the Web
using lexico-syntactic patterns to infer
sentiment expectation of nouns, and then
exploit character-sentiment model to
reduce noises caused by the Web data.
At sentence level, our method achieves
promising result with an f-score of
78.52% that is substantially better than
baselines. At document level, our
method outperforms previous work in
sentiment classification of product
reviews.

1 Introduction

In recent years, sentiment analysis has attracted
considerable attention in the NLP community. It
is the task of mining positive and negative
opinions from natural language, which can be
applied to many research fields. Previous work
on this problem falls into three groups: opinion
mining of documents, sentiment classification of
sentences and polarity prediction of words.

Sentiment analysis both at document and
sentence level rely heavily on word level.

The most frequently explored task at the word
level is to determine the polarity of words, in
which most work centers on assigning a prior
polarity to words or word senses in the lexicon
out of context. However, for some words, the
polarity varies strongly with context, making it
hard to attach each to a fixed sentiment category
in the lexicon. For example, the word “low”has
a positive orientation in “low cost” but a
negative orientation in “low salary”. We call
these words like “low” dynamic sentiment
ambiguous adjectives (DSAAs). Turney and
Littman (2003) claim that DSAAs cannot be
avoided in a real-world application. But
unfortunately, DSAAs are discarded by most
research concerning sentiment analysis.

In this paper, we are devoted to the
challenging task of disambiguating DSAAs. The
task is to automatically determine the semantic
orientation (SO) of DSAAs within context. We
limit our work to 14 frequently used adjectives
in Chinese, such as “large, small, many, few,
high, low”, which all have the meaning of
measurement. Although the number of such
ambiguous adjectives is not large, they are
frequently used in real text, especially in the
texts expressing opinions and emotions. As
demonstrated by the experimental results in this
paper, the disambiguation of 14 DSAAs can
obviously improve the performance of sentiment
classification of product reviews.

The task of disambiguating DSAAs is reduced
to sentiment classification of nouns. Previous
studies classify nouns into three categories:
positive, negative and neutral. In contrast, we
propose two categories of sentiment expectation
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of nouns: positive expectation and negative
expectation. This paper presents a novel
approach to automatically predict sentiment
expectation of nouns. First, we infer the
sentiment expectation of a noun by mining the
Web with strongly-polar-steering lexico-
syntactic patterns. Secondly, we derive the
sentiment expectation of a noun from its
component characters, which capture the
semantic relationship between Chinese words
and characters. Finally, a better performance is
obtained by combing the two methods. We
conduct two types of experiments: the
experimental results at the sentence level
validate the effectiveness of our approach; the
experimental results at the document level
confirm the significance of the problem we
addressed.

2 Related Work

2.1 Word-level Sentiment Analysis

Recently there has been extensive research in
sentiment analysis, for which Pang and Lee
(2008) give an in-depth survey of literature.
Closer to our study is the large body of work on
automatic SO prediction of words
(Hatzivassiloglou and McKeown, 1997; Turney
and Littman, 2003; Kim and Hovy, 2004;
Andreevskaia and Bergler, 2006), but
unfortunately they all discard DSAAs in their
research. In recent years, some studies go a step
further, attaching SO to senses instead of word
forms (Esuli and Sebastiani, 2006; Wiebe and
Mihalcea, 2006; Su and Markert 2008), but their
work is still limited in lexicon out of context.

The most relevant work is Ding et al. (2008),
in which DSAAs are named as context
dependant opinions. They argue that there is no
way to know the SO of DSAAs without prior
knowledge, and asking a domain expert to
provider such knowledge is scalable. They adopt
a holistic lexicon-based approach to solve this
problem, which exploits external information
and evidences in other sentences and other
reviews. On the contrary in this paper, we obtain
the prior knowledge of a product by mining the
web, and then use such knowledge to determine
the SO of DSAAs. The prior knowledge of a
product, which is closer to the sentiment
expectation of nouns described in this paper, is

an important research issue in itself and has
many applications in sentiment analysis, as
discussed in section 3.2.

2.2 Phrase-level Sentiment Analysis

The disambiguation of DSAAs can also be
considered as a problem of phrase-level
sentiment analysis. Wilson et al. (2004) present a
two-step process to recognize contextual polarity
that employs machine learning and a variety of
features. Takamura et al. (2006, 2007) propose
latent variable model and lexical network to
determine SO of phrases, focusing on
“noun+adjective” pairs. Their experimental
results suggest that the classification of pairs
containing ambiguous adjectives is much harder
than those with unambiguous adjectives. The
above mentioned approaches are all supervised,
and need human labeled data for training. In
contrast, our method is unsupervised and can
overcome the data acquisition bottleneck.
Moreover, we focus on the much harder task of
disambiguating DSAAs in “noun+adjective”
pairs.

2.3 Pattern-based Method

Previous studies have applied pattern-based
method to sentiment analysis (Riloff and Wiebe,
2003; Wiebe et al., 2004; Riloff et al., 2005;
Wiebe and Mihalcea, 2006; Andreevskaia and
Berger; 2006). The differences with our method
lie in two aspects: the used resources (corpus
versus web) and the research target (subjective
expressions versus sentiment expectation).

2.4 Character-based Method

Chinese characters carry semantic information
that is indicative of semantic properties of words.
Previous studies have exploited the character-
based model to predict the semantic categories
of Chinese unknown words (Chen, 2004; Lu,
2007). Yuen et al. (2004) presents a method to
infer the SO of a Chinese word from its
statistical association with strong-polarized
characters rather than with strong-polarized
words. The work by Ku et al. (2006) is similar to
ours because they also define the sentiment score
of a word by its composite characters. However,
their algorithm is based only on frequency, while
we exploit point mutual information that can
capture the character-sentiment association.
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3 Determining SO of Adjective by
Target Noun

3.1 Classification of DSAAs

The frequently used DSAAs are given below.
We group them into two categories: positive-like
adjectives and negative-like adjectives. These
adjectives are neutral out of context, but positive
or negative emotion will be evoked when they
co-occur with some target nouns, making it hard
to assign each to a fixed sentiment category in
lexicon.
(1) Positive-like adjectives (Pa) = {大 da|large,
多 duo|many, 高 gao|high, 厚 hou|thick, 深
shen|deep, 重 zhong|heavy, 巨大 ju-da|huge, 重
大 zhong-da|great}

(2) Negative-like adjectives (Na) ={小
xiao|small, 少 shao |few, 低 di|low, 薄 bao|thin,
浅 qian|shallow, 轻 qing|light}

3.2 Sentiment Expectation of Noun

The SO of most DSAAs can be determined by
target nouns in noun-adjective phrases, as shown
in Table 1. For example, the word “high”has a
positive orientation when the target noun is
“salary” but a negative orientation when the
target noun is “price”. Therefore, the task can be
reduced to sentiment classification of nouns.
Positive
潜 力 大 |potential is great
工资高|salary is high

Negative
潜 力 小 |potential is small
工资低 |salary is low

Negative
压 力 大 |pressure is big
价格 高|price is high

Positive
压 力 小 |pressure is small
价格 低 |price is low

Table 1: The SO of DSAAs in noun-adjective phrases
In previous research, the SO of nouns is

classified into three categories: positive,
negative and neutral. Accordingly, “压力 ya-
li|pressure”will be assigned as negative and “潜
力 qian-li|potential” as positive, while “工资
gong-zi|salary” and “价格 jia-ge|price” will be
assigned as neutral, as the two terms are
objective and cannot evoke positive or negative
emotion. Different from the traditional
classification scheme, we propose sentiment
expectation and classify nouns into two
categories: positive expectation and negative
expectation. For a positive expectation noun,
people usually expect the thing referred to by the

noun to be bigger, higher or happen frequently.
On the contrary, for a negative expectation noun,
people usually expect the thing referred to by the
noun to be smaller, lower or don’t happen . For
example, “价 格 jia-ge|price” is a negative
expectation noun, as most people in most cases
expect that the product prices become low,
whereas “工资 gong-zi|salary” is a positive
expectation noun, as most people in most cases
expect that their salaries become high. The
relationship between traditional SO and
sentiment expectation can be defined as: positive
(negative) terms correspond to positive (negative)
expectation terms, but some neutral terms may
also carry positive (negative) expectation.

Su and Markert (2008) argue that polarity can
also be attached to objective words. The
difference with our scheme is that, for example,
“价 格 jia-ge|price” is attached to negative
expectation in our scheme while is still neutral in
Su and Markert’s method.

The distinction between positive and negative
expectation nouns is vital to determine the SO of
some phrases. Using it to disambiguate DSAAs
is a good example. Another application is the
phrase containing verbs with the meaning of
status change. For example, “工资上涨了|salary
has been raised” will evoke positive emotion,
while “价格上涨了 jiage-shangzhang-le|prices
have gone up”will evoke negative emotion. As
far as we are aware, this is the first sentiment
analysis scheme that tries to exploit people’s
expectation towards nouns.

3.3 Determination of DSAAs

The SO of DSAAs in a given phrase can be
calculated by Eq. (1).

1 if a is positive-like
C(a) =

-1 if a is negative-like





1 if n is positive expectation
C(n) =

-1 if n is negative expectation





SO(a)=C(a)*C(n)

If adverb=“不 bu|not”, SO(a)= -SO(a)

Where C(a) denotes the category of DSAAs; C(n)
denotes the sentiment expectation of nouns;
SO(a) is the SO of DSAAs in a give noun-
adjective phrase. When the adverb is the
negation term “不 bu|not”, the SO is reversed.

(1)
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4 Predicting Sentiment Expectation of
Noun

4.1 Pattern-based Prediction Using a Web
Search Engine

In natural language, there are some lexico-
syntactic patterns that people frequently use
when they express their opinion about something.
For example:
(3) 工 资有 点 低 | Salary is a little low.
(4) 价 格 有 点 高| Price is a little high.

The pattern “<n> 有点 <a>” carries a strong
negative association in Chinese language. When
a man is saying “工资有点低| Salary is a little
low”, it indicates that he wishes his “工资
|salary” to be raised. On the contrary, when a
man is saying “价格有点高 | price is a little
high”, it indicates that he wishes “价格 |price”
to go down. As a result, “工资 |salary” has
positive expectation while “价格 |price” has
negative expectation.

With the rapid development and expansion of
the internet, Web has become an important
medium for people to post their ideas. The
opinions expressed on the Web reflect the
common cognition shared by collection of
people in a culture. Therefore, using a Web
search engine with the strong-polar-steering
lexico-syntactic patterns as queries, we can infer
the sentiment expectation of a noun, by
calculating its statistical association with
positive and negative hits.

As an example, using the search engine
Baidu 2 with the pattern “<n> 有点 <a>” as
queries, we obtain the following hits:
(5) 工 资有 点 低 | Salary is a little low. (2890 hits)

工 资有 点 高 | Salary is a little high (67 hits)
(6) 价 格 有 点 高 | Price is a little high. (19400 hits)

价 格 有 点 低 | Price is a little low. (1080 hits)

The more than 40 times more numerous hits for
“工资有点低 |Salary is a little low”indicate that
that “工资|salary”is a positive expectation noun.
For the same reason, we can infer that “价格
|price”has negative expectation.

DSAAs are classified into two opposite sets
Pa and Na, as listed in (1) and (2) respectively.

2 http://baidu.com.cn.

Here two-character adjectives (“巨大 |huge”and
“重大 |great”) are discarded. Four types of
lexico-syntactic patterns, which are also
classified into two opposite sets in consistent
with Pa and Na, are used in this paper, as listed
in Table 2. These patterns were manually
designed, inspired by linguistic knowledge and
after a deep investigation on the Web.
Pos. expectation patterns Neg. expectation patterns
1) <n> 有点 Na

n is a little Na
2) <n> 有点儿 Na

n is a little Na
3) <n> Na, 怎么办
n is Na, what should we
do?
4) 嫌 <n> Na

n is too Na

1) <n> 有点 Pa
n is a little Pa

2) <n> 有点儿 Pa
n is a little Pa

3) <n> Pa, 怎么办
n is Pa, what should we
do?
4)嫌 <n> Pa

n is too Pa
Table 2: The lexico-syntactic patterns

Here the noun (n) in these patterns was
instantiated by 9,468 nouns in our collected data.
A noun has together 48 patterns, 24 positive and
24 negative ones. For each noun, we obtain the
hits of both positive and negative expectation
patterns, using the search engine Baidu. The
sentiment expectation of a noun is acquired by
Eq. (2) and Eq. (3), where the magnitude of

_ ( )PT SO n can be considered as the strength of
sentiment expectation.

4

1

4

1

_ ( ) ( , )

( , )

i

b Na i

i

a Pa i

PT SO n PositivePatternHit n b

NegativePatternHit n a

 

 









positive expectation if _ ( )>0

n is negative expectation if _ ( )<0

not predicted if _ ( )=0

PT SO n

PT SO n

PT SO n






(3)

Table 3 gives some nouns with sentiment
expectation predicted by the pattern-based
method, descending (the left column) and
ascending (the right column) by the absolute
value of _ ( )PT SO n . Most words (9 out of 10)
are correctly predicted, demonstrating that the
result of pattern-based method is promising. The
only wrong predicted noun is “感觉 |feeling”,
due to the fact that most instances of it on the
Web data are used as verb rather than noun, like
“感觉有点大| I think it is large”.

(2)
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Positive expectation Negative expectation
Noun ( _ ( )PT SO n ) Noun ( _ ( )PT SO n )

钱|money (31349) 温 度 |temperature(-111576)
工资|wage (26311 ) 噪 音|noise (-45790)
感 觉|feeling (20102) 价 格 |price (-25653)
收 入 |income(19429) 代 价 |cost (-22051)
官 |officer (10630) 血压 |blood pressure (-21788)

Table 3: Examples of nouns with sentiment
expectation predicted by the pattern-based method

4.2 Character-based Derivation Using
Sentiment Lexicons

But the sentiment expectation of some nouns
cannot be predicted with the pattern-based
method, mainly due to the reason that these
nouns don’t occur in the listed patterns in Table
2. An alternate way is to exploit the semantic
knowledge of Chinese characters. It is assumed
that there is a strong association between the
sentiment category of a word and its component
characters. For example, the three words “罪恶
zui’e|evil, 罪 行 zuixing|crime, 罪 过
zuiguo|fault”, which all contain the character “罪
zui|sin” that carries negative meaning, are all
negative expectation nouns.

First, we compute the character-word
sentiment association by the following PMI
formula, based on a sentiment lexicon:

( , )
, log

( ) ( )

P c Positive
PMI c Positive

P c P Positive
（ ）=

( , )
, log

( ) ( )

P c Negative
PMI c Negative

P c P Negative
（ ）=

( ) ( , ) ( , )SO c PMI c Positive PMI c Negative 

Where ( , )P c Positive is the probability of a
character c in the positive category; ( )P c is the
probability of a character c in the sentiment
lexicon; ( )P Positive is the probability of the
positive category in the sentiment lexicon.

,PMI c Negative（ ） has the similar meaning.
Probabilities are estimated according to the
maximum likelihood principle.

The open language resources for Chinese
sentiment analysis are quite limited. We selected
the following two sentiment lexicons.

Sentiment HowNet. HowNet has published
the Chinese vocabulary for sentiment analysis3,

3 http://www.keenage.com/html/c_index.html.

which was manually constructed. The positive
category contains 4,566 words and the negative
category contains 4,370 words.

Sentiment BaiduHit. In our collected data,
we extracted 9,468 nouns. Using the pattern-
based method we acquired sentiment expectation
of these nouns, where 2,530 ones were assigned
as positive expectation, 1,837 ones as negative
expectation and 5,101 ones were not predicted. It
is assumed that most nouns are correctly
predicted. These nouns with their sentiment
expectation constitute the lexicon of Sentiment
BaiduHit, which is automatically constructed.

Combining HowNet and BaiduHit. Most
sentiment characters derived from HowNet have
adjective property, since most words in
Sentiment HowNet are adjectives. On the
contrary, most sentiment characters derived from
BaiduHit have noun property. Therefore, the
combination of the two lexicons can cover more
characters. As Sentiment HowNet is manually
compiled, the sentiment characters derived from
it should be more reasonable than those from
BaiduHit. When combining the two lexicons in
computing character polarity, we assign a high
priority to HowNet. Only when a character is out
of vocabulary in HowNet, we resort to BaiduHit.

Then, we acquire the sentiment category of a
word by computing the following equation. Let a
word consist of n characters 1 2, nw c c c ，... ,
the sentiment category of the word is calculated
by the average sentiment value of its component
characters:

1

1
_ ( ) ( )

n

i

i

CH SO w SO c
n 

  (5)

positive expectation if _ ( )>0

w is negative expectation if _ ( )<0

neutral if _ ( )=0

CH SO w

CH SO w

CH SO w






(6)

We acquired sentiment expectation of 9,468
nouns in our collected data, based on Sentiment
HowNet, Sentiment BaiduHit, and the
combination of the two lexicons, respectively.

Table 6 gives examples of nouns with
sentiment expectation acquired by the character-
based method combining the two lexicons of
HowNet and BaiduHit, descending (the left
column) and ascending (the right column) by the
absolute value of _ ( )CH SO w .

(4)
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Positive expectation Negative expectation
Noun( _ ( )CH SO w ) Noun( _ ( )CH SO w )

美 称 |good name (3.23) 灰 |ash (-3.22)
健 美 |health (3.06) 毛 |gross (-2.93)
香|fragrance (3.05) 税 |tax (-2.89)
美 方 |U.S.A (2.98) 毛 病 |fault (-2.84)
职 称 |title (2.64) 毒 |poison (-2.82)

Table 4: Example of nouns with sentiment
expectation predicted by the character-based method

4.3 Integrating Pattern-based Prediction
and Character-based Derivation

The two methods of pattern-based prediction
and character-based derivation have
complementary properties. The pattern-based
method concentrates on a word’s usage on the
Web, whereas the character-based method
focuses on the internal structure of a word. So
the two methods can be integrated to get better
performance. The results using pattern-based
method are much better than character-based
method, as illustrated in Table 3 and Table 4. So
in the integrated scheme, we give a high priority
to pattern-based method. The pattern-based
approach is mainly used, and only when the
value of | _ ( ) |PT SO n is smaller than a threshold
r, the character-based method is adopted.
Because when the value of | _ ( ) |PT SO n is very
small, it could be caused by random noises on
the Web. We set r to 9 according to empirical
analysis in the development data.

5 Experiments

5.1 Sentiment Analysis at Sentence Level

5.1.1 Data
We collected data from two sources. The main
part was extracted from Xinhua News Agency of
Chinese Gigaword (Second Edition) released by
LDC. The texts were automatically word-
segmented and POS-tagged using the open
software ICTCLAS4. In order to concentrate on
the disambiguation of DSAAs, and reduce the
noise introduced by the parser, we extracted
sentences containing strings in pattern of (7),
where the target noun is modified by the
adjective in most cases.

4 http://www.ictclas.org/.

(7) noun+adverb+adjective (adjective∈DSAAs)
e.g. 成本/n 较/d 低/a | the cost is low.

Another small part of data was extracted from
the Web. Using the search engine Google5, we
searched the queries as in (8):
(8) 很 | very+ adjective (adjective∈DSAAs )
From the returned snippets, we manually picked
out some sentences that contain the strings of (7).
Also, the sentences were automatically word-
segmented and POS-tagged using ICTCLAS.

DSAAs in the data were assigned as positive,
negative or neutral, independently by two
annotators. Since we focus on the distinction
between positive and negative categories, the
neutral instances were removed. Table 5 gives
statistics of the data, and the inter-annotator
agreement is in a high level with a kappa of 0.91.
After cases with disagreement were negotiated
between the two annotators, a gold standard
annotation was agreed upon. In this paper, 3066
instances were divided randomly into three parts,
1/3 of which were used as the development data,
and 2/3 were the test data.

Most of the data has been used as the
benchmark dataset of SemEval-2010 task 18
“disambiguating sentiment ambiguous
adjectives”(Wu and Jin, 2010), and so it can be
downloaded freely for research.

Table 5: The statistics of DSAAs data

5.1.2 Baseline
We conducted two types of baseline.

Simple Baseline. Not considering the context,
assign all positive-like adjectives as positive, and
all negative-like adjectives as negative.

HowNet Baseline. Acquiring SO of nouns
from Sentiment HowNet, the polarity of DSAAs
is computed by Eq. (1).
5.1.3 Methods

Pattern-based method. Acquiring sentiment
expectation of nouns using the pattern-based
method, the polarity of DSAAs is computed by
Eq.(1).

5 http://www.google.com/.

Pos# Neg# Total#
Pos# 1280 58 1338
Neg# 72 1666 1738
Total# 1352 1724 3066
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Character-based method. Acquiring
sentiment expectation of nouns using the
character-based method, based on Sentiment
HowNet, Sentiment BaiduHit and the
combination of the two lexicons respectively, the
polarity of DSAAs is computed by Eq.(1).

Integrated method. Acquiring sentiment
expectation of nouns by integrating pattern-
based and character-based methods, the polarity
of DSAAs is computed by Eq. (1).
5.1.4 Results

Table 6 gives the experimental results at
sentence level with different methods.

Methods Pre. Rec. F
Simple Baseline 61.20 61.20 61.20
HowNet Baseline 97.58 9.88 17.94
Pattern-based 75.83 71.67 73.69
Character-based (HowNet) 69.89 69.37 69.63
Character-based (BaiduHit) 68.66 68.59 68.62
Character-based (Combined) 71.01 70.94 70.97
Integrated method 78.52 78.52 78.52

Table 6: The experimental results at sentence level
As for the simple baseline, both the precision

and recall are low, suggesting that DSAAs
cannot be neglected for sentiment analysis in a
real-world application.

The HowNet baseline achieves a quite high
precision of 97.58%, but a rather poor recall of
9.88%, suggesting that SO of nouns described in
traditional sentiment lexicon, like HowNet,
cannot effectively disambiguate DSAAs.

The proposed methods in this paper all yield
results that are substantially better than two
types of baseline. The pattern-based method, as
straightforward as it is, achieves promising result
with an f-score of 73.69%, which is 12.49%
higher than the simple baseline. The pattern-
based method outperforms the character-based
method (combined) by 4.82% in precision and
0.73% in recall. The performance of the
character-based method based on Sentiment
BaiduHit is competitive with that based on
Sentiment HowNet, which again proves the
effectiveness of the pattern-based method. The
character-based method combining the two
lexicons outperforms each lexicon with small
improvement. The approach integrating pattern-
based and character-based methods outperforms
each method in isolation, achieving an f-score of

78.52% that is 17.32% higher than the simple
baseline and 60.58% higher than HowNet
baseline.

5.2 Sentiment Analysis at Document Level

5.2.1 Data
We also investigated the impact of
disambiguating DSAAs on the sentiment
classification of product reviews. Following the
work of Wan (2008), we selected the same
dataset. The dataset contains 886 Chinese
product reviews, which are manually annotated
with polarity labels: positive or negative. Also,
the files are automatically word-segmented and
POS-tagged using ICTCLAS. We extracted the
files that contain the following strings, where the
nouns are modified by DSAAs in most cases.
(9) noun+adjective (adjective∈DSAAs)

noun+adverb+adjective
noun+adverb+adverb+adjective.

We obtained 212 files, up to 24% of the overall
data, suggesting again that DSAAs are
frequently used in product reviews and cannot be
avoided in a real-world application.

5.2.2 Methods
Our goal is not to propose a new method, but
instead to test the performance gain by adding
the disambiguation of DSAAs. We adopted the
same algorithm with Wan (2008), and also used
Sentiment-HowNet. But in our experiment,
Negation_Dic contains only one term “不
bu|not”, for the sake of repeatable experiments.

The baseline algorithm is illustrated by the
non-italic part in Figure 1, where we set the
same parameters with Wan’s approach:
PosValue=1, NegValue=-2, q=2, ρ=2.

We added the disambiguation of DSAAs to
the algorithm, as illustrated by the italic part in
Figure 1. When a word is a DSAA, compute its
SO with the proposed integrated method, rather
than using its prior polarity specified in HowNet.
For Dy_PosValue and Dy_NegValue, we first set
Dy_PosValue=1 and Dy_NegValue=-2, just the
same as PosValue and NegValue. In the second
attempt, in order to further intensify the polarity
of DSAAs, we set Dy_PosValue=1.5 and
Dy_NegValue=-2.5. Other parameters were set
the same as baseline.
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Algorithm Compute_SO:
1. Tokenize document d into sentence set S, and each
sentence s∈S is tokenized into word set Ws;
2. For any word w in a sentence s∈S, compute its
value SO(w) as follows:

1) if w∈DSAAs, compute SO(w) with the
integrated method.

If SO(w)=1, SO(w)=Dy_PosValue;
If SO(w)=-1, SO(w)=Dy_NegValue;

2) if w∈Positive_Dict, SO(w)=PosValue;
3) If w∈Negative_Dict, SO(w)=NegValue;
4) Otherwise, SO(w)=0;
5) Within the window of q words previous to w, if

there is a term w'∈Negation_Dict,
SO(w)= –SO(w);

6) Within the window of q words previous to w, if
there is a term w'∈Intensifier_Dict,

SO(w) =ρ×SO(w);
3. ( ) ( )S d SO w

s S w Ws
  

 
Figure 1: Algorithm of computing SO of documents

5.2.3 Results
Adding the disambiguation of DSAAs, the
performance of sentiment classification of 212
product reviews was significantly improved, as
shown in Table 7.

Baseli
ne

DSAAs
(1, -2)

DSAAs
(1.5, -2.5)

Pre. 75.89 77.50 76.61
Rec. 78.70 86.11 87.96Pos.
F 77.27 81.58 81.90
Pre. 87.01 88.46 87.06
Rec. 64.42 66.35 71.15Neg.
F 74.03 75.82 78.31
MacroF 75.62 78.60 80.06

Total Accu. 71.70 76.42 79.72

Table 7: The experimental results at document level
As an example, the following review, which

consists of only one sentence, is correctly
classified as positive by DSAAs method, but is
classified as negative by the baseline approach.

(10) 体 积 小 , 重 量 轻 , 携 带 很 方 便 。
| Small size, light weight, and easy to carry.

According to HowNet, as shown in Table 8, the
sentence contains two negative words “小
|small”and “轻|light”and one positive word “方
便 fangbian|easy”, resulting the overall negative
prediction. In our approach, “体积 tiji|size”and
“重 量 zhongliang|weight” are assigned as
negative expectation, and consequently both “体
积小|small size”and “重量轻|light weight”have

positive meaning, resulting the overall positive
prediction.

Pos. 大 |large, 高 |high, 厚 |thick, 深 |deep,
重|heavy, 重大|great

Neg. 小 |small, 低 |low, 薄 |thin, 浅 |shallow,
轻|light

OOV 多|many, 少|few, 巨大|huge

Table 8: The SO of DSAAs described in HowNet
Adding the disambiguation of DSAAs, our

method obviously outperforms the baseline by
4.44% in f-score and 8.02% in accuracy. The
improvement in recall is especially obvious.
When intensifying the polarity of DSAAs by
setting Dy_PosValue=1.5 and Dy_NegValue=-
2.5, the recall is improved by 9.26% for positive
category and 6.73% for negative category.

6 Conclusion and Future Work

This paper presents a knowledge-based
unsupervised method to automatically
disambiguate dynamic sentiment ambiguous
words, focusing on 14 DSAAs. We exploit
pattern-based and character-based methods to
infer sentiment expectation of nouns, and then
determine the polarity of DSAAs based on the
nouns. For the sentiment analysis at sentence
level, our method achieves promising result that
is significantly better than two types of baseline,
which validates the effectiveness of our
approach. We also apply the disambiguation of
14 DSAAs to the sentiment classification of
product reviews, resulting obvious improvement
in performance, which proves the significance of
the issue.

There leaves room for improvement. Our
future work will explore more contextual
information in disambiguating DSAAs. In
addition, we will find out new methods to reduce
noises when mining the Web to infer sentiment
expectation of nouns. Discovering the lexico-
syntactic patterns for sentiment expectation of
nouns automatically or semi-automatically with
bootstrapping method is also a challenging
direction.
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Abstract

As tokenization is usually ambiguous for
many natural languages such as Chinese
and Korean, tokenization errors might po-
tentially introduce translation mistakes for
translation systems that rely on 1-best to-
kenizations. While using lattices to of-
fer more alternatives to translation sys-
tems have elegantly alleviated this prob-
lem, we take a further step to tokenize
and translate jointly. Taking a sequence
of atomic units that can be combined to
form words in different ways as input, our
joint decoder produces a tokenization on
the source side and a translation on the
target side simultaneously. By integrat-
ing tokenization and translation features
in a discriminative framework, our joint
decoder outperforms the baseline trans-
lation systems using 1-best tokenizations
and lattices significantly on both Chinese-
English and Korean-Chinese tasks. In-
terestingly, as a tokenizer, our joint de-
coder achieves significant improvements
over monolingual Chinese tokenizers.

1 Introduction

Tokenization plays an important role in statistical
machine translation (SMT) because tokenizing a
source-language sentence is always the first step
in SMT systems. Based on the type of input, Mi
and Huang (2008) distinguish between two cat-
egories of SMT systems :string-basedsystems
(Koehn et al., 2003; Chiang, 2007; Galley et al.,

source

target
tokenize+translate

string tokenization

translation

source

target

string
tokenize

tokenization
translate

translation

(a)

(b)

Figure 1: (a) Separate tokenization and translation and (b)
joint tokenization and translation.

2006; Shen et al., 2008) that take a string as input
andtree-basedsystems (Liu et al., 2006; Mi et al.,
2008) that take a tree as input. Note that a tree-
based system still needs to first tokenize the input
sentence and then obtain a parse tree or forest of
the sentence. As shown in Figure 1(a), we refer to
this pipeline asseparate tokenization and transla-
tion because they are divided into single steps.

As tokenization for many languages is usually
ambiguous, SMT systems that separate tokeniza-
tion and translation suffer from a major drawback:
tokenization errors potentially introduce transla-
tion mistakes. As some languages such as Chi-
nese have no spaces in their writing systems, how
to segment sentences into appropriate words has
a direct impact on translation performance (Xu et
al., 2005; Chang et al., 2008; Zhang et al., 2008).
In addition, although agglutinative languages such
as Korean incorporate spaces between “words”,
which consist of multiple morphemes, the gran-
ularity is too coarse and makes the training data
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considerably sparse. Studies reveal that seg-
menting “words” into morphemes effectively im-
proves translating morphologically rich languages
(Oflazer, 2008). More importantly, a tokenization
close to a gold standard does not necessarily leads
to better translation quality (Chang et al., 2008;
Zhang et al., 2008). Therefore, it is necessary
to offer more tokenizations to SMT systems to
alleviate the tokenization error propagation prob-
lem. Recently, many researchers have shown that
replacing 1-best tokenizations with lattices im-
proves translation performance significantly (Xu
et al., 2005; Dyer et al., 2008; Dyer, 2009).

We take a next step towards the direction of
offering more tokenizations to SMT systems by
proposingjoint tokenization and translation. As
shown in Figure 1(b), our approach tokenizes
and translates jointly to find a tokenization and
a translation for a source-language string simul-
taneously. We integrate translation and tokeniza-
tion models into a discriminative framework (Och
and Ney, 2002), within which tokenization and
translation models interact with each other. Ex-
periments show that joint tokenization and trans-
lation outperforms its separate counterparts (1-
best tokenizations and lattices) significantly on
the NIST 2004 and 2005 Chinese-English test
sets. Our joint decoder also reports positive results
on Korean-Chinese translation. As a tokenizer,
our joint decoder achieves significantly better to-
kenization accuracy than three monolingual Chi-
nese tokenizers.

2 Separate Tokenization and Translation

Tokenization is to split a string of characters into
meaningful elements, which are often referred to
as words. Typically, machine translation sepa-
rates tokenization from decoding as a preprocess-
ing step. An input string is first preprocessed by a
tokenizer, and then is translated based on the tok-
enized result. Take the SCFG-based model (Chi-
ang, 2007) as an example. Given the character
sequence of Figure 2(a), a tokenizer first splits it
into the word sequence as shown in Figure 2(b),
then the decoder translates the word sequence us-
ing the rules in Table 1.

This approach makes the translation process
simple and efficient. However, it may not be

0 1 2 3 4 5 6 7

Figure 2: Chinese tokenization: (a) character sequence; (b)
and (c) tokenization instances; (d) lattice created from (b)
and (c). We insert “-” between characters in a word just for
clarity.

r1 tao-fei-ke→Taufik
r2 duo fen→ gain a point
r3 x1 you-wangx2 → x1 will have the chance tox2

Table 1: An SCFG derivation given the tokenization of Fig-
ure 2(b).

optimal for machine translation. Firstly, optimal
granularity is unclear for machine translation. We
might face severe data sparseness problem by us-
ing large granularity, while losing much useful in-
formation with small one. Consider the example
in Figure 2. It is reasonable to splitduo feninto
two words asduo and fen, since they have one-
to-one alignments to the target side. Nevertheless,
while you andwangalso have one-to-one align-
ments, it is risky to segment them into two words.
Because the decoder is prone to translatewangas
a verb look without the contextyou. Secondly,
there may be tokenization errors. In Figure2(c),
tao fei keis recognized as a Chinese person name
with the second nametaoand the first namefei-ke,
but the whole stringtao fei keshould be a name of
the Indonesian badminton player.

Therefore, it is necessary to offer more tok-
enizations to SMT systems to alleviate the tok-
enization error propagation problem. Recently,
many researchers have shown that replacing 1-
best tokenizations with lattices improves transla-
tion performance significantly. In this approach, a
lattice compactly encodes many tokenizations and
is fixed before decoding.
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0 1 2 3 4 5 6 7

1 2

3

Figure 3: A derivation of the joint model for the tokenization
in Figure 2(b) and the translation in Figure 2 by using the
rules in Table 1.N means tokenization while� represents
translation.

3 Joint Tokenization and Translation

3.1 Model

We take a next step towards the direction of of-
fering more tokenizations to SMT systems by
proposingjoint tokenization and translation. As
shown in Figure 1(b), the decoder takes an un-
tokenized string as input, and then tokenizes the
source side string while building the correspond-
ing translation of the target side. Since the tradi-
tional rules like those in Table 1 natively include
tokenization information, we can directly apply
them for simultaneous construction of tokeniza-
tion and translation by the source side and target
side of rules respectively. In Figure 3, our joint
model takes the character sequence in Figure 2(a)
as input, and synchronously conducts both trans-
lation and tokenization using the rules in Table 1.

As our model conducts tokenization during de-
coding, we can integrate tokenization models as
features together with translation features under
the discriminative framework. We expect tok-
enization and translation could collaborate with
each other. Tokenization offers translation with
good tokenized results, while translation helps to-
kenization to eliminate ambiguity. Formally, the
probability of a derivationD is represented as

P (D) ∝
∏

i

φi(D)λi (1)

whereφi are features defined on derivations in-
cluding translation and tokenization, andλi are
feature weights. We totally use16 features:

• 8 traditional translation features (Chiang,
2007):4 rule scores (direct and reverse trans-
lation scores; direct and reverse lexical trans-
lation scores); language model of the target
side; 3 penalties for word count, extracted
rule and glue rule.

• 8 tokenization features: maximum entropy
model, language model and word count of
the source side (Section 3.2). To handle
the Out Of Vocabulary (OOV) problem (Sec-
tion 3.3), we also introduce5 OOV features:
OOV character count and4 OOV discount
features.

Since our model is still a string-based model, the
CKY algorithm and cube pruning are still applica-
ble for our model to find the derivation with max
score.

3.2 Adding Tokenization Features

Maximum Entropy model (ME). We first intro-
duce ME model feature for tokenization by cast-
ing it as a labeling problem (Xue and Shen, 2003;
Ng and Low, 2004). We label a character with the
following 4 types:

• b: thebegin of a word

• m: themiddle of a word

• e: theend of a word

• s: a single-character word

Taking the tokenizationyou-wangof the string
you wangfor example, we first create a label se-
quenceb efor the tokenizationyou-wangand then
calculate the probability of tokenization by

P (you-wang| you wang)

= P (b e | you wang)

= P (b | you, you wang)

× P (e | wang, you wang)

Given a tokenizationwL
1 with L words for a

character sequencecn
1 , we firstly create labelsln1

for every characters and then calculate the proba-
bility by

P (wL
1 |cn

1 ) = P (ln1 |cn
1 ) =

n∏

i=1

P (li|ci, c
n
1 ) (2)
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Under the ME framework, the probability of as-
signing the characterc with the labell is repre-
sented as:

P (l|c, cn
1 ) =

exp[
∑

i λihi(l, c, c
n
1 )]∑

l′ exp[
∑

i λihi(l′, c, cn
1 )]

(3)

where hi is feature function,λi is the feature
weight of hi. We use the feature templates the
same as Jiang et al., (2008) to extract features for
ME model. Since we directly construct tokeniza-
tion when decoding, it is straight to calculate the
ME model score of a tokenization according to
formula (2) and (3).

Language Model (LM). We also use the n-
gram language model to calculate the probability
of a tokenizationwL

1 :

P (wL
1 ) =

L∏

i=1

P (wi|wi−1
i−n+1) (4)

For instance, we compute the probability of the
tokenization shown in Figure 2(b) under a 3-gram
model by

P (tao-fei-ke)

×P (you-wang| tao-fei-ke)

×P (duo| tao-fei-ke, you-wang)

×P (fen| you-wang, duo)

Word Count (WC). This feature counts the
number of words in a tokenization. Language
model is prone to assign higher probabilities to
short sentences in a biased way. This feature can
compensate this bias by encouraging long sen-
tences. Furthermore, using this feature, we can
optimize the granularity of tokenization for trans-
lation. If larger granularity is preferable for trans-
lation, then we can use this feature to punish the
tokenization containing more words.

3.3 Considering All Tokenizations

Obviously, we can construct the potential tok-
enizations and translations by only using the ex-
tracted rules, in line with traditional translation
decoding. However, it may limits the potential to-
kenization space. Consider a stringyou wang. If
you-wangis not reachable by the extracted rules,

the tokenizationyou-wangwill never be consid-
ered under this way. However, the decoder may
still create a derivation by splitting the string as
small as possible with tokenizationyou wangand
translatingyouwith a andwangwith look, which
may hurt the translation performance. This case
happens frequently for named entity especially.
Overall, it is necessary to assure that the de-
coder can derive all potential tokenizations (Sec-
tion 4.1.3).

To assure that, when a span is not tokenized into
a single word by the extracted rules, we will add
an operation, which is considering the entire span
as an OOV. That is, we tokenize the entire span
into a single word with a translation that is the
copy of source side. We can define the set of all
potential tokenizationsτ(cn

1 ) for the character se-
quencecn

1 in a recursive way by

τ(cn
1 ) =

n−1⋃

i

{τ(ci
1)

⊗
{w(cn

i+1)}} (5)

herew(cn
i+1) means a word contains characters

cn
i+1 and

⊗
means the times of two sets. Ac-

cording to this recursive definition, it is easy to
prove that all tokenizations is reachable by using
the glue rule (S ⇒ SX,SX) and the added op-
eration. Here, glue rule is used to concatenate the
translation and tokenization of the two variablesS
andX, which acts the role of the operator

⊗
in

equation (5).
Consequently, this introduces a large number

of OOVs. In order to control the generation of
OOVs, we introduce the following OOV features:

OOV Character Count (OCC). This feature
counts the number of characters covered by OOV.
We can control the number of OOV characters by
this feature. It counts3 whentao-fei-keis an OOV,
sincetao-fei-kehas3 characters.

OOV Discount (OD). The chances to be OOVs
vary for words with different counts of characters.
We can directly attack this problem by adding
featuresODi that reward or punish OOV words
which contains withi characters, orODi,j for
OOVs contains withi to j characters.4 OD fea-
tures are used in this paper: 1, 2, 3 and 4+. For
example,OD3 counts1 when the wordtao-fei-ke
is an OOV.
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Method Train #Rule Test TFs MT04 MT05 Speed

Separate

ICT 151M ICT × 34.82 33.06 2.48
SF 148M SF × 35.29 33.22 2.55
ME 141M ME × 33.71 30.91 2.34

All 219M Lattice × 35.79 33.95 3.83√
35.85 33.76 6.79

Joint

ICT 151M

Character
√

36.92 34.69 17.66
SF 148M 37.02 34.56 17.37
ME 141M 36.78 34.17 17.23
All 219M 37.25** 34.88** 17.52

Table 2: Comparison of Separate and Joint methods in terms ofBLEU and speed (second per sentence). ColumnsTrain
and Test represents the tokenization methods for training and testing respectively. ColumnTFs stands for whether the8
tokenization features is used (

√
) or not (×). ICT, SFandME are segmenter names for preprocessing.All means combined

corpus processed by the three segmenters. Lattice represent the system implemented as Dyer et al., (2008). ** means
significantly (Koehn, 2004) better than Lattice (p < 0.01).

4 Experiments

In this section, we try to answer the following
questions:

1. Does the joint method outperform conven-
tional methods that separate tokenization
from decoding. (Section 4.1)

2. How about the tokenization performance of
the joint decoder? (Section 4.2)

4.1 Translation Evaluation

We use the SCFG model (Chiang, 2007) for our
experiments. We firstly work on the Chinese-
English translation task. The bilingual training
data contains 1.5M sentence pairs coming from
LDC data.1 The monolingual data for training
English language model includes Xinhua portion
of the GIGAWORD corpus, which contains 238M
English words. We use the NIST evaluation sets
of 2002 (MT02) as our development data set, and
sets of 2004(MT04) and 2005(MT05) as test sets.
We use the corpus derived from the People’s Daily
(Renmin Ribao) in Feb. to Jun. 1998 containing
6M words for training LM and ME tokenization
models.

Translation Part. We used GIZA++ (Och and
Ney, 2003) to perform word alignment in both di-
rections, and grow-diag-final-and (Koehn et al.,
2003) to generate symmetric word alignment. We
extracted the SCFG rules as describing in Chiang
(2007). The language model were trained by the

1including LDC2002E18, LDC2003E07, LDC2003E14,
Hansards portion of LDC2004T07, LDC2004T08 and
LDC2005T06

SRILM toolkit (Stolcke, 2002).2 Case insensitive
NIST BLEU (Papineni et al., 2002) was used to
measure translation performance.

Tokenization Part. We used the toolkit imple-
mented by Zhang (2004) to train the ME model.
Three Chinese word segmenters were used for
comparing: ICTCLAS (ICT) developed by insti-
tute of Computing Technology Chinese Academy
of Sciences (Zhang et al., 2003);SFdeveloped at
Stanford University (Huihsin et al., 2005) andME
which exploits the ME model described in section
(3.2).

4.1.1 Joint Vs. Separate

We compared our joint tokenization and trans-
lation with the conventional separate methods.
The input of separate tokenization and translation
can either be a single segmentation or a lattice.
The lattice combines the 1-best segmentations of
segmenters. Same as Dyer et al., (2008), we also
extracted rules from a combined bilingual corpus
which contains three copies from different seg-
menters. We refer to this version of rules asAll.

Table 2 shows the result.3 Using all rule ta-
ble, our joint method significantly outperforms the
best single systemSFby +1.96 and+1.66 points
on MT04 and MT05 respectively, and also out-
performs the lattice-based system by+1.46 and
+0.93 points. However, the8 tokenization fea-
tures have small impact on the lattice system,
probably because the tokenization space limited

2The calculation of LM probabilities for OOVs is done
by the SRILM without special treatment by ourself.

3The weights are retrained for different test conditions, so
do the experiments in other sections.
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ME LM WC OCC OD MT05
× × × × × 24.97√ × × × × 25.30
× √ × × × 24.70
× × √ × × 24.84
× × × √ × 25.51
× × × × √

25.34
× √ √ × × 25.74√ √ √ √ √

26.37

Table 3: Effect of tokenization features on Chinese-English
translation task. “

√
” denotes using a tokenization feature

while “×” denotes that it is inactive.

by lattice has been created from good tokeniza-
tion. Not surprisingly, our decoding method is
about2.6 times slower than lattice method with
tokenization features, since the joint decoder takes
character sequences as input, which is about1.7
times longer than the corresponding word se-
quences tokenized by segmenters. (Section 4.1.4).

The number of extracted rules with different
segment methods are quite close, while theAll
version contains about45% more rules than the
single systems. With the same rule table, our joint
method improves the performance over separate
method up to+3.03 and+3.26 points (ME). In-
terestingly, comparing with the separate method,
the tokenization of training data has smaller effect
on joint method. The BLEU scores of MT04 and
MT05 fluctuate about0.5 and0.7 points when ap-
plying the joint method, while the difference of
separate method is up to2 and 3 points respec-
tively. It shows that the joint method is more ro-
bust to segmentation performance.

4.1.2 Effect of Tokenization Model

We also investigated the effect of tokenization
features on translation. In order to reduce the time
for tuning weights and decoding, we extracted
rules from the FBIS part of the bilingual corpus,
and trained a 4-gram English language model on
the English side of FBIS.

Table 3 shows the result. Only using the8 trans-
lation features, our system achieves a BLEU score
of 24.97. By activating all tokenization features,
the joint decoder obtains an absolute improve-
ment by1.4 BLEU points. When only adding
one single tokenization feature, theLM and WC
fail to show improvement, which may result from
their bias to short or long tokenizations. How-

Method BLEU #Word Grau #OOV
ICT 33.06 30,602 1.65 644
SF 33.22 30,119 1.68 882
ME 30.91 29,717 1.70 1,614
Lattice 33.95 30,315 1.66 494
JointICT 34.69 29,723 1.70 996
JointSF 34.56 29,839 1.69 972
JointME 34.17 29,771 1.70 1,062
JointAll 34.88 29,644 1.70 883

Table 4: Granularity (Grau, counts of character per word)
and counts of OOV words of different methods on MT05.
The subscript of joint means the type of rule table.

ever, these two features have complementary ad-
vantages and collaborate well when using them to-
gether (line 8). The OCC and OD features also
contribute improvements which reflects the fact
that handling the generation of OOV is important
for the joint model.

4.1.3 Considering All Tokenizations?

In order to explain the necessary of considering
all potential tokenizations, we compare the perfor-
mances of whether to tokenize a span as a single
word or not as illustrated in section 3.3. When
only tokenizing by the extracted rules, we obtain
34.37 BLEU on MT05, which is about0.5 points
lower than considering all tokenizations shown in
Table 2. This indicates that spuriously limitation
of the tokenization space may degenerate transla-
tion performance.

4.1.4 Results Analysis

To better understand why the joint method can
improve the translation quality, this section shows
some details of the results on the MT05 data set.

Table 4 shows the granularity and OOV word
counts of different configurations. The lattice
method reduces the OOV words quite a lot which
is 23% and70% comparing with ICT and ME. In
contrast, the joint method gain an absolute im-
provement even thought the OOV count do not
decrease. It seems the lattice method prefers to
translate more characters (since smaller granular-
ity and less OOVs), while our method is inclined
to maintain integrity of words (since larger granu-
larity and more OOVs). This also explains the dif-
ficulty of deciding optimal tokenization for trans-
lation before decoding.

There are some named entities or idioms that
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Method Type F1 Time

Monolingual
ICT 97.47 0.010
SF 97.48 0.007
ME 95.53 0.008

Joint

ICT 97.68 9.382
SF 97.68 10.454
ME 97.60 10.451
All 97.70 9.248

Table 5: Comparison of segmentation performance in terms
of F1 score and speed (second per sentence).Typecolumn
means the segmenter for monolingual method, while repre-
sents the rule tables used by joint method.

are split into smaller granularity by the seg-
menters. For example:“¤À” which is an English
name “Stone” or “Î-g -u” which means
“teenage”. Although the separate method is possi-
ble to translate them using smaller granularity, the
translation results are in fact wrong. In contrast,
the joint method tokenizes them as entire OOV
words, however, it may result a better translation
for the whole sentence.

We also count the overlap of the segments
used by theJointAll system towards the single
segmentation systems. The tokenization result
of JointAll contains29, 644 words, and shares
28, 159 , 27, 772 and 27, 407 words with ICT ,
SF andME respectively. And46 unique words
appear only in the joint method, where most of
them are named entity.

4.2 Chinese Word Segmentation Evaluation

We also test the tokenization performance of our
model on Chinese word segmentation task. We
randomly selected 3k sentences from the corpus
of People’s Daily in Jan. 1998. 1k sentences
were used for tuning weights, while the other 2k
sentences were for testing. We use MERT (Och,
2003) to tune the weights by minimizing the error
measured byF1 score.

As shown in Table 5, with all features activated,
our joint decoder achieves anF1 score of97.70
which reduces the tokenization error comparing
with the best single segmenterICT by 8.7%. Sim-
ilar to the translation performance evaluation, our
joint decoder outperforms the best segmenter with
any version of rule tables.

Feature F1

TFs 97.37
TFs + RS 97.65
TFs + LM 97.67
TFs + RS + LM 97.62
All 97.70

Table 6: Effect of the target side information on Chinese
word segmentation.TFs stands for the 8 tokenization fea-
tures.All represents all the16 features.

4.2.1 Effect of Target Side Information

We compared the effect of the4 Rule Scores
(RS), target side Language Model (LM) on tok-
enization. Table 6 shows the effect on Chinese
word segmentation. When only use tokenization
features, our joint decoder achieves anF1 score
of 97.37. Only integrating language model or rule
scores, the joint decoder achieves an absolute im-
provement of0.3 point inF1 score, which reduces
the error rate by11.4%. However, when combin-
ing them together, theF1 score deduces slightly,
which may result from the weight tuning. Us-
ing all feature, the performance comes to97.70.
Overall, our experiment shows that the target side
information can improve the source side tokeniza-
tion under a supervised way, and outperform state-
of-the-art systems.

4.2.2 Best Tokenization = Best Translation?

Previous works (Zhang et al., 2008; Chang et
al., 2008) have shown that preprocessing the in-
put string for decoder by better segmenters do
not always improve the translation quality, we re-
verify this by testing whether the joint decoder
produces good tokenization and good translation
at the same time. To answer the question, we
used the feature weights optimized by maximiz-
ing BLEU for tokenization and used the weights
optimized by maximizingF1 for translation. We
test BLEU on MT05 andF1 score on the test data
used in segmentation evaluation experiments. By
tuning weights regarding to BLEU (the configura-
tion for JointAll in table 2), our decoder achieves
a BLEU score of34.88 and anF1 score of92.49.
Similarly, maximizingF1 (the configuration for
the last line in table 6) leads to a much lower
BLEU of 27.43, although theF1 is up to97.70.
This suggests that better tokenization may not al-
ways lead to better translations and vice versa
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Rule #Rule Method Test Time
Morph 46M Separate 21.61 4.12
Refined 55M 21.21 4.63
All 74M Joint 21.93* 5.10

Table 7: Comparison of Separate and Joint method in terms
of BLEU score and decoding speed (second per sentence) on
Korean-Chinese translation task.

even by the joint decoding. This also indicates the
hard of artificially defining the best tokenization
for translation.

4.3 Korean-Chinese Translation

We also test our model on a quite different task:
Korean-Chinese. Korean is an agglutinative lan-
guage, which comes from different language fam-
ily comparing with Chinese.

We used a newswire corpus containing 256k
sentence pairs as training data. The development
and test data set contain 1K sentence each with
one single reference. We used the target side of
training set for language model training. The Ko-
rean part of these data were tokenized into mor-
pheme sequence as atomic unit for our experi-
ments.

We compared three methods. First is directly
use morpheme sequence (Morph). The second
one is refined data (Refined), where we use selec-
tive morphological segmentation (Oflazer, 2008)
for combining morpheme together on the training
data. Since the selective method needs alignment
information which is unavailable in the decod-
ing, the test data is still of morpheme sequence.
These two methods still used traditional decoding
method. The third one extracting rules from com-
bined (All) data of methods 1 and 2, and using
joint decoder to exploit the different granularity
of rules.

Table 7 shows the result. Since there is no gold
standard data for tokenization, we do not use ME
and LM tokenization features here. However, our
joint method can still significantly (p < 0.05) im-
prove the performance by about +0.3 points. This
also reflects the importance of optimizing granu-
larity for morphological complex languages.

5 Related Work

Methods have been proposed to optimize tok-
enization for word alignment. For example, word
alignment can be simplified by packing (Ma et al.,
2007) several consecutive words together. Word
alignment and tokenization can also be optimized
by maximizing the likelihood of bilingual corpus
(Chung and Gildea, 2009; Xu et al., 2008). In fact,
these work are orthogonal to our joint method,
since they focus on training step while we are con-
cerned of decoding. We believe we can further
the performance by combining these two kinds of
work.

Our work also has connections to multilingual
tokenization (Snyder and Barzilay, 2008). While
they have verified that tokenization can be im-
proved by multilingual learning, our work shows
that we can also improve tokenization by collabo-
rating with translation task in a supervised way.

More recently, Liu and Liu (2010) also shows
the effect of joint method. They integrate parsing
and translation into a single step and improve the
performance of translation significantly.

6 Conclusion

We have presented a novel method for joint tok-
enization and translation which directly combines
the tokenization model into the decoding phase.
Allowing tokenization and translation to collab-
orate with each other, tokenization can be opti-
mized for translation, while translation also makes
contribution to tokenization performance under a
supervised way. We believe that our approach can
be applied to other string-based model such as
phrase-based model (Koehn et al., 2003), string-
to-tree model (Galley et al., 2006) and string-to-
dependency model (Shen et al., 2008).
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Abstract

For sentiment analysis, lexicons play an
important role in many related tasks. In
this paper, aiming to build Chinese emo-
tion lexicons for public use, we adopted a
graph-based algorithm which ranks words
according to a few seed emotion words.
The ranking algorithm exploits the simi-
larity between words, and uses multiple
similarity metrics which can be derived
from dictionaries, unlabeled corpora or
heuristic rules. To evaluate the adopted
algorithm and resources, two independent
judges were asked to label the top words
of ranking list.

It is observed that noise is almost un-
avoidable due to imprecise similarity met-
rics between words. So, to guarantee
the quality of emotion lexicons, we use
an iterative feedback to combine man-
ual labeling and the automatic ranking al-
gorithm above. We also compared our
newly constructed Chinese emotion lexi-
cons (happiness, anger, sadness, fear and
surprise) with existing counterparts, and
related analysis is offered.

1 Introduction

Emotion lexicons have a great impact on the re-
sults of related tasks. With high-quality emo-
tion lexicons, systems using simple methods
can achieve competitive performance. However,
to manually build an emotion lexicon is time-
consuming. Many research works in building lex-
icons use automatic methods to assist the building

procedure. Such works commonly rank words by
the similarities to a set of seed words, then those
words with high ranking scores are more likely to
be added to the final lexicons or used as additional
seed words.

For Chinese, emotion lexicons are scarce re-
sources. We can get a small set of emotion words
from semantic dictionary (such as CCD, HowNet,
synonym dictionaries) or directly from related pa-
pers (Xu and Tao, 2003) (Chen et al. , 2009), but it
is often not sufficient for practical systems. Xu et
al. (2008) constructed a large-scale emotion on-
tology dictionary, but it is not publicly available
yet.

In this paper, we adopted a graph-based algo-
rithm to automatically rank words according to a
few seed words. Similarity between words can be
utilized and multiple resources are used to boost
performance. Combining manual labeling with
automatic ranking through an iterative feedback
framework, we can produce high-quality emotion
lexicons. Our experiments focused on Chinese,
but the method is applicable to any other language
as long as suitable resources exist.

The remainder of this paper is organized as fol-
lows. In Section 2, related works are introduced.
In Section 3, we describe a graph-based algorithm
and how to incorporate multiple resources. Sec-
tion 4 gives the details of applying the algorithm
on five emotions and shows how to evaluate the re-
sults. Section 5 focuses on how to build and evalu-
ate emotion lexicons, linguistic consideration and
instruction for identifying emotions are also in-
cluded. Finally, conclusion is made in Section 6.
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2 Related work

Riloff and Shepherd (1997) presented a corpus-
based method that can be used to build seman-
tic lexicons for specific categories. The input to
the system is a small set of seed words for a cat-
egory and a representative text corpus. The out-
put is a ranked list of words that are associated
with the category. An approach proposed by (Tur-
ney, 2002) for the construction of polarity started
with a few positive and negative seeds, then used
a similarity method (pointwise mutual informa-
tion) to grow this seed list from web corpus.
Our experiments are similar with these works, but
we use a different ranking method and incorpo-
rate multiple resources. To perform rating infer-
ence on reviews, Goldberg and Zhu (2006) cre-
ated a graph on both labeled and unlabeled re-
views, and then solved an optimization problem
to obtain a smooth rating function over the whole
graph. Rao and Ravichandran (2009) used three
semi-supervised methods in polarity lexicon in-
duction based on WordNet, and compared them
with corpus-based methods. Encouraging results
show methods using similarity between words can
improve the performance. Wan and Xiao (2009)
presented a method to use two types of similarity
between sentences for document summarization,
namely similarity within a document and simi-
larity between documents. The ranking method
in our paper is similar to the ones used in above
three papers, which fully exploit the relationship
between any pair of sample points (both labeled
and unlabeled). When only limited labeled data
are available, such method achieves significantly
better predictive accuracy over other methods that
ignore the unlabeled examples during training.

Xu et al. (2008) at first formed a taxonomy for
emotions, under which an affective lexicon ontol-
ogy exploiting various resources was constructed.
The framework of ontology is filled by the com-
bination of manual classification and automatic
methods．To our best knowledge, this affective
lexicon ontology is the largest Chinese emotion-
oriented dictionary.

3 Our method

3.1 A graph-based algorithm

For our experiments, we chose the graph-based al-
gorithm in (Zhou et al. , 2004) which is transduc-
tive learning and formulated as follows:

Given a point set χ = {x1, ..., xl, xl+1, ..., xn},
the first l points xi(i ≤ l) are labeled and the re-
maining points xu(l+1 ≤ u ≤ n) unlabeled. The
goal is to rank the unlabeled points.

Let F denotes an n-dimensional vector whose
elements correspond to ranking scores on the data
set χ. Define another n-dimensional vector Y with
Yi = 1 if xi is labeled and Yi = 0 otherwise. Y
denotes the initial label assignment.

The iterative algorithm is shown in the follow-
ing:

Algorithm 1 A graph-based algorithm
1. Construct the weight matrix W and set Wii to
zero to avoid self-reinforcement. W is domain-
dependent.
2. Construct the similarity matrix S =
D1/2WD1/2 using symmetric normalization. D
is a diagonal matrix with Dii = ΣjWij .
3. Iterate F (t + 1) = αSF (t) + (1 − α)Y until
convergence, where α is a parameter in (0, 1), and
F (0) = Y . We clamp labeled points to 1 after
each iteration.
4. Let F ∗ denote F (t) when the iteration con-
verges.

In our experiments, labeled points are seed
emotion words, Sij denotes the similarity between
ith word and jth word. In an iteration, each word
absorbs label information from other words. More
similar two words are, more influence they have
on each other. The label information (initially
from seed emotion words) will propagate along S.
The final output F ∗ contains ranking scores for all
words, and a score indicates how similar the cor-
responding word is to the seed emotion words.

The implementation of the iterative algorithm
is theoretically simple, which only involves ba-
sic matrix operation. Compared with meth-
ods which do not exploit the relationship be-
tween samples, experiments showing advantages
of graph-based learning methods can be found
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in (Rao and Ravichandran, 2009),(Goldberg and
Zhu, 2006),(Tong et al. , 2005),(Wan and Xiao,
2009),(Zhu and Ghahramani, 2002) etc. When la-
beled data are scarce, such graph-based transduc-
tive learning methods are especially useful.

3.2 Incorporate multiple resources

For building the emotion lexicons, we are faced
with lots of resources, such as semantic dictio-
naries, labeled or unlabeled corpora, and some
linguistic experiences which can be presented as
heuristic rules. Naturally we want to use these
resources together, thus boosting the final perfor-
mance. In graph-base setting, such resources can
be used to construct the emotion-oriented similar-
ity between words, and similarities will be repre-
sented by matrices.

The schemes to fuse similarity matrices are pre-
sented in (Sindhwani et al. , 2005), (Zhou and
Burges, 2007), (Wan and Xiao, 2009) and (Tong et
al. , 2005) etc. In our paper, not aiming at compar-
ing different fusion schemes, we used a linear fu-
sion scheme to fuse different similarities matrices
from different resources. The scheme is actually
a convex combination of matrices, with weights
specified empirically.

The fusion of different similarity matrices
falls in the domain of multi-view learning. A
well-known multi-view learning method is Co-
Training, which uses two views (two resources)
to train two interactive classifiers (Blum and
Mitchell, 1998). Since we focus on building emo-
tion lexicons using multiple resources (multiple
views), those who want to see the advantages of
multi-view learning over learning with one view
can refer to (Blum and Mitchell, 1998), (Sind-
hwani et al. , 2005), (Zhou and Burges, 2007),
(Wan and Xiao, 2009) and (Tong et al. , 2005)
etc.

4 Experiments

We use the method in section 3 to rank for each
emotion with a few seed emotion words. Once we
implement the ranking algorithm 1, the main work
resides in constructing similarity matrices, which
are highly domain-dependent.

4.1 Construct similarity matrices

Here, we introduce how to construct four sim-
ilarity matrices used in building emotion lexi-
cons. Three of them are based on cooccurrence of
words; the fourth matrix is from a heuristic rule.

We use ictclas3.01 to perform word segmenta-
tion and POS tagging.

In our experiments, the number of words in-
volved in ranking is 935062, so theoretically, the
matrices are 93506 × 93506. If the similarity be-
tween any pair of words is considered, the compu-
tation becomes impractical in both time and space
cost. So we require that each word has at most
500 nearest neighbors.

Four matrices are constructed as follows:

4.1.1 Similarity based on a unlabeled corpus
The unlabeled corpus used is People’s

Daily3(人 民 日 报1997∼2004). After word
segmentation and POS tagging, we chose three
POS’s (i,a,l)4. The nouns were not included
to limit the scale of word space. We set the
cooccurrence window to a sentence, and removed
the duplicate occurrences of words. Any pair of
words in a sentence will contribute a unit weight
to the edge which connects the pair of words.

4.1.2 Similarity based on a synonym
dictionary

We used the Chinese synonym dictionary (哈
工大同义词词林扩展版5) for this matrix. In
this dictionary, the words in a synonym set are
presented in one line and separated by spaces, so
there is no need to perform word segmentation
and POS tagging. Any pair of words in one line
will contribute a unit weight to the edge which
connects the pair of words.

4.1.3 Similarity based on a semantic
dictionary

We used The Contemporary Chinese Dictio-
nary (现代汉语词典) to construct the third simi-

1downloaded from http://www.ictclas.org/
2Words are selected after word segmentation and POS

tagging, see section 4.1.1∼4.1.3 for selection of words in de-
tails.

3http://icl.pku.edu.cn/
4i=Chinese idiom, a=adjective, l=Chinese phrase
5http://ir.hit.edu.cn/
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larity matrix. Since word segmentation may seg-
ment the entries of the dictionary, we extracted all
the entries in the dictionary and store them in a file
whose words ictclas3.0 was required not to seg-
ment. Furthermore, for an entry in the dictionary,
the example sentences or phrases appearing in its
gloss may contain many irrelevant words in terms
of emotions, so they were removed from the gloss.

After word segmentation and POS tagging6, we
set the cooccurrence window to one line (an en-
try and its gloss without example sentences or
phrases), and removed the duplicate occurrences
of words. An entry and any word in the modi-
fied gloss will contribute a unit weight to the edge
which connects the pair of words. This construct-
ing was a bit different, since we did not consider
the similarity between words in modified gloss.

4.1.4 similarity based on a heuristic rule
In Chinese, a word is composed of one or sev-

eral Chinese characters. A Chinese character is
normally by itself an independent semantic unit,
so the similarity between two words can be in-
ferred from the character(s) that they share. For
example, the Chinese word 欣 (happy) appears
in the word 欣然 (readily). Since 欣然 and 欣
share one Chinese character, they are regarded as
similar. Naturally, the larger the proportion that
two words share, the more similar they are. In
this way, the fourth weighted matrix was formed.
To avoid incurring noises, we exclude the cases
where one Chinese character is shared, with the
exception that the Chinese character itself is one
of the two Chinese words.

4.1.5 Fusion of four similarity matrices
After processing all the lines (or sentences), the

weighted matrices are normalized as in algorithm
1, then four similarity matrices are linearly fused
with equal weights (1/4 for each matrix).

4.2 Select seed emotion words
In our experiments, we chose emotions of happi-
ness, sadness, anger, fear and surprise which are
widely accepted as basic emotions7. Empirically,

6since we do not segment entries in this dictionary, all
POS’s are possible

7Guidelines for identifying emotions is in section 5, be-
fore that, we understand emotions through common sense.

we assigned each emotion with seed words given
in Table 1.

Emotion Seed words
喜(happiness) 高兴,愉快,欢乐,喜悦,兴

高采烈,欢畅,开心
怒(anger) 愤怒,不满,恼火,生气,愤

恨, 恼怒, 愤懑, 震怒, 悲
愤,窝火,痛恨,恨之入骨,
义愤填膺,怒气冲天

哀(sadness) 悲伤,沮丧,痛苦,伤心,难
过,悲哀,难受,消沉,灰心
丧气, 悲戚, 闷闷不乐, 哀
伤,悲愤,悲切,悲痛欲绝,
欲哭无泪

惧(fear) 恐惧, 惧怕, 担心, 提心吊
胆, 害怕, 惊恐, 疑惧, 畏
惧,不寒而栗,望而生畏

惊(surprise) 惊讶, 大吃一惊 ,震惊, 惊
恐,惊异,惊骇,惊,出乎意
料,惊喜,惊叹

Table 1: Seed emotion words

4.3 Evaluation of our method
We obtained five ranking lists of words using the
method in section 3. Following the work of (Riloff
and Shepherd, 1997), we adopted the following
evaluation setting.

To evaluate the quality of emotion ranking lists,
each list was manually rated by two persons inde-
pendently. For each emotion, we selected the top
200 words of each ranking list and presented them
to judges. We presented the words in random or-
der so that the judges had no idea how our system
had ranked the words. The judges were asked to
rate each word on a scale from 1 to 5 indicating
how strongly it was associated with an emotion, 0
indicating no association. We allowed the judges
to assign -1 to a word if they did not know what
it meant. For the words rated as -1, we manually
assigned ratings that we thought were appropriate.

The results of judges are shown in figures 1-5.
In these figures, horizontal axes are the number of
reviewed words in ranking lists and vertical axes
are number of emotion words found (with 5 dif-
ferent strength). The curve labeled as > x means
that it counts the number of words which are rated
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Figure 1: happiness
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Figure 2: anger
greater than x by either judge.

Curves (> 0, > 1, > 2) display positive slopes
even at the end of the 200 words, which implies
that more emotion words would occur if more
than 200 words are reviewed. By comparison,
curves (> 3, > 4) tend to be flat when they are
close to the right side, which means the cost of
identifying high-quality emotion words will in-
crease greatly as one checks along the ranking list
in descendent order.

It is observed that words which both judges as-
sign 5 are few. In surprise emotion, the number
is even 0. Such results may reflect that emotion
is harder to identify compared with topical cate-
gories in (Riloff and Shepherd, 1997).
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Figure 3: sadness
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Figure 4: fear
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Figure 5: surprise

From the semantic dictionary, our method
found many low-frequency emotion words such as
忭 (pleasant, glad),蘧然 (surprise and happy),忉
怛 (sad), or those used in Chinese dialects such as
毛咕 (fear), 挂气 (angry). Such emotion words
are necessary for comprehensive emotion lexi-
cons.

Because more POS’s than adjectives and verbs
are included in our experiments, some emotion
words such as the noun 冷门 (unexpected win-
ner),and the adverb 竟然 (to one’s surprise) are
also spotted, which to some extent implies the
generality of our method.

5 Construct emotion lexicons

The above section introduced a method to rank
words with a few seed emotion words. How-
ever, to build emotion lexicons requires that we
manually remove the noises incurred by the au-
tomatic ranking method. Accordingly, guide-
lines for identifying emotions are needed, and also
some linguistic consideration in identifying emot-
ing words should be given.
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5.1 An iterative feedback to denoise

In our experiments, we observed that noises in-
curred by similarity matrices are almost unavoid-
able. For example, in the unlabeled corpus, 国
事访问 (state visits) always co-occurred with 高
兴 (happy) or愉快 (happy), so in happiness emo-
tion, 国事访问 acquired a high ranking position
(174th); in terms of the heuristic rule, 意料 (ex-
pected) shares two Chinese characters with 出乎
意料 (unexpected, surprised), however they have
opposite meaning because出乎 (exceed, beyond)
is a negative word. 意料 unfavorably ranked high
(88th) in surprise emotion; from the semantic dic-
tionary, the gloss of年画 (Chinese Spring Festival
pictures) contains欢乐 (happy), thus in happiness
emotion,年画 ranked high (158th).

So after each ranking of an emotion, in the de-
scendent order of ranking scores, we manually re-
vised some scores in about top 500. Several crite-
ria (see 5.2 and 5.3) were given to guide if a word
has a specified emotion. For those words surely
bearing the specified emotion, we assigned 1 to
them ,and left others unchanged. Seeing the words
newly revised to be 1 as new seed emotion words,
we run the ranking algorithm again. After such
feedback was repeated 2∼3 times, we collected
all the words labeled with 1 to form the final emo-
tion lexicons. In (Zhou et al. , 2004), the author
also suggested such iterative feedback to extend
the query (seed) set and improve the ranking out-
put. Commonly, the size of an emotion lexicon is
small, so we do not have to check too many words.

The human revising procedure is sensitive to
annotators’ background. To improve the quality
of the emotion lexicons, experts with linguistic or
psychology background will help.

Furthermore, the ranking algorithm used in our
paper is clearly sensitive to the initial seed words,
but since we adopt an iterative feedback frame-
work, the words not appearing in the initial set
of seed words will show up in next iteration with
high ranking scores. We also performed experi-
ments which selected emotion seed words based
on the Chinese synonym dictionary and the emo-
tion words in (Chen et al. , 2009), similar results
were found.

5.2 Guidelines for identifying emotions
The same as (Chen et al. , 2009), we used the def-
inition that emotion is the felt awareness of bod-
ily reactions to something perceived or thought.
Also, we were highly influenced by the structure
of the affective lexicon presented by (Ortony et
al. , 1987), and used the Affective states and
Affective-Behavioral conditions in the structure to
identify emotion words in our paper8.

With such guidelines,胆小 (cowardice, relates
more to external evaluation) is not an emotional
word of fear. We also intentionally distinguish be-
tween emotions and expression of emotions. For
example, 大笑 (laugh), 哈哈 (haw-haw) are seen
as expression of happiness and颤抖 (tremble) as
of fear, but not as emotion words. In addition,
we try to distinguish between an emotion and the
cause of an emotion, see 5.3 for an example.

For each emotion, brief description is given as
below9:

1. Happiness：the emotional reaction to some-
thing that is satisfying.

2. Anger：do not satisfy the current situation
and have a desire to fight or change the situa-
tion. Often there exists a target for this emo-
tion.

3. Sadness：an emotion characterized by feel-
ings of disadvantage, loss, and helplessness.
Sadness often leads to cry.

4. Fear：the emotional response to a perceived
threat. Fear almost always relates to future
events, such as worsening of a situation, or
continuation of a situation that is unaccept-
able.

5. Surprise：the emotional reaction to some-
thing unexpected.

5.3 Linguistic consideration for identifying
emotion words

If a word has multiple senses, we only consider its
emotional one(s). For example,生气 (as a verb, it
means be angry, but means vitality or spirits as a
noun) will appear in the emotion lexicon of anger.

8According to (Ortony et al. , 1987), surprise should not
be seen as a basic emotion for it relates more to cognition.
However, our paper focuses on the building of emotion lexi-
cons, not the disputable issue of basic emotions

9we mainly referred to http://en.wikipedia.org/wiki
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If one sense of a word is the combination of emo-
tions, the word will appear in all related emotions.

We mainly consider four POS’s, namely nouns,
verbs, adjectives and adverb10. If a word has mul-
tiple POS’s, we normally consider its POS with
strongest emotion (Empirically, we think the emo-
tion strength ranks in decedent order as following:
adjectives, verbs, adverbs, nouns.). So we con-
sider the verb of恐惧 (fear) when it can be used
as a noun and a verb in Chinese. The生气 exam-
ple above also applies here.

For each of four POS’s, instruction for emotion
identification is given as below:

Nouns: For example,怒火 (rage, anger),喜气
(joy or jubilation), 冷门 (an unexpected winner)
are selected as emotion words. We distinguish be-
tween an emotion and the cause of an emotion.
For example, calamity often leads to sadness, but
does not directly contain the emotion of sadness.
冷门 appears in the surprise lexicon because we
believe it contains surprise by itself.

Adverbs: The adverbs selected into emotion
lexicons contain the emotions by themselves. For
example,竟然 (unexpectedly),欣欣然 (cheerily),
气哼哼 (angrily), 蓦地 (unexpectedly), 伤心地
(sadly) etc.

Verbs: As in (Ortony et al. , 1987), Chi-
nese emotion verbs also fall into at least two dis-
tinct classes, causatives and noncausatives. Both
classes are included in our emotion lexicons. For
example, 动肝火 (be angry), 担心 (fear) are
noncausative verbs, while 激怒 (enrage), 震惊
(to make someone surprised) are causative ones.
Probably due to the abundant usage of 令人/让
人/使人 (to make someone) etc., causative emo-
tion verbs are few compared to noncausative ones
in Chinese.

Adjective：Quite a lot of emotion words fall in
this POS, since adjectives are the natural expres-
sion of internal states of humans. For example,高
兴 (happy),惊讶 (surprised),愤怒 (angry) etc.

For any word that it is hard to identify at first
sight, we used a search tool11 to retrieve sentences

10For Chinese idioms, we only considered those used as
these four POS’s, omitted those used as a statement, such
as哀兵必胜 (an army burning with righteous indignation is
bound to win)

11provided by Center for Chinese Linguistics of Peking
University, http://ccl.pku.edu.cn

which contain the word, and then identify if the
word is emotional or not by its usage in the sen-
tences.

5.4 Comparison with existing Chinese
emotion resources

诧、骇、惊、讶、矍、蘧、愕、遽、
骇然、赫然、竟然、居然、蘧然、愕
然、愕然、矍然、爆冷、爆冷门、
不料、不意、不虞、诧异、吃惊、
出乎意料、出乎意外、出乎预料、
出冷门、出其不意、出人意料、出人
意外、触目惊心、错愕、大吃一惊、
大惊失色、大惊小怪、怪讶、骇怪、
骇然、骇人听闻、骇异、好家伙、赫
然、赫然而怒、黑马、惊诧、惊呆、
惊服、惊骇、惊慌、惊慌失措、惊
惶、惊惶失措、惊魂未定、惊悸、
惊惧、惊恐、惊恐万状、惊奇、惊
人、惊世骇俗、惊叹、惊悉、惊喜、
惊喜交集、惊喜万分、惊吓、惊羡、
惊讶、惊疑、惊异、惊厥、惊愕、
竟然、竟是、竟至、竟自、居然、冷
不丁、冷不防、冷孤丁、冷门、没成
想、猛不防、猛孤丁地、纳罕、始料
不及、始料未及、受宠若惊、受惊、
谁料、谁知、突如其来、未料、闻
所未闻、想不到、心惊、心惊胆颤、
心惊胆战、讶异、一语惊人、意料之
外、意外、意想不到、又惊又喜、震
惊、蓦地

Table 2: The emotion lexicon of surprise

Under the guidelines for manually identifying
emotion words, we finally constructed five Chi-
nese emotion lexicons using the iterative feed-
back. The newly constructed emotion lexicons
were also reported as resources together with our
paper. The emotion lexicon of surprise is shown
in Table 2. In this part, we compare our lexicons
with the following counterparts, see Table 3.

Ours1 in the table is the final emotion lexicons,
and Ours2 is the abridged version that excludes
the words of single Chinese character and Chinese
idioms.

Chinese Concept Dictionary (CCD) is a
WordNet-like semantic lexicon(Liu et al. , 2003).
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喜喜喜 怒怒怒 哀哀哀 惧惧惧 惊惊惊
CCD nouns 22 27 38 46 10

(Xu and Tao, 2003) 45 12 28 21 12
(Chen et al. , 2009) 28 34 28 17 11
(Xu et al. , 2008) 609 187 362 182 47

Ours1 95 118 97 106 99
Ours2 52 77 72 57 65

Table 3: Compare various emotion lexicons
We only considered the noun network which is
richly developed in CCD, as in other semantic dic-
tionaries. For each emotion, we chose its synset
as well as the synsets of its hypernym and hy-
ponym(s). In fact, most of words in the emotion
nouns extracted can be used as verbs or adjectives
in Chinese. However, since CCD is not designed
for emotion analysis, words which are expression
of emotions such as哭泣 (cry) or evaluation such
as胆小 (cowardice) were included.

Selecting nouns and verbs, Xu and Tao (2003)
offered an emotion taxonomy of 390 emotion
words. The taxonomy contains 24 classes of emo-
tions and excludes Chinese idioms. By our in-
spection to the offered emotion words in this tax-
onomy, the authors tried to exclude expression of
emotions, evaluation and cause of emotions from
emotions, which is similar with our processing12.
Ours2 is intentionally created to compare with this
emotion taxonomy.

Based on (Xu and Tao, 2003), Chen et al.
(2009) removed the words of single Chinese char-
acter; let two persons to judge if a word is an
emotional one and only those agreed by the two
persons were seen as emotion words. It is worth
noting that Chen et al. (2009) merges怒 (anger)
and烦 (fidget) in (Xu and Tao, 2003) to form the
怒 (anger) lexicon, thus讨厌 (dislike) appears in
anger lexicon. However, we believe讨厌 (dislike)
is different with怒 (anger), and should be put into
another emotion. Also, we distinguish between恨
(hate) and怒 (anger).

Xu et al. (2008) constructed a large-scale affec-
tive lexicon ontology. Given the example words
in their paper, we found that the authors did not
intentionally exclude the expression of emotions
such as面红耳赤 (literally, red face and ear),笑
眯眯 (literally, be smiling). Such criteria of iden-

12Xu and Tao (2003) included words such as 情愿/愿意
(be willing to),留神 (be careful) in their happiness lexicon,
which we think should not be classified into happiness.

tifying emotion words may partially account for
the large size of their emotion resources.

6 Conclusion and future work

In this paper, aiming to build Chinese emotion lex-
icons, we adopt a graph-based algorithm and in-
corporate multiple resources to improve the qual-
ity of lexicons and save human labor. This is an
initial attempt to build Chinese emotion lexicons,
the quality of constructed emotion lexicons is far
from perfect and is supposed to be improved step
by step.

The method in this paper can be further ex-
tended to subjectivity/polarity classification and
other non-sentimental tasks such as word similar-
ity computing, and can be also adapted to other
languages. The more resources we use, the more
human cost can be saved and the higher the qual-
ity of built emotion lexicons is.

In the future work, we want to construct other
emotion lexicons such as 好 (like, love), 恶 (dis-
like),欲 (desire) etc. using the same method.

Acknowledgement This research is supported
by National Natural Science Foundation of China
(No.60973053, No.90920011)

References
A. Blum and T. Mitchell. 1998. Combining labeled

and unlabeled data with co-training。 In Proceed-
ings of the 11th Annual Conference on Computa-
tional Learning Theory, 92-100.

Ying Chen, Sophia Y. M. Lee, and Churen Huang.
2009. A Cognitive-based Annotation System for
Emotion Computing. Proceedings of the Third Lin-
guistic Annotation Workshop (LAW III).

Andrew B. Goldberg, Xiaojin Zhu. 2006. Seeing
stars when there aren’t many stars: graph-based
semi-supervised learning for sentiment categoriza-
tion. Proceedings of TextGraphs: the First Work-
shop on Graph Based Methods for Natural Lan-
guage Processing on the First Workshop on Graph
Based Methods for Natural Language Processing.

Y. Liu and et al. 2003. The CCD Construction Model
and Its Auxiliary Tool VACOL. Applied Linguis-
tics, 45(1):83-88.

A. Ortony, G. L. Clore, and M. A. Foss. 1987. The ref-
erential structure of the affective lexicon. Cognitive
Science, 11, 341-364.

1216



Delip Rao and D. Ravichandran. 2009. Semisuper-
vised polarity lexicon induction. Proceedings of the
12th Conference of the European Chapter of the As-
sociation for Computational Linguistics, 675-682.

Ellen Riloff and Jessica Shepherd. 1997. A Corpus-
Based Approach for Building Semantic Lexicons.
In Proceedings of the Second Conference on Em-
pirical Methods in Natural Language Processing,
pages 117-124.

V. Sindhwani, P. Niyogi, and M. Belkin. 2005. A
co-regularization approach to semisupervised learn-
ing with multiple views. Proc. ICML Workshop on
Learning with Multiple views.

H. Tong, J. He, M. Li, C. Zhang, and W. Ma. 2005.
Graph based multi-modality learning. In Proceed-
ings of the 13th Annual ACM international Con-
ference on Multimedia. MULTIMEDIA ’05. ACM,
New York, NY, 862-871.

Peter D. Turney. 2002. Thumbs up or thumbs down?
Semantic orientation applied to unsupervised classi-
fication of reviews. ACL 2002, 417-424.

Xiaojun Wan and Jianguo Xiao. 2009. Graph-Based
Multi-Modality Learning for Topic-Focused Mul-
tiDocument Summarization. IJCAI 2009, 1586-
1591.

Linhong Xu, Hongfei Lin, Yu Pan, Hui Ren and Jian-
mei Chen. 2008. Constructing the Afective Lexicon
Ontology. JOURNAL OF THE CHINA SOCIETY
F0R SCIENTIFIC AND TECHNICAL INFORMA-
TION Vo1.27 No.2, 180-185.

X. Y. Xu, and J. H. Tao. 2003. The study of affective
categorization in Chinese. The 1st Chinese Confer-
ence on Affective Computing and Intelligent Inter-
action. Beijing, China.

Hongbo Xu, Tianfang Yao, and Xuanjing Huang.
2009. The second Chinese Opinion Analysis Eval-
uation(in Chinese). COAE 2009.

D. Zhou, O. Bousquet, T. Lal, J. Weston, and B.
Scholkopf. 2004. Learning with local and global
consistency. Advances in Neural Information Pro-
cessing Systems 16. MIT Press, Cambridge, MA. .

D. Zhou and C. J. C. Burges. 2007. Spectral cluster-
ing and transductive learning with multiple views.
Proceedings of the 24th international conference on
Machine learning.

X. Zhu and Z. Ghahramani. 2002. Learning from
labeled and unlabeled data with label propagation.
Technical Report CMUCALD02107. CMU.

1217



Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 1218–1226,
Beijing, August 2010

A Methodology for Automatic Identification of Nocuous Ambiguity 

 

Hui Yang1            Anne de Roeck1            Alistair Willis1            Bashar Nuseibeh1, 2 
1Department of Computing, The Open University 

2Lero, University of Limerick 

 {h.yang, a.deroeck, a.g.willis, b.nuseibeh}@open.ac.uk 

 

Abstract 

Nocuous ambiguity occurs when a lin-

guistic expression is interpreted differ-

ently by different readers in a given con-

text. We present an approach to auto-

matically identify nocuous ambiguity 

that is likely to lead to misunderstand-

ings among readers. Our model is built 

on a machine learning architecture. It 

learns from a set of heuristics each of 

which predicts a factor that may lead a 

reader to favor a particular interpretation. 

An ambiguity threshold indicates the ex-

tent to which ambiguity can be tolerated 

in the application domain. Collections of 

human judgments are used to train heu-

ristics and set ambiguity thresholds, and 

for evaluation. We report results from 

applying the methodology to coordina-

tion and anaphora ambiguity. Results 

show that the method can identify nocu-

ous ambiguity in text, and may be wid-

ened to cover further types of ambiguity. 

We discuss approaches to evaluation. 

1 Introduction 

Traditional accounts of ambiguity have generally 

assumed that each use of a linguistic expression 

has a unique intended interpretation in context, 

and attempted to develop a model to determine it 

(Nakov and Hearst, 2005; Brill and Resnik, 

1994). However, disambiguation is not always 

appropriate or even desirable (Poesio and Art-

stein, 2008). Ambiguous text may be interpreted 

differently by different readers, with no consen-

sus about which reading is the intended one. At-

tempting to assign a preferred interpretation may 

therefore be inappropriate. Misunderstandings 

among readers do occur and may have undesir-

able consequences. In requirements engineering 

processes, for example, this results in costly im-

plementation errors (Boyd et al., 2005).  

Nonetheless, most text does not lead to sig-

nificant misinterpretation. Our research aims to 

establish a model that estimates how likely an 

ambiguity is to lead to misunderstandings. Our 

previous work on nocuous ambiguity (Chantree 

et al., 2006; Willis et al., 2008) cast ambiguity 

not as a property of a text, but as a property of 

text in relation to a set of stakeholders. We drew 

on human judgments - interpretations held by a 

group of readers of a text – to establish criteria 

for judging the presence of nocuous ambiguity. 

An ambiguity is innocuous if it is read in the 

same way by different people, and nocuous oth-

erwise. The model was tested on co-ordination 

ambiguity only. 

In this paper, we implement, refine and extend 

the model. We investigate two typical ambiguity 

types arising from coordination and anaphora. 

We extend the previous work (Willis et al., 

2008) with additional heuristics, and refine the 

concept of ambiguity threshold. We experiment 

with alternative machine learning algorithms to 

find optimal ways of combining the output of the 

heuristics. Yang et al. (2010a) describes a com-

plete implementation in a prototype tool running 

on full text. Here we present our experimental 

results, to illustrate and evaluate the extended 

methodology. 

The rest of the paper is structured as follows. 

Section 2 introduces the methodology for auto-

matic detection of nocuous ambiguity. Sections 

3 and 4 provide details on how the model is ap-

plied to coordination and anaphora ambiguity. 

Experimental setup and results are reported in 

Section 5, and discussed in Section 6. Section 7 

reports on related work. Conclusions and future 

work are found in Section 8.          
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2 Methodology for Nocuous Ambiguity 

Identification 

This section describes the main ideas underpin-

ning our model of ambiguity. We distinguish 

between structural and interpretative aspects. 

The former captures the fact that text may have 

structure (i.e. syntax) which, in principle, per-

mits multiple readings. These are relatively 

straightforward to identify from the linguistic 

constructs present in the text. The latter ac-

knowledges that if text is interpreted in the same 

way by different readers, it has a low risk of be-

ing misunderstood. Modelling interpretive as-

pects requires access to human judgments about 

texts. Our approach has three elements, which 

we describe in turn: collection of human judg-

ments; heuristics that model those judgments, 

and a machine learning component to train the 

heuristics.  
 

Human judgments. We define an ambiguity as 

nocuous if it gives rise to diverging interpreta-

tions. Wasow et al. (2003) suggests that ambigu-

ity is always a product of the meaning that peo-

ple assign to language, and thus a subjective 

phenomenon. We capture individual interpreta-

tions of instances of ambiguity by surveying par-

ticipants, asking them for their interpretation. 

We use this information to decide whether, 

given some ambiguity threshold, a particular 

instance is seen as innocuous or nocuous de-

pending on the degree of dissent between judges. 

A key concept in determining when ambiguity 

is nocuous is the ambiguity threshold. Different 

application areas may need to be more or less 

tolerant of ambiguity (Poesio and Artstein, 2008). 

For instance, requirements documents describing 

safety critical systems should seek to avoid mis-

understandings between stakeholders. Other 

cases, such as cookbooks, could be less sensitive. 

Willis et al. (2008)’s general concept of ambigu-

ity threshold sought to implement a flexible tol-

erance level to nocuous ambiguity. Given an 

instance of ambiguous text, and a set of judg-

ments as to the correct interpretation, the cer-

tainty of an interpretation is the percentage of 

readers who assign that interpretation to the text. 

For example, in Table 1 below (sec. 3.1), the 

certainty of the two interpretations, HA and LA 

of expression (a) are 12/17=71% and 1/17=5.9% 

respectively. Here, an expression shows nocuous 

ambiguity if none of the possible interpretations 

have a certainty exceeding the chosen threshold. 

Later in this section, we will describe further 

experiments with alternative, finer grained ap-

proaches to setting and measuring thresholds, 

that affect the classifier’s behaviour. 
 

Heuristics. Heuristics capture factors that may 

favour specific interpretations. Each heuristic 

embodies a hypothesis, drawn from the literature, 

about a linguistic phenomenon signifying a pre-

ferred reading. Some use statistical information 

(e.g., word distribution information obtained 

from a generic corpus, the BNC
1
, using the 

Sketch Engine
2
). Others flag the presence of sur-

face features in the text, or draw on semantic or 

world knowledge extracted from linguistic re-

sources like WordNet
3
 or VerbNet

4
. 

 

Machine learning (ML). Individual heuristics 

have limited predictive power: their effective-

ness lies in their ability to operate in concert. 

Importantly, the information they encapsulate 

may be interdependent. We harness this by using 

ML techniques to combine the outputs of indi-

vidual heuristics. ML is an established method 

for recognizing complex patterns automatically, 

making intelligent decisions based on empirical 

data, and learning of complex and nonlinear re-

lations between data points. Our model uses su-

pervised learning ML techniques, deducing a 

function from training data, to classify instances 

of ambiguity into nocuous or innocuous cases. 

The classifier training data consists of pairs of 

input objects (i.e. vectors made up of heuristics 

scores) and desired outputs (i.e. the class labels 

determined by the distribution of human judg-

ments as captured by thresholds). To select an 

appropriate ML algorithm for the nocuity classi-

fier, we tested our datasets (described in later 

sections) on several algorithms in the WEKA
5
 

package (e.g., decision tree, J48, Naive Bayes, 

SVM, Logistic Regression, LogitBoost, etc.)  

To train, and validate, a nocuity classifier for 

a particular form of ambiguity, we build a data-

set of judgments, and select heuristics that model 

                                                 
1
 http://www.natcorp.ox.ac.uk/ 

2
 http://sketchengine.co.uk/ 

3
 http://wordnet.princeton.edu/ 

4
 http://verbs.colorado.edu/~mpalmer/projects/verbnet.html 

5
 http://www.cs.waikato.ac.nz/~ml/index.html 
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the information underlying the human judge-

ments about a preferred interpretation.  

We validated the approach on two forms of 

ambiguity. Sections 3 and 4 discuss how the 

methodology is applied to forms of coordination 

and anaphoric ambiguity, and evaluate the per-

formance of the final classifiers.                       

3 Automatic Identification of Nocuous 

Coordination Ambiguity 

Our previous work on nocuous ambiguity has 

focused on coordination ambiguity: a common 

kind of structural ambiguity. A coordination 

structure connects two words, phrases, or clauses 

together via a coordination conjunction (e.g., 

‘and’, ‘or’, etc) as in the following examples:  
 

(1) They support a typing system for architec-

tural components and connectors.  

(2) It might be rejected or flagged for further 

processing. 
 

     In (1), the coordination construction ‘architec-

tural components and connectors’ consists of a 

near conjunct (NC) (i.e. ‘components’), a far 

conjunct (FC) (i.e. ‘connectors’), and the at-

tached modifier (M) (i.e. ‘architectural’). This 

construction allows two bracketings correspond-

ing to high modifier attachment ([architectural 

[components and connectors]]) or low modifier 

attachement ([[architectural components] and 

connector]). Our aim is to refine Chantree et al 

(2006) and Willis et al (2008), hence our focus is 

on the two phenomena they treated: modification 

in noun phrase coordination (as in (1)) and in 

verb phrase coordination (as in (2)).   

     We implemented the heuristics described in 

the earlier work, and introduced two further ones 

(local document collocation frequency, and se-

mantic similarity). We used the Chantree et al 

(2006) dataset of human judgments, but em-

ployed the LogitBoost algorithm for implement-

ing the nocuity classifier (rather than the Logis-

tic Regression equation). The following subsec-

tions give more detail. 

3.1 Building a dataset 

Coordination instances. Our dataset was col-

lected and described by Chantree et al. (2006). It 

contains 138 coordination instances gathered 

from a set of requirement documents. Noun 

compound conjunctions account for the majority 

(85.5%) of cases (118 instances). Nearly half of 

these arose as a result of noun modifiers, while 

there are 36 cases with adjective and 18 with 

preposition modifiers. 
 

Human judgment collection. The coordination 

instances containing potential ambiguity were 

presented to a group of 17 computing profes-

sionals including academic staff or research stu-

dents. For each instance, the judges were asked 

to select one of three options: high modifier at-

tachment (HA), low modifier attachment (LA), 

or ambiguous (A). Table 1 shows the judgment 

count for two sample instances. In instance (a) in 

table 1, the certainty of HA is 12/17=71%, and 

the certainty of LA is 1/17=6%. Instance (b) was 

judged mainly to be ambiguous.  
 

 

 Judgments 
 HA LA A 

(a) security and privacy requirements 12 1 4 

(b) electrical characteristics and interface 4 4 9 

Table 1. Judgment count for the sample instances (HA=high at-

tachment; LA=low attachment; and A=Ambiguous) 
 

We set an ambiguity threshold, τ, to determine 

whether the distribution of interpretations is 

nocuous or innocuous with respect to that par-

ticular τ. If the certainty of neither interpretation, 

HA or LA, exceeds the threshold τ, we say this 

is an instance of nocuous coordination. Other-

wise it is innocuous. Here, (a) displays nocuous 

ambiguity for τ>71%. 
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Figure 1. Proportions of interpretations at different ambiguity 

thresholds in the coordination instances 

Figure 1 shows the systematic relationship be-

tween ambiguity threshold and the incidence of 

nocuous ambiguity in the dataset. Low thresh-

olds can be satisfied with a very low certainty 

scores resulting in few instances being consid-

ered nocuous. At high thresholds, almost all in-

stances are classified as nocuous unless the 

judges report a consensus interpretation.  
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3.2 Heuristics to predict Nocuity 

Each heuristic tests a factor favouring a high or 

low modifier attachment (HA or LA). We im-

plemented and extended Willis et al. (2008). 
 

Coordination matching favours HA when the 

head words of near and far conjuncts are fre-

quently found coordinated in a general corpus 

like BNC, suggesting they may form a single 

syntactic unit. 
 

Distribution similarity measures how often two 

words are found in the same contexts. It favours 

HA where it detects a strong distributional simi-

larity between the headwords of the two con-

juncts, suggesting these form a syntactic unit 

(Kilgariff 2003).  
 

Collocation frequency favours LA when the 

modifier is collocated much more frequently 

with the headword of the near conjunct than the 

far conjunct, in the document, or in the BNC. 
 

Morphology favours HA when the conjunct 

headwords share a morphological marker (suf-

fix) (Okumura and Muraki 1994).  
 

Semantic similarity favours HA when the con-

junct headwords display strong similarity in the 

taxonomic structure in WordNet
6
.  

3.3 Nocuity classification 

To train, and test, the nocuity classifier, each 

ambiguity training/test instance is represented as 

an attribute-value vector, with the values set to 

the score of a particular heuristic. The class label 

of each instance (nocuous (Y) or innocuous (N) 

at a given ambiguity threshold) is determined by 

the certainty measure as discussed earlier. We 

selected the LogitBoost algorithm for building 

the classifier, because it outperformed other can-

didates on our training data than. To determine 

whether a test instance displays nocuity or not, 

we presented its feature vector to the classifier, 

and obtained a predicted class label (Y or N). 

4 Automatic Identification of Nocuous 

Anaphora Ambiguity 

An anaphor is an expression referring to an an-

tecedent, usually a noun phrase (NP) found in 

                                                 
6
 Implemented by the NLP tool - Java WordNet Similarity Library. 

http://nlp.shef.ac.uk/result/software.html 

the preceding text. Anaphora ambiguity occurs 

when there are two or more candidate antece-

dents, as in example (3). 
 

(3) The procedure shall convert the 24 bit image to 

an 8 bit image, then display it in a dynamic window. 

 

In this case, both of the NPs, ‘the 24 bit im-

age’ and ‘an 8 bit image’, are considered poten-

tial candidate antecedents of the anaphor ‘it’. 

Anaphora ambiguity is difficult to handle due 

to contextual effects spread over several sen-

tences. Our goal is to determine whether a case 

of anaphora ambiguity is nocuous or innocuous, 

automatically, by using our methodology.  

4.1 The building of the Dataset 

Anaphora instances. We collected 200 anaph-

ora instances from requirements documents from 

RE@UTS website
7
. We are specifically con-

cerned with 3
rd

 person pronouns, which are 

widespread in requirements texts. The dataset 

contains different pronoun types. Nearly half  

the cases (48%) involve subject pronouns, al-

though pronouns also occurred in objective and 

possessive positions (15% and 33%, respec-

tively).  Pronouns in prepositional phrases (e.g., 

‘under it’) are rarer (4% - only 8 instances).  
 

Human judgment collection. The instances 

were presented to a group of 38 computing pro-

fessionals (academic staff, research students, 

software developers). For each instance, the 

judges were asked to select the antecedent from 

the list of NP candidates. Each instance was 

judged by at least 13 people. Table 2 shows an 

example of judgment counts, where 12 out of 13 

judges committed to ‘supervisors’ as the antece-

dent of ‘they’, whereas 1 chose ‘tasks’.   
 

1. Supervisors may only modify tasks they supervise to the 

agents they supervise.  

 Response 

Percent 

Response 

Count 

(a) supervisors 

(b) tasks 

92.3% 

7.7% 

12 

1 

Table 2. Judgment count for an anaphora ambiguity instance. 
 

Ambiguity threshold. Given an anaphor, the 

interpretation certainty of a particular NP candi-

date is calculated as the percentage of the judg-

ments for this NP against the total judgments for 

the instance. For example, consider the example 

in Table 2. The certainty of the NP ‘supervisors’ 

                                                 
7
 http://research.it.uts.edu.au/re/ 
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is 12/13=92.3% and the certainty of the NP 

‘tasks’ is 1/13=7.7%. Thus, at an ambiguity 

threshold of, for instance, τ = 0.8, the ambiguity 

in Table 2 is innocuous because the agreement 

between the judges exceeds the threshold. 

Figure 2 shows the relationship between am-

biguity threshold and occurrence of nocuous 

ambiguity. As in Figure 1, the number of nocu-

ous ambiguities increases with threshold τ. For 

high thresholds (e.g., τ≥0.9), more than 60% of 

instances are classified as nocuous. Below 

threshold (τ≤0.4), fewer than 8 cases are judged 

nocuous. Also, comparing Figures 1 and 2 would 

appear to suggest that, in technical documents, 

anaphora ambiguity is less likely to lead to mis-

understandings than coordination.  
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Figure 2. Proportions of interpretations at different ambiguity 

thresholds in the anaphora instances. 

4.2 Antecedent Preference Heuristics 

Drawing on the literature on anaphoric reference, 

we developed 12 heuristics of three types: re-

lated to linguistic properties of text components, 

to context and discourse information, or to sta-

tistical information drawn from standard corpora. 

Yang et al. (2010b) gives more detail. A heuris-

tic marks candidate antecedents which it favours, 

or disfavours. For instance, heuristics favour 

definite NPs as antecedents, candidate NPs 

which agree in number and syntactic role with 

the anaphor, and those which share a syntactic 

collocation pattern in the text. They also favour 

those which respect the semantic constraints 

(e.g., animacy) propagated from subcategorisa-

tion information, and reward proximity to the 

anaphor. They disfavour candidate antecedents 

that occur in prepositional phrases, and those 

occupying a syntactic role distinct from the ana-

phor. Note: not all NPs are marked by all heuris-

tics, and some heuristics are interdependent.   

4.3 Nocuous Ambiguity Identification 

Unlike coordination ambiguity, where judges 

chose for high or low modifier attachment, 

anaphora have scope over a variable set of po-

tential antecedents, depending on each particular 

instance. To accommodate this, we developed an 

antecedent classifier which assigns a weighted 

antecedent tag to each NP candidate associated 

with an instance. Tag information is used subse-

quently to predict the whether the instance dis-

plays nocuous ambiguity. 

The antecedent classifier is built using the Na-

ive Bayes algorithm within the WEKA package 

and is trained to return three classes of candidate 

antecedent: positive (Y), questionable (Q), or 

negative (N). In an innocuous case, a candidate 

NP will be classed as Y if its interpretation cer-

tainty exceeds the threshold set by τ, and tagged 

as N otherwise; in a nocuous case, it will be 

classed as N if its certainty is 0%, and classified 

as Q otherwise.  
 

1. The LPS operational scenarios represent sequences of activi-

ties performed by operations personnel as they relate to the LPS 

software. 

 Response Label 

(a) the LPS operational scenarios 

(b) sequences of activities 

(c) activities 

(d) operations personnel 

33.3% 

66.7% 

0% 

0% 

Q 

Q 

N 

N 

Table 3. The determination of antecedent label for the NP candi-

dates in a NOCUOUS ambiguity case (τ =0.8) 
 

2. Testing performed to demonstrate to the acquirer that a 

CSCI system meets its specified requirements. 

 Response 

Percent 

Class 

Label 

(a) Testing 

(b) the acquirer 

(c) a CSCI system 

0% 

16.7% 

83.3% 

N 

N 

Y 

Table 4. The determination of antecedent label for the NP candi-

dates in a INNOCUOUS ambiguity case (τ =0.8) 
 

Antecedent Class Label  

Y Q N 

τ = 0.5 181 54 623 

τ = 0.6 160 99 599 

τ = 0.7 137 149 572 

τ = 0.8 107 209 542 

τ = 0.9 77 261 520 

τ = 1.0 41 314 503 

Table 5. The distribution of three antecedent class label at different 

ambiguity thresholds 
 

Table 3 and 4 illustrate antecedent labels for 

NP antecedent candidates in a nocuous and in-

nocuous case. Candidates (a) and (b) in Table 3 

are labeled Q because their certainty falls below 

the threshold (τ = 0.8). For the same threshold, 

candidate (c) in Table 4 is tagged as Y. Table 5 
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shows the distribution of tags at certainty thresh-

olds τ ≥ 0.5 for all (858) candidate antecedents 

in our sample. 

Our intended application is a system to alert 

experts to risk of misunderstandings. This sug-

gests we should emphasise recall even at the ex-

pense of some precision (Berry et al. 2003). We 

developed two versions of the algorithm that 

determines whether an instance is nocuous or not, 

depending on the contribution made by its ante-

cedent candidates tagged Y. We relax constraints 

by introducing two concepts: a weak positive 

threshold W
Y
 and a weak negative threshold W

N
 

set at 0.5 and 0.4, respectively
8
. The rationale for 

weak thresholds is that antecedent preference 

reflects a spectrum with Y (high), Q (medium), 

and N (low). Weak positive and negative thresh-

olds act as buffers to the Q area. Antecedent NPs 

that fall in the W
Y
 or W

N
 buffer area are treated 

as possible false negative (FN) for the classifica-

tion of the label Q. An antecedent tag Y/N is la-

beled as weak positive or negative depending on 

these thresholds. The algorithm for identifying 

nocuous ambiguity is given in Figure 3. It treats 

as innocuous those cases where the antecedent 

label list contains one clear Y candidate, whose 

certainty exceeds all others by a margin.  

 

Given an anaphora ambiguity instance with multiple potential NPs, 

the antecedent classifier returns a label list, },,,{ 21 nrrrR K=
, for 

individual NPs. 
 

Parameters:  

1) W
Y
 - the threshold for the weak positive label. The label Y is 

viewed as weak positive when the positive prediction score ri < W
Y
 

2) W
N
 - the threshold for the weak negative label. The label N is 

viewed as weak negative when the negative prediction score ri < 

W
N
 

 

Procedure: 

if the label list R contains  

         (one Y, no Q, one or more N ) 

    or  

         (no Y, one Q, one or more N but not weak negative ) 

    or  
        (one Y but not weak positive, any number of Q or N)    

then 

         the ambiguity is INNOCUOUS 

else 

         the ambiguity is NOCUOUS          
Figure 3. The algorithm for nocuous ambiguity identification 

5 Experiments and Results 

In all experiments, the performance was evalu-

ated using 5-fold cross-validation, using  stan-

                                                 
8
 Weak positive and negative thresholds are set experimentally. 

dard measures of Precision (P), Recall (R), F-

measure (F), and Accuracy. We use two naive 

baselines: BL-1 assumes that all ambiguity in-

stances are innocuous; BL-2 assumes that they 

are all nocuous. For fair comparison against the 

baselines, for both forms of ambiguity, we only 

report the performance of our ML-based models 

when the incidence of nocuous ambiguities falls 

between 10% ~ 90% of the set (see Figures 1 

and 2). We first report our findings for the iden-

tification of nocuous coordination ambiguities 

and then discuss the effectiveness of our model 

in distinguishing possible nocuous ambiguities 

from a set of ambiguity instances.    

5.1 Nocuous Coordination Ambiguity Iden-

tification 

Willis et al (2008) demonstrated the ability of 

their approach to adapt to different thresholds by 

plotting results against the two naïve base lines. 

Since we extended and refined their approach 

described we plot our experimental results (CM-

1), for comparison, using the same measures, 

against their evaluation data (CM-2), in Figure 4.   
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Figure 4. The performance comparison of the ML-based models, 

CM-1 and CM-2, to the two baseline models, BL-1 and BL-2, in 

nocuous coordination ambiguity identification.  
 

Our CM-1 model performed well with an ac-

curacy of above 75% on average at all ambiguity 

threshold levels. As expected, at very high and 

very low thresholds, we did not improve on the 

naive baselines (which have perfect recall and 

hence high accuracy). The CM-1 model dis-

played its advantage when the ambiguity thresh-

old fell in the range between 0.45 and 0.75 (a 

significantly wider range than reported for CM-2 

Willis et al (2008)). CM-1 maximum improve-

ment was achieved around the 58% crossover 

point where the two naïve baselines intersect and  

our model achieved around 21% increased accu-
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racy. This suggests that the combined heuristics 

do have strong capability of distinguishing 

nocuous from innocuous ambiguity at the weak-

est region of the baseline models. 

Figure 4 also shows that, the CM-1 model 

benefitted from the extended heuristics and the 

LogitBoost algorithm with an increased accuracy 

of around 5.54% on average compared with CM-

2.  This suggests that local context information 

and semantic relationships between coordinating 

conjuncts provide useful clues for the identifica-

tion of nocuous ambiguity. Furthermore, the 

LogitBoost algorithm is more suitable for deal-

ing with a numeric-attribute feature vector than 

the previous Logistic Regression algorithm.  

5.2 Nocuous Anaphora Ambiguity Identifi-

cation 

We report on two implementations: one with 

weak thresholds (AM-1) and one without (AM-

2). We compare both approaches using the base-

lines, BL-1 and BL-2 (in Figure 5). It shows that 

AM-1 and AM-2 achieve consistent improve-

ments on baseline accuracy at high thresholds 

(τ≥0.75). Here also, the improvement maximises 

around the 83% threshold point where the two 

baselines intersect. However, the ML-based 

models perform worse than BL-1 at the lower 

thresholds (0.5≤τ≤0.7). One possible explanation 

is that, at low thresholds, performance is affected 

by lack of data for training of the Q class label, 

an important indicator for nocuous ambiguity 

(see Table 5). This is also consistent with the 

ML models performing well at higher thresh-

olds, when enough nocuous instances are avail-

able for training. 
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Figure 5. The performance comparison of the ML-based models, 

AM-1 and AM-2, to the two baseline models, BL-1 and BL-2, in 

nocuous anaphora ambiguity identification.  
     

 Figure 5 further shows that the model with 

weak thresholds (AM-1) did not perform as well 

as the model without weak thresholds (AM-2) on 

accuracy. Although both models perform much 

better than the baselines on precision (more ex-

perimental results are reported in Yang et al. 

(2010b)), the actual precisions for both models 

are relatively low, ranging from 0.3 ~ 0.6 at dif-

ferent thresholds. When the AM-1 model at-

tempts to discover more nocuous instances using 

weak thresholds, it also introduces more false 

positives (innocuous instances incorrectly 

classed as nocuous). The side-effect of introduc-

ing false positives for AM-1 is to lower accu-

racy. However, the AM-1 model outperforms 

both AM-2 and BL-2 models on F-measure 

(Figure 6), with an average increase of 5.2 and 

3.4 percentage points respectively. This reveals 

that relaxing sensitivity to the ambiguity thresh-

old helps catch more instances of nocuous 

anaphora ambiguity.             
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Figure 6. The performance comparison of the ML-based models, 

AM-1 and AM-2, to the baseline model BL-2 (naïve nocuous) 

6 Discussions 

We presented judges with sentences containing 

ambiguities without any surrounding context, 

even though contextual information (e.g., dis-

course focus) clearly contributes to interpreta-

tion. This is a weakness in our data collection 

technique. Besides contextual information, van 

Deemter’s Principle of Idiosyncratic Interpreta-

tion (1998) suggests that some factors, including 

the reader’s degree of language competence, can 

affect perceptions of ambiguity. Similarly, fa-

miliarity with a domain, including tacit specialist 

information (Polanyi, 1966), and the extent to 

which this is shared by a group, will have an ef-

fect on the extent to which stakeholders arrive at 

diverging interpretations. 

In our case, we extracted instances from re-

quirements documents covering several techni-
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cal domains. Judgements are sensitive to the 

backgrounds of the participants, and the extent 

to which stakeholder groups share such a back-

ground. Also, we used several large, generic NL 

resources, including the BNC and WordNet. The 

performance of several heuristics would change 

if they drew on domain specific resources. Dif-

ferent interpretations may be compatible, and so 

not necessarily contribute to misunderstanding.  

Finally, we used different machine learning 

algorithms to tackle different types of ambiguity 

instances: LogitBoost for coordination ambigu-

ity and Naive Bayes for anaphora ambiguity. 

The main reason is that coordination heuristics 

returned numeric values, whereas the anaphora 

heuristics were Boolean. Our method assumes 

tailoring of the ML algorithm to the choice of 

heuristic. These limitations indicate that the 

methodology has a high degree of flexibility, but 

also that it has several interdependent compo-

nents and background assumptions that have to 

be managed if an application is to be developed. 

7 Related Work 

Many researchers have remarked on the fact that 

some ambiguities are more likely than others to 

lead to misunderstandings, and suggested classi-

fying them accordingly. Poesio (1996) discussed 

cases where multiple readings are intended to 

coexist, and distinguished between language in-

herent and human disambiguation factors from a 

philosophical perspective. His notion of ‘per-

ceived ambiguity’ suggests that human percep-

tions are what actually cause an ambiguity to be 

misunderstood. Van Deemter’s (2004) ‘vicious 

ambiguity’ refers to an ambiguity that has no 

single, strongly preferred interpretation. He pro-

posed quantifying ‘viciousness’ using probabili-

ties taken from corpus data. Van Rooy (2004) 

defined a notion of ‘true ambiguity’: a sentence 

is truly ambiguous only if there are at least two 

interpretations that are optimally relevant. These 

last two approaches rely on probability analysis 

of language usage, and not directly on human 

perception, which we believe to be the key to 

evaluating ambiguity. Our work differs in that it 

takes into account the distribution of interpreta-

tions arrived at by a group of human judges en-

gaged with a text. Our model treats ambiguity 

not as a property of a linguistic construct or a 

text, or a relation between a text and the percep-

tions of a single reader, but seeks to understand 

the mechanisms that lead to misunderstandings 

between people in a group or process. 

    Poesio et al (2006) have pointed out that dis-

ambiguation is not always necessary; for in-

stance, in some complex anaphora cases, the fi-

nal interpretation may not be fully specified, but 

only ‘good enough’. Our work does not attempt 

disambiguation. It seeks to highlight the risk of 

multiple interpretations (whatever those are).   

8 Conclusions and Future Work 

We have presented a general methodology for 

automatically identifying nocuous ambiguity 

(i.e. cases of ambiguity where there is a risk that 

people will hold different interpretations) rela-

tive to some tolerance level set for such a risk. 

The methodology has been implemented in a 

ML based architecture, which combines a num-

ber of heuristics each highlighting factors which 

may affect how humans interpret ambiguous 

constructs. We have validated the methodology 

by identifying instances of nocuous ambiguity in 

coordination and anaphoric constructs. Human 

judgments were collected in a dataset used for 

training the ML algorithm and evaluation. Re-

sults are encouraging, showing an improvement 

of approximately 21% on accuracy for coordina-

tion ambiguity and about 3.4% on F-measure for 

anaphora ambiguity compared with naive base-

lines at different ambiguity threshold levels. We 

showed, by comparison with results reported in 

Willis et al (2008) that the methodology can be 

fine tuned, and extended to other ambiguity 

types, by including different heuristics.  

Our method can highlight the risk of different 

interpretations arising: this is not a task a single 

human could perform, as readers typically have 

access only to their own interpretation and are 

not routinely aware that others hold a different 

one. Nonetheless, our approach has limitations, 

particularly around data collection, and for 

anaphora ambiguity at low thresholds. We en-

visage further work on the implementation of 

ambiguity tolerance thresholds 

Several interesting issues remain to be inves-

tigated to improve our system’s performance and 

validate its use in practice. We need to explore 

how to include different and complex ambiguity 

types (e.g., PP attachment and quantifier scop-
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ing), and investigate whether these are equally 

amenable to a heuristics based approach.  
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Abstract

In this paper we investigate the challenges
of applying statistical machine translation
to meeting conversations, with a particu-
lar view towards analyzing the importance
of modeling contextual factors such as the
larger discourse context and topic/domain
information on translation performance.
We describe the collection of a small cor-
pus of parallel meeting data, the develop-
ment of a statistical machine translation
system in the absence of genre-matched
training data, and we present a quantita-
tive analysis of translation errors result-
ing from the lack of contextual modeling
inherent in standard statistical machine
translation systems. Finally, we demon-
strate how the largest source of translation
errors (lack of topic/domain knowledge)
can be addressed by applying document-
level, unsupervised word sense disam-
biguation, resulting in performance im-
provements over the baseline system.

1 Introduction

Although statistical machine translation (SMT)
has made great progress over the last decade,
most SMT research has focused on the transla-
tion of structured input data, such as newswire
text or parliamentary proceedings. Spoken lan-
guage translation has mostly concentrated on two-
person dialogues, such as travel expressions or
patient-provider interactions in the medical do-
main. Recently, more advanced spoken-language
data has been addressed, such as speeches (Stüker
et al., 2007), lectures (Waibel and Fügen, 2008),

and broadcast conversations (Zheng et al., 2008).
Problems for machine translation in these genres
include the nature of spontaneous speech input
(e.g. disfluencies, incomplete sentences, etc.) and
the lack of high-quality training data. Data that
match the desired type of spoken-language inter-
action in topic, domain, and, most importantly, in
style, can only be obtained by transcribing and
translating conversations, which is a costly and
time-consuming process. Finally, many spoken-
language interactions, especially those involving
more than two speakers, rely heavily on the par-
ticipants’ shared contextual knowledge about the
domain and topic of the discourse, relationships
between speakers, objects in the real-world en-
vironment, past interactions, etc. These are typ-
ically not modelled in standard SMT systems.

The problem of speech disfluencies has been
addressed by disfluency removal techniques that
are applied prior to translation (Rao et al., 2007;
Wang et al., 2010). Training data sparsity has been
addressed by adding data from out-of-domain re-
sources (e.g. (Matusov et al., 2004; Hildebrandt
et al., 2005; Wu et al., 2008)), exploiting com-
parable rather than parallel corpora (Munteanu
and Marcu, 2005), or paraphrasing techniques
(Callison-Burch et al., 2006). The lack of con-
textual modeling, by contrast, has so far not been
investigated in depth, although it is a generally
recognized problem in machine translation. Early
attempts at modeling contextual information in
machine translation include (Mima et al., 1998),
where information about the role, rank and gen-
der of speakers and listeners was utilized in a
transfer-based spoken-language translation sys-
tem for travel dialogs. In (Kumar et al., 2008)
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statistically predicted dialog acts were used in a
phrase-based SMT system for three different di-
alog tasks and were shown to improve perfor-
mance. Recently, contextual source-language fea-
tures have been incorporated into translation mod-
els to predict translation phrases for traveling do-
main tasks (Stroppa et al., 2007; Haque et al.,
2009). However, we are not aware of any work ad-
dressing contextual modeling for statistical trans-
lation of spoken meeting-style interactions, not
least due to the lack of a relevant corpus.

The first goal of this study is to provide a quan-
titative analysis of the impact of the lack of con-
textual modeling on translation performance. To
this end we have collected a small corpus of par-
allel multi-party meeting data. A baseline SMT
system was trained for this corpus from freely
available data resources, and contextual transla-
tion errors were manually analyzed with respect
to the type of knowledge sources required to re-
solve them. Our analysis shows that the largest
error category consists of word sense disambigua-
tion errors resulting from a lack of topic/domain
modeling. In the second part of this study we
therefore present a statistical way of incorporat-
ing such knowledge by using a graph-based unsu-
pervised word sense disambiguation algorithm at
a global (i.e. document) level. Our evaluation on
real-world meeting data shows that this technique
improves the translation performance slightly but
consistently with respect to position-independent
word error rate (PER).

2 Data

2.1 Parallel Conversational Data

For our investigations we used a subset of the AMI
corpus (McCowan, 2005), which is a collection of
multi-party meetings consisting of approximately
100 hours of multimodal data (audio and video
recordings, slide images, data captured from dig-
ital whiteboards, etc.) with a variety of existing
annotations (audio transcriptions, topic segmenta-
tions, summaries, etc.). Meetings were recorded
in English and fall into two broad types: sce-
nario meetings, where participants were asked to
act out roles in a pre-defined scenario, and non-
scenario meetings where participants were not re-

stricted by role assignments. In the first case, the
scenario was a project meeting about the devel-
opment of a new TV remote control; participant
roles were project manager, industrial designer,
marketing expert, etc. The non-scenario meet-
ings are about the move of an academic lab to
a new location on campus. The number of par-
ticipants is four. For our study we selected 10
meetings (5 scenario meetings and 5 non-scenario
meetings) and had their audio transcriptions trans-
lated into German (our chosen target language) by
two native speakers each. Translators were able
to simultaneously read the audio transcription of
the meeting, view the video, and listen to the au-
dio, when creating the translation. The transla-
tion guidelines were designed to obtain transla-
tions that match the source text as closely as pos-
sible in terms of style – for example, translators
were asked to maintain the same level of collo-
quial as opposed to formal language, and to gen-
erally ensure that the translation was pragmati-
cally adequate. Obvious errors in the source text
(e.g. errors made by non-native English speak-
ers among the meeting participants) were not ren-
dered by equivalent errors in the German transla-
tion but were corrected prior to translation. The
final translations were reviewed for accuracy and
the data were filtered semi-automatically by elim-
inating incomplete sentences, false starts, fillers,
repetitions, etc. Although these would certainly
pose problems in a real-world application of spo-
ken language translation, the goal of this study
is not to analyze the impact of speech-specific
phenomena on translation performance (which, as
discussed in Section 1, has been addressed be-
fore) but to assess the impact of contextual infor-
mation such as discourse and knowledge of the
real-world surroundings. Finally, single-word ut-
terances such as yeah, oh, no, sure, etc. were
downsampled since they are trivial to translate and
were very frequent in the corpus; their inclusion
would therefore bias the development and tuning
of the MT system towards these short utterances
at the expense of longer, more informative utter-
ances.

Table 1 shows the word counts of the trans-
lated meetings after the preprocessing steps de-
scribed above. As an indicator of inter-translator
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ID type # utter. # word S-BLEU
ES2008a S 224 2327 21.5
IB4001 NS 419 3879 24.5
IB4002 NS 447 3246 30.5
IB4003 NS 476 5118 24.1
IB4004 NS 593 5696 26.9
IB4005 NS 381 4719 30.4
IS1008a S 191 2058 25.8
IS1008b S 353 3661 24.1
IS1008c S 308 3351 19.6
TS3005a S 245 2339 28.1

Table 1: Sizes and symmetric BLEU scores for
translated meetings from the AMI corpus (S = sce-
nario meeting, NS = non-scenario meeting).

agreement we computed the symmetric BLEU
(S-BLEU) scores on the reference translations
(i.e. using one translation as the reference and the
other as the hypothesis, then switching them and
averaging the results). As we can see, scores are
fairly low overall, indicating large variation in the
translations. This is due to (a) the nature of con-
versational speech, and (b) the linguistic proper-
ties of the target language. Conversational data
contain a fair amount of colloquialisms, referen-
tial expressions, etc. that can be translated in a va-
riety of ways. Additionally, German as the target
language permits many variations in word order
that convey slight differences in emphasis, which
is turn is dependent on the translators’ interpreta-
tion of the source sentence. German also has rich
inflectional morphology that varies along with the
choice of words and word order (e.g. verbal mor-
phology depends on which subject is chosen).

2.2 SMT System Training Data

Since transcription and translation of multi-
party spoken conversations is extremely time-
consuming and costly, it is unlikely that parallel
conversational data will ever be produced on a suf-
ficiently large scale for a variety of different meet-
ing types, topics, and target languages. In order to
mimic this situation we trained an initial English-
German SMT system on freely available out-of-
domain data resources. We considered the follow-

ing parallel corpora: news text (de-news1, 1.5M
words), EU parliamentary proceedings (Europarl
(Koehn, 2005), 24M words) and EU legal docu-
ments (JRC Acquis2, 35M words), as well as two
generic English-German machine-readable dictio-
naries3,4 (672k and 140k entries, respectively).

3 Translation Systems

We trained a standard statistical phrase-based
English-German translation system from the re-
sources described above using Moses (Hoang and
Koehn, 2008). Individual language models were
trained for each data source and were then lin-
early interpolated with weights optimized on the
development set. Similarly, individual phrase ta-
bles were trained and were then combined into a
single table. Binary indicator features were added
for each phrase pair, indicating which data source
it was extracted from. Duplicated phrase pairs
were merged into a single entry by averaging their
scores (geometric mean) over all duplicated en-
tries. The weights for binary indicator features
were optimized along with all other standard fea-
tures on the development set. Our previous ex-
perience showed that this method worked better
than the two built-in features in Moses for han-
dling multiple translation tables. We found that
the JRC corpus obtained very small weights; it
was therefore omitted from further system de-
velopment. Table 2 reports results from six dif-
ferent systems: the first (System 1) is a system
that only uses the parallel corpora but not the
external dictionaries listed in Section 2.2. Sys-
tem 2 additionally uses the external dictionar-
ies. All systems use two meetings (IB4002 and
IS1008b) as a development set for tuning model
parameters and five meetings for testing (IB4003-
5,IS1008c,TS3005a). For comparison we also
trained a version of the system where a small in-
domain data set (meetings ES2008a, IB4001, and
IS1008a) was added to the training data (System
3). Finally, we also compared our performance
against Google Translate, which is a state-of-the-
art statistical MT system with unconstrained ac-

1www.iccs.inf.ed.ac.uk/˜pkoehn/publications/de-news
2http://wt.jrc.it/lt/Acquis/
3http://www.dict.cc
4http://www-user.tu-chemnitz.de/˜fri/ding
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System description
Dev set Eval set

OOV (%) Trans. Scores OOV (%) Trans. Scores
EN DE BLEU PER EN DE BLEU PER

System 1 OOD parallel data only 4.1 17.0 23.8 49.0 6.5 20.5 21.1 49.5
System 2 System 1 + dictionaries 1.5 15.9 24.6 47.3 2.8 16.3 21.7 48.4
System 3 System 1 + ID parallel data 3.5 13.4 24.7 47.2 5.8 19.7 21.9 48.3
System 4 System 2 + ID parallel data 1.2 12.9 25.4 46.1 2.5 15.9 22.0 48.2
System 5 System 4 + web data 1.2 12.8 26.0 45.9 2.5 15.8 22.1 48.1
System 6 Google Translate – – 25.1 49.1 – – 23.7 50.8

Table 2: System performance using out-of-domain (OOD) parallel data only vs. combination with a
small amount of in-domain (ID) data and generic dictionaries. For each of the development (DEV)
and evaluation (Eval) set, the table displays the percentages of unknown word types (OOV) for English
(EN) and German (DE), as well as the translation scores of BLEU (%) and PER.

cess to the web as training data (System 6). As
expected, translation performance is fairly poor
compared to the performance generally obtained
on more structured genres. The use of exter-
nal dictionaries helps primarily in reducing PER
scores while BLEU scores are only improved no-
ticeably by adding in-domain data. System 6
shows a more even performance across dev and
eval sets than our trained system, which may re-
flect some degree of overtuning of our systems
to the relatively small development set (about 7K
words). However, the PER scores of System 6 are
significantly worse compared to our in-house sys-
tems.

In order to assess the impact of adding web data
specifically collected to match our meeting corpus
we queried a web portal5 that searches a range of
English-German bilingual web resources and re-
turns parallel text in response to queries in either
English or German. As queries we used English
phrases from our development and evaluation sets
that (a) did not already have phrasal translations
in our phrase tables, (b) had a minimum length
of four words, and (c) occurred at least twice in
the test data. In those cases where the search en-
gine returned results with an exact match on the
English side, we word-aligned the resulting paral-
lel text (about 600k words) by training the word
alignment together with the news text corpus. We
then extracted new phrase pairs (about 3k) from
the aligned data. The phrasal scores assigned to

5http://www.linguee.com

the new phrase pairs were set to 1; the lexical
scores were computed from a word lexicon trained
over both the baseline data resources and the par-
allel web data. However, results (Row 5 in Ta-
ble 2) show that performance hardly improved,
indicating the difficulty in finding matching data
sources for conversational speech.

Table 2 also shows the impact of different data
resources on the percentages of unknown word
types (OOV) for both the source and target lan-
guages. The use of external dictionaries gave the
largest reduction of OOV rates (System 1 vs. Sys-
tem 2 and System 3 vs. System 4), followed by the
use of in-domain data (System 1 vs. System 3 and
System 2 vs. System 4). Since they were retrieved
by multi-word query phrases, adding the web data
did not lead to significant reduction on the OOV
rates (System 4 vs. System 5).

Finally, we also explored a hierarchical phrase-
based system as an alternative baseline system.
The system was trained using the Joshua toolkit
(Li et al., 2009) with the same word alignments
and language models as were used in the standard
phrase-based baseline system (System 4). After
extracting the phrasal (rule) tables for each data
source, they were combined into a single phrasal
(rule) table using the same combination approach
as for the basic phrase-based system. However,
the translation results (BLEU/PER of 24.0/46.6
(dev) and 20.8/47.6 (eval), respectively) did not
show any improvement over the basic phrase-
based system.
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4 Analysis of Baseline Translations:
Effect of Contextual Information

The output from System 5 was analyzed manu-
ally in order to assess the importance of model-
ing contextual information. Our goal was not to
determine how translation of meeting style data
can be improved in general – better translations
could certainly be generated by better syntactic
modeling, addressing morphological variation in
German, and generally improving phrasal cover-
age, in particular for sentences involving collo-
quial expressions. However, these are fairly gen-
eral problems of SMT that have been studied pre-
viously. Instead, our goal was to determine the
relative importance of modeling different contex-
tual factors, such as discourse-level information or
knowledge of the real-world environment, which
have not been studied extensively.

We considered three types of contextual in-
formation: discourse coherence information (in
particular anaphoric relations), knowledge of the
topic or domain, and real-world/multimodal infor-
mation. Anaphoric relations affect the translation
of referring expressions in cases where the source
and target languages make different grammatical
distinctions. For example, German makes more
morphological distinctions in noun phrases than
English. In order to correctly translate an expres-
sion like “the red one” the grammatical features
of the target language expression for the referent
need to be known. This is only possible if a suf-
ficiently large context is taken into account dur-
ing translation and if the reference is resolved cor-
rectly. Knowledge of the topic or domain is rele-
vant for correctly translating content words and is
closely related to the problem of word sense dis-
ambiguation. In our current setup, topic/domain
knowledge could be particularly helpful because
in-domain training data is lacking and many word
translations are obtained from generic dictionar-
ies that do not assign probabilities to compet-
ing translations. Finally, knowledge of the real-
world environment, such as objects in the room,
other speakers present, etc. determines translation
choices. If a speaker utters the expression “that
one” while pointing to an object, the correct trans-
lation might depend on the grammatical features

Error type % (dev) % (eval)
Word sense 64.5 68.2
Exophora (addressee) 24.3 23.4
Anaphora 10.2 7.8
Exophora (other) 1.0 0.6

Table 3: Relative frequency of different error
types involving contextual knowledge. The total
number of errors is 715, for 315 sentences.

of the linguistic expression for that object; e.g. in
German, the translation could be “die da”, “der
da” or “das da”. Since the participants in our
meeting corpus use slides and supporting docu-
ments we expect to see some effect of such ex-
ophoric references to external objects.

In order to quantify the influence of contextual
information we manually analyzed the 1-best out-
put of System 5, identified those translation errors
that require knowledge of the topic/domain, larger
discourse, or external environment for their res-
olution, classified them into different categories,
and computed their relative frequencies. We then
corrected these errors in the translation output to
match at least one of the human references, in or-
der to assess the maximum possible improvement
in standard performance scores that could be ob-
tained from contextual modeling. The results are
shown in Tables 3 and 4. We observe that out of all
errors that can be related to the lack of contextual
knowledge, word sense confusions are by far the
most frequent. A smaller percentage of errors is
caused by anaphoric expressions. Contrary to our
expectations, we did not find a strong impact of
exophoric references; however, there is one cru-
cial exception where real-world knowledge does
play an important role. This is the correct transla-
tion of the addressee you. In English, this form is
used for the second person singular, second per-
son plural, and the generic interpretation (as in
“one”, or “people”). German has three distinct
forms for these cases and, additionally, formal and
informal versions of the second-person pronouns.
The required formal/informal pronouns can only
be determined by prior knowledge of the rela-
tionships among the meeting participants. How-
ever, the singular-plural-generic distinction can
potentially be resolved by multimodal informa-
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Original Corrected
BLEU (%) PER BLEU (%) PER

dev 26.0 45.9 27.5 44.0
eval 22.1 48.1 23.3 46.0

Table 4: Scores obtained by correcting errors due
to lack of contextual knowledge.

tion such as gaze, head turns, body movements,
or hand gestures of the current speaker. Since
these errors affect mostly single words as opposed
to larger phrases, the impact of the corrections on
BLEU/PER scores is not large. However, for prac-
tical applications (e.g. information extraction or
human browsing of meeting translations) the cor-
rect translation of content words and referring ex-
pressions would be very important. In the remain-
der of the paper we therefore describe initial ex-
periments designed to address the most important
source of contextual errors, viz. word sense con-
fusions.

5 Resolving Word Sense Disambiguation
Errors

The problem of word sense disambiguation
(WSD) in MT has received a fair amount of
attention before. Initial experiments designed
at integrating a WSD component into an MT
system (Carpuat and Wu, 2005) did not meet
with success; however, WSD was subsequently
demonstrated to be successful in data-matched
conditions (Carpuat and Wu, 2007; Chan et al.,
2007). The approach pursued by these latter ap-
proaches is to train a supervised word sense clas-
sifier on different phrase translation options pro-
vided by the phrase table of an initial baseline sys-
tem (i.e. the task is to separate different phrase
senses rather than word senses). The input fea-
tures to the classifier consist of word features ob-
tained from the immediate context of the phrase
in questions, i.e. from the same sentence or from
the two or three preceding sentences. The classi-
fier is usually trained only for those phrases that
are sufficiently frequent in the training data.

By contrast, our problem is quite different.
First, many of the translation errors caused by
choosing the wrong word sense relate to words
obtained from an external dictionary that do not

occur in the parallel training data; there is also lit-
tle in-domain training data available in general.
For these reasons, training a supervised WSD
module is not an option without collecting addi-
tional data. Second, the relevant information for
resolving a word sense distinction is often not lo-
cated in the immediately surrounding context but
it is either at a more distant location in the dis-
course, or it is part of the participants’ background
knowledge. For example, in many meetings the
opening remarks refer to slides and an overhead
projector. It is likely that subsequent mention-
ing of slide later on during the conversation also
refer to overhead slides (rather than e.g. slide in
the sense of “playground equipment”), though the
contextual features that could be used to identify
this word sense are not located in the immedi-
ately preceding sentences. Thus, in contrast to su-
pervised, local phrase sense disambiguation em-
ployed in previous work, we propose to utilize
unsupervised, global word sense disambiguation,
in order to obtain better modeling of the topic
and domain knowledge that is implicitly present
in meeting conversations.

5.1 Unsupervised Word Sense
Disambiguation

Unsupervised WSD algorithms have been pro-
posed previously (e.g. (Navigli and Lapata, 2007;
Cheng et al., 2009)). The general idea is to ex-
ploit measures of word similarity or relatedness
to jointly tag all words in a text with their correct
sense. We adopted the graph-based WSD method
proposed in (Sinha and Mihalcea, 2007), which
represents all word senses in a text as nodes in an
undirected graph G = (V, E). Pairs of nodes are
linked by edges weighted by scores indicating the
similarity or relatedness of the words associated
with the nodes. Given such a graph, the likeli-
hood of each node is derived by the PageRank al-
gorithm (Brin and Page, 1998), which measures
the relative importance of each node to the entire
graph by considering the amount of “votes” the
node receives from its neighboring nodes. The
PageRank algorithm was originally designed for
directed graphs, but can be easily extended to an
undirected graph. Let PR(vi) denote the PageR-
ank score of vi. The PageRank algorithm itera-

1232



tively updates this score as follows:

PR(vi) = (1 − d) + d
∑

(vi,vj)∈E

PR(vj)
wij∑
k wkj

where wij is the similarity weight of the undi-
rected edge (vi, vj) and d is a damping factor,
which is typically set to 0.85 (Brin and Page,
1998). The outcome of the PageRank algorithm
is numerical weighting of each node in the graph.
The sense with the highest score for each word
identifies its most likely word sense. For our
purposes, we modified the procedure as follows.
Given a document (meeting transcription), we first
identify all content words in the source document.
The graph is then built over all target-language
translation candidates, i.e. each node represents a
word translation. Edges are then established be-
tween all pairs of nodes for which a word similar-
ity measure can be obtained.

5.2 Word Similarity Measures
We follow (Zesch et al., 2008a) in computing
the semantic similarity of German words by ex-
ploiting the Wikipedia and Wiktionary databases.
We use the publicly available toolkits JWPL and
JWKTL (Zesch et al., 2008b) to retrieve relevant
articles in Wikipedia and entries in Wiktionary for
each German word – these include the first para-
graphs of Wikipedia articles entitled by the Ger-
man word, the content of Wiktionary entries of
the word itself as well as of closely related words
(hypernyms, hyponyms, synonyms, etc.). We then
concatenate all retrieved material for each word to
construct a pseudo-gloss. We then lowercase and
lemmatize the pseudo-glosses (using the lemma-
tizer available in the TextGrid package 6), exclude
function words by applying a simple stop-word
list, and compute a word similarity measure for
a given pair of words by counting the number of
common words in their glosses.

We need to point out that one drawback in this
approach is the low coverage of German content
words in the Wikipedia and Wiktionary databases.
Although the English edition contains millions
of entries, the German edition of Wikipedia and
Wiktionary is much smaller – the coverage of all
content words in our task ranges between 53% and

6http://www.textgrid.de/en/beta.html

56%, depending on the meeting, which leads to
graphs with roughly 3K to 5K nodes and 8M to
13M edges. Words that are not covered mostly in-
clude rare words, technical terms, and compound
words.

5.3 Experiments and Results
For each meeting, the derived PageRank scores
were converted into a positive valued feature, re-
ferred to as the WSD feature, by normalization
and exponentiation:

fWSD(wg|we) = exp

{
PR(wg)∑

wg∈H(we) PR(wg)

}

where PR(wg) is the PageRank score for the Ger-
man word wg and H(we) is the set of all transla-
tion candidates for the English word we. Since
they are not modeled in the graph-based method,
multi-words phrases and words that are not found
in the Wikipedia or Wiktionary databases will re-
ceive the default value 1 for their WSD feature.
The WSD feature was then integrated into the
phrase table to perform translation. The new sys-
tem was optimized as before.

It should be emphasized that the standard mea-
sures of BLEU and PER give an inadequate im-
pression of translation quality, in particular be-
cause of the large variation among the reference
translations, as discussed in Section 4. In many
cases, better word sense disambiguation does not
result in better BLEU scores (since higher gram
matches are not affected) or even PER scores
because although a feasible translation has been
found it does not match any words in the refer-
ence translations. The best way of evaluating the
effect of WSD is to obtain human judgments –
however, since translation hypotheses change with
every change to the system, our original error an-
notation described in Section 4 cannot be re-used,
and time and resource constraints prevented us
from using manual evaluations at every step dur-
ing system development.

In order to loosen the restrictions imposed by
having only two reference translations, we uti-
lized a German thesaurus7 to automatically ex-
tend the content words in the references with syn-
onyms. This can be seen as an automated way of

7http://www.openthesaurus.de
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No WSD With WSD
BLEU (%) PER XPER BLEU (%) PER XPER

dev 25.4 46.1 43.4 25.4 45.6 42.9
eval 22.0 48.2 44.6 22.0 47.9 44.0
IB4003 21.4 48.3 44.4 21.4 47.5 43.8
IB4004 22.4 48.5 44.4 23.1 48.4 43.9
IB4005 25.4 45.9 42.4 25.3 45.6 42.2
IS1008c 15.9 52.9 50.0 14.9 52.3 48.6
TS3005a 23.1 45.2 41.9 23.2 45.3 41.7

Table 5: Performance of systems with and without WSD for dev and eval sets as well as individual
meetings in the eval set.

approximating the larger space of feasible trans-
lations that could be obtained by producing addi-
tional human references. Note that the thesaurus
provided synonyms for only roughly 50% of all
content words in the dev and eval set. For each
of them, on average three synonyms are found in
the thesaurus. We use these extended references
to recompute the PER score as an indicator of
correct word selection. All results (BLEU, PER
and extended PER (or XPER)) are shown in Table
5. As expected, BLEU is not affected but WSD
improves the PER and XPER slightly but consis-
tently. Note that this is despite the fact that only
roughly half of all content words received disam-
biguation scores.

Finally, we provide a concrete example of
translation improvements, with improved words
highlighted:
Source:
on the balcony
there’s that terrace
there’s no place inside the building
Translation, no WSD:
auf dem balkon
es ist das absatz
es gibt keinen platz innerhalb des gebäudes
Translation, with WSD:
auf dem balkon
es ist das terrasse
es gibt keinen platz gebäudeintern
References:
auf dem balkon / auf dem balkon
da gibt es die terrasse / da ist die terrasse
es gibt keinen platz im gebäude / es gibt keinen
platz innen im gebäude

6 Summary and Conclusions

We have presented a study on statistical transla-
tion of meeting data that makes the following con-
tributions: to our knowledge it presents the first
quantitative analysis of contextual factors in the
statistical translation of multi-party spoken meet-
ings. This analysis showed that the largest im-
pact could be obtained in the area of word sense
disambiguation using topic and domain knowl-
edge, followed by multimodal information to re-
solve addressees of you. Contrary to our ex-
pectations, further knowledge of the real-world
environment (such as objects in the room) did
not show an effect on translation performance.
Second, it demonstrates the application of unsu-
pervised, global WSD to SMT, whereas previ-
ous work has focused on supervised, local WSD.
Third, it explores definitions derived from col-
laborative Wiki sources (rather than WordNet or
existing dictionaries) for use in machine transla-
tion. We demonstrated small but consistent im-
provements even though word coverage was in-
complete. Future work will be directed at improv-
ing word coverage for the WSD algorithm, in-
vestigating alternative word similarity measures,
and exploring the combination of global and local
WSD techniques.
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Abstract

Dative variation is a widely observed syn-
tactic phenomenon in world languages
(e.g. I gave John a book and I gave a book
to John). It has been shown that which
surface form will be used in a dative sen-
tence is not a completely random choice,
rather, it is conditioned by a wide range
of linguistic factors. Previous work by
Bresnan and colleagues adopted a statis-
tical modeling approach to investigate the
probabilistic trends in English dative alter-
nation. In this paper, we report a similar
study on Mandarin Chinese. We further
developed Bresnan et al.’s models to suit
the complexity of the Chinese data. Our
models effectively explain away a large
proportion of the variation in the data, and
unveil some interesting probabilistic fea-
tures of Chinese grammar. Among other
things, we show that Chinese dative varia-
tion is sensitive to heavy NP shift in both
left and right directions.

1 Introduction

1.1 Overview

In traditional linguistic research, the study of syn-
tax is most concerned with grammaticality. Sen-
tences are either grammatical or ungrammatical,
and syntactic theories are proposed to explain the
structural features that cause (un)grammaticality.
Meanwhile, little attention has been paid to the
relative acceptability of grammatical sentences. If
two sentences are both grammatical and basically
express the same meaning, are they equally likely

to occur in the language? The answer is proba-
bly no. For example, in English, the sentence I
have read that book is much more frequent than
That book I have read. The latter topicalized sen-
tence is only used when the entity denoted by That
book is in focus. This indicates that the choice
of surface sentence form is not entirely random,
but conditioned by some factors including infor-
mation status.

Thus, instead of categorizing sentences as
grammatical or ungrammatical, a better way to
express the degree of grammaticality would be to
use a likelihood continuum, from 0 to 1, where un-
grammatical sentences have zero likelihood and
grammatical sentences fall somewhere between
0 and 1, with some being more likely than oth-
ers. The idea of associating linguistic forms with
various probabilities has been around for a while
(see Jurafsky, 2003 and Manning, 2003 for an ex-
tensive review). Recent psycholinguistic research
has shown that just like grammaticality, the likeli-
hoods of sentence forms are also part of the user’s
linguistic knowledge. Sentences with high proba-
bilities are in general easier to comprehend and
produce, and their production is more prone to
phonetic reduction (Bresnan, 2007; Gahl and Gar-
nsey, 2004; Levy, 2008; among others). The fa-
mous example of garden path sentences also ex-
emplifies the difficulty of comprehension in low-
probability sentence forms.

If we accept the premise of probabilistic syn-
tax, then an immediate question is what deter-
mines these probabilities. In the current work, we
address this question by investigating a particular
type of probabilistic phenomenon, i.e. dative vari-
ation in Chinese. We show that the probabilities of
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various surface forms of Chinese dative sentences
can be well estimated by a linear combination of
a set of formal and semantic features.

The remainder of this paper is organized as fol-
lows. Section 1.2 briefly reviews previous work
on English dative variation. Section 1.3 intro-
duces dative variation in Chinese. Section 2 de-
scribes the dataset and the statistical models used
in the current study. Section 3 presents model-
ing results, followed by a discussion in Section 4.
Section 5 concludes the paper with a short sum-
mary. To preview the results, we show that dative
variation in Chinese is more complicated than in
English, in that it features two levels of variation,
which exhibit different (sometimes even opposite)
probabilistic patterns.

1.2 Dative variation in English
A dative sentence is a sentence that encodes a
transfer event. Typical verbs of transfer in En-
glish include give, send, mail, etc. A characteriz-
ing property of transfer events is that they often in-
volve two objects. In addition to the direct object
(DO), the verb also takes an indirect object (IO)
which usually denotes the recipient of the trans-
fer action. For instance, in sentence 1a, the direct
object is a book and the indirect object is John.

Cross-linguistically, it has been documented
that many languages in the world have multiple
syntactic forms for encoding the same transfer
event (Margetts and Austin, 2007 , among oth-
ers). In English, both 1a and 1b describe the same
event, but 1a is a double object form (V IO DO)
while 1b takes a prepositional phrase (V DO to
IO).

(1) a. I gave John a book. → V IO DO
b. I gave a book to John. → V DO to IO

A number of conditioning factors have been
identified for the alternation between the two sur-
face forms. For instance, when the indirect ob-
ject is a pronoun (e.g. him), it is more likely to
have the double object form (i.e. I gave him a
book) than the PP form (i.e. I gave a book to
him). On the other hand, if the indirect object
is a complex NP (with relative clauses), it tends
to occur at the end of the sentence. Since most
of these effects are subtle and often correlated

with each other (e.g. definiteness, pronominality
and syntactic complexity), investigating individ-
ual factors can give convoluted and unreliable re-
sults. To avoid this problem, many recent works in
the field adopted a statistical modeling approach
(Bresnan et al., 2007; Wasow and Arnold, 2003,
among others). Instead of investigating separate
factors, statistical models are built on large-scale
datasets, using all potential conditioning factors
to predict the surface form. In Bresnan et al.
(2007), a dozen predictors relating to the verb
(type of transfer event), the two object NPs (ac-
cessibility, pronominality, definiteness, syntactic
complexity, etc), and the discourse (presence of
parallel structures) were used to make the predic-
tion. Using data input from 2,360 dative sentences
from the Switchboard corpus, the model correctly
predicted surface form in 97% of the sentences,
which was a great improvement over the baseline
prediction accuracy of 79% (i.e. the percentage
of correct responses if the model knows nothing
but which variant is more frequently used). It also
showed that dative variation in English was indeed
sensitive to all the predictors in the model.

1.3 Dative variation in Chinese

Dative variation in Chinese is much more compli-
cated than in English. In addition to the two word
orders that exist in English (2a, 2b), it is also com-
mon for direct object to appear before the verb,
as in a BA construction or a topicalized sentence
(2c). Besides, indirect object can also precede the
verb, as shown in 2d. Another dimension of vari-
ation is in the use of coverbs gei and ba, both of
which can be optional (2b, 2c; see Li and Thomp-
son, 1981 for a detailed discussion on this), or re-
placed by other morphemes (zhu, yu, jiang, etc).

(2) a. John
John

song-le
give-ASP

shu
book

gei
to

Mary.
Mary

John gave one/some book(s) to Mary.
→ V DO IO

b. John
John

song
gave

(gei)
(to)

Mary
Mary

yiben
one

shu.
book

John gave Mary a book.
→ V IO DO

c. John
John

ba
BA

shu
book

song
gave

(gei)
(to)

Mary,
Mary

(ba)
(BA)
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jiu
wine

song
gave

(gei)
(to)

Kate.
Kate

John gave the book(s) to Mary and
gave the wine to Kate.
→ DO V IO

d. Ta
He

meiren
everyone

fa-le
allocated

yiben
one

shu.
book

He gave everyone a book.
→ IO V DO

For the purpose of the current study, we will
ignore the existence (hence also the variation) of
gei and ba, and concentrate on the variation in the
relative order of V, DO and IO. In addition, our
corpus search shows that sentences in the form of
IO V DO are the least frequent (<9%) and mostly
limited to a small set of verbs (mostly fa “to al-
locate” and banfa “to award”), so we drop this
category from the current study. Thus the three
remaining word order variants are: DO V IO, V
DO IO, and V IO DO.

Generally speaking, there are two ways of
modeling a variation phenomenon involving three
variants. One way is to assume that the three vari-
ants are equally dissimilar from one another and
the selection process is just to pick one out of three
(Fig. 1a). The other approach is to assume a hi-
erarchical structure: two of the variants are more
similar to each other than they are to the third one
and thus form a subcategory first before they join
the third variant (Fig. 1b). In the selection pro-
cess, the user first selects the subcategory (i.e. x1
or x’ in Fig 1b), and depending on which subcate-
gory is chosen, they might need to make a second
choice between two end nodes (i.e. x2 and x3).

(a) (b)

Figure 1: Two possible schemas

We argue that the variation among the three
word order variants in the current study is better
modeled by a schema like Fig 1b, for both theoret-
ical and methodological reasons. First, V DO IO
and V IO DO are structurally more similar to each
other than they are to DO V IO. Both V DO IO and
V IO DO are in canonical word order of Chinese
but the form DO V IO features the preposing (or
topicalization) of the DO, whether or not the BA
morpheme is present. Object preposing also exists
outside ditransitive sentences (e.g. 3). Previous
research has associated object preposing with the
disposal meaning of the verb phrase, and the def-
initeness, givenness and weight of the object NP
(Li and Thompson, 1981; Liu, 2007).

(3) a. Wo
I

ba
BA

fan
rice

chi
eat

wan
finish

le.
SEP

I have finished the rice.
b. Ta

he
zhe
this

dianying
movie

kan-le
saw

henduo
many

bian.
time

He has watched this movie for many
times.

There is also a methodological motivation for
adopting a hierarchical schema. Though it is not
impossible to model a categorical variation with
more than two variants (using multinomial logis-
tic regression), binary variation is much easier to
model and the interpretation of the results is more
straightforward (this is especially true when ran-
dom effects are present).

In view of the above, we propose the schema
in Fig 2 for modeling the current variation phe-
nomenon. We refer to sentences in the form of DO
V IO as preverbal ditransitive sentences (since DO
is before the verb), while both V DO IO and V IO
DO are postverbal ditransitives. The distinction
between the latter two forms regards whether DO
is before or after IO, therefore one is termed as
pre-IO and the other post-IO. Compared with the
upper-level preverbal-postverbal distinction, the
lower-level variation is much less studied in the
literature (though see Liu, 2006 for a relevant dis-
cussion).

Corresponding to the schema in Fig 2, we con-
structed two separate models, one for the upper-
level variation (“upper model”) and the other for
the lower-level variation (“lower model”).
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Figure 2: A two-level schema for Chinese dative
variation

2 Methodology

2.1 Corpus and dataset

The data we use are from the Sinica Corpus of
Modern Chinese (v3.1; Huang et al., 1995). We
first compiled a list of 36 verbs that could be used
ditransitively (see Appendix A) and then extracted
from the corpus all sentences containing these
words (n= 48,825 sentences). We then manu-
ally went through the sentences and selected those
that (a) featured the ditransitive sense of the tar-
get verb, with both object NPs being overt, and
(b) were in the form of any of the three form vari-
ants. 1,574 sentences remained after step (a) 1 and
1,433 after step (b) 2.

Further removal was conducted on verbs that
were too sparse in the dataset. In each varia-
tion model, we removed verbs with fewer than
two occurrences under either form variant. The
final dataset for the upper model has 1149 sen-
tences (of 20 verb types) while the dataset for
the lower model has 801 sentences (of 14 verb
types). The latter dataset is largely but not fully
contained in the former due to the elimination of
low-frequency verbs.

2.2 Data annotation

Similar to Bresnan et al.’s work on English, we
annotated each data sentence for a wide range of
features pertaining to the verb and the two NPs
(see Appendix B for a complete list of annotated

1A vast number of sentences were removed because the
target verb was not used as a verb, or used with a different
sense, or used as part of a different verb phrase, e.g. fa to
allocate could also mean to bloom or be used in fazhan to
develop, faxian to discover, etc.

2141 sentences were removed because they were in the
form of IO V DO.

factors). Specifically, the verb was coded either
as expressing a canonical transfer event, such as
ji “to mail”, or an extended transfer event, such
as jieshao “to introduce”. Semantic annotation of
the two NPs is much trickier in Chinese than in
English due to the lack of morphology. In prac-
tice, we used Bresnan et al.’s criteria for English,
whenever applicable (e.g. accessibility, person,
concreteness, animacy). In cases where the En-
glish rules did not apply (e.g. definiteness and
number of bare NPs in Chinese), we developed
working principles based on phrasal substitution.
For example, if a bare NP can take a specifier
like yige/yizhi “one” without changing sentence
meaning, it is considered to be indefinite. Con-
versely, if a bare NP is better replaced with a
full NP with a demonstrative zhege “this” or nage
“that”, it is coded as definite. Similar rules were
used to assist annotating the number feature, using
specifiers yige/nage “one”/“that” and yixie/naxie
“some”/“those”.

In addition to the factors in the English model,
we also coded a set of structural features, includ-
ing the presence of a following verb after the
ditransitive construction, the presence of quanti-
fiers/numerals in the NPs, and whether or not the
ditransitive structure is embedded, nominalized,
or relativized, etc. We suspect that since seman-
tic features are often covert in Chinese words, it is
possible that overt marking (e.g. the use of quan-
tifiers/numerals) plays a more important role in
conditioning surface form variation.

Finally we also included genre in the model.
Sentences listed under the categories of dialogue
and speech in the Sinica corpus were coded as
“spoken” and the rest are coded as “written”.

Altogether 24 factors were annotated and in-
cluded in the statistical models as predictor vari-
ables. All variables are categorical except for the
(log) length difference between DO and IO, which
is numerical.

2.3 Statistical models

The statistical tool we use is mixed-effects lo-
gistic regression models. Compared with regu-
lar logistic regression models, mixed-effects mod-
els are more sophisticated in that they allow the
user to specify factors that might introduce ran-
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dom variation in the dataset. In the current study,
the datasets in both models contain sentences with
different verbs. It is possible that different verbs
have different intrinsic tendencies toward a cer-
tain word order variant.3 Incorporating this piece
of information into the model makes it more pow-
erful and less affected by the unbalanced distri-
bution of verb types. The mathematical formula
of the mixed-effects logistic regression model is
given below.

(4) Probability(V DO IO) = 1
1+e−(αi+xβ)

,
where αi is the verb-specific intercept of
the verb vi , x is a vector of predictors
and β is a vector of corresponding coef-
ficients.

Using the annotated datasets described in 2.2,
we built an upper model and a lower model, corre-
sponding to the schema in Fig 2. The general pro-
cedure of statistical analysis (which is the same
for both models) is described as follows.

We first run the model with all 24 predictors,
which will generate a coefficient and a p value for
each predictor. Then we refit the model with only
significant predictors (i.e. p < 0.05). The purpose
of doing so is to filter out the noise in the model fit
created by the large number of insignificant pre-
dictors. Only predictors that remain significant in
the simplified model with largely unchanged co-
efficients are considered to be reliably significant.

Two model evaluation techniques are used to
check the model results: cross-validation and sep-
arate analysis of high-frequency verbs. A poten-
tial problem in any statistical model is that it might
overfit the data. After all, what we are interested
in is the general probabilistic trends in dative vari-
ation, not the trends in a particular set of sen-
tences featuring a particular set of verbs. A cross-
validation test helps us evaluate the generalizabil-
ity of model results by running the same model
on a randomly sampled subset of the data. In do-
ing so, it simulates the effect of having different
datasets. In practice, we use two types of cross-

3The same can be said about individual speakers, as some
speakers might be more inclined to use certain forms than
other speakers. However, since the sentences in the current
datasets were sampled from a vast pool of speakers/writers
(given the way the corpus is developed), individual differ-
ences among speakers is not considered in the current model.

validation procedures: one randomly samples sen-
tences and the other samples verbs. Each proce-
dure is executed on 100 randomly sampled subset
of half the sentences/verbs. Only predictors with
consistent performance over all iterations in both
tests will be considered as stable.

Another concern in the model design is the ef-
fect of verb frequency. In the current dataset, one
verb, i.e. tigong “to provide”, is extremely fre-
quent. 37.3% of the sentences in the upper model
and 50.9% in the lower model come from this
verb. Though in theory, verb frequency is already
taken care of by using mixed-effects models and
running cross-validation on samples of the verb
set, it is still necessary to test tigong separately
from the rest of the verbs, due to its extremely
high frequency. In the next section, we will re-
port in detail the results from the two regression
models.

3 Results

3.1 Upper model: predicting preverbal and
postverbal variation

In the upper model, the distinction is between pre-
verbal (DO V IO; coded as 1) and postverbal di-
transitives (V DO IO and V IO DO; both coded as
0). The dataset in this model contains 1,149 sen-
tences (of 20 verb types), with 379 preverbal and
770 postverbal. The distribution of the verbs is
highly skewed. The most frequent verb is tigong
“to provide” (n=428 tokens), followed by song “to
send” (135) and jiao “to hand; to transfer” (117).
The remaining 17 verbs have between 5 and 54
occurrences in the dataset.

10 out of 24 predictors in the full model are
significant and most of them remain significant
when the other 14 predictors are removed from
the model. Table 1 below summarizes the results
of the simplified model.

Judging from the signs of the coefficients in
Table 1, a dative sentence is more likely to take
the preverbal form (as opposed to the postverbal
form) when (a) the verb expresses canonical trans-
fer event, (b) DO is definite, plural, abstract and
given in the previous context, with no quantifiers
or numerals, (c) IO is not a pronoun and is not
given in the previous context, and (d) DO is longer
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Predictor β p
verb is canonical 1.71 0.03
DO is given 1.22 <0.001
DO is definite 4.89 <0.001
DO is plural 1.4 <0.001
DO is concrete -1.13 0.004
quan/num in DO -0.99 0.005
IO is pronoun -1.64 <0.001
IO is given -0.9 0.007
quan/num in IO 1.32 0.07 (n.s.)
Len(DO)-Len(IO) 0.53 0.002

Table 1: Fixed effects in the simplified upper
model

than IO.
Table 2 shows the accuracy of the sim-

plified model. If 0.5 is used as the cut-
off probability, the model correctly predicts
for (737+338)/1149=93.6% of the sentences.
For comparison, the baseline accuracy is only
770/1049=-67% (i.e. by guessing postverbal ev-
ery time). In other words, the model only needs
to include 10 predictors to achieve an increase of
around 39% (93.6-67)/67) in model accuracy.

Predicted
preverbal postverbal

observed
preverbal 338 41
postverbal 33 737

Table 2: Prediction accuracy of the simplified up-
per model

Results from the two cross-validation tests con-
firm all the predictors regarding DO in Table 1,
as well as the pronominality of IO and the length
difference between DO and IO. Verb category
and the givenness of IO do not survive the cross-
validation tests.

Separate analysis of tigong shows that indeed,
the extremely high-frequency verb exhibits vastly
different patterns than other verbs. Only one pre-
dictor turns out to be significant for tigong sen-
tences, that is, the definiteness of DO (β = 6.17,
p < 0.001). A closer look at these sentences sug-
gests that they are strongly biased toward postver-

bal word order, in that 400 out of 428 (95.4%)
tigong sentences are postverbal (compared with
the average level of 67% in all sentences). In other
words, just by guessing postverbal every time, one
is able to make the correct prediction for tigong
over 95% of the time. Not surprisingly, there
is little need for additional predictors. For non-
tigong sentences, all factors in Table 1 are signif-
icant except for verb category and the presence
of quantifiers/numerals in IO. Overall, the non-
tigong model has an accuracy of 91.5% (baseline
= 50.6%).

To sum up, we are confident to say that the
semantic features of DO, as well as pronominal-
ity of IO and the length difference between the
two objects, play important roles in conditioning
the preverbal-postverbal variation. Knowing these
factors boosts the model s predicting power by a
great deal.

3.2 Lower model: predicting pre-IO and
post-IO variation

In the lower model, the distinction is between pre-
IO sentences (i.e. V DO IO; coded as 1) and post-
IO sentences (i.e. V IO DO; coded as 0). The
dataset consists of 801 sentences of 14 verb types,
among which 161 are pre-IO and 640 are post-IO.
The most frequent verb is again, tigong (n=408
tokens), followed by dai “to bring” (137) and song
“to send” (89).

Table 3 below summarizes the results of the
simplified version of the lower model (constructed
in the same fashion as described in Section 3.1).

Predictor β p
DO is definite 1.59 0.006
DO is concrete 1.06 <0.001
DO is plural -0.57 0.04
followed by a verb 2.29 <0.001
normalized verb
phrase

1.36 0.13 (n.s.)

Len(DO) - Len(IO) -1.37 <0.001

Table 3: Fixed effects in the simplified lower
model

Compared to the upper model, fewer predictors
are significant in the lower model. Everything else
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being equal, a postverbal ditransitive sentence is
more likely to take the pre-IO form (V DO IO) if
(a) DO is definite and concrete, (b) IO is singu-
lar, (c) DO is shorter than IO, and (d) the ditransi-
tive construction is followed by another verb. The
last point is illustrated in sentence 5a, which is
adapted from a real sentence in the corpus. In
5a, the NP women “we” is both the recipient of
the first verb song “to send” and the agent of the
second verb chi “to eat”. Thus, by using a pre-
IO form, the NP women is in effect adjacent to
the second verb chi, which might give an advan-
tage in sentence processing. Notice though, if the
other form (V IO DO) is used, the sentence is still
grammatical (see 5b).

(5) a. Ta
he

hai
also

song
sent

xiaoye
snacks

gei
to

wo
me

chi.
eat

He also sent snacks for me to eat.
b. Ta

he
hai
also

song
sent

(gei)
(to)

wo
me

xiaoye
snacks

chi.
eat

He also sent me snacks to eat.

Overall the lower model is not as successful
as the upper model. The prediction accuracy is
87.7% (baseline accuracy is 79.9%; see Table 4).

Predicted
pre-IO post-IO

observed
pre-IO 85 76
post-IO 22 618

Table 4: Prediction accuracy of the simplified
lower model

Moreover, cross-validation and the analysis of
tigong show that only two factors, the presence of
the following verb and length difference, are sta-
ble across subsets of the data. In fact, with length
difference alone, the model generates correct pre-
dictions for 86.8% of the sentences (only 1% less
than the accuracy reported in Table 4).

However, before we hastily conclude that
length difference is the only thing that matters in
the lower-level variation, it is important to point
out that when the length factor is removed from
the model, some predictors (such as the accessi-
bility of DO) turn out to be significant and the
model still manages to achieve an accuracy of

85.3%. Therefore, a more plausible explanation
is that length difference is the strongest predictors
for lower-level dative variation. Though the part
of variation it accounts for can also be explained
by other predictors, it is more effective in doing
so. Therefore the existence of this variable tends
to mask other predictors in the model.

4 Discussion

4.1 Comparing he two models

In the current study, we propose a two-level hier-
archical schema for modeling the variation among
three major word orders of Chinese dative sen-
tences. On the upper level, there is a distinction
between sentences with preverbal DOs and those
with postverbal DOs. On the lower level, among
postverbal sentences, there is a further distinction
between pre-IO sentences (i.e. with prepositional
phrases), and post-IO sentences (i.e. double ob-
ject forms). This schema is promoted by structural
as well as methodological concerns.

Our modeling results show that the two lev-
els of variation are indeed characterized by dif-
ferent probabilistic patterns, which in turn pro-
vide evidence for our original proposal. As pre-
sented in Section 3, the upper-level distinction is
mostly conditioned by the semantic features of
the DO. However, in the lower-level variation, the
two best predictors are length difference and the
presence of a following verb. Overall, the upper-
level model is more successful (accuracy = 93.6%,
baseline = 67%) than the lower-level model (accu-
racy = 87.7%, baseline = 79.9%).

A more striking difference between the two
models is that they exhibit weight effects in op-
posite directions. In both models, length differ-
ence between DO and IO plays an important role.
Nevertheless, in the upper model, length differ-
ence has a positive sign (β = 0.53), meaning that
the longer the DO is (compared to the IO), the
more likely it is to prepose DO before the verb.
Conversely, in the lower-level model, this factor
has a negative sign (β = - 1.37), which means that
the longer the DO is (compared to the IO), the less
likely it is for DO to be before IO. That is to say,
everything else being equal, if a DO is long, it will
probably be preposed before the verb, but if it is
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already after the verb, then it will more likely be
placed after IO, at the end of the construction.

The difference in directionality explains why it
is only in the lower-level model that the weight
effect overshadows other predictors. Features
like pronominality, definiteness, and accessibil-
ity are inherently correlated with weight. Pro-
nouns are shorter than full NPs; definite NPs tend
to be shorter than indefinite NPs (which often
take quantifiers and numerals); NPs that have ap-
peared before tend to be in shorter forms than their
first occurrences. In both models, a general trend
is that NPs that are more prominent in the con-
text (e.g. pronouns, definite NPs, NPs with an-
tecedents) tend to occur earlier in the construc-
tion. Thus, in the lower model, the general trend
of prominence is confluent with the short before
long weight effect, but in the upper model, it is
pulling away from the long before short weight
effect. As a result, weight effect only masks se-
mantic predictors in the lower model, not in the
upper model.

4.2 Comparing with English dative variation

Compared with Bresnan et al.s models, the current
results reveal a number of interesting differences
between Chinese and English dative variation.

First, the variation phenomenon in Chinese in-
volves at least one more major variant, that is,
the preverbal word order, which significantly in-
creases the complexity of the phenomenon. The
fact that overall the English model has greater pre-
diction accuracy than the Chinese models might
have to do with the fact that the variation phe-
nomenon is more complicated and harder to
model in Chinese.

Second, dative variation in Chinese seems to be
less sensitive to semantic features. If we only con-
sider the lower-level variation in Chinese, which
involves the same form variants as in English (i.e.
V DO IO and V IO DO), the Chinese model is
best predicted by the length difference between
DO and IO and most other predictors are muted by
the presence of this factor. In the English model,
semantic features are still significant even when
length difference is controlled.

Last but not least, as discussed at length in the
previous section, the two levels of dative variation

in Chinese exhibit weight effects in opposite di-
rections. The English variation is also sensitive
to weight, but only in the short before long direc-
tion, which is the same as the lower-level variation
in Chinese.

5 Conclusion

In this work, we present a corpus-based statisti-
cal modeling study on Chinese dative variation.
In doing so, we show that this new methodology,
which combines corpus data and statistical model-
ing, is a powerful tool for studying complex vari-
ation phenomena in Chinese. The statistical mod-
els built in the current study achieve high accu-
racy in predicting surface forms in Chinese dative
sentences. More importantly, the models unveil
probabilistic tendencies in Chinese grammar that
are otherwise hard to notice.

A remaining question in the current study
is why would Chinese dative variation exhibit
weight effects in both directions. The answer to
this question awaits further investigation.
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Appendices

A Complete verb list 4

song “to send”, tigong “to provide”, jie “to lend
(to)”, fu “to pay”, ban “to award”, banfa “to
award”, zengsong “to send (as a gift)”, shang “to

4The verb gei “to give” is not included in the list, because
it has the same form as the coverb gei and therefore has dif-
ferent properties than other ditransitive verbs. Among other
things, the verb gei cannot take the V DO IO form in Man-
darin (e.g. *gei yiben shu gei wo “give a book to me”).

award”, jieshao “to introduce”, huan “to return”,
fa “to distribute/allocate”,jiao “to transfer”, ji “to
mail”, liu “to leave (behind)”, liuxia “to leave (be-
hind)”,reng “to throw”, diu “to throw”, diuxia “to
throw (behind)”, juan “to donate”, juanzeng “to
donate”, juanxian “to donate”, bo “to allocate”,
di “to hand (to)”, zu “to rent (to)”, fen “to dis-
tribute”, na “to hand (to)”, dai “to bring”, dailai
“to bring”, jiao “to teach”, chuan “to deliver”,
chuanran “to pass around (a disease)”, chuanda
“to deliver (a message)”, chuansong “to deliver”
, chuanshou “to deliver (knowledge)”,ci “to give
(as a reward)”, pei “to pay (compensation)”

B Predictors in the full model

Predictor Coding
genre 1=spoken; 0=written
verb category 1=canonical transfer;

0=otherwise
definiteness of DO 1=definite; 0=indefinite
pronominality of DO 1=pronoun; 0=otherwise
number of DO 1=plural; 0=singular
person of DO 1=1st and 2nd person;

0=otherwise
concreteness of DO 1=concrete; 0=abstract
givenness of DO 1=given; 0=otherwise
quan/num in DO 1=yes; 0=no
definiteness of IO 1=definite; 0=indefinite
pronominality of IO 1=pronoun; 0=otherwise
number of IO 1=plural; 0=singular
person of IO 1=1st and 2nd person;

0=otherwise
concreteness of IO 1=concrete; 0=abstract
givenness of IO 1=given; 0=otherwise
followed by another verb 1=yes; 0=no
embedded under another
verb

1=yes; 0=no

part of a copular sentence 1=yes; 0=no
adverbial phrase after the
verb

1=yes; 0=no

particle after the verb 1=yes; 0=no
question form 1=yes; 0=no
sentence negation 1=yes; 0=no
relativization 1=yes; 0=no
nominalization 1=yes; 0=no
log(len(DO)- log(len(IO)) numerical
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Abstract

This paper proposes an efficient online
method that trains a classifier with many
conjunctive features. We employ kernel
computation called kernel slicing, which
explicitly considers conjunctions among
frequent features in computing the poly-
nomial kernel, to combine the merits of
linear and kernel-based training. To im-
prove the scalability of this training, we
reuse the temporal margins of partial fea-
ture vectors and terminate unnecessary
margin computations. Experiments on de-
pendency parsing and hyponymy-relation
extraction demonstrated that our method
could train a classifier orders of magni-
tude faster than kernel-based online learn-
ing, while retaining its space efficiency.

1 Introduction

The past twenty years have witnessed a growing
use of machine-learning classifiers in the field of
NLP. Since the classification target of complex
NLP tasks (e.g., dependency parsing and relation
extraction) consists of more than one constituent
(e.g., a head and a dependent in dependency pars-
ing), we need to consider conjunctive features,
i.e., conjunctions of primitive features that fo-
cus on the particular clues of each constituent, to
achieve a high degree of accuracy in those tasks.

Training with conjunctive features involves a
space-time trade-off in the way conjunctive fea-
tures are handled. Linear models, such as log-
linear models, explicitly estimate the weights of
conjunctive features, and training thus requires a
great deal of memory when we take higher-order

conjunctive features into consideration. Kernel-
based models such as support vector machines, on
the other hand, ensure space efficiency by using
the kernel trick to implicitly consider conjunctive
features. However, training takes quadratic time
in the number of examples, even with online algo-
rithms such as the (kernel) perceptron (Freund and
Schapire, 1999), and we cannot fully exploit am-
ple ‘labeled’ data obtained with semi-supervised
algorithms (Ando and Zhang, 2005; Bellare et al.,
2007; Liang et al., 2008; Daumé III, 2008).

We aim at resolving this dilemma in train-
ing with conjunctive features, and propose online
learning that combines the time efficiency of lin-
ear training and the space efficiency of kernel-
based training. Following the work by Goldberg
and Elhadad (2008), we explicitly take conjunc-
tive features into account that frequently appear in
the training data, and implicitly consider the other
conjunctive features by using the polynomial ker-
nel. We then improve the scalability of this train-
ing by a method called kernel slicing, which al-
lows us to reuse the temporal margins of partial
feature vectors and to terminate computations that
do not contribute to parameter updates.

We evaluate our method in two NLP tasks: de-
pendency parsing and hyponymy-relation extrac-
tion. We demonstrate that our method is orders of
magnitude faster than kernel-based online learn-
ing while retaining its space efficiency.

The remainder of this paper is organized as fol-
lows. Section 2 introduces preliminaries and no-
tations. Section 3 proposes our training method.
Section 4 evaluates the proposed method. Sec-
tion 5 discusses related studies. Section 6 con-
cludes this paper and addresses future work.
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Algorithm 1 BASE LEARNER: KERNEL PA-I

INPUT: T = {(x, y)t}|T |
t=1, k : Rn × Rn 7→ R, C ∈ R+

OUTPUT: (S|T |,α|T |)
1: initialize: S0 ← ∅, α0 ← ∅
2: for t = 1 to |T | do
3: receive example (x, y)t : x ∈ Rn, y ∈ {−1,+1}
4: compute margin: mt(x) =

∑

si∈St−1

αik(si,x)

5: if `t = max {0, 1− ymt(x)} > 0 then

6: τt ← min


C,

`t
‖x‖2

ff
7: αt ← αt−1 ∪ {τty}, St ← St−1 ∪ {x}
8: else
9: αt ← αt−1, St ← St−1

10: end if
11: end for
12: return (S|T |,α|T |)

2 Preliminaries

This section first introduces a passive-aggressive
algorithm (Crammer et al., 2006), which we use
as a base learner. We then explain fast methods of
computing the polynomial kernel.

Each example x in a classification problem is
represented by a feature vector whose element xj
is a value of a feature function, fj ∈ F . Here, we
assume a binary feature function, fj(x) ∈ {0, 1},
which returns one if particular context data appear
in the example. We say that feature fj is active in
example x when xj = fj(x) = 1. We denote a
binary feature vector, x, as a set of active features
x = {fj | fj ∈ F , fj(x) = 1} for brevity; fj ∈ x
means that fj is active in x, and |x| represents the
number of active features in x.

2.1 Kernel Passive-Aggressive Algorithm

A passive-aggressive algorithm (PA) (Crammer et
al., 2006) represents online learning that updates
parameters for given labeled example (x, y)t ∈
T in each round t. We assume a binary label,
y ∈ {−1,+1}, here for clarity. Algorithm 1
is a variant of PA (PA-I) that incorporates a ker-
nel function, k. In round t, PA-I first computes
a (signed) margin mt(x) of x by using the ker-
nel function with support set St−1 and coefficients
αt−1 (Line 4). PA-I then suffers a hinge-loss,
`t = max {0, 1− ymt(x)} (Line 5). If `t > 0,
PA-I adds x to St−1 (Line 7). Hyperparameter C
controls the aggressiveness of parameter updates.

The kernel function computes a dot product in

RH space without mapping x ∈ Rn to φ(x) ∈
RH (k(x,x′) = φ(x)Tφ(x′)). We can implic-
itly consider (weighted) d or less order conjunc-
tions of primitive features by using polynomial
kernel function kd(s,x) = (sTx + 1)d. For ex-
ample, given support vector s = (s1, s2)

T and
input example x = (x1, x2)

T, the second-order
polynomial kernel returns k2(s,x) = (s1x1 +
s2x2+1)2 = 1+3s1x1+3s2x2+2s1x1s2x2 (∵
si, xi ∈ {0, 1}). This function thus implies map-
ping φ2(x) = (1,

√
3x1,
√
3x2,
√
2x1x2)

T.
Although online learning is generally efficient,

the kernel spoils its efficiency (Dekel et al., 2008).
This is because the kernel evaluation (Line 4)
takes O(|St−1||x|) time and |St−1| increases as
training continues. The learner thus takes the most
amount of time in this margin computation.

2.2 Kernel Computation for Classification

This section explains fast, exact methods of com-
puting the polynomial kernel, which are meant to
test the trained model, (S,α), and involve sub-
stantial computational cost in preparation.

2.2.1 Kernel Inverted
Kudo and Matsumoto (2003) proposed polyno-

mial kernel inverted (PKI), which builds inverted
indices h(fj) ≡ {s | s ∈ S, fj ∈ s} from each
feature fj to support vector s ∈ S to only con-
sider support vector s relevant to given x such
that sTx 6= 0. The time complexity of PKI is
O(B · |x| + |S|) where B ≡ 1

|x|
∑

fj∈x |h(fj)|,
which is smaller than O(|S||x|) if x has many
rare features fj such that |h(fj)| � |S|.

To the best of our knowledge, this is the only
exact method that has been used to speed up mar-
gin computation in the context of kernel-based on-
line learning (Okanohara and Tsujii, 2007).

2.2.2 Kernel Expansion
Isozaki and Kazawa (2002) and Kudo and Mat-

sumoto (2003) proposed kernel expansion, which
explicitly maps both support set S and given ex-
ample x ∈ Rn into RH by mapping φd imposed
by kd:

m(x) =

(
∑

si∈S
αiφd(si)

)T

φd(x) =
∑

fi∈xd

wi,
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where xd ∈ {0, 1}H is a binary feature vector
in which xdi = 1 for (φd(x))i 6= 0, and w is a
weight vector in the expanded feature space, Fd.
The weight vector w is computed from S and α:

w =
∑

si∈S
αi

d∑

k=0

ckdIk(s
d
i ), (1)

where ckd is a squared coefficient of k-th order con-
junctive features for d-th order polynomial kernel
(e.g., c02 = 1, c12 = 3, and c22 = 2)1 and Ik(s

d
i ) is

sdi ∈ {0, 1}H whose dimensions other than those
of k-th order conjunctive features are set to zero.

The time complexity of kernel expansion is
O(|xd|) where |xd| = ∑d

k=0

(|x|
k

)
∝ |x|d, which

can be smaller than O(|S||x|) in usual NLP tasks
(|x| � |S| and d ≤ 4).

2.2.3 Kernel Splitting
Since kernel expansion demands a huge mem-

ory volume to store the weight vector, w, in RH

(H =
∑d

k=0

(|F|
k

)
), Goldberg and Elhadad (2008)

only explicitly considered conjunctions among
features fC ∈ FC that commonly appear in sup-
port set S, and handled the other conjunctive fea-
tures relevant to rare features fR ∈ F \ FC by
using the polynomial kernel:

m(x) = m(x̃) +m(x)−m(x̃)

=
∑

fi∈x̃d

w̃i +
∑

si∈SR

αik
′
d(si,x, x̃), (2)

where x̃ is x whose dimensions of rare features
are set to zero, w̃ is a weight vector computed
with Eq. 1 for Fd

C , and k′d(s,x, x̃) is defined as:

k′d(s,x, x̃) ≡ kd(s,x)− kd(s, x̃).

We can space-efficiently compute the first term
of Eq. 2 since |w̃| � |w|, while we can
quickly compute the second term of Eq. 2 since
k′d(si,x, x̃) = 0 when sTi x = sTi x̃; we only
need to consider a small subset of the support set,
SR =

⋃
fR∈x\x̃ h(fR), that has at least one of the

rare features, fR, appearing in x\x̃ (|SR| � |S|).
Counting the number of features examined, the

time complexity of Eq. 2 is O(|x̃d|+ |SR||x̃|).
1Following Lemma 1 in Kudo and Matsumoto (2003),

ckd =
∑d

l=k

`
d
l

´ `∑k
m=0(−1)k−m ·ml

`
k
m

´´
.

3 Algorithm

This section first describes the way kernel splitting
is integrated into PA-I (Section 3.1). We then pro-
pose kernel slicing (Section 3.2), which enables
us to reuse the temporal margins computed in the
past rounds (Section 3.2.1) and to skip unneces-
sary margin computations (Section 3.2.2).

In what follows, we use PA-I as a base learner.
Note that an analogous argument can be applied
to other perceptron-like online learners with the
additive weight update (Line 7 in Algorithm 1).

3.1 Base Learner with Kernel Splitting
A problem in integrating kernel splitting into the
base learner presented in Algorithm 1 is how to
determine FC , features among which we explic-
itly consider conjunctions, without knowing the
final support set, S|T |. We heuristically solve
this by ranking feature f according to their fre-
quency in the training data and by using the top-
N frequent features in the training data as FC

(= {f | f ∈ F , RANK(f) ≤ N}).2 Since S|T |
is a subset of the examples, this approximates the
selection from S|T |. We empirically demonstrate
the validity of this approach in the experiments.

We then useFC to construct a base learner with
kernel splitting; we replace the kernel computa-
tion (Line 4 in Algorithm 1) with Eq. 2 where
(S,α) = (St−1,αt−1). To compute mt(x̃) by
using kernel expansion, we need to additionally
maintain the weight vector w̃ for the conjunctions
of common features that appear in St−1.

The additive parameter update of PA-I enables
us to keep w̃ to correspond to (St−1,αt−1).
When we add x to support set St−1 (Line 7 in
Algorithm 1), we also update w̃ with Eq. 1:

w̃ ← w̃ + τty
d∑

k=0

ckdIk(x̃
d).

Following (Kudo and Matsumoto, 2003), we
use a trie (hereafter, weight trie) to maintain con-
junctive features. Each edge in the weight trie is
labeled with a primitive feature, while each path

2The overhead of counting features is negligible com-
pared to the total training time. If we want to run the learner
in a purely online manner, we can alternatively choose first
N features that appear in the processed examples as FC .
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represents a conjunctive feature that combines all
the primitive features on the path. The weights
of conjunctive features are retrieved by travers-
ing nodes in the trie. We carry out an analogous
traversal in updating the parameters of conjunc-
tive features, while registering a new conjunctive
feature by adding an edge to the trie.

The base learner with kernel splitting combines
the virtues of linear training and kernel-based
training. It reduces to linear training when we in-
crease N to |F|, while it reduces to kernel-based
training when we decrease N to 0. The output
is support set S|T | and coefficients α|T | (option-
ally, w̃), to which the efficient classification tech-
niques discussed in Section 2.2 and the one pro-
posed by Yoshinaga and Kitsuregawa (2009) can
be applied.

Note on weight trie construction The time and
space efficiency of this learner strongly depends
on the way the weight trie is constructed. We
need to address two practical issues that greatly
affect efficiency. First, we traverse the trie from
the rarest feature that constitutes a conjunctive
feature. This rare-to-frequent mining helps us to
avoid enumerating higher-order conjunctive fea-
tures that have not been registered in the trie, when
computing margin. Second, we use RANK(f)
encoded into a dlog128 RANK(f)e-byte string by
using variable-byte coding (Williams and Zobel,
1999) as f ’s representation in the trie. This en-
coding reduces the trie size, since features with
small RANK(f) will appear frequently in the trie.

3.2 Base Learner with Kernel Slicing

Although a base learner with kernel splitting can
enjoy the merits of linear and kernel-based train-
ing, it can simultaneously suffer from their demer-
its. Because the training takes polynomial time
in the number of common features in x (|x̃d| =∑d

k=0

(|x̃|
k

)
∝ |x̃|d) at each round, we need to set

N to a smaller value when we take higher-order
conjunctive features into consideration. However,
since the margin computation takes linear time in
the number of support vectors |SR| relevant to rare
features fR ∈ F\FC , we need to set N to a larger
value when we handle a larger number of training
examples. The training thereby slows down when

we train a classifier with high-order conjunctive
features and a large number of training examples.

We then attempt to improve the scalability of
the training by exploiting a characteristic of la-
beled data in NLP. Because examples in NLP tasks
are likely to be redundant (Yoshinaga and Kitsure-
gawa, 2009), the learner computes margins of ex-
amples that have many features in common. If we
can reuse the ‘temporal’ margins of partial feature
vectors computed in past rounds, this will speed
up the computation of margins.

We propose kernel slicing, which generalizes
kernel splitting in a purely feature-wise manner
and enables us to reuse the temporal partial mar-
gins. Starting from the most frequent feature f1 in
x (f1 = argminf∈x RANK(f)), we incrementally
compute mt(x) by accumulating a partial mar-
gin, mj

t (x) ≡ mt(xj)−mt(xj−1), when we add
the j-th frequent feature fj in x:

mt(x) = m0
t +

|x|∑

j=1

mj
t (x), (3)

where m0
t =

∑
si∈St−1

αikd(si,∅) =
∑

i αi, and
xj has the j most frequent features in x (x0 = ∅,
xj =

⊔j−1
k=0{argminf∈x\xk

RANK(f)}).
Partial margin mj

t (x) can be computed by us-
ing the polynomial kernel:

mj
t (x) =

∑

si∈St−1

αik
′
d(si,xj ,xj−1), (4)

or by using kernel expansion:

mj
t (x) =

∑

fi∈xd
j \xd

j−1

w̃i. (5)

Kernel splitting is a special case of kernel slicing,
which uses Eq. 5 for fj ∈ FC and Eq. 4 for fj ∈
F \ FC .

3.2.1 Reuse of Temporal Partial Margins
We can speed up both Eqs. 4 and 5 by reusing

a temporal partial margin, δjt′ = mj
t′(x) that had

been computed in past round t′(< t):

mj
t (x) = δjt′ +

∑

si∈Sj

αik
′
d(si,xj ,xj−1), (6)

where Sj = {s | s ∈ St−1 \ St′−1, fj ∈ s}.
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Algorithm 2 KERNEL SLICING

INPUT: x ∈ 2F , St−1, αt−1, FC ⊆ F , δ : 2F 7→ N× R
OUTPUT: mt(x)
1: initialize: x0 ← ∅, j ← 1, mt(x)← m0

t

2: repeat
3: xj ← xj−1 t {argminf∈x\xj−1

RANK(f)}
4: retrieve partial margin: (t′, δjt′)← δ(xj)
5: if fj ∈ F \ FC or Eq. 7 is true then
6: compute mj

t(x) using Eq. 6 with δjt′
7: else
8: compute mj

t(x) using Eq. 5
9: end if

10: update partial margin: δ(xj)← (t,mj
t(x))

11: mt(x)← mt(x) +mj
t(x)

12: until xj 6= x
13: return mt(x)

Eq. 6 is faster than Eq. 4,3 and can even be
faster than Eq. 5.4 When RANK(fj) is high, xj ap-
pears frequently in the training examples and |Sj |
becomes small since t′ will be close to t. When
RANK(fj) is low, xj rarely appears in the training
examples but we can still expect |Sj | to be small
since the number of support vectors in St−1\St′−1

that have rare feature fj will be small.
To compute Eq. 3, we now have the choice to

choose Eq. 5 or 6 for fj ∈ FC . Counting the
number of features to be examined in computing
mj

t (x), we have the following criteria to deter-
mine whether we can use Eq. 6 instead of Eq. 5:

1 + |Sj ||xj−1| ≤ |xd
j \ xd

j−1| =
d∑

k=1

(
j − 1

k − 1

)
,

where the left- and right-hand sides indicate the
number of features examined in Eq. 6 for the for-
mer and Eq. 5 for the latter. Expanding the right-
hand side for d = 2, 3 and dividing both sides with
|xj−1| = j − 1, we have:

|Sj | ≤
{

1 (d = 2)
j
2 (d = 3)

. (7)

If this condition is met after retrieving the tem-
poral partial margin, δjt′ , we can compute partial
margin mj

t (x) with Eq. 6. This analysis reveals
3When a margin of xj has not been computed, we regard

t′ = 0 and δjt′ = 0, which reduces Eq. 6 to Eq. 4.
4We associate partial margins with partial feature se-

quences whose features are sorted by frequent-to-rare order,
and store them in a trie (partial margin trie). This enables us
to retrieve partial margin δjt′ for given xj in O(1) time.

that we can expect little speed-up for the second-
order polynomial kernel; we will only use Eq. 6
with third or higher-order polynomial kernel.

Algorithm 2 summarizes the margin computa-
tion with kernel slicing. It processes each feature
fj ∈ x in frequent-to-rare order, and accumulates
partial margin mj

t (x) to have mt(x). Intuitively
speaking, when the algorithm uses the partial mar-
gin, it only considers support vectors on each fea-
ture that have been added since the last evaluation
of the partial feature vector, to avoid the repetition
in kernel evaluation as much as possible.

3.2.2 Termination of Margin Computation
Kernel slicing enables another optimization that

exploits a characteristic of online learning. Be-
cause we need an exact margin, mt(x), only when
hinge-loss `t = 1−ymt(x) is positive, we can fin-
ish margin computation as soon as we find that the
lower-bound of ymt(x) is larger than one.

When ymt(x) is larger than one after pro-
cessing feature fj in Eq. 3, we quickly examine
whether this will hold even after we process the
remaining features. We can compute a possible
range of partial margin mk

t (x) with Eq. 4, hav-
ing the upper- and lower-bounds, k̂′d and ǩ′d, of
k′d(si,xk,xk−1) (= kd(si,xk)− kd(si,xk−1)):

mk
t (x) ≤ k̂′d

∑

si∈S+
k

αi + ǩ′d
∑

si∈S−
k

αi (8)

mk
t (x) ≥ ǩ′d

∑

si∈S+
k

αi + k̂′d
∑

si∈S−
k

αi, (9)

where S+k = {si | si ∈ St−1, fk ∈ si, αi > 0},
S−k = {si | si ∈ St−1, fk ∈ si, αi < 0}, k̂′d =
(k+1)d− kd and ǩ′d = 2d− 1 (∵ 0 ≤ sTi xk−1 ≤
|xk−1| = k − 1, sTi xk = sTi xk−1 + 1 for all
si ∈ S+k ∪ S−k ).

We accumulate Eqs. 8 and 9 from rare to fre-
quent features, and use the intermediate results
to estimate the possible range of mt(x) before
Line 3 in Algorithm 2. If the lower bound of
ymt(x) turns out to be larger than one, we ter-
minate the computation of mt(x).

As training continues, the model becomes dis-
criminative and given x is likely to have a larger
margin. The impact of this termination will in-
crease as the amount of training data expands.
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4 Evaluation

We evaluated the proposed method in two NLP

tasks: dependency parsing (Sassano, 2004) and
hyponymy-relation extraction (Sumida et al.,
2008). We used labeled data included in open-
source softwares to promote the reproducibility of
our results.5 All the experiments were conducted
on a server with an Intel R© XeonTM 3.2 GHz CPU.
We used a double-array trie (Aoe, 1989; Yata et
al., 2009) as an implementation of the weight trie
and the partial margin trie.

4.1 Task Descriptions
Japanese Dependency Parsing A parser inputs
a sentence segmented by a bunsetsu (base phrase
in Japanese), and selects a particular pair of bun-
setsus (dependent and head candidates); the clas-
sifier then outputs label y = +1 (dependent) or
−1 (independent) for the pair. The features con-
sist of the surface form, POS, POS-subcategory
and the inflection form of each bunsetsu, and sur-
rounding contexts such as the positional distance,
punctuations and brackets. See (Yoshinaga and
Kitsuregawa, 2009) for details on the features.

Hyponymy-Relation Extraction A hyponymy
relation extractor (Sumida et al., 2008) first ex-
tracts a pair of entities from hierarchical listing
structures in Wikipedia articles (hypernym and
hyponym candidates); a classifier then outputs la-
bel y = +1 (correct) or −1 (incorrect) for the
pair. The features include a surface form, mor-
phemes, POS and the listing type for each entity,
and surrounding contexts such as the hierarchical
distance between the entities. See (Sumida et al.,
2008) for details on the features.

4.2 Settings
Table 1 summarizes the training data for the two
tasks. The examples for the Japanese dependency
parsing task were generated for a transition-based
parser (Sassano, 2004) from a standard data set.6

We used the dependency accuracy of the parser
5The labeled data for dependency parsing is available

from: http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/pecco/, and
the labeled data for hyponymy-relation extraction is avail-
able from: http://nlpwww.nict.go.jp/hyponymy/.

6Kyoto Text Corpus Version 4.0:
http://nlp.kuee.kyoto-u.ac.jp/nl-resource/corpus-e.html.

DATA SET DEP REL

|T | 296,776 201,664
(y = +1) 150,064 152,199
(y = −1) 146,712 49,465

Ave. of |x| 27.6 15.4
Ave. of |x2| 396.1 136.9
Ave. of |x3| 3558.3 798.7
|F| 64,493 306,036
|F2| 3,093,768 6,688,886
|F3| 58,361,669 64,249,234

Table 1: Training data for dependency parsing
(DEP) and hyponymy-relation extraction (REL).

as model accuracy in this task. In the hyponymy-
relation extraction task, we randomly chosen two
sets of 10,000 examples from the labeled data for
development and testing, and used the remaining
examples for training. Note that the number of
active features, |Fd|, dramatically grows when we
consider higher-order conjunctive features.

We compared the proposed method, PA-I SL

(Algorithm 1 with Algorithm 2), to PA-I KER-
NEL (Algorithm 1 with PKI; Okanohara and Tsu-
jii (2007)), PA-I KE (Algorithm 1 with kernel ex-
pansion; viz., kernel splitting with N = |F|),
SVM (batch training of support vector machines),7

and `1-LLM (stochastic gradient descent training
of the `1-regularized log-linear model: Tsuruoka
et al. (2009)). We refer to PA-I SL that does not
reuse temporal partial margins as PA-I SL∗. To
demonstrate the impact of conjunctive features on
model accuracy, we also trained PA-I without con-
junctive features. The number of iterations in PA-I

was set to 20, and the parameters of PA-I were av-
eraged in an efficient manner (Daumé III, 2006).
We explicitly considered conjunctions among top-
N (N = 125 × 2n;n ≥ 0) features in PA-I SL

and PA-I SL∗. The hyperparameters were tuned to
maximize accuracy on the development set.

4.3 Results

Tables 2 and 3 list the experimental results for
the two tasks (due to space limitations, Tables 2
and 3 list PA-I SL with parameter N that achieved
the fastest speed). The accuracy of the models
trained with the proposed method was better than
`1-LLMs and was comparable to SVMs. The infe-

7http://chasen.org/˜taku/software/TinySVM/
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METHOD d ACC. TIME MEMORY

PA-I 1 88.56% 3s 55MB
`1-LLM 2 90.55% 340s 1656MB
SVM 2 90.76% 29863s 245MB
PA-I KERNEL 2 90.68% 8361s 84MB
PA-I KE 2 90.67% 41s 155MB
PA-I SL∗

N=4000 2 90.71% 33s 95MB
`1-LLM 3 90.76% 4057s 21,499MB
SVM 3 90.93% 25912s 243MB
PA-I KERNEL 3 90.90% 8704s 83MB
PA-I KE 3 90.90% 465s 993MB
PA-I SLN=250 3 90.89% 262s 175MB

Table 2: Training time for classifiers used in de-
pendency parsing task.
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Figure 1: Training time for PA-I variants as a func-
tion of the number of expanded primitive features
in dependency parsing task (d = 3).

rior accuracy of PA-I (d = 1) confirmed the ne-
cessity of conjunctive features in these tasks. The
minor difference among the model accuracy of the
three PA-I variants was due to rounding errors.

PA-I SL was the fastest of the training meth-
ods with the same feature set, and its space effi-
ciency was comparable to the kernel-based learn-
ers. PA-I SL could reduce the memory footprint
from 993MB8 to 175MB for d = 3 in the depen-
dency parsing task, while speeding up training.

Although linear training (`1-LLM and PA-I KE)
dramatically slowed down when we took higher-
order conjunctive features into account, kernel
slicing alleviated deterioration in speed. Espe-
cially in the hyponymy-relation extraction task,
PA-I SL took almost the same time regardless of
the order of conjunctive features.

8`1-LLM took much more memory than PA-I KE mainly
because `1-LLM expands conjunctive features in the exam-
ples prior to training, while PA-I KE expands conjunctive fea-
tures in each example on the fly during training. Interested
readers may refer to (Chang et al., 2010) for this issue.

METHOD d ACC. TIME MEMORY

PA-I 1 91.75% 2s 28MB
`1-LLM 2 92.67% 136s 1683MB
SVM 2 92.85% 12306s 139MB
PA-I KERNEL 2 92.91% 1251s 54MB
PA-I KE 2 92.96% 27s 143MB
PA-I SL∗

N=8000 2 92.88% 17s 77MB
`1-LLM 3 92.86% 779s 14,089MB
SVM 3 93.09% 17354s 140MB
PA-I KERNEL 3 93.14% 1074s 49MB
PA-I KE 3 93.11% 103s 751MB
PA-I SLN=125 3 93.05% 17s 131MB

Table 3: Training time for classifiers used in
hyponymy-relation extraction task.
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Figure 2: Training time for PA-I variants as a func-
tion of the number of expanded primitive features
in hyponymy-relation extraction task (d = 3).

Figures 1 and 2 plot the trade-off between the
number of expanded primitive features and train-
ing time with PA-I variants (d = 3) in the two
tasks. Here, PA-I SP is PA-I with kernel slicing
without the techniques described in Sections 3.2.1
and 3.2.2, viz., kernel splitting. The early termi-
nation of margin computation reduces the train-
ing time when N is large. The reuse of temporal
margins makes the training time stable regardless
of parameter N . This suggests a simple, effec-
tive strategy for calibrating N ; we start the train-
ing with N = |F|, and when the learner reaches
the allowed memory size, we shrink N to N/2
by pruning sub-trees rooted by rarer features with
RANK(f) > N/2 in the weight trie.

Figures 3 and 4 plot training time with PA-I

variants (d = 3) for the two tasks as a function
of the training data size. PA-I SP inherited the de-
merit of PA-I KERNEL which takes quadratic time
in the number of examples, while PA-I SL took al-
most linear time in the number of examples.
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Figure 3: Training time for PA-I variants as a func-
tion of the number of training examples in depen-
dency parsing task (d = 3).

5 Related Work

There are several methods that learn ‘simpler’
models with fewer variables (features or support
vectors), to ensure scalability in training.

Researchers have employed feature selection
to assure space-efficiency in linear training. Wu
et al. (2007) used frequent-pattern mining to se-
lect effective conjunctive features prior to train-
ing. Okanohara and Tsujii (2009) revised graft-
ing for `1-LLM (Perkins et al., 2003) to prune use-
less conjunctive features during training. Iwakura
and Okamoto (2008) proposed a boosting-based
method that repeats the learning of rules repre-
sented by feature conjunctions. These methods,
however, require us to tune the hyperparameter to
trade model accuracy and the number of conjunc-
tive features (memory footprint and training time);
note that an accurate model may need many con-
junctive features (in the hyponymy-relation ex-
traction task, `1-LLM needed 15,828,122 features
to obtain the best accuracy, 92.86%). Our method,
on the other hand, takes all conjunctive features
into consideration regardless of parameter N .

Dekel et al. (2008) and Cavallanti et al. (2007)
improved the scalability of the (kernel) percep-
tron, by exploiting redundancy in the training data
to bound the size of the support set to given thresh-
old B (≥ |St|). However, Orabona et al. (2009)
reported that the models trained with these meth-
ods were just as accurate as a naive method that
ceases training when |St| reaches the same thresh-
old, B. They then proposed budget online learn-
ing based on PA-I, and it reduced the size of the
support set to a tenth with a tolerable loss of accu-
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Figure 4: Training time for PA-I variants as a
function of the number of training examples in
hyponymy-relation extraction task (d = 3).

racy. Their method, however, requiresO(|St−1|2)
time in updating the parameters in round t, which
disables efficient training. We have proposed an
orthogonal approach that exploits the data redun-
dancy in evaluating the kernel to train the same
model as the base learner.

6 Conclusion

In this paper, we proposed online learning with
kernel slicing, aiming at resolving the space-time
trade-off in training a classifier with many con-
junctive features. The kernel slicing generalizes
kernel splitting (Goldberg and Elhadad, 2008) in
a purely feature-wise manner, to truly combine the
merits of linear and kernel-based training. To im-
prove the scalability of the training with redundant
data in NLP, we reuse the temporal partial margins
computed in past rounds and terminate unneces-
sary margin computations. Experiments on de-
pendency parsing and hyponymy-relation extrac-
tion demonstrated that our method could train a
classifier orders of magnitude faster than kernel-
based learners, while retaining its space efficiency.

We will evaluate our method with ample la-
beled data obtained by the semi-supervised meth-
ods. The implementation of the proposed algo-
rithm for kernel-based online learners is available
from http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/.
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Abstract 

Near-synonyms are useful knowledge re-
sources for many natural language applica-
tions such as query expansion for information 
retrieval (IR) and paraphrasing for text gen-
eration. However, near-synonyms are not nec-
essarily interchangeable in contexts due to 
their specific usage and syntactic constraints. 
Accordingly, it is worth to develop algorithms 
to verify whether near-synonyms do match the 
given contexts. In this paper, we consider the 
near-synonym substitution task as a classifica-
tion task, where a classifier is trained for each 
near-synonym set to classify test examples 
into one of the near-synonyms in the set. We 
also propose the use of discriminative training 
to improve classifiers by distinguishing posi-
tive and negative features for each near-
synonym. Experimental results show that the 
proposed method achieves higher accuracy 
than both pointwise mutual information (PMI) 
and n-gram-based methods that have been 
used in previous studies. 

1 Introduction 

Near-synonym sets represent groups of words 
with similar meaning, which are useful knowl-
edge resources for many natural language appli-
cations. For instance, they can be used for query 
expansion in information retrieval (IR) (Moldo-
van and Mihalcea, 2000; Bhogal et al., 2007), 
where a query term can be expanded by its near-
synonyms to improve the recall rate. They can 
also be used in an intelligent thesaurus that can 
automatically suggest alternative words to avoid 
repeating the same word in the composing of 
text when there are suitable alternatives in its 

synonym set (Inkpen and Hirst, 2006; Inkpen, 
2007). These near-synonym sets can be derived 
from manually constructed dictionaries such as 
WordNet (called synsets) (Fellbaum, 1998), Eu-
roWordNet (Rodríguez et al., 1998), or clusters 
derived using statistical approaches (Lin, 1998). 

Although the words in a near-synonym set 
have similar meaning, they are not necessarily 
interchangeable in practical use due to their spe-
cific usage and collocational constraints. Pearce 
(2001) presented an example of collocational 
constraints for the context “         coffee”. In the 
given near-synonym set {strong, powerful}, the 
word “strong” is more suitable than “powerful” 
to fill the gap, since “powerful coffee” is an anti-
collocation. Inkpen (2007) also presented several 
examples of collocations (e.g. ghastly mistake) 
and anti-collocations (e.g. ghastly error). Yu et 
al. (2007) described an example of the context 
mismatch problem for the context “        under 
the bay” and the near-synonym set {bridge, 
overpass, viaduct, tunnel} that represents the 
meaning of a physical structure that connects 
separate places by traversing an obstacle. The 
original word (target word) in the given context 
is “tunnel”, and cannot be substituted by the 
other words in the same set since all the substitu-
tions are semantically implausible. Accordingly, 
it is worth to develop algorithms to verify 
whether near-synonyms do match the given con-
texts. Applications can benefit from this ability 
to provide more effective services. For instance, 
a writing support system can assist users to se-
lect an alternative word that best fits a given 
context from a list of near-synonyms. 

In measuring the substitutability of words, the 
co-occurrence information between a target word 
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(the gap) and its context words is commonly 
used in statistical approaches. Edmonds (1997) 
built a lexical co-occurrence network from 1989 
Wall Street Journal to determine the near-
synonym that is most typical or expected in a 
given context. Inkpen (2007) used the pointwise 
mutual information (PMI) formula to select the 
best near-synonym that can fill the gap in a 
given context. The PMI scores for each candi-
date near-synonym are computed using a larger 
web corpus, the Waterloo terabyte corpus, which 
can alleviate the data sparseness problem en-
countered in Edmonds’ approach. Following 
Inkpen’s approach, Gardiner and Dras (2007) 
also used the PMI formula with a different cor-
pus (the Web 1T 5-gram corpus) to explore 
whether near-synonyms differ in attitude. 

Yu et al. (2007) presented a method to com-
pute the substitution scores for each near-
synonym based on n-gram frequencies obtained 
by querying Google. A statistical test is then ap-
plied to determine whether or not a target word 
can be substituted by its near-synonyms. The 
dataset used in their experiments are derived 
from the OntoNotes copus (Hovy et al., 2006; 
Pradhan et al., 2007), where each near-synonym 
set corresponds to a sense pool in OntoNotes. 
Another direction to the task of near-synonym 
substitution is to identify the senses of a target 
word and its near-synonyms using word sense 
disambiguation (WSD), comparing whether they 
were of the same sense (McCarthy, 2002; Dagan 
et al., 2006). Dagan et al. (2006) described that 
the use of WSD is an indirect approach since it 
requires the intermediate sense identification 
step, and thus presented a sense matching tech-
nique to address the task directly. 

In this paper, we consider the near-synonym 
substitution task as a classification task, where a 
classifier is trained for each near-synonym set to 
classify test examples into one of the near-
synonyms in the set. However, near-synonyms 
share more common context words (features) 
than semantically dissimilar words in nature. 
Such similar contexts may decrease classifiers’ 
ability to discriminate among near-synonyms. 
Therefore, we propose the use of a supervised 
discriminative training technique (Ohler et al., 
1999; Kuo and Lee, 2003; Zhou and He, 2009) 
to improve classifiers by distinguishing positive 
and negative features for each near-synonym. To 

our best knowledge, this is the first study that 
uses discriminative training for near-synonym or 
lexical substitution. The basic idea of discrimi-
native training herein is to adjust feature weights 
according to the minimum classification error 
(MCE) criterion. The features that contribute to 
discriminating among near-synonyms will re-
ceive a greater positive weight, whereas the 
noisy features will be penalized and might re-
ceive a negative weight. This re-weighting 
scheme helps increase the separation of the cor-
rect class against its competing classes, thus im-
proves the classification performance.  

The proposed supervised discriminative train-
ing is compared with two unsupervised methods, 
the PMI-based (Inkpen, 2007) and n-gram-based 
(Yu et al., 2007) methods. The goal of the 
evaluation is described as follows. Given a near-
synonym set and a sentence with one of the near-
synonyms in it, the near-synonym is deleted to 
form a gap in this sentence. Figure 1 shows an 
example. Each method is then applied to predict 
an answer (best near-synonym) that can fill the 
gap. The possible candidates are all the near-
synonyms (including the original word) in the 
given set. Ideally, the correct answers should be 
provided by human experts. However, such data 
is usually unavailable, especially for a large set 
of test examples. Therefore, we follow Inkpen’s 
experiments to consider the original word as the 
correct answer. The proposed methods can then 
be evaluated by examining whether they can re-
store the original word by filling the gap with the 
best near-synonym.  

The rest of this work is organized as follows. 
Section 2 describes the PMI and n-gram-based 
methods for near-synonym substitution. Section 
3 presents the discriminative training technique. 
Section 4 summarizes comparative results. Con-
clusions are finally drawn in Section 5. 

Sentence: This will make the           message 
easier to interpret. 

Original word: error 

Near-synonym set: {error, mistake, oversight}

Figure 1. Example of a near-synonym set and a 
sentence to be evaluated. 
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2 Unsupervised Methods 

2.1 PMI-based method 

The mutual information can measure the co-
occurrence strength between a near-synonym 
and the words in a given context. A higher mu-
tual information score indicates that the near-
synonym fits well in the given context, thus is 
more likely to be the correct answer. The point-
wise mutual information (Church and Hanks, 
1991) between two words x and y is defined as  

2
( , )( , ) log ,

( ) ( )
P x yPMI x y

P x P y
=            (1) 

where ( , ) ( , )P x y C x y N=  denotes the prob-
ability that x and y co-occur; ( , )C x y  is the 
number of times x and y co-occur in the corpus, 
and N is the total number of words in the corpus. 
Similarly, ( ) ( )P x C x N= , where C(x) is the 
number of times x occurs in the corpus, and 

( ) ( )P y C y N= , where C(y) is the number of 
times y occurs in the corpus. Therefore, (1) can 
be re-written as  

2
( , )( , ) log .
( ) ( )

C x y NPMI x y
C x C y

⋅
=

⋅
          (2) 

Inkpen (2007) computed the PMI scores for each 
near-synonym using the Waterloo terabyte cor-
pus and a context window of size 2k (k=2). 
Given a sentence s with a gap, 

1 1 2... ...      ... ...k k ks w w w w+= , the PMI score for 
a near-synonym NSi to fill the gap is defined as  

1

2

1

( , ) ( , )

                        ( , ).
=

= +

= +∑
∑

k
j j ii

k
j ii k

PMI NS s PMI NS w

PMI NS w
          (3) 

The near-synonym with the highest score is con-
sidered as the answer. In this paper, we use the 
Web 1T 5-gram corpus to compute PMI scores, 
the same as in (Gardiner and Dras, 2007). The 
frequency counts C(‧) are retrieved from this 
corpus in the same manner within the 5-gram 
boundary.  

2.2 N-gram-based method 

The n-grams can capture contiguous word asso-
ciations in given contexts. Given a sentence with 
a gap, the n-gram scores for each near-synonym 

are computed as follows. First, all possible n-
grams containing the gap are extracted from the 
sentence. Each near-synonym then fills the gap 
to compute a normalized frequency according to  

( )log ( ) 1
( ) ,

log ( )
j

j

i
NSi

NS
j

C ngram
Z ngram

C NS

+
=         (4) 

where ( )
j

i
NSC ngram  denotes the frequency of an 

n-gram containing a near-synonym, ( )jC NS  
denotes the frequency of a near-synonym, and 

( )
j

i
NSZ ngram  denotes the normalized frequency 

of an n-gram, which is used to reduce the effect 
of high frequencies on measuring n-gram scores. 
All of the above frequencies are retrieved from 
the Web 1T 5-gram corpus.  

The n-gram score for a near-synonym to fill 
the gap is computed as  

1

1( , ) ( ),
=

= ∑ j

R
i

j NS
i

NGRAM NS s Z ngram
R

        (5) 

where ( , )jNGRAM NS s  denotes the n-gram 
score of a near-synonym, which is computed by 
averaging the normalized frequencies of all the 
n-grams containing the near-synonym, and R is 
the total number of n-grams containing the near-
synonym. Again, the near-synonym with the 
highest score is the proposed answer. We herein 
use the 4-gram frequencies to compute n-gram 
scores as Yu et al. (2007) reported that the use of 
4-grams achieved higher performance than the 
use of bigrams and trigrams.  

3 Discriminative Training 

3.1 Classifier 

The supervised classification technique can also 
be applied to for near-synonym substitution. 
Each near-synonym in a set corresponds to a 
class. The classifiers for each near-synonym set 
are built from the labeled training data, i.e., a 
collection of sentences containing the near-
synonyms. Such training data is easy to obtain 
since it requires no human annotation. The train-
ing data used herein is collected by extracting 
the 5-grams containing the near-synonyms from 
the Web 1T 5-gram corpus. The features used 
for training are the words occurring in the con-
text of the near-synonyms in the 5-grams.  
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For each near-synonym set, an F K×  feature-
class matrix, denoted as M, is created for classi-
fication. The rows represent the F distinct words 
(features) and the columns represent the K near-
synonyms (classes) in the same set. Each entry 
in the matrix, mij, represents a weight of word i 
respect to near-synonym j, which is computed as 
the number of times word i appears in the con-
texts of near-synonym j divided by the total 
number of context words of near-synonym j. 
This frequency-based weight can then be trans-
formed into a probabilistic form, i.e., divided by 
the sum of the weights of word i respect to all 
near-synonyms. Each test sentence is also trans-
formed into an F-dimensional feature vector. Let 

1[ ,..., ,..., ]= i Fx x x x  denote the feature vector of 
an input sentence. The classification is per-
formed by computing the cosine similarity be-
tween x and the column vectors (near-synonyms) 
in the matrix, defined as 

1

2 2
1 1

 arg max cos( , )

            arg max                             (6)

        arg max ,

j
j j

j

j j

F
i iji

F Fj
i iji i

NS x m

x m
x m

x m

x m

∧

=

= =

=

=

= ∑
∑ ∑

i  

where jm  is the j-th column vector in the matrix 
M. The near-synonym with the highest cosine 
similarity score, ∧

j
NS , is the predicted class of 

the classifier. 

3.2 Minimum classification error criterion 

According to the decision rule of the classifier, a 
classification error will occur when the near-
synonym with the highest cosine score is not the 
correct class. Table 1 shows some examples, 
where Example 3 is an example of misclassifica-
tion. On the other hand, although Example 2 is a 
correct classification, it might be an ambiguous 
case to classifiers since the scores are close 
among classes. Therefore, if we can increase the 
separation of the correct class from its compet-
ing ones, then the classification performance can 
be improved accordingly. This can be accom-
plished by adjusting the feature weights of the 
matrix M that have direct influence on the com-
putation of cosine scores. The discriminative 
training performs the adjustment in the training 
phase according to the minimum classification 
error criterion. The detailed steps are as follows. 

Given an input vector x, the classifier com-
putes the cosine scores between x and each class 
using (6). The discriminant function for a class 
can thus be defined as the cosine measure; that is, 

( , ) cos( , ).=j jg x M x m             (7) 

where j denotes a class in K. Since the correct 
class of each input vector is known in the train-
ing phase, we can determine whether or not the 
input vector is misclassified by comparing the 
discriminant function (cosine score) of the cor-
rect class against its competing classes. In the 
case of misclassification, the cosine score of the 
correct class will be smaller than the competing 
cosine scores. Let k be the correct class of x, the 
misclassification function can be defined as  

 ( , )  ( , )  ( , ),k k kd x M g x M G x M= − +            (8) 

where ( , )kg x M  is the discriminant function for 
the correct class k, and ( , )kG x M  is the anti-
discriminant function that represents the other 

1K −  competing classes, defined as 
1

1( , ) ( , ) ,
1k j

j k

G x M g x M
K

η
η

≠

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

∑              (9) 

When 1η = , the anti-discriminant function 
( , )kG x M  is the average of all the competing 

cosine scores. With the increase of η , 
( , )kG x M is gradually dominated by the biggest 

 Example 
 1 2 3 

1 1( , ) cos( , )=g x M x m  0.9* 0.6* 0.8 

2 2( , ) cos( , )=g x M x m  0.3 0.5 0.3* 

3 3( , ) cos( , )=g x M x m  0.2 0.4 0.1 
max ( , )≠ =j k ig x M  0.3 0.5 0.8 

( , ) =kd x M  -0.6 -0.1 0.5 
( , ) =kl x M  

                (γ=5) 
0.047 0.378 0.924

Table 1. Examples of correct classification 
and misclassification. * denotes the scores of the 
correct class.  
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competing class. In the extreme case, i.e., 
η →∞ , the anti-discriminant function becomes 

( , ) max  ( , ).k jj k
G x M g x M

≠
=          (10) 

The misclassification function in (8) can thus be 
rewritten as 

( , )  ( , ) max  ( , ),k k jj k
d x M g x M g x M

≠
= − +    (11) 

In this case, the classification error is determined 
by comparing the discriminant function of the 
correct class against that of the biggest compet-
ing class. Obviously, ( , ) 0kd x M >  implies a 
classification error. For instance, in Example 3, 
the discriminant function for the correct class is 

2 ( , ) 0.3g x M = , and that of the biggest compet-
ing class is 1 3max( ( , ), ( , )) 0.8=g x M g x M , thus 
the classification error is ( , ) 0.5=kd x M . On the 
other hand, the classification error will be a 
negative value for correct classifications, as 
shown in Example 1 and 2. 

Intuitively, a greater classification error also 
results in a greater loss. We herein use the sig-
moid function as the class loss function; that is, 

1( , ) ( ) ,
1 exp kk k dl x M l d γ−= =
+

         (12) 

where γ is a constant that controls the slope of 
the sigmoid function. The sigmoid function 
maps the values of classification error within the 
range of 0 to 1. For correct classifications, a 
greater separation of the correct class from the 
biggest competing class leads to a greater nega-
tive value of dk, i.e., a smaller classification error, 
resulting in a smaller loss tends asymptotically 
to 0 (Example 1), whereas a moderate loss is 
yielded if the separation was close (Example 2). 
For the cases of misclassification, a greater sepa-
ration leads to a greater positive value of dk, i.e., 
a greater classification error, resulting in a 
greater loss tends asymptotically to 1 (Example 
3). The overall loss of the entire training set can 
then be estimated as 

1

1( ) ( , ),
= ∈

= ∑∑
k

K

k
k x C

L M l x M
Q

                      (13) 

where Ck denotes the set of training vectors of 
class k, and Q is the total number of vectors in 
the training set. The goal now is to minimize the 
loss. According to the above discussions on the 

three examples, to minimize the loss is to mini-
mize the classification error, and to improve the 
separation of the correct class against its compet-
ing classes. This can be accomplished by adjust-
ing the feature weights of the matrix M to distin-
guish positive and negative features for each 
class. We herein adopt a gradient descent 
method such as the generalized probabilistic de-
scent (GPD) algorithm (Katagiri et al., 1998) to 
update the matrix M. The detailed steps are as 
follows. 

Let the feature weights of the matrix M be the 
parameter set to be adjusted. The adjustment is 
performed iteratively according to the following 
update formula. 

( 1) ( ) ( ) ( )( , ),ε+ = − ∇t t t t
t kM M l x M         (14) 

where t denotes the t-th iteration, ε t  is an ad-
justment step of a small positive real number, 
and ( ) ( )( , )∇ t t

kl x M is the gradient of the loss 
function, which is computed by the following 
two parts 

( ) ( )
( ) ( ) ( , )( , ) ,

t t
t t k k

k
k ij

l d x Ml x M
d m
∂ ∂

∇ =
∂ ∂

         (15) 

where  

( )(1 ( )),k
k k k k

k

l l d l d
d

γ∂
= −

∂
         (16) 

and from (7), (8), and (9),  

( ) ( )
( ) ( ) 1

( )

,                                           if  
( , ) ( , ) ( , ) ,

  ,  if  
( , )

η

η

−

≠

− =⎧
⎪∂

= ⎨ ≠∂ ⎪
⎩ ∑

i
t t

t tk
k j

i tij
jj k

x j k
d x M G x M g x M

x j km
g x M

                                                                         (17) 

where xi is an element of the input vector x. By 
replacing ( , )k t tl x M∇  in (14) with the two parts 
in (15), at each iteration each feature weight mij 
in M is adjusted by 
  

( )

( 1)
( ) ( ) 1

( )
( )

,                                          if  

.( , ) ( , )
, if  

( , )

η

η

ε

ε

+
−

≠

∂⎧ + =⎪ ∂⎪= ⎨ ∂⎪ − ≠
⎪ ∂⎩ ∑

t k
ij t i

kt
t tij

k jt k
ij t i t

k jj k

lm x j k
d

m G x M g x Mlm x j k
d g x M

 

                         (18) 
The weight xi represents whether or not a dimen-
sion word occurs in an input sentence. A zero 
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weight indicates that the dimension word does 
not occur in the input sentence, thus the corre-
sponding dimension of each column vector will 
not be adjusted. On the contrary, the correspond-
ing dimension of the column vector of the cor-
rect class ( j k= ) is adjusted by adding a value, 
while those of the competing classes ( j k≠ ) are 
adjusted by subtracting a value from them. After 
a sequence of adjustments over the training set, 
the positive and negative features can be distin-
guished by adjusting their weights that result in a 
greater positive or negative value for each of 
them. The separation of the correct class against 
its competing ones can thus be increased.  

The weight adjustment in (18) is in proportion 
to the adjustment step ε t  and the slope of the 
sigmoid function k kl d∂ ∂ . The adjustment step 
ε t  can be determined empirically. As (16) shows, 
the slope k kl d∂ ∂  converges asymptotically to 
zero as the classification error dk approaches to a 
very large (or small) value. This leads to a small 
weight adjustment. For instance, the weight ad-
justment in Example 1 is small due to a small 
value of dk, or, say, due to a large separation be-
tween the correct class and its competing ones. 
This is reasonable because classifiers often per-
form well in such cases. Similarly, the weight 
adjustment in Example 3 (misclassification) is 
also small due to a large value of dk. A greater 
adjustment is not employed because such a large 
separation is difficult to be reduced significantly. 
Additionally, over-adjusting some features may 
introduce negative effects on other useful fea-
tures in the matrix. Therefore, discriminative 
training is more effective on the cases with a 
moderate value of dk, like Example 2. Such cases 
usually fall within the decision boundary and 
tend to be confusing to classifiers. Hence, im-
proving the separation on such cases helps sig-
nificantly improve the classification performance. 

4 Experimental Results 

4.1 Experiment setup 

1) Data: The near-synonym sets used for ex-
periments included the seven sets (Exp1) and the 
eleven sets (Exp2) used in the previous studies 
(Edmonds, 1997; Inkpen, 2007; Gardiner and 
Dras, 2007), as shown in Table 2. The Web 1T 
5-gram corpus was used to build classifiers, 

where the corpus was randomly split into a train-
ing set, a development set, and a test set with an 
8:1:1 ratio. For efficiency consideration, we ran-
domly sampled up to 100 5-grams from the test 
set for each near-synonym. This sampling pro-
cedure was repeated five times for evaluation of 
the classifiers. 
2) Classifiers: The classifiers were imple-
mented using PMI, n-grams, and discriminative 
training (DT) methods, respectively.  

PMI: Given a near-synonym set and a test 5-
gram with a gap, the PMI scores for each near-
synonym were calculated using (3), where the 
size of the context window k was set to 2. The 
frequency counts between each near-synonym 
and its context words were retrieved from the 
training set. 

NGRAM: For each test 5-gram with a gap, all 
possible 4-grams containing the gap were first 
extracted (excluding punctuation marks). The 
averaged 4-gram scores for each near-synonym 
were then calculated using (5). Again, the fre-
quency counts of the 4-grams were retrieved 
from the training set. 

DT: For each near-synonym set, the matrix M 
was built from the training set. Each 5-gram in 
the development set was taken as input to itera-
tively compute the cosine score, loss, classifica-
tion error, respectively, and finally to adjust the 
feature weights of M. The parameters of DT in-
cluded η  for the anti-discriminative function, γ 
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Figure 2. The change of classification accuracy 
during discriminative training.  
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for the sigmoid function, and tε  for the adjust-
ment step. The settings, 25η = , 35γ = , and 

310ε −=t , were determined by performing DT 
for several iterations through the training set. 
These setting were used for the following ex-
periments. 
3) Evaluation metric: The answers proposed 
by each classifier are the near-synonyms with 
the highest score. The correct answers are the 
near-synonyms originally in the gap of the test 5-
grams. The performance is measure by the accu-
racy, which is defined as the number of correct 
answers made by each classifier, divided by the 
total number of test 5-grams. 

In the following sections, we first demonstrate 
the effect of DT on classification performance, 
followed by the comparison of the classifiers. 

4.2 Evaluation on discriminative training 

This experiment is to investigate the perform-
ance change during discriminative training. Fig-
ure 2 shows the accuracy at the first 100 itera-
tions for both development set and test set, with 
the 8th set in Exp2 as an example. The accuracy 
increased rapidly in the first 20 iterations, and 
stabilized after the 40th iteration. The discrimi-
native training is stopped until the accuracy has 
not been changed over 30 iterations or the 300th 
iteration has been reached. 

Accuracy (%) No. Near-synonym set No. of
cases NGRAM PMI COS DT 

1. difficult, hard, tough 300 58.60 61.67 60.13 63.13 
2. error, mistake, oversight 300 68.47 78.33 77.20 79.20 
3. job, task, duty 300 68.93 70.40 74.00 75.67 
4. responsibility, burden, obligation, commitment 400 69.80 66.95 68.75 69.55 
5. material, stuff, substance 300 70.20 67.93 71.07 75.13 
6. give, provide, offer 300 58.87 66.47 64.13 68.27 
7. settle, resolve 200 69.30 68.10 77.10 84.10 

Exp1 2,100 66.33 68.50 69.94 72.89 

1. benefit, advantage, favor, gain, profit 500 71.44 69.88 69.44 71.36 
2. low, gush, pour, run, spout, spurt, squirt, stream 800 65.45 65.00 68.68 71.08 
3. deficient, inadequate, poor, unsatisfactory 400 65.65 69.40 70.35 74.35 

4. afraid, aghast, alarmed, anxious, apprehensive, 
fearful, frightened, scared, terror-stricken* 789 49.84 44.74 47.00 49.33 

5. disapproval, animadversion*, aspersion*, blame, 
criticism, reprehension* 300 72.80 79.47 80.00 82.53 

6. mistake, blooper, blunder, boner, contretemps*,  
error, faux pas*, goof, slip, solecism* 618 62.27 59.61 68.41 71.65 

7. alcoholic, boozer*, drunk, drunkard, lush, sot 433 64.90 80.65 77.88 84.34 
8. leave, abandon, desert, forsake 400 65.85 66.05 69.35 74.35 

9. opponent, adversary, antagonist, competitor, 
enemy, foe, rival 700 58.51 59.51 63.31 67.14 

10. thin, lean, scrawny, skinny, slender, slim, spare, 
svelte, willowy*, wiry 734 57.74 61.99 55.72 64.58 

11. lie, falsehood, fib, prevarication*,  
rationalization, untruth 425 57.55 63.58 69.46 74.21 

Exp2 6,099 61.69 63.32 65.15 69.26 

Table 2. Accuracy of classifiers on Exp1 (7 sets) and Exp2 (11 sets). The words marked with * are 
excluded from the experiments because their 5-grams are very rare in the corpus. 
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4.3 Comparative results 

Table 2 shows the comparative results of the 
classification accuracy for the 18 near-synonym 
sets (Exp1 + Exp2). The accuracies for each 
near-synonym set were the average accuracies of 
the five randomly sampled test sets. The cosine 
measure without discrimination training (COS) 
was also considered for comparison. The results 
show that NGRAM performed worst among the 
four classifiers. The major reason is that not all 
4-grams of the test examples can be found in the 
corpus. Instead of contiguous word associations 
used by NGRAM, PMI considers the words in 
the contexts independently to select the best 
synonyms. The results show that PMI achieved 
better performance than NGRAM. The two su-
pervised methods, COS and DT, outperformed 
the two unsupervised methods, NGRAM and 
PMI. As indicated in the bold numbers, using the 
supervised method alone (without DT), COS 
yielded higher average accuracy by 5% and 2% 
over NGRAM and PMI, respectively, on Exp1, 
and by 6% and 3%, respectively, on Exp2. When 
DT was employed, the average accuracy was 
further improved by 4% and 6% on Exp1 and 
Exp2, respectively, compared with COS. 

The use of DT can improve the classification 
accuracy mainly because it can adjust the feature 
weights iteratively to improve the separation be-
tween the correct class and its competing ones, 
which helps tackle the ambiguous test examples 
that fall within the decision boundary. Table 3 
presents several positive and negative features 
for the near-synonym set {mistake, error, over-
sight}. The feature weights were adjusted ac-

cording to their contributions to discriminating 
among the near-synonyms in the set. For in-
stance, the features “made” and “biggest” both 
received a positive value for the class “mistake”, 
and a negative value for the competing classes 
“error” and “oversight”. These positive and 
negative weights help distinguish useful features 
from noisy ones for classifier training. On the 
other hand, if the feature weights were evenly 
distributed among the classes, these features 
would not be unlikely to contribute to the classi-
fication performance.  

4.4 Accuracy of Rank 1 and Rank 2 

The accuracy presented in Table 2 was com-
puted based on the classification results at Rank 
1, i.e., a test sample was considered correctly 
classified only if the near-synonym with the 
highest score was the word originally in the gap 
of the test sample. Similarly, the accuracy at 
Rank 2 can be computed by considering the top 
two near-synonyms proposed by each classifier. 
That is, if either the near-synonym with the 
highest or the second highest score was the cor-
rect answer, the test sample was considered cor-
rectly classified. Table 4 shows the accuracy of 
Rank 1 and Rank 2 for each classifier. The re-
sults show that the improvement of Rank 1 accu-
racy on Exp1 was about 20 to 30 percentage 
points, and was 25.76 in average. For Exp2, the 
average improvement was 19.80 percentage 
points 

Near-synonym set 
Features 

mistake error oversight

made 0.076 -0.004 -0.005 

biggest 0.074 -0.001 -0.004 

message -0.004 0.039 -0.010 

internal 0.001 0.026 -0.001 

supervision -0.001 -0.006 0.031 

audit -0.002 -0.003 0.028 

Table 3. Example of feature weights after dis-
criminative training.  

Exp1 Rank 1 Rank 2 Diff. 

NGRAM 66.33% 79.35% +19.63% 

PMI 68.50% 88.99% +29.91% 

COS 69.94% 89.93% +28.58% 

DT 72.89% 91.06% +24.93% 

Exp2 Rank 1 Rank 2 Diff. 

NGRAM 61.69% 68.48% +11.01% 

PMI 63.32% 79.11% +24.94% 

COS 65.15% 80.52% +23.59% 

DT 69.26% 82.86% +19.64% 

Table 4. Accuracy of Rank 1 and Rank 2 for 
each classifier.  
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5 Conclusion  

This work has presented the use of discrimina-
tive training for near-synonym substitution. The 
discriminative training can improve classifica-
tion performance by iteratively re-weighting the 
positive and negative features for each class. 
This helps improve the separation of the correct 
class against its competing ones, making classi-
fiers more effective on ambiguous cases close to 
the decision boundary. Experimental results 
show that the supervised discriminative training 
technique achieves higher accuracy than the two 
unsupervised methods, the PMI-based and n-
gram-based methods. The availability of a large 
labeled training set also encourages the use of 
the proposed supervised method.  

Future work will investigate on the use of 
multiple features for discriminating among near-
synonyms. For instance, the predicate-argument 
structure, which can capture long-distance in-
formation, will be combined with currently used 
local contextual features to boost the classifica-
tion performance. More experiments will also be 
conducted to evaluate classifiers’ ability to rank 
multiple answers. 
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Abstract

In distributional semantics studies, there
is a growing attention in compositionally
determining the distributional meaning of
word sequences. Yet, compositional dis-
tributional models depend on a large set
of parameters that have not been explored.
In this paper we propose a novel approach
to estimate parameters for a class of com-
positional distributional models: the addi-
tive models. Our approach leverages on
two main ideas. Firstly, a novel idea for
extracting compositional distributional se-
mantics examples. Secondly, an estima-
tion method based on regression models
for multiple dependent variables. Experi-
ments demonstrate that our approach out-
performs existing methods for determin-
ing a good model for compositional dis-
tributional semantics.

1 Introduction

Lexical distributional semantics has been largely
used to model word meaning in many fields as
computational linguistics (McCarthy and Carroll,
2003; Manning et al., 2008), linguistics (Harris,
1964), corpus linguistics (Firth, 1957), and cogni-
tive research (Miller and Charles, 1991). The fun-
damental hypothesis is the distributional hypoth-
esis (DH): “similar words share similar contexts”
(Harris, 1964). Recently, this hypothesis has been
operationally defined in many ways in the fields of

physicology, computational linguistics, and infor-
mation retrieval (Li et al., 2000; Pado and Lapata,
2007; Deerwester et al., 1990).

Given the successful application to words, dis-
tributional semantics has been extended to word
sequences. This has happened in two ways: (1)
via the reformulation of DH for specific word se-
quences (Lin and Pantel, 2001); and (2) via the
definition of compositional distributional seman-
tics (CDS) models (Mitchell and Lapata, 2008;
Jones and Mewhort, 2007). These are two differ-
ent ways of addressing the problem.

Lin and Pantel (2001) propose the pattern dis-
tributional hypothesis that extends the distribu-
tional hypothesis for specific patterns, i.e. word
sequences representing partial verb phrases. Dis-
tributional meaning for these patterns is derived
directly by looking to their occurrences in a cor-
pus. Due to data sparsity, patterns of different
length appear with very different frequencies in
the corpus, affecting their statistics detrimentally.
On the other hand, compositional distributional
semantics (CDS) propose to obtain distributional
meaning for sequences by composing the vectors
of the words in the sequences (Mitchell and Lap-
ata, 2008; Jones and Mewhort, 2007). This ap-
proach is fairly interesting as the distributional
meaning of sequences of different length is ob-
tained by composing distributional vectors of sin-
gle words. Yet, many of these approaches have a
large number of parameters that cannot be easily
estimated.

In this paper we propose a novel approach to es-
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timate parameters for additive compositional dis-
tributional semantics models. Our approach lever-
ages on two main ideas. Firstly, a novel way for
extracting compositional distributional semantics
examples and counter-examples. Secondly, an es-
timation model that exploits these examples and
determines an equation system that represents a
regression problem with multiple dependent vari-
ables. We propose a method to estimate a solu-
tion of this equation system based on the Moore-
Penrose pseudo-inverse matrices (Penrose, 1955).

The rest of the paper is organised as follows:
Firstly, we shortly review existing compositional
distributional semantics (CDS) models (Sec. 2).
Then we describe our model for estimating CDS
models parameters (Sec. 3). In succession, we
introduce a way to extract compositional dis-
tributional semantics examples from dictionaries
(Sec. 4). Then, we discuss the experimental set up
and the results of our linear CDS model with es-
timated parameters with respect to existing CDS
models (Sec. 5).

2 Models for compositional
distributional semantics (CDS)

A CDS model is a function � that computes the
distributional vector of a sequence of words s by
combining the distributional vectors of its com-
ponent words w1 . . .wn. Let�(s) be the distribu-
tional vector describing s and ~wi the distributional
vectors describing its component word wi. Then,
the CDS model can be written as:

�(s) = �(w1 . . .wn) = ~w1 � . . .� ~wn (1)

This generic model has been fairly studied and
many different functions have been proposed and
tested.

Mitchell and Lapata (2008) propose the fol-
lowing general CDS model for 2-word sequences
s = xy:

�(s) = �(xy) = f(~x, ~y,R,K) (2)

where ~x and ~y are respectively the distributional
vectors of x and y, R is the particular syntactic
and/or semantic relation connecting x and y, and,
K represents the amount of background knowl-
edge that the vector composition process takes

vector dimensions

between
gap process

social
two

contact < 11, 0, 3, 0, 11 >
x: close < 27, 3, 2, 5, 24 >
y: interaction < 23, 0, 3, 8, 4 >

Table 1: Example of distributional
frequency vectors for the triple t =
( ~contact, ~close, ~interaction)

into account. Two specialisations of the gen-
eral CDS model are proposed: the basic additive
model and the basic multiplicative model.

The basic additive model (BAM) is written as:

�(s) = α~x+ β~y (3)

where α and β are two scalar parameters. The
simplistic parametrisation is α = β = 1. For
example, given the vectors ~x and ~y of Table 1,
�BAM (s) =< 50, 3, 5, 13, 28 >.

The basic multiplicative model (BMM) is writ-
ten as:

si = xiyi (4)

where si, xi, and yi are the i-th dimensions of
the vectors �(s), ~x, and ~y, respectively. For
the example of Table 1, �BMM (s) =< 621, 0,
6, 40, 96 >.

Erk and Padó (2008) look at the problem in a
different way. Let the general distributional mean-
ing of the word w be ~w. Their model computes a
different vector ~ws that represents the specific dis-
tributional meaning of w with respect to s, i.e.:

~ws = �(w, s) (5)

In general, this operator gives different vectors for
each word wi in the sequence s, i.e. �(wi, s) 6=
�(wj , s) if i 6= j. It also gives different vectors
for a word wi appearing in different sequences sk
and sl, i.e. �(wi, sk) 6= �(wi, sl) if k 6= l.

The model of Erk and Padó (2008) was de-
signed to disambiguate the distributional mean-
ing of a word w in the context of the sequence
s. However, substituting the word w with the se-
mantic head h of s, allows to compute the distri-
butional meaning of sequence s as shaped by the
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word that is governing the sequence (c.f. Pollard
and Sag (1994)). For example, the distributional
meaning of the word sequence eats mice is gov-
erned by the verb eats. Following this model, the
distributional vector �(s) can be written as:

�(s) ≈ �(h, s) (6)

The function �(h, s) explicitly uses the re-
lation R and the knowledge K of the general
equation 2, being based on the notion of selec-
tional preferences. We exploit the model for se-
quences of two words s=xy where the two words
are related with an oriented syntactic relation r
(e.g. r=adj modifier). For making the syntac-
tic relation explicit, we indicate the sequence as:
s = x r←− y.

Given a word w, the model has to keep track
of its selectional preferences. Consequently, each
word w is represented with a triple:

(~w,Rw, R
−1
w ) (7)

where ~w is the distributional vector of the word w,
Rw is the set of the vectors representing the direct
selectional preferences of the word w, and R−1

w is
the set of the vectors representing the indirect se-
lectional preferences of the word w. Given a set of
syntactic relationsR, the set Rw and R−1

w contain
respectively a selectional preference vectorRw(r)
and Rw(r)−1 for each r ∈ R. Selectional prefer-
ences are computed as in Erk (2007). If x is the
semantic head of sequence s, then the model can
be written as:

�(s) = �(x, x r←− y) = ~x�Ry(r) (8)

Otherwise, if y is the semantic head:

�(s) = �(y, x r←− y) = ~y �R−1
x (r) (9)

� is in both cases realised using BAM or BMM.
We will call these models: basic additive model
with selectional preferences (BAM-SP) and basic
multiplicative model with selectional preferences
(BMM-SP).

Both Mitchell and Lapata (2008) and Erk and
Padó (2008) experimented with few empirically
estimated parameters. Thus, the general additive
CDS model has not been adequately explored.

3 Estimating Additive Compositional
Semantics Models from Data

The generic additive model sums the vectors ~x
and ~y in a new vector ~z:

�(s) = ~z = A~x+B~y (10)

where A and B are two square matrices captur-
ing the relation R and the background knowledge
K of equation 2. Writing matrices A and B by
hand is impossible because of their large size. Es-
timating these matrices is neither a simple classi-
fication learning problem nor a simple regression
problem. It is a regression problem with multiple
dependent variables. In this section, we propose
our model to solve this regression problem using
a set of training examples E.

The set of training examples E contains triples
of vectors (~z, ~x, ~y). ~x and ~y are the two distribu-
tional vectors of the words x and y. ~z is the ex-
pected distributional vector of the composition of
~x and ~y. Note that for an ideal perfectly perform-
ing CDS model we can write ~z = �(xy). How-
ever, in general the expected vector ~z is not guar-
anteed to be equal to the composed one �(xy).
Figure 1 reports an example of these triples, i.e.,
t = ( ~contact, ~close, ~interaction), with the re-
lated distributional vectors. The construction of
E is discussed in section 4.

In the rest of the section, we describe how the
regression problem with multiple dependent vari-
ables can be solved with a linear equation system
and we give a possible solution of this equation
system. In the experimental section, we refer to
our model as the estimated additive model (EAM).

3.1 Setting the linear equation system

The matrices A and B of equation 10 can be
joined in a single matrix:

~z =
(
A B

)(~x
~y

)
(11)

For the triple t of table 1, equation 11 is:

~contact =
(
A B

)
(

~close
~interaction

)
(12)

1265



and it can be rewritten as:




11
0
3
0
11




=
(
A5×5 B5×5

)




27
3
2
5
24
23
0
3
8
4




(13)

Focusing on matrix
(
AB
)
, we can transpose the

matrices as follows:

~zT =

((
A B

)(~x
~y

))T

=
(
~xT ~yT

)(AT
BT

)
(14)

Matrix
(
~xT ~yT

)
is known and matrix

(
AT

BT

)
is

to be estimated.
Equation 14 is the prototype of our final equa-

tion system. The larger the matrix
(
AB
)

to be
estimated, the more equations like 14 are needed.
Given set E that contains n triples (~z, ~x, ~y), we
can write the following system of equations:




~zT1
~zT2
...
~zTn


 =




(
~xT1 ~yT1

)
(
~xT2 ~yT2

)
...(

~xTn ~yTn
)




(
AT

BT

)
(15)

The vectors derived from the triples can be seen as
two matrices of n rows, Z and

(
XY

)
related to ~zTi

and
(
~xTi ~yTi

)
, respectively. The overall equation

system is then the following:

Z =
(
X Y

)(AT
BT

)
(16)

This equation system represents the constraints
that matrices A and B have to satisfy in order to
be a possible linear CDS model that can at least
describe seen examples. We will hereafter call
Λ =

(
A B

)
and Q =

(
X Y

)
. The system

in equation 16 can be simplified as:

Z = QΛT (17)

As Q is a rectangular and singular matrix, it is
not invertible and the system in equation 16 has

no solutions. It is possible to use the principle
of Least Square Estimation for computing an ap-
proximation solution. The idea is to compute the
solution Λ̂ that minimises the residual norm, i.e.:

Λ̂T = arg min
ΛT
‖QΛT − Z‖2 (18)

One solution for this problem is the Moore-
Penrose pseudoinverse Q+ (Penrose, 1955) that
gives the following final equation:

Λ̂T = Q+Z (19)

In the next section, we discuss how the Moore-
Penrose pseudoinverse is obtained using singular
value decomposition (SVD).

3.2 Computing the pseudo-inverse matrix
The pseudo-inverse matrix can provide an approx-
imated solution even if the equation system has no
solutions. We here compute the Moore-Penrose
pseudoinverse using singular value decomposi-
tion (SVD) that is widely used in computational
linguistics and information retrieval for reducing
spaces (Deerwester et al., 1990).

Moore-Penrose pseudoinverse (Penrose, 1955)
is computed in the following way. Let the original
matrix Q have n rows and m columns and be of
rank r. The SVD decomposition of the original
matrix Q is Q = UΣV T where Σ is a square di-
agonal matrix of dimension r. Then, the pseudo-
inverse matrix that minimises the equation 18 is:

Q+ = V Σ+UT (20)

where the diagonal matrix Σ+ is the r × r trans-
posed matrix of Σ having as diagonal elements the
reciprocals of the singular values 1

δ1
, 1
δ2
, ..., 1

δr
of

Σ.
Using SVD to compute the pseudo-inverse ma-

trix allows for different approximations (Fallucchi
and Zanzotto, 2009). The algorithm for comput-
ing the singular value decomposition is iterative
(Golub and Kahan, 1965). Firstly derived dimen-
sions have higher singular value. Then, dimension
k is more informative than dimension k′ > k. We
can consider different values for k to obtain differ-
ent SVD for the approximations Q+

k of the origi-
nal matrix Q+ in equation 20), i.e.:

Q+
k = Vn×kΣ

+
k×kU

T
k×m (21)
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where Q+
k is a matrix n by m obtained consider-

ing the first k singular values.

4 Building positive and negative
examples

As explained in the previous section, estimating
CDS models, needs a set of triples E, similar to
triple t of table 1. This set E should contain pos-
itive examples in the form of triples (~zi, ~xi, ~yi).
Examples are positive in the sense that ~zi =
�(xy) for an ideal CDS. There are no available
sets to contain such triples, with the exception of
the set used in Mitchell and Lapata (2008) which
is designed only for testing purposes. It contains
similar and dissimilar pairs of sequences (s1,s2)
where each sequence is a verb-noun pair (vi,ni).
From the positive part of this set, we can only de-
rive quadruples where �(v1n1) ≈ �(v2n2) but
we cannot derive the ideal resulting vector of the
composition �(vini). Sets used to test multi-
word expression (MWE) detection models (e.g.,
(Schone and Jurafsky, 2001; Nicholson and Bald-
win, 2008; Kim and Baldwin, 2008; Cook et
al., 2008; Villavicencio, 2003; Korkontzelos and
Manandhar, 2009)) are again not useful as con-
taining only valid MWE that cannot be used to
determine the set of training triples needed here.

As a result, we need a novel idea to build sets
of triples to train CDS models. We can leverage
on knowledge stored in dictionaries. In the rest of
the section, we describe how we build the positive
example set E and a control negative example set
NE. Elements of the two sets are pairs (t,s) where
t is a target word s is a sequence of words. t is the
word that represent the distributional meaning of
s in the case ofE. Contrarily, t is totally unrelated
to the distributional meaning of s inNE. The sets
E and NE can be used both for training and for
testing. In the testing phase, we can use these sets
to determine whether a CDS model is good or not
and to compare different CDS models.

4.1 Building Positive Examples using
Dictionaries

Dictionaries as natural repositories of equivalent
expressions can be used to extract positive exam-
ples for training and testing CDS models. The
basic idea is the following: dictionary entries are

declarations of equivalence. Words or, occasion-
ally, multi-word expressions t are declared to be
semantically similar to their definition sequences
s. This happens at least for some sense of the
defined words. We can then observe that t ≈ s.
For example, we report some sample definitions
of contact and high life:

target word (t) definition sequence (s)
contact close interaction
high life excessive spending

In the first case, a word, i.e. contact, is semanti-
cally similar to a two-word expression, i.e. close
interaction. In the second case, two two-word ex-
pressions are semantically similar.

Then, the pairs (t, s) can be used to model
positive cases of compositional distributional se-
mantics as we know that the word sequence s
is compositional and it describes the meaning of
the word t. The distributional meaning ~t of t is
the expected distributional meaning of s. Conse-
quently, the vector ~t is what the CDS model �(s)
should compositionally obtain from the vectors of
the components ~s1 . . . ~sm of s. This way of ex-
tracting similar expressions has some interesting
properties:

First property Defined words t are generally
single words. Thus, we can extract stable and
meaningful distributional vectors for these words
and then compare them to the distributional vec-
tors composed by CDS model. This is an impor-
tant property as we cannot compare directly the
distributional vector ~s of a word sequence s and
the vector �(s) obtained by composing its com-
ponents. As the word sequence s grows in length,
the reliability of the vector ~s decreases since the
sequence s becomes rarer.

Second property Definitions s have a large va-
riety of different syntactic structures ranging from
simple structures as Adjective-Noun to more com-
plex ones. This gives the possibility to train and
test CDS models that take into account syntax.
Table 2 represents the distribution of the more
frequent syntactic structures in the definitions of
WordNet1 (Miller, 1995).

1Definitions were extracted from WordNet 3.0 and were
parsed with the Charniak parser (Charniak, 2000)
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Freq. Structure
2635 (FRAG (PP (IN) (NP (DT) (JJ) (NN))))
833 (NP (DT) (JJ) (NN))
811 (NP (NNS))
645 (NP (NNP))
623 (S (VP (VB) (ADVP (RB))))
610 (NP (JJ) (NN))
595 (NP (NP (DT) (NN)) (PP (IN) (NP (NN))))
478 (NP (NP (DT) (NN)) (PP (IN) (NP (NNP))))
451 (FRAG (PP (IN) (NP (NN))))
419 (FRAG (RB) (ADJP (JJ)))
375 (S (VP (VB) (PP (IN) (NP (DT) (NN)))))
363 (S (VP (VB) (PP (IN) (NP (NN)))))
342 (NP (NP (DT) (NN)) (PP (IN) (NP (DT) (NN))))
341 (NP (DT) (JJ) (JJ) (NN))
330 (ADJP (RB) (JJ))
307 (NP (JJ) (NNS))
244 (NP (DT) (NN) (NN))
241 (S (NP (NN)) (NP (NP (NNS)) (PP (IN) (NP (DT) (NNP)))))
239 (NP (NP (DT) (JJ) (NN)) (PP (IN) (NP (DT) (NN))))

Table 2: Top 20 syntactic structures of WordNet
definitions

4.2 Extracting Negative Examples from
Word Etymology

In order to devise complete training and testing
sets for CDS models, we need to find a sensible
way to extract negative examples. An option is to
randomly generate totally unrelated triples for the
negative examples set, NE. In this case, due to
data sparseness NE would mostly contain triples
(~z, ~x, ~y) where it is expected that ~z 6= �(xy). Yet,
these can be too generic and too loosely related to
be interesting cases.

Instead we attempt to extract sets of negative
pairs (t,s) comparable with the one used for build-
ing the training set E. The target word t should
be a single word and s should be a sequence of
words. The latter should be a sequence of words
related by construction to t but the meaning of t
and s should be unrelated.

The idea is the following: many words are et-
ymologically derived from very old or ancient
words. These words represent a collocation which
is in general not related to the meaning of the
target word. For example, the word philosophy
derives from two Greek words philos (beloved)
and sophia (wisdom). However, the use of the
word philosophy in not related to the collocation
beloved wisdom. This word has lost its origi-
nal compositional meaning. The following table
shows some more etymologically complex words
along with the compositionally unrelated colloca-
tions:

target word compositionally unrelated seq.
municipal receive duty
octopus eight foot

As the examples suggest, we are able to build a
set NE with features similar to the features of
N . In particular, each target word is paired with
a related word sequence derived from its etymol-
ogy. These etymologically complex words are un-
related to the corresponding compositional collo-
cations. To derive a set NE with the above char-
acteristics we can use dictionaries containing ety-
mological information as Wiktionary2.

5 Experimental evaluation

In the previous sections, we presented the esti-
mated additive model (EAM): our approach to es-
timate the parameters of a generic additive model
for CDS. In this section, we experiment with this
model to determine whether it performs better
than existing models: the basic additive model
(BAM), the basic multiplicative model (BMM),
the basic additive model with selectional pref-
erences (BAM-SP), and the basic multiplicative
model with selectional preferences (BMM-SP)
(c.f. Sec. 2). In succession, we explore whether
our estimated additive model (EAM) is better than
any possible BAM obtained with parameter ad-
justment. In the rest of the section, we firstly give
the experimental setup and then we discuss the ex-
periments and the results.

5.1 Experimental setup

Our experiments aim to compare compositional
distributional semantic (CDS) models � with re-
spect to their ability of detecting statistically sig-
nificant difference between sets E and NE. In
particular, the average similarity sim(~z,�(xy))
for (~z, ~x, ~y) ∈ E should be significantly different
from sim(~z,�(xy)) for (~z, ~x, ~y) ∈ NE. In this
section, we describe the chosen similarity mea-
sure sim, statistical significance testing and con-
struction details for the training and testing set.

Cosine similarity was used to compare the con-
text vector ~z representing the target word z with
the composed vector �(xy) representing the con-
text vector of sequence x y. Cosine similarity be-

2http://www.wiktionary.org
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tween two vectors ~x and ~y of the same dimension
is defined as:

sim(~x, ~y) =
~x · ~y
‖~x‖ ‖~y‖ (22)

where · is the dot product and ‖~a‖ is the magni-
tude of vector ~a computed the Euclidean norm.

To evaluate whether a CDS model distinguishes
positive examples E from negative examples
NE, we test if the distribution of similarities
sim(~z,�(xy)) for (~z, ~x, ~y) ∈ E is statistically
different from the distribution of the same simi-
larities for (~z, ~x, ~y) ∈ NE. For this purpose, we
used Student’s t-test for two independent samples
of different sizes. t-test assumes that the two dis-
tributions are Gaussian and determines the prob-
ability that they are similar, i.e., derive from the
same underlying distribution. Low probabilities
indicate that the distributions are highly dissimilar
and that the corresponding CDS model performs
well, as it detects statistically different similarities
for the positive set E and the negative set NE.

Based on the null hypothesis that the means of
the two samples are equal, µ1 = µ2, Student’s t-
test takes into account the sizes N , means M and
variances s2 of the two samples to compute the
following value:

t = (M1 −M2)
−1

√
2(s2

1 + s2
2)

df ∗Nh
(23)

where df = N1 + N2 − 2 stands for the degrees
of freedom and Nh = 2(N−1

1 + N−1
2 )−1 is the

harmonic mean of the sample sizes. Given the
statistic t and the degrees of freedom df , we can
compute the corresponding p-value, i.e., the prob-
ability that the two samples derive from the same
distribution. The null hypothesis can be rejected if
the p-value is below the chosen threshold of statis-
tical significance (usually 0.1, 0.05 or 0.01), oth-
erwise it is accepted. In our case, rejecting the
null hypothesis means that the similarity values of
instances of E are significantly different from in-
stances of NE, and that the corresponding CDS
model perform well. p-value can be used as a per-
formance ranking function for CDS models.

We constructed two sets of instances: (a) a
set containing Adjective-Noun or Noun-Noun se-

NN set VN set
BAM 0.05690 0.50753
BMM 0.20262 0.37523
BAM-SP 0.42574 0.01710
BMM-SP <1.00E-10 0.23552
EAM (k=20) 0.00431 0.00453

Table 3: Probability of confusing E and NE with
different CDS models

quences (NN set); and (b) a set containing Verb-
Noun sequences (VN set). Capturing different
syntactic relations, these two sets can support that
our results are independent from the syntactic re-
lation between the words of each sequence. For
each set, we used WordNet for extracting positive
examples E and Wiktionary for extracting nega-
tive examples NE as described in Section 4. We
obtained the following sets: (a) NN consists of
1065 word-sequence pairs from WordNet defini-
tions and 377 pairs extracted from Wiktionary;
and (b) VN consists of 161 word-sequence pairs
from WordNet definitions and 111 pairs extracted
from Wiktionary. We have then divided these two
sets in two parts of 50% each, for training and
testing. Instances of the training part of E have
been used to estimate matricesA andB for model
EAM , while the testing parts have been used for
testing all models. Frequency vectors for all sin-
gle words occurring in the above pairs were con-
structed from the British National Corpus using
sentences as contextual windows and words as
features. The resulting space has 689191 features.

5.2 Results and Analysis

The first set of experiments compares EAM with
other existing CDS models: BAM, BMM, BAM-
SP, and BMM-SP. Results are shown in Table 3.
The table reports the p-value, i.e., the probability
of confusing the positive set E and the negative
set NE for all models. Lower probabilities char-
acterise better models. Probabilities below 0.05
indicate that the model detects a statistically sig-
nificant difference between setsE andNE. EAM
has been computed with k = 20 different dimen-
sions for the pseudo-inverse matrix. The two basic
additive models (BAM and BAM-SP) have been
computed for α = β = 1.
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NN set V N set

Figure 1: p-values of BAM with different values for parameter α (where β = 1 − α) and of EAM for
different approximations of the SVD pseudo-inverse matrix (k)

The first observation is that EAM models sig-
nificantly separate positive from negative exam-
ples for both sets. This is not the case for any
of the other models. Only, the selectional prefer-
ences based models in two cases have this prop-
erty, but this cannot be generalised: BAM-SP on
the VN set and BMM-SP on the NN set. In gen-
eral, these models do not offer the possibility of
separating positive from negative examples.

In the second set of experiments, we attempt to
investigate whether simple parameter adjustment
of BAM can perform better than EAM. Results are
shown in figure 1. Plots show the basic additive
model (BAM) with different values for parameter
α (where β = 1−α) and EAM computed for dif-
ferent approximations of the SVD pseudo-inverse
matrix (i.e., with different k). The x-axis of the
plots represents parameter α and the y-axis repre-
sents the probability of confusing the positive set
E and the negative setNE. The representation fo-
cuses on the performance ofBAM with respect to
different α values. The performance of EAM for
different k values is represented with horizontal
lines. Probabilities of different models are directly
comparable. Line SS represents the threshold of
statistical significance; the value below which the
detected difference between the E and NE sets
becomes statistically significant.

Experimental results show some interesting
facts: While BAM for α > 0 perform better than
EAM computed with k = 1 in the NN set, they
do not perform better in the VN set. EAM with
k = 1 has 1 degree of freedom corresponding to

1 parameter, the same as BAM. The parameter of
EAM is tuned on the training set, in contrast to
α, the parameter of BAM. Increasing the number
of considered dimensions, k of EAM, estimated
models outperform BAM for all values of param-
eter α. Moreover, EAM detect a statistically sig-
nificant difference between theE and theNE sets
for k ≥ 10 and k = 20 for the NN set and the
VN set set, respectively. Simple parametrisation
of a BAM does not outperform the proposed esti-
mated additive model.

6 Conclusions

In this paper, we presented an innovative method
to estimate linear compositional distributional se-
mantics models. The core of our approach con-
sists on two parts: (1) providing a method to es-
timate the regression problem with multiple de-
pendent variables and (2) providing a training set
derived from dictionary definitions. Experiments
showed that our model is highly competitive with
respect to state-of-the-art models for composi-
tional distributional semantics.
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Abstract

In opinion mining of product reviews, one of-

ten wants to produce a summary of opinions 

based on product features/attributes. Howev-

er, for the same feature, people can express it 

with different words and phrases. To produce 

a meaningful summary, these words and 

phrases, which are domain synonyms, need to 

be grouped under the same feature group. 

This paper proposes a constrained semi-

supervised learning method to solve the prob-

lem. Experimental results using reviews from 

five different domains show that the proposed 

method is competent for the task. It outper-

forms the original EM and the state-of-the-art 

existing methods by a large margin. 

1 Introduction
*

One form of opinion mining in product reviews 

is to produce a feature-based summary (Hu and 

Liu, 2004a; Liu, 2010). In this model, product 

features are first identified, and positive and neg-

ative opinions on them are aggregated to produce 

a summary on the features. Features of a product 

are attributes, components and other aspects of 

the product, e.g., “picture quality”, “battery life” 

and “zoom” of a digital camera. 

In reviews (or any writings), people often use 

different words and phrases to describe the same 

product feature. For example, “picture” and 

“photo” refer to the same feature for cameras. 

Grouping such synonyms is critical for effective 

opinion summary. Although WorldNet and other 

*Supported by National Natural Science Foundation of Chi-

na (Grant No: 60875073). 

    This work was done when the first author was visiting 

Bing Liu’s group at the University of Illinois at Chicago.  

thesaurus dictionaries can help to some extent, 

they are far from sufficient due to a few reasons. 

First, many words and phrases that are not syn-

onyms in a dictionary may refer to the same fea-

ture in an application domain. For example, “ap-

pearance” and “design” are not synonymous, but 

they can indicate the same feature, design.

Second, many synonyms are domain dependent. 

For example, “movie” and “picture” are syn-

onyms in movie reviews, but they are not syn-

onyms in camera reviews as “picture” is more 

likely to be synonymous to “photo” while “mov-

ie” to “video”. Third, determining which expres-

sions indicate the same feature can be dependent 

on the user’s application need. For example, in 

car reviews, internal design and external design 

can be regarded as two separate features, but can 

also be regarded as one feature, called “design”, 

based to the level of details that the user needs to 

study. In camera reviews, one may want to study 

battery as a whole (one feature), or as more than 

one feature, e.g., battery weight, and battery life. 

Due to this reason, in applications the user needs 

to be involved in synonym grouping.  

Before going further, let us introduce two con-

cepts, feature group and feature expression. Fea-

ture group (or feature for short) is the name of a 

feature (given by the user), while a feature ex-

pression of a feature is a word or phrase that ac-

tually appears in a review to indicate the feature. 

For example, a feature group could be named 

“picture quality”, but there are many possible 

expressions indicating the feature, e.g., “picture”, 

“photo”, “image”, and even the “picture quality” 

itself. All the feature expressions in a feature 

group signify the same feature.  

Grouping feature expressions manually into 

suitable groups is time consuming as there are 
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often hundreds of feature expressions. This paper 

helps the user to perform the task more efficient-

ly. To focus our research, we assume that feature 

expressions have been discovered from a review 

corpus by an existing system such as those in 

(Hu and Liu, 2004b; Popescu and Etzioni, 2005; 

Kim and Hovy, 2006; Kobayashi et al., 2007; 

Mei et al., 2007; Stoyanov and Cardie, 2008; Jin

et al., 2009; Ku et al., 2009). 

To reflect the user needs, he/she can manually 

label a small number of seeds for each feature 

group. The feature groups are also provided by 

the user based on his/her application needs. The 

system then assigns the rest of the feature ex-

pressions to suitable groups. To the best of our 

knowledge, this problem has not been studied in 

opinion mining (Pang and Lee, 2008).  

The problem can be formulated as semi-

supervised learning. The small set of seeds la-

beled by the user is the labeled data, and the rest 

of the discovered feature expressions are the un-

labeled data. This is the transductive setting 

(Joachims, 1999) because the unlabeled set is 

used in learning and also in testing since our ob-

jective is to assign unlabeled expressions to the 

right feature groups.  

Any semi-supervised learning method can be 

applied to tackle the problem. In this work, we 

use the Expectation-Maximization (EM) algo-

rithm (Dempster et al., 1977). Specifically, we 

use the naïve Bayesian EM formulation in 

(Nigam et al., 2000), which runs a Bayesian clas-

sifier iteratively on the labeled and unlabeled 

data until the probabilities for the unlabeled data 

converge. When the algorithm ends, each unla-

beled example is assigned a posterior probability 

of belonging to each group.  

However, we can do better since the EM algo-

rithm only achieves local optimal. What local 

optimal it achieves depends on the initialization, 

i.e., the initial seeds. We show that some prior 

knowledge can help provide a better initialization, 

and consequently generate better grouping results. 

Thus, we propose to create another set of data 

extracted from the unlabeled set based on two 

pieces of natural language knowledge: 

1. Feature expressions sharing some common 

words are likely to belong to the same group, 

e.g., “battery life” and “battery power”. 

2. Feature expressions that are synonyms in a 

dictionary are likely to belong to the same 

group, e.g., “movie” and “picture”.  

We call these two pieces of prior knowledge soft 
constraints because they constrain the feature 

expressions to be in the same feature group. The 

constraints are soft (rather than hard) as they can 

be relaxed in the learning process. This relaxa-

tion is important because the above two con-

straints can result in wrong groupings. The EM 

algorithm is allowed to re-assign them to other 

groups in the learning process.  

We call the proposed framework constrained 

semi-supervised learning. Since we use EM and 

soft constraints, we call the proposed method SC-
EM. Clearly, the problem can also be attempted 

using some other techniques, e.g., topic modeling 

(e.g, LDA (Blei et al., 2003)), or clustering using 

distributional similarity (Pereira et al., 1993; Lin, 

1998; Chen et al., 2006; Sahami and Heilman, 

2006). However, our results show that these me-

thods do not perform as well. 

The input to the proposed algorithm consists 

of: a set of reviews R, and a set of discovered 

feature expressions F from R (using an existing 

algorithm). The user labels a small set of feature 

expressions, i.e., assigning them to the user-

specified feature groups. The system then assigns 

the rest of the discovered features to the feature 

groups. EM is run using the distributional (or 

surrounding words) contexts of feature expres-

sions in review set R to build a naïve Bayesian 

classifier in each iteration.  

Our evaluation was conducted using reviews 

from 5 different domains (insurance, mattress, 

vacuum, car and home-theater). The results show 

that the proposed method outperforms different 

variations of the topic modeling method LDA, k-

means clustering, and the recent unsupervised 

feature grouping method mLSA.  

In summary, this paper makes three main con-

tributions:

1. It proposes a new sub-problem of opinion 

mining, i.e., grouping feature expressions in 

the context of semi-supervised learning. Al-

though there are existing methods for solving 

the problem based on unsupervised learning, 

we argue that for practical use some form of 

supervision from the user is necessary to let 

the system know what the user wants.  

2. An EM formulation is used to solve the prob-

lem. We augment EM with two soft con-

straints. These constraints help guide EM to 
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produce better solutions. We note that these 

constraints can be relaxed in the process to 

correct the imperfection of the constraints.  

3. It is shown experimentally the new method 

outperforms the main existing state-of-the-art 

methods that can be applied to the task.  

2 Related Work 

This work is mainly related to existing research 

on synonyms grouping, which clusters words and 

phrases based on some form of similarity.  

The methods for measuring word similarity 

can be classified into two main types (Agirre et 
al., 2009): those relying on pre-existing know-
ledge resources (e.g., thesauri, or taxonomies) 

(Yang and Powers, 2005; Alvarez and Lim, 2007; 

Hughes and Ramage, 2007), and those based on 

distributional properties (Pereira et al., 1993; 

Lin, 1998; Chen et al., 2006; Sahami and 

Heilman, 2006; Pantel et al., 2009).   

In the category that relies on existing know-

ledge sources, the work of Carenini et al. (2005) 

is most related to ours. The authors proposed a 

method to map feature expressions to a given 

domain feature taxonomy, using several similari-

ty metrics on WordNet. This work does not use 

the word distribution information, which is its 

main weakness because many expressions of the 

same feature are not synonyms in WordNet as 

they are domain/application dependent. Dictiona-

ries do not contain domain specific knowledge, 

for which a domain corpus is needed.

Another related work is distributional similari-

ty, i.e., words with similar meaning tend to ap-

pear in similar contexts (Harris, 1968). As such, 

it fetches the surrounding words as context for 

each term. Similarity measures such as Cosine,

Jaccard, Dice, etc (Lee, 1999), can be employed 

to compute the similarities between the seeds and 

other feature expressions. To suit our need, we 

tested the k-means clustering with distributional 

similarity. However, it does not perform as well 

as the proposed method.  

Recent work also applied topic modeling (e.g., 

LDA) to solve the problem. Guo et al. (2009) 

proposed a multilevel latent semantic association 

technique (called mLSA) to group product feature 

expressions, which runs LDA twice. However, 

mLSA is an unsupervised approach. For our eval-

uation, we still implemented the method and 

compared it with our SC-EM method.  

Our work is also related to constrained cluster-

ing (Wagstaff et al., 2001), which uses two forms 

of constraints, must-link and cannot-link. Must-

links state that some data points must be in the 

same cluster, and cannot-links state that some 

data points cannot be in the same cluster. In 

(Andrzejewski et al., 2009), the two constraints 

are added to LDA, called DF-LDA. We show 

that both these methods do not perform as well as 

our semi-supervised learning method SC-EM.

3 The Proposed Algorithm 

Since our problem can be formulated as semi-

supervised learning, we briefly describe the set-

ting in our context. Given a set C of classes (our 

feature groups), we use L to denote the small set 

of labeled examples (labeled feature expressions 

or seeds), and U the set of unlabeled examples 

(unlabeled feature expressions). A classifier is 

built using L and U to classify every example in 

U to a class. Several existing algorithms can be 

applied. In this work, we use EM as it is efficient 

and it allows prior knowledge to be used easily. 

Below, we first introduce the EM algorithm that 

we use, and then present our augmented EM. The 

constraints and their conflict handling are dis-

cussed in Section 4.  

3.1 Semi-Supervised Learning Using EM 

EM is a popular iterative algorithm for maximum 

likelihood estimation in problems with missing 

data. In our case, the group memberships of the 

unlabeled expressions are considered missing 

because they come without group labels.  

We use the EM algorithm based on naïve 

Bayesian classification (Nigam et al., 2000). Al-

though it is involved to derive, using it is simple. 

First, a classifier f is learned using only the la-

beled data L (Equations 1 and 2). Then, f is ap-

plied to assign a probabilistic label to each unla-

beled example in U (see Equation 3). Next, a 

new classifier f is learned using both L and the 

newly probabilistically labeled unlabeled exam-

ples in UPL, again using Equations 1 and 2. These 

last two steps iterate until convergence. 

We now explain the notations in the Equations. 

Given a set of training documents D, each docu-

ment di in D is considered as an ordered list of 

words. denotes the kth word in di, where 

each word is from the vocabulary V={w1, w2,…,
w|V|}. C={c1, c2,…, c|C|} is the set of pre-defined 
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classes or groups. Nti is the number of times the 

word wt occurs in document di.

For our problem, the surrounding words con-

texts of the labeled seeds form L, while the sur-

rounding words of the non-seed feature expres-

sions form U. When EM converges, the classifi-

cation labels of the unlabeled feature expressions 

give us the final grouping. Surrounding words 

contexts will be discussed in Section 5. 

3.2 Proposed Soft-Constrained EM 

Although EM can be directly applied to deal with 

our problem, we can do better. As we discussed 

earlier, EM only achieves local optimal based on 

the initialization, i.e., the labeled examples or 

seeds. We show that natural languages con-

straints can be used to provide a better initializa-

tion, i.e., to add more seeds that are likely to be 

correct, called soft-labeled examples or soft seeds 
(SL). Soft-labeled examples are handled diffe-

rently from the original labeled examples in L.

With the soft seeds, we have the proposed soft-

constrained EM (called SC-EM). 
Compared with the original EM, SC-EM has 

two main differences:
Soft constraints are applied to L and U to pro-

duce a set SL of soft-labeled examples (or soft 

seeds) to initialize EM in addition to L. SL is 

thus a subset of U. The training set size is in-

creased, which helps produce better results as 

our experimental results show.  

In the first iteration of EM, soft-labeled ex-

amples SL are treated in the same way as the 

labeled examples in L. Thus both SL and L are 

used as labeled examples to learn the initial 

classifier f0. However, in the subsequent itera-

tions, SL is treated in the same way as any ex-

amples in U. That is, the classifier fx from 

each iteration x (including f0) will predict U.

After that, a new classifier is built using both 

L and UPL (which is U with probabilistic la-

1 Laplace smoothing is used to prevent zero probabilities for 

infrequently occurring words. 

bels). Clearly, this implies that the class labels 

of the examples in SL are allowed to change. 

That is also why we call SL the soft-labeled 

set in contrast to the hard-labeled set L, i.e., 

the examples in L will not change labels in 

EM. The reason that SL is allowed to change 

labels/classes is because the constraints can 

make mistakes. EM may be able to correct 

some of the mistakes. 

The detailed algorithm is given in Figure 1. The 

constraints are discussed in Section 4. 

4 Generating SL Using Constraints 

As mentioned earlier, two forms of constraints 

are used to induce the soft-labeled set SL. For 

easy reference, we reproduce them here:  

1. Feature expressions sharing some common 

words are likely to belong to the same group. 

2. Feature expressions that are synonyms in a 

dictionary are likely to belong to one group.  

According to the number of words, feature ex-

pressions can be categorized into single-word 

expressions and phrase expressions. They are 

handled differently. The detailed algorithm is 

given in Figure 2. In the algorithm, L is the la-

beled set and U is the unlabeled set. L, in fact, 

consists of a set of sets, L = {L1, L2, …, L|L|}. 

Each Li contains a set of labeled examples (fea-

ture expressions) of the ith class (feature group). 

Similarly, the output set SL (the soft-labeled set) 

also consists of a set of sets, i.e., SL = {SL1,

SL2, …, SL|L|}. Each SLi is a set of soft-labeled 

examples (feature expressions) of the ith class 

(11)

(21)

(3)

Input:
- Labeled examples L
- Unlabeled examples U
1 Extract SL from U using constraints (Section 4); 
2 Learn an initial naïve Bayesian classifier f0 using L

∪ SL and Equations 1 and 2; 
3 repeat
4 // E-Step 
5 for each example di in U (including SL) do
6 Using the current classifier fx to compute 

P(cj|di) using Equation 3. 
7 end
8 // M-Step 
9 Learn a new naïve Bayesian classifier fx from L

and U by computing P(wt|cj) and P(cj) using 
Equations 1 and 2. 

10 until the classifier parameters stabilize 
Output: the classifier fx from the last iteration.

 Figure 1. The proposed SC-EM algorithm  
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(feature group). Thus Li and SLi correspond to 

each other as they represent the original labeled 

examples and the newly soft-labeled examples of 

the ith class (or feature group) respectively.  

The algorithm basically compares each fea-

ture expression u in U (line 1) with each feature 

expression e (line 4) in every labeled subset Li
(line 2) based on the above two constraints. If 

any of the constraints is satisfied (lines 5-17), it 

means that u is likely to belong to Li (or the ith

class or feature group), and it is added to SLi.

There are conflict situations that need to be re-

solved. That is, u may satisfy a constraint of 

more than one labeled sub-set Li. For example, if 

u is a single word, it may be synonyms of feature 

expressions from more than one feature groups. 

The question is which group it is likely to belong. 

Further, u may be synonyms of a few single-

word feature expressions in Li. Clearly, u being a 

synonym of more than one word in Li is better 

than it is only the synonym of one word in Li.

Similar problems also occur when u is an ele-

ment of a feature expression phrase e.

To match u and e, there are a few possibilities. 

If both u and e are single words (lines 5-6), the 

algorithm checks if they are synonyms (line 7). 

The score in line 8 is discussed below. When one 

of u and e is a phrase, or both of them are phrases, 

we see whether they have shared words. Again, 

conflict situations can happen with multiple 

classes (feature groups) as discussed above. Note 

that in these cases, we do not use the synonym 

constraint, which does not help in our test.  

Given these complex cases, we need to decide 

which class that u should be assigned to or 

should not be assigned to any class (as it does not 

meet any constraint). We use a score to record 

the level of satisfaction. Once u is compared with 

each e in every class, the accumulated score is 

used to determine which class Li has the strong-

est association with u. The class j with the high-

est score is assigned to u. In other words, u is 

added to SLj. Regarding the score value, syn-

onyms gets the score of 1 (line 8), and intersec-

tion (shared words) gets the score equal to the 

size of the intersection (lines 10-17). 

5 Distributional Context Extraction 

To apply the proposed algorithm, a document di
needs to be prepared for each feature expression 

ei for naïve Bayesian learning. di is formed by 

aggregating the distributional context of each 

sentence sij in our corpus that contains the ex-

pression ei. The context of a sentence is the sur-

rounding words of ei in a text window of [-t, t], 
including the words in ei. Given a relevant cor-

pus R, the document di for each feature expres-

sion ei in L (or U) is generated using the algo-

rithm in Figure 3. Stopwords are removed. 

1 for each feature expression ei in L (or U) do
2       Si ← all sentences containing ei in R;
3       for each sentence sij ∈ Si do
4            dij ← words in a window of [-t, t] on the left 

and right (including the words in ei);
5       di ← words from all dij, j = 1, 2, …, |Si|; 
          // duplicates are kept as it is not union

Figure 3. Distributional context extraction 

For example, a feature expression from L (or 

U) is ei = “screen” and there are two sentences in 

our corpus R that contain “screen”

si1 = “The LCD screen gives clear picture”.

si2 = “The picture on the screen is blur”
We use the window size of [-3, 3]. Sentence si1,
gives us di1 = <LCD, screen, give, clear, picture> 
as a bag of words. “the” and “is” are removed as 
stopwords. si2 gives us di2 = <picture, screen, 
blur>. “on”, “the” and “is” are removed as stop-
words. Finally, we obtain the document di for 
feature expression ei as a bag of words: 

di = <LCD, screen, give, clear, picture,
picture, screen, blur> 

6 Empirical Evaluation 

This section evaluates the SC-EM algorithm and 

compares it with the main existing methods that 

can be applied to solve the problem.   

1  for each feature expression u ∈ U do
2 for each feature group Li ∈ L do
3 score(Li) ← 0; 
4 for each feature expression e ∈ Li do
5 if u is a single word expression then
6 if e is a single word expression then
7 if u and e are synonyms then
8 score(Li) ← score(Li) + 1; 
9 else if w ∈ e then  // e is a phrase 
10 score(Li) ← score(Li) + 1 
11 else  // u is a phrase 
12 if e is a single word expression then
13 if e ∈ u then  // u is a phrase 
14 score(Li) ← score(Li) + 1 
15 else
16 s ← e ∩ u;
17 score(Li) ← score(Li) + |s|
18 u is added to SLj s.t.

Figure 2. Generating the soft-labeled set SL
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6.1 Review Data Sets and Gold Standards 

To demonstrate the generality of the proposed 

method, experiments were conducted using re-

views from five domains: Hometheater, Insur-
ance, Mattress, Car and Vacuum. All the data 

sets and the gold standard feature expressions 

and groups were from a company that provides 

opinion mining services. The details of the data 

sets and the gold standards are given in Table 1.  

Hometheater Insurance Mattress Car Vacuum

#Sentences 6355 12446 12107 9731 8785

#Reviews 587 2802 933 1486 551
#Feature  
expressions 237 148 333 317 266 

#Feature 
groups 15 8 15 16 28 

Table 1. Data sets and gold standards 

6.2 Evaluation Measures 

Since SC-EM is based on semi-supervised learn-

ing, we can use classification accuracy to eva-

luate it. We can also see it as clustering with ini-

tial seeds. Thus we also use clustering evaluation 

methods. Given gold standards, two popular 

clustering evaluation measures are Entropy and 

Purity (Liu, 2006). As accuracy is fairly standard, 

we will not discuss it further. Below, we briefly 

describe entropy and purity. 

Given a data set DS, its gold partition is G =

{ ,…, ,…, }, where k is the known number 

of clusters. The groups partition DS into k dis-

joint subsets, DS1,…, DSi, …, DSk.

Entropy: For each resulting cluster, we can 

measure its entropy using Equation 4, where 

Pi( ) is the proportion of  data points in DSi.

The total entropy of the clustering (considering 

all clusters) is calculated by Equation 5. 

(4)

(5)

Purity: Purity measures the extent that a clus-

ter contains only data from one gold-partition. 

Each cluster’s purity is computed by Equation 6, 

and the total purity of the whole clustering is 

computed with Equation 7. 

(6)

(7)

In testing, the unlabeled set U is also our test 

set. This is justified because our purpose is to 

assign unlabeled data to appropriate groups.  

6.3 Baseline Methods and Settings 

The proposed SC-EM method is compared with 

a set of existing methods, which can be catego-

rized into unsupervised and semi-supervised me-

thods. We list the unsupervised methods first.  

LDA: LDA is a popular topic modeling me-

thod (see Section 2). Given a set of documents, it 

outputs groups of terms of different topics. In our 

case, each feature expression is a term, and the 

documents refer to the distributional contexts of 

each feature expressions (see Section 5).  

mLSA: This is a state-of-the-art unsupervised 

method for solving the problem. It is based on 

LDA, and has been discussed in related work. 

Kmeans: This is the k-means clustering me-

thod (MacQueen, 1966) based on distributional 

similarity with cosine as the similarity measure. 

In the semi-supervised category, the methods 

are further classified into un-constrained, hard-

constrained, and soft-constrained methods. 

For the un-constrained subclass (no con-

straints are used), we have the following: 

LDA(L, H): This method is based on LDA,

but the labeled examples L are used as seeds for 

each group/topic. All examples in L will always 

stay in the same topic. We call this hard initiali-

zation (H). L is handled similarly below. 

DF-LDA(L, H). DF-LDA is the LDA method 

(Andrzejewski et al., 2009) that takes must-links 

and cannot-links. Our L set can be expressed as a 

combination of must-links and cannot-links. Un-

fortunately, only must-links can be used because 

the number of cannot-links is huge and crashes 

the system. For example, for the car data, the 

number of cannot-links is 194,400 for 10% la-

beled data (see Section 6.4) and for 20% it is 

466,560,000. DF-LDA also has a parameter η
controlling the link strength, which is set very 

high (=1000) to reflect the hard initialization. We 

did not use DF-LDA in the unsupervised subclass 

above as without constraints it reduces to LDA.

Kmeans(L, H): This method is based on 

Kmeans, but the clusters of the labeled seeds are 

fixed at the initiation and remain unchanged. 

EM(L, H): This is the original EM for semi-

supervised learning. Only the labeled examples 

are used as the initial seeds.  

For the hard-constrained (H) subclass (our 
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two constraints are applied and cannot be vi-

olated), we have the following methods (LC is L
plus SL produced by the constraints (C): 

Rand(LC, H): This is an important baseline. It 

shows whether the constraints alone are suffi-

cient to produce good results. That is, the final 

result is the expanded seeds SL plus the rest of U
assigned randomly to different groups.

LDA(LC, H): It is similar to LDA(L,H), but 

both the initial seeds L and the expanded seeds 

SL are considered as labeled examples. They also 

stay in the same topics/groups in the process. 

Note that although SL is called a set of soft-

labeled examples (seeds) in the proposed algo-

rithm, they are treated as hard-labeled examples 

here just for experimental comparison.  
DF-LDA(LC, H): This is DF-LDA with both 

L and SL expressed as must-links. Again, a large 
η (= 1000) is used to make sure that must-links 
for L and SL will not be violated.  

Kmeans(LC,H): It is similar to Kmeans(L,H), 
but both L and SL stay in their assigned clusters.  

EM(LC, H): It is similar to SC-EM, but SL is 
added to the labeled set L, and their classes are 
not allowed to change in the EM iterations.  

For the soft-constrained (S) subclass, our two 

constraints can be violated. Initially, both the 

initial seeds L and the expanded seeds SL are 

considered as labeled data, but subsequently, on-

ly L is taken as the labeled data (i.e., staying in 

the same classes). The algorithm will re-estimate 

the label of each feature expression in SL. This 

subclass has the following methods: 
LDA(LC, S): This is in contrast to LDA(LC, 

H). It allows the SL set to change topics/groups. 
Kmeans(LC, S): This is in contrast to 

Kmeans(LC, H).
A soft DF-LDA is not included here because 

different η values give different results, and they 
are generally worse than DF-LDA(LC, H).

For all LDA based methods, the topic model-

ing parameters were set to their default values. 

The number of iteration is 1000. We used the 

LDA in MALLET2, and modified it to suit differ-

ent LDA-based methods except DF-LDA, which 

was downloaded from its authors’ website3. We 

implemented mLSA, Kmeans and changed EM4

to take soft seeds. For all Kmeans based methods, 

the distance function is the cosine similarity. 

2 http://mallet.cs.umass.edu/ 
3 http://pages.cs.wisc.edu/~andrzeje/research/df_lda.html 
4 http://alias-i.com/lingpipe/ 

6.4 Evaluation Results 

We now compare the results of SC-EM and the 

14 baseline methods. To see the effects of differ-

ent numbers of labeled examples (seeds), we ex-

perimented with 10%, 20%, 30%, 40%, and 50% 

of the feature expressions from the gold standard 

data as the labeled set L, and the rest as the unla-

beled set U. All labeled data were selected ran-

domly. For each setting, we run the algorithms 

30 times and report the average results. Due to 

space limitations, we can only show the detailed 

purity (Pur), entropy (Ent) and accuracy (Acc) 

results for 30% as the labeled data (70% as unla-

beled) in Table 2. For the other proportions of 

labeled data, we summarize them in Table 3. 

Each result in Table 3 is thus the average of the 5 

data sets. All the results were obtained from the 

unlabeled set U, which was our test set. For en-

tropy, the smaller the value is the better, but for 

purity and accuracy, the larger the better. For 

these experiments, we used the window size t = 5. 

Section 6.5 studies the effects of window sizes.  

Tables 2 and 3 clearly show that the proposed 

algorithm (SC-EM) outperforms all 14 baseline 

methods by a large margin on every dataset. In 

detail, we observe the following:  

• LDA, mLSA and Kmeans with no seeds (la-

beled data) perform the worst. Seeds help to 

improve the results, which is intuitive. With-

out seeds, DF-LDA is the same as LDA.

• LDA based methods seems to be the weakest. 

Kmeans based methods are slightly better, but 

EM based methods are the best. This clearly 

indicates that classification (EM) performs 

better than clustering. Comparing DF-LDA
and Kmeans, their results are similar.  

• For LDA, and Kmeans, hard-constrained me-

thods (i.e., LDA(L, H), and Kmeans(L, H))

perform better than soft-constrained methods 

(i.e., LDA(LC, S) and Kmeans(LC, S)). This 

indicates that soft-constrained versions may 

change some correctly constrained expres-

sions into wrong groups. However, for the 

EM based methods, the soft-constrained me-

thod (SC-EM) performs markedly better than 

the hard-constrained version (EM(LC, H)). 

This indicates that Bayesian classifier used in 

EM can take advantage of the soft constraints 

and correct some wrong assignments made by 

constraints. Much weaker results of Rand(LC,
H) than SC-EM in different settings show that 
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constraints alone (i.e., synonyms and sharing 

of words) are far from sufficient. EM can im-

prove it considerably.  

• Comparing EM based methods, we can see 

that soft seeds in SL make a big difference for 

all data sets. SC-EM is clearly the best.  

• As the number of labeled examples increases 

(from 10% to 50%), the results improve for 

every method (except those for DF-LDA,

which does not change much).  

6.5 Varying the Context Window Size 

We varied the text window size t from 1 to 10 to 

see how it impacts on the performance of SC-EM.

The results are given in Figure 4 (they are aver-

ages of the 5 datasets). Again for purity and ac-

curacy, the greater the value the better, while for 

entropy it is the opposite. It is clear that the win-

dow sizes of 2~6 produce similar good results. 

All evaluations reported above used t = 5. 

7 Conclusion

This paper proposed the task of feature grouping 
in a semi-supervised setting. It argued that some 
form of supervision is needed for the problem 
because its solution depends on the user applica-
tion needs. The paper then proposed to use the 
EM algorithm to solve the problem, which was 
improved by considering two soft constraints. 
Empirical evaluations using 5 real-life data sets 
show that the proposed method is superior to 14 
baselines. In our future work, we will focus on 
further improving the accuracy.  

Methods 
Hometheater Insurance Mattress Car Vacuum 

Acc Pur Ent Acc Pur Ent Acc Pur Ent Acc Pur Ent Acc Pur Ent 

LDA 0.06 0.31 2.54 0.11 0.36 2.24 0.05 0.32 2.57 0.06 0.37 2.39 0.03 0.36 2.09
mLSA 0.06 0.31 2.53 0.14 0.38 2.19 0.06 0.34 2.55 0.09 0.37 2.40 0.03 0.37 2.11
Kmeans 0.21 0.42 2.14 0.25 0.45 1.90 0.15 0.39 2.32 0.25 0.44 2.16 0.24 0.47 1.78
LDA(L, H) 0.10 0.32 2.50 0.16 0.37 2.22 0.10 0.34 2.57 0.19 0.39 2.36 0.10 0.39 2.09
DF-LDA(L, H) 0.27 0.37 2.32 0.25 0.41 2.00 0.19 0.39 2.35 0.28 0.45 2.15 0.31 0.40 1.98
Kmeans(L, H) 0.20 0.42 2.12 0.25 0.43 1.92 0.17 0.42 2.26 0.27 0.48 2.04 0.20 0.48 1.76
EM(L, H) 0.48 0.50 1.93 0.50 0.53 1.69 0.52 0.56 1.87 0.56 0.58 1.80 0.49 0.52 1.79
Rand(CL, H) 0.41 0.46 2.07 0.40 0.46 1.94 0.40 0.47 2.07 0.34 0.41 2.31 0.39 0.52 1.59
LDA(CL, H) 0.44 0.50 1.96 0.42 0.48 1.89 0.42 0.49 1.97 0.44 0.52 1.87 0.43 0.55 1.48
DF-LDA(CL, H) 0.35 0.49 1.86 0.33 0.49 1.71 0.23 0.39 2.26 0.34 0.51 1.88 0.37 0.52 1.58
Kmeans(CL, H) 0.49 0.55 1.70 0.48 0.55 1.62 0.44 0.51 1.91 0.47 0.54 1.80 0.44 0.58 1.42
EM(CL, H) 0.59 0.60 1.62 0.58 0.60 1.46 0.56 0.59 1.74 0.62 0.64 1.54 0.55 0.60 1.44
LDA(CL, S) 0.24 0.35 2.44 0.27 0.40 2.14 0.23 0.37 2.44 0.27 0.41 2.33 0.23 0.41 2.01
Kmeans(CL, S) 0.33 0.46 2.04 0.34 0.45 1.90 0.25 0.43 2.20 0.29 0.47 2.07 0.37 0.50 1.68
SC-EM 0.67 0.68 1.30 0.66 0.68 1.18 0.68 0.70 1.27 0.70 0.71 1.24 0.67 0.68 1.18

Table 2. Comparison results (L = 30% of the gold standard data) 

Methods 
Acc Pur Ent

10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

LDA 0.07 0.07 0.06 0.06 0.08 0.33 0.33 0.34 0.35 0.38 2.50 2.44 2.37 2.28 2.11
mLSA 0.07 0.07 0.08 0.07 0.07 0.34 0.35 0.35 0.37 0.38 2.48 2.42 2.36 2.26 2.12
Kmeans 0.22 0.23 0.22 0.22 0.22 0.42 0.43 0.44 0.44 0.46 2.16 2.11 2.06 1.98 1.86

LDA(L, H) 0.10 0.10 0.13 0.14 0.15 0.34 0.34 0.36 0.37 0.39 2.48 2.43 2.35 2.25 2.11
DF-LDA(L, H) 0.23 0.25 0.26 0.27 0.30 0.41 0.40 0.41 0.41 0.44 2.23 2.23 2.16 2.10 1.94
Kmeans(L, H) 0.13 0.16 0.22 0.24 0.28 0.42 0.43 0.45 0.45 0.48 2.15 2.11 2.02 1.95 1.79
EM(L, H) 0.35 0.44 0.51 0.55 0.58 0.43 0.49 0.54 0.57 0.61 2.22 1.99 1.81 1.65 1.49

Rand(CL, H) 0.28 0.35 0.39 0.42 0.45 0.39 0.43 0.47 0.50 0.54 2.33 2.15 2.00 1.82 1.63
LDA(CL, H) 0.31 0.38 0.43 0.46 0.49 0.43 0.47 0.51 0.54 0.58 2.16 1.99 1.83 1.69 1.49
DF-LDA(CL, H) 0.32 0.33 0.33 0.34 0.36 0.49 0.50 0.48 0.48 0.48 1.90 1.85 1.86 1.83 1.82
Kmeans(CL, H) 0.33 0.41 0.46 0.49 0.52 0.47 0.51 0.55 0.57 0.61 1.98 1.82 1.69 1.56 1.42
EM(CL, H) 0.44 0.54 0.58 0.61 0.64 0.49 0.57 0.61 0.64 0.67 1.98 1.72 1.56 1.40 1.25

LDA(CL, S) 0.17 0.21 0.25 0.30 0.34 0.34 0.36 0.39 0.42 0.46 2.47 2.37 2.27 2.09 1.87
Kmeans(CL, S) 0.23 0.28 0.32 0.36 0.42 0.43 0.44 0.46 0.48 0.51 2.15 2.08 1.98 1.86 1.70
SC-EM 0.45 0.58 0.68 0.75 0.81 0.50 0.61 0.69 0.76 0.82 1.95 1.56 1.24 0.94 0.69

Table 3. Influence of the seeds’ proportion (which reflects the size of the labeled set L)

Figure 4. Influence of context window size 
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Abstract

Supertagging is an important technique
for deep syntactic analysis. A super-
tagger is usually trained independently
of the parser using a sequence labeling
method. This presents an inconsistent
training objective between the supertagger
and the parser. In this paper, we pro-
pose a forest-guided supertagger training
method to alleviate this problem by incor-
porating global grammar constraints into
the supertagging process using a CFG-
filter. It also provides an approach to
make the supertagger and the parser more
tightly integrated. The experiment shows
that using the forest-guided trained super-
tagger, the parser got an absolute 0.68%
improvement from baseline in F-score
for predicate-argument relation recogni-
tion accuracy and achieved a competi-
tive result of 89.31% with a faster pars-
ing speed, compared to a state-of-the-art
HPSG parser.

1 Introduction

Deep syntactic analysis by lexicalized grammar
parsing, which provides linguistic-rich informa-
tion for many NLP tasks, has recently received
more and more attention from the NLP commu-
nity. To use a deep parser in real large-scale ap-
plications, speed is an important issue to take into
consideration. Supertagging is one of the speed-
up technique widely used for lexicalized grammar
parsing. A supertagger is used to limit the number
of plausible lexical entries fed to the parser, this
can greatly reduce the search space for the parser.

Supertagging was first proposed for Lexicalized
Tree Adjoining Grammar (LTAG) (Bangalore and
Joshi, 1999), and then successfully applied to
Combinatory Categorial Grammar (CCG) (Clark,
2002) and Head-driven Phrase Structure Gram-
mar (HPSG) (Ninomiya et al., 2006). In addi-
tion, supertags can also be used for other NLP
tasks besides parsing, such as semantic role label-
ing (Chen and Rambow, 2003) and machine trans-
lation (Birch et al., 2007; Hassan et al., 2007) to
utilize syntactic information in the supertags.

In lexicalized grammar parsing, supertagging is
usually treated as a sequence labeling task inde-
pendently trained from the parser. Previous re-
search (Clark, 2002) showed that even a point-
wise classifier not considering context edge fea-
tures is effective when used as a supertagger. To
make up for the insufficient accuracy as a single-
tagger, more than one supertag prediction is re-
served and the parser takes the burden of resolving
the rest of the supertag ambiguities.

A non-trivial problem raised by the separate
training of the supertagger is that the prediction
score provided by the supertagger might not be
suitable for direct use in the parsing process, since
a separately trained supertagger that does not take
into account grammar constraints has a training
objective which is inconsistent with the parser.
Although the scores provided by the supertagger
can be ignored (e.g., in some CCG parsers), this
may also discard some useful information for ef-
fective beam search and accurate disambiguation.

Based on this observation, we assume that
considering global grammar constraints during
the supertagger training process would make the
supertagger and the parser more tightly integrated.
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In this paper, we propose an on-line forest-guided
training method for a supertagger to make the
training objective of a supertagger more closely
related to the parsing task. We implemented this
method on a large-scale HPSG grammar. We
used a CFG grammar to approximate the original
HPSG grammar in the supertagging stage and ap-
plied best-first search to select grammar-satisfying
supertag sequences for the parameter updating.
The experiments showed that the HPSG parser is
improved by considering structure constraints in
the supertagging training process. For the stan-
dard test set (Penn Treebank Section 23), we ac-
complished an absolute 0.68% improvement from
baseline in F-score for predicate-argument rela-
tion recognition and got a competitive result of
89.31% with a faster parsing speed, compared to
a state-of-the-art HPSG parser.

The remainder of the paper is organized as
follows: in section 2 we provide the necessary
background regarding HPSG parsing. In section
3, we introduce the on-line forest-guided super-
tagger training method. Section 4 shows the ex-
periment results and the related analysis. Section
5 compares the proposed approach with related
work and section 6 presents our conclusions and
future work.

2 Background

2.1 Statistical HPSG Parsing

HPSG (Pollard and Sag, 1994) is a lexicalist
grammar framework. In HPSG, a large number
of lexical entries are used to express word-specific
characteristics, while only a small number of rule
schemata are used to describe general construc-
tion rules. Typed feature structures named “signs”
are used to represent both lexical entries and
phrasal constituents. A classic efficient statisti-
cal HPSG parsing process is depicted in Figure 1.
Given a word and part-of-speech sequence (w, p)
as input, the first step (called “supertagging”) in
HPSG parsing is to assign possible lexical entries.
In practice, for each word, more than one super-
tag is reserved for the parser. Then, the parser
searches the given lexical entry space to construct
a HPSG tree using the rule schemata to com-
bine possible signs. Constituent-based methods

and transition-based methods can be used for tree
structure disambiguation. This parsing framework
using supertagging is also used in other lexical-
ized grammars, such as LTAG and CCG.

2.2 HPSG Supertagging

Like other lexicalized grammar, the lexical en-
tries defined in HPSG are referred to as “super-
tags”. For example, the word “like” is assigned
a lexical entry for transitive verbs in non-3rd per-
son present form, which indicates that the head
syntactic category of “like” is verb and it has
an NP subject and an NP complement. With
such fine-grained grammatical type distinctions,
the number of supertags is very large. Compared
to the 45 part-of-speech (POS) tags defined in the
PennTreebank, the HPSG grammar we used con-
tains 2,308 supertags. The large number and the
complexity of the supertags makes supertagging
harder than the POS tagging task.

Supertagging can be formulated as a sequence
labeling task. Here, we follow the definition of
Collins’ perceptron (Collins, 2002). The train-
ing objective of supertagging is to learn the map-
ping from a POS-tagged word sentence w =
(w1/p1, ..., wn/pn) to a sequence of supertags
s = (s1, ..., sn). We use function GEN(w)
to indicate all candidates of supertag sequences
given input w. Feature function Φ maps a sam-
ple (w, s) to a point in the feature space Rd. θ is
the vector of feature weights. Given an input w,
the most plausible supertag sequence is found by
the prediction function defined as follows:

F (w) = argmax
s∈GEN(w)

θ · Φ(w, s) (1)

2.3 CFG-filtering

CFG-filtering (Kiefer and Krieger, 2000) is a tech-
nique to find a superset of (packed) HPSG parse
trees that satisfy the constraints in a grammar. A
CFG that approximates the original HPSG gram-
mar is used for efficiently finding such trees with-
out doing full-fledged HPSG parsing that is com-
putationally demanding because the schema ap-
plication involves unification operations among
large feature structures (signs). The number of
possible signs is infinite in general and hence
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Figure 1: HPSG parsing for the sentence “They like coffee.”

some features (e.g., the number agreement fea-
ture) are ignored in the approximating CFG so that
the set of possible signs can be approximated by
a finite set of non-terminal symbols in the CFG.
By this construction, some illegal trees may be
included in the set of trees licensed by the ap-
proximating CFG, but none of the well-formed
trees (i.e., those satisfying all constraints in the
grammar) are excluded by the approximation. We
use the algorithm described by Kiefer and Krieger
(2000) to obtain the approximating CFG for the
original HPSG. The technical details regarding
the algorithm can be found in Kiefer and Krieger
(2000).

3 Forest-guided Training for
Supertagging

3.1 Motivation
In lexicalized grammar parsing, a parser aims to
find the most plausible syntactic structure for a
given sentence based on the supertagging results.
One efficient parsing approach is to use predic-
tion scores provided by the supertagger. Usu-
ally, the supertagger is trained separately from the
structure disambiguation in a later stage. This
pipeline parsing strategy poses a potential prob-
lem in that the training objective of a supertagger
can deviate from the final parser, if the global
grammar constraints are not considered. For ex-
ample, the supertag predictions for some words
can contribute to high supertagging accuracy, but
cause the parser to fail. Therefore, considering the
global grammar constraints in the supertagging
training stage can make the supertagger and the

Algorithm 1: Forest-guided supertagger training
Input: Training Sample (wi, si)i=1,...,N ,

Number of iterations T
1: θ ← (0, ..., 0), θsum ← (0, ..., 0)
2: for iterNum ← 1 to T do
3: for i ← 1 to N do
4: Generate supertag lattice using

the point-wise classifier with current θ
5: Select ŝi from the lattice

which can construct a tree
with largest sequence score

6: if( No ŝi satisfied grammar constraints)
ŝi ← arg maxs∈GEN(wi) θi · Φ(wi, si)

7: if ŝi "= si then
8: θi+1 ← θi + Φ(wi, si) − Φ(wi, ŝi)
9: θsum ← θsum + θi+1

Return: θsum/NT

parser more tightly related, which will contribute
towards the performance of the parser.

3.2 Training Algorithm
Based on the motivation above, we propose
a forest-guided supertagger training method to
make the supertagger more tightly integrated with
the parser. This method is based on the averaged
perceptron training algorithm. The training pro-
cess is given in Algorithm 1.

The most important difference of the proposed
algorithm compared to the traditional supertagger
training method is that the current best-scored
supertag sequence is searched only within the
space of the supertag sequences that are allowed
by the grammar. As for whether the grammar
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constraints are satisfied, we judge it by whether
a possible syntactic tree can be constructed using
the given supertag sequence. We do not require
the constructed syntactic tree to be identical to the
gold tree in the corpus. For this reason we call it
“forest-guided”.

In the forest-guided training of the supertagger,
an approximating CFG is used to filter out the
supertag sequences from which no well-formed
tree can be built. It is implemented as a best-first
CFG parser wherein the score of a constituent is
the score of the supertag (sub-)sequence on the
fringe of the constituent, which is calculated us-
ing the current value of the parameters. Note that
the best-first parser can find the best-scored super-
tag sequence very efficiently given proper scoring
for the candidate supertag set for each token; this
is actually the case in the course of training except
for the initial phase of the training, wherein the pa-
rameter values are not well-tuned. The efficiency
is due to the sparseness of the approximating CFG
(i.e., the production rule set includes only a tiny
fraction of the possible parent-children combina-
tions of symbols) and highest-scored supertags of-
ten have a well-formed tree on top of them.

As is clear from the above description, the use
of CFG-filter in the forest-guided training of the
supertagger is not essential but is only a subsidiary
technique to make the training faster. The im-
provement by the forest-guided training should
however depend on whether the CFG approxi-
mation is reasonably tight or not. Actually, we
managed to obtain a manageable size out of a
CFG grammar, which includes 80 thousand non-
terminal symbols and 10 million rules, by elimi-
nating only a small number of features (semantics,
case and number agreement, and fine distinctions
in nouns, adjectives and complementizers). We
thus believe that the approximation is fairly tight.

This training algorithm can also be explained
in a search-based learning framework (Hal Daumé
III and Daniel Marcu, 2005). In this framework,
the objective of learning is to optimize the θ for
the enqueue function to make the good hypothe-
ses rank high in the search queue. The rank score
r consists of two components: path score g and
heuristic score h. In the forest-guided training

method, r can be rewritten as follows:

r = g + h

= θ · Φ(x, ŷ) + [Tree(ŷ)] ∗ Penalty (2)

The heuristic part h checks whether the super-
tag candidate sequence satisfies the grammar con-
straints: if no CFG tree can be constructed, -∞
penalty is imposed to the candidate sequence in
the forest-guided training method.

4 Experiments

We mainly evaluated the proposed forest-guided
supertagger training method on HPSG parsing.
Supertagging accuracy1 using different training
methods was also investigated.

4.1 Corpus Description
The HPSG grammar used in the experiments is
Enju version 2.32. It is semi-automatically con-
verted from the WSJ portion of PennTreebank
(Miyao, 2006). The grammar consists of 2,308
supertags in total. Sections 02-21 were used to
train different supertagging models and the HPSG
parser. Section 22 and section 23 were used as
the development set and the test set respectively.
We evaluated the HPSG parser performance by la-
beled precision (LP) and labeled recall (LR) of
predicate-argument relations of the parser’s out-
put as in previous works (Miyao, 2005). All ex-
periments were conducted on an AMD Opteron
2.4GHz server.

Template Type Template
Word wi,wi−1,wi+1,

wi−1&wi, wi&wi+1

POS pi, pi−1, pi−2, pi+1,
pi+2, pi−1&pi, pi−2&pi−1,
pi−1&pi+1, pi&pi+1,
pi+1&pi+2

Word-POS pi−1&wi, pi&wi, pi+1&wi

Table 1: Feature templates used for supertagging
models.

1“UNK” supertags are ignored in evaluation as in previ-
ous works.

2http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html
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4.2 Baseline Models and Settings
We used a point-wise averaged perceptron (PW)
to train a baseline supertagger. Point-wise classi-
fiers have been reported to be very effective and
with competitive results for the supertagging task
(Clark, 2002; Zhang et al., 2009). The number of
training iterations was set to 5. The features used
in the supertaggers are described in Table 1. For
comparison, these features are identical to the fea-
tures used in the previous works (Matsuzaki et al.,
2007; Ninomiya et al., 2007). To make the train-
ing efficient, we set the default chart size limit for
the forest-guided supertagger training to be 20k
by tuning it on the development set.

We combined the supertagger trained under
forest-guidance with a supertagging-based HPSG
parser (Matsuzaki et al., 2007) and evaluated the
contribution of the improved supertagger train-
ing procedure for the final HPSG parsing by the
accuracy of the predicate-argument relations out-
put of the parser. The parser crucially depends
on the supertagger’s performance in that it out-
puts the first well-formed tree successfully con-
structed on the highest scored supertag sequence.
The highest-scored supertag sequences are enu-
merated one by one in descending order in re-
gards to their score. The enumeration is actu-
ally implemented as n-best parsing on the super-
tag candidates using an approximating CFG. The
HPSG tree construction on a supertag sequence is
done using a shift-reduce style parsing algorithm
equipped with a classifier-based action selection
mechanism.

The automatically assigned POS tags were
given by a maximum entropy tagger with roughly
97% accuracy.

4.3 Supertagging Results
Although we mainly focused on improving the fi-
nal HPSG parsing performance through the im-
proved supertagger training, it is also very inter-
esting to investigate the supertagger performance
using different training methods. To evaluate the
forest-guided training method for a supertagger,
we also need to incorporate structure constraints
in the test stage. To make fair comparisons,
for the averaged perceptron trained supertagger
we also add structure constraints in its testing.

Model Name Acc%
FT+CFG 92.77

auto-POS PW+CFG 92.47
PW 91.14
ME 91.45

FT+CFG 93.98
gold-POS PW+CFG 93.70

PW 92.48
ME 92.78

Table 2: Supertagging results in section 23. “FT”
represents the forest-guided trained supertagger.
“PW” is the baseline average perceptron trained
supertagger. “ME” is the supertagger trained by
using the maximum entropy method. “+CFG” in-
dicates the use of the CFG-filter for the super-
tagger results. The accuracy of automatically as-
signed POS tags in this section is 97.39%.

For simplicity, throughout this paper, we call the
forest-guided trained supertagger “FT” in short,
while the “PW” is used to represent the base-
line point-wise averaged perceptron supertagger.
“ME” is the re-implemented maximum entropy
supertagger described in Matsuzaki et al. (2007).

For the PW supertagger, the performance was
roughly 0.3% below the ME supertagger. Simi-
lar results were reported by Zhang et al. (2009),
which used a Bayes point machine to reduce the
gap between the averaged perceptron supertagger
and the maximum entropy supertagger. Although
we expected the ME supertagger using CFG-filter
to give better results than the PW supertagger, im-
plementing forest-guided supertagger training in
a maximum entropy framework is different and
more sophisticated than the current on-line train-
ing method. Considering that the performance of
the PW supertagger and the ME supertagger were
at a similar level, we chose the PW supertagger as
our baseline.

We used a CFG-filter to incorporate global
grammar constraints into both the training and
the testing phase. Compared to the PW super-
tagger, the PW+CFG supertagger incorporated
global grammar constraints only in the test phase,
while for the FT+CFG supertagger, the global
grammar constraints were incorporated both in
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!!!!!!!!!!!!!!!!!Training Method
Iter NUM 1 2 3 4 5 Total Time

FT 6684s 4189s 3524s 3285s 3086s ≈ 5.8h
PW 99s 116s 117s 117s 117s ≈ 10 min
ME / ≈ 3h

Table 3: Supertagger training time on section 02-21. “FT” and “PW” represent forest-guided training
and point-wise averaged perceptron training separately. “ME” is the point-wise maximum entropy
training reported in Matsuzaki et al. (2007).

the training and the testing stage. The super-
tagging accuracy for different models is shown
in Table 2. Firstly, incorporating grammar con-
straints only in the testing phase (PW+CFG) gave
an absolute 1.22% (gold POS) and 1.33% (auto
POS) increase in F-score compared to the PW
supertagger. Secondly, incorporating grammar
constraints into both the training and the testing
stage (FT+CFG) gave an additional 0.28% (gold
POS) and 0.3% (auto POS) improvement over the
PW+CFG supertagger with p-values 0.0018 (gold
POS) and 0.0016 (auto POS).

This also indicates that the supertagger and the
parser are closely related to each other. The orig-
inal motivation for supertagging is using simple
models to resolve lexical ambiguities, which can
efficiently reduce the search space of the parser.
A better supertagger can contribute to more ef-
ficient and more accurate lexicalized grammar
parsing. Actually, a supertagger can act as a
coarse parser for the whole parsing process as
well, as long as the coarse parser is efficient. Since
supertag disambiguation is highly constrained by
the grammar, incorporating grammar constraints
into supertagging (including training and testing)
by using the CFG-filter can further improve the
supertagging performance, as shown in Table 2.

As for the supertagger training time, incorpo-
rating grammar constraints inevitably increases
the training time. As shown in Table 3, the to-
tal training time of forest-guided training (default
settings, with chart size limited to 20k) was about
5.8 hours. For each iteration of the FT model,
we find that the training time gradually decreases
with each successive iteration. This hints that we
can do better model initialization to further reduce
the training time.

4.4 HPSG Parsing Results

We evaluated the HPSG parsers using different
supertagger training methods. For the baseline
HPSG parser, a CFG-filter is already incorporated
to accelerate the parsing process. In the follow-
ing experiments, we fed the parser all the possi-
ble supertag candidates with the prediction scores
generated by the supertaggers. We controlled the
upper bound of the chart size in the CFG-filter to
make the parser more efficient.

Table 4 shows the results of the different pars-
ing models. We first compared the baseline
parsers using different supertaggers. The forest-
guided supertagger improved the final FT parser’s
F-score by 0.68% (statistically significant) over
the PW parser using the PW supertagger, which
did not consider global grammar constraints dur-
ing the supertagger training process. The parsing
time of the FT parser was very close to that of the
PW parser (108s vs. 106s), which was also ef-
ficient. The result empirically reflects that incor-
porating the global grammar constraints into the
supertagger training process can refine supertag
predicting scores, which become more consistent
and compatible with the parser.

We also compared our results with a state-of-
the-art HPSG parser using the same grammar.
Enju (Miyao, 2005; Ninomiya et al., 2007) is
a log-linear model based HPSG parser, which
uses a maximum entropy model for the struc-
ture disambiguation. In contrast to our baseline
parser, full HPSG grammar is directly used with
CKY algorithm in the parsing stage. As for the
parsing performance, our baseline PW parser us-
ing the PW supertagger was 0.23% below the
Enju parser. However, by using the forest-guided
trained supertagger, our improved FT parser per-
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Parser UP UR LP LR F-score Time †

FT Parser 92.28 92.14 89.38 89.23 89.31 108s
PW Parser 91.88 91.63 88.75 88.51 88.63 106s
Enju 2.3 92.26 92.21 88.89 88.84 88.86 775s

Table 4: Parser performance on Section 23. “FT Parser” represents baseline parser which uses forest-
guided trained supertagger. “PW Parser” represents the baseline parser which uses the point-wise av-
eraged perceptron trained supertagger. (†) The time is the total time of both supertagging and parsing
and it was calculated on all 2291 sentences of the Section 23.
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Figure 2: The F-score of the HPSG parsers on sec-
tion 22 using different settings for the chart size
limit in supertagger training and parsing.

formed 0.45% better than the Enju parser (default
settings) in F-score. In addition, our shift-reduce
style parser was faster than the Enju parser.

Beam size plays an important role for the
forest-guided supertagger training method, since a
larger beam size reduces the possibility of search
errors. Precisely speaking, we control the beam
size by limiting the number of edges in the chart
in both the forest-guided supertagger training pro-
cess and the final parsing. Figure 2 shows the re-
sults of setting different limits for the chart size
during supertagger training and parsing on the de-
velopment set. The X-axis represents the chart
size limitation for the parsing. “10k-train” rep-
resents the chart size to be limited to 10k dur-
ing FT supertagger training phase. A similar
representation is used for “20k-train”. There is
no tree structure search process for the baseline
PW supertagger. We evaluated the F-score of the
parsers using different supertaggers. As shown in
Figure 2, when the chart size of the parser was

more than 10k, the benefit of using forest-guided
supertaggers were obvious (around an absolute
0.5% improvement in F-score, compared to the
parser using the baseline PW supertagger). The
performance of the parser using “10k-train” FT
supertagger was already approaching to that of the
parser using “20k-train” FT supertagger. When
the chart size of the parser was less than 2000, the
forest-guided supertaggers were not work. Simi-
lar to the results showed in previous research (Hal
Daumé III and Daniel Marcu, 2005), it is better to
use the same chart size limit in the forest-guided
supertagger training and the final parsing.

5 Related Work

Since the supertagging technique is well known
to drastically improve the parsing speed and ac-
curacy, there is work concerned with tightly in-
tegrating a supertagger with a lexicalized gram-
mar parser. Clark and Curran (2004) investigated
a multi-tagger supertagging technique for CCG.
Based on the multi-tagging technique, supertagger
and parser are tightly coupled, in the sense that the
parser requests more supertags if it fails. They
(Clark and Curran, 2007) also used the percep-
tron algorithm to train a CCG parser. Differ-
ent from their work, we focused on improving
the performance of the deep parser by refining
the training method for supertagging. Ninomiya
et al. (2007) used the supertagging probabili-
ties as a reference distribution for the log-linear
model for HPSG, which aimed to consistently
integrate supertagging into probabilistic HPSG
parsing. Prins et al. (2001) trained a POS-
tagger on an automatic parser-generated lexical
entry corpus as a filter for Dutch HPSG parsing
to improve the parsing speed and accuracy.
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The existing work most similar to ours is
Boullier (2003). He presented a non-statistical
parsing-based supertagger for LTAG. Similar to
his method, we used a CFG to approximate the
original lexicalized grammar. The main difference
between these two methods is that we consider
the grammar constraints in the training phase of
the supertagger, not only in the supertagging test
phase and our main objective is to improve the
performance of the final parser.

6 Conclusions and Future Work

In this paper, based on the observation that su-
pertaggers are commonly trained separately from
lexicalized parsers without global grammar con-
straints, we proposed a forest-guided supertagger
training method to integrate supertagging more
tightly with deep parsing. We applied this method
to HPSG parsing and made further significant im-
provement for both supertagging (0.28%) and the
HPSG parsing (0.68%) compared to the baseline.
The improved parser also achieved a competitive
result (89.31%) with a faster parsing speed, com-
pared to a state-of-the-art HPSG parser.

For future work, we will try to weight the for-
est trees for the supertagger training and extend
this method to other lexicalized grammars, such
as LTAG and CCG.
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Abstract

Entity linking refers entity mentions in a 

document to their representations in a 

knowledge base (KB). In this paper, we 

propose to use additional information 

sources from Wikipedia to find more 

name variations for entity linking task. In 

addition, as manually creating a training 

corpus for entity linking is labor-

intensive and costly, we present a novel 

method to automatically generate a large 

scale corpus annotation for ambiguous 

mentions leveraging on their unambi-

guous synonyms in the document collec-

tion. Then, a binary classifier is trained 

to filter out KB entities that are not simi-

lar to current mentions. This classifier 

not only can effectively reduce the am-

biguities to the existing entities in KB, 

but also be very useful to highlight the 

new entities to KB for the further popu-

lation. Furthermore, we also leverage on 

the Wikipedia documents to provide ad-

ditional information which is not availa-

ble in our generated corpus through a 

domain adaption approach which pro-

vides further performance improve-

ments.  The experiment results show that 

our proposed method outperforms the 

state-of-the-art approaches. 

1 Introduction 

The named entity (NE) ambiguation has raised 

serious problems in many areas, including web 

people search, knowledge base population 

(KBP), and information extraction, because an 

entity (such as Abbott Laboratories, a diversified 

pharmaceuticals health care company) can be 

referred to by multiple mentions (e.g. “ABT” and 

“Abbott”), and a mention (e.g. “Abbott”) can be 

shared by different entities (e.g. Abbott Texas: a 

city in United States; Bud Abbott, an American 

actor; and Abbott Laboratories, a diversified 

pharmaceutical health care company).  

Both Web People Search (WePS) task (Artiles 

et al. 2007) and Global Entity Detection & Rec-

ognition task (GEDR) in Automatic Content Ex-

traction 2008 (ACE08) disambiguate entity men-

tions by clustering documents with these men-

tions. Each cluster then represents a unique enti-

ty. Recently entity linking has been proposed in 

this field. However, it is quite different from the 

previous tasks.

Given a knowledge base, a document collec-

tion, entity linking task as defined by KBP-091

(McNamee and Dang, 2009) is to determine for 

each name string and the document it appears, 

which knowledge base entity is being referred to, 

or if the entity is a new entity which is not 

present in the reference KB.  

Compared with GEDR and WePS, entity link-

ing has a given entity list (i.e. the reference KB) 

to which we disambiguate the entity mentions. 

Moreover, in document collection, there are new 

entities which are not present in KB and can be 

used for further population. In fact, new entities 

with or without the names in KB cover more 

than half of testing instances. 

1 http://apl.jhu.edu/~paulmac/kbp.html 
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Entity linking has been explored by several re-

searchers. Without any training data available, 

most of the previous work ranks the similarity 

between ambiguous mention and candidate enti-

ties through Vector Space Model (VSM). Since 

they always choose the entity with the highest 

rank as the answer, the ranking approaches hard-

ly detect a situation where there may be a new 

entity that is not present in KB. It is also difficult 

to combine bag of words (BOW) with other fea-

tures. For example, to capture the “category” 

information, the method of Cucerzan (2007) in-

volves a complicated optimization issue and the 

approach has to be simplified for feasible com-

putation, which compromises the accuracy.  Be-

sides unsupervised methods, some supervised 

approaches (Agirre et al. 2009, Li et al. 2009 and 

McNamee et al. 2009) also have been proposed 

recently for entity linking. However, the super-

vised approaches for this problem require large 

amount of training instances. But manually 

creating a corpus is labor-intensive and costly.  

In this paper, we explore how to solve the enti-

ty linking problem. We present a novel method 

that can automatically generate a large scale 

corpus for ambiguous mentions leveraging on 

their unambiguous synonyms in the document 

collection.  A binary classifier based on Support 

Vector Machine (SVM) is trained to filter out 

some candidate entities that are not similar to 

ambiguous mentions. This classifier can effec-

tively reduce the ambiguities to the existing enti-

ties in KB, and it is very useful to highlight the 

new entities to KB for the further population. 

We also leverage on the Wikipedia documents to 

provide additional information which is not 

available in our generated corpus through a do-

main adaption approach which provides further 

performance improvements. Besides, more in-

formation sources for finding more variations 

also contribute to the overall 22.9% accuracy 

improvements on KBP-09 test data over baseline. 

The remainder of the paper is organized as fol-

lows. Section 2 reviews related work for entity 

linking. In Section 3 we detail our algorithm in-

cluding name variation and entity disambigua-

tion. Section 4 describes the experimental setup 

and results. Finally, Section 5 concludes the pa-

per.

2 Related Work 

The crucial component of entity linking is the 

disambiguation process. Raphael et al. (2007) 

report a disambiguation algorithm for geography. 

The algorithm ranks the candidates based on the 

manually assigned popularity scores in KB. The 

class with higher popularity will be assigned 

higher score. It causes that the rank of entities 

would never change, such as Lancaster (Califor-

nia) would always have a higher rank than Lan-

caster (UK) for any mentions. However, as the 

popularity scores for the classes change over 

time, it is difficult to accurately assign dynamic 

popularity scores. Cucerzan (2007) proposes a 

disambiguation approach based on vector space 

model for linking ambiguous mention in a doc-

ument with one entity in Wikipedia. The ap-

proach ranks the candidates and chooses the ent-

ity with maximum agreement between the con-

textual information extracted from Wikipedia 

and the context of a document, as well as the 

agreement among the category tags associated 

with the candidate entities. Nguyen and Cao 

(2008) refer the mentions in a document to KIM 

(Popov et al. 2004) KB. KIM KB is populated 

with over 40,000 named entities. They represent 

a mention and candidates as vectors of their con-

textual noun phrase and co-occurring NEs, and 

then the similarity is determined by the common 

terms of the vectors and their associated weights. 

For linking mentions in news articles with a Wi-

kipedia-derived KB (KBP-09 data set), Varma et 

al. (2009) rank the entity candidates using a 

search engine. Han and Zhao (2009) rank the 

candidates based on BOW and Wikipedia se-

mantic knowledge similarity. 

All the related work above rank the candidates 

based on the similarity between ambiguous men-

tion and candidate entities. However, the ranking 

approach hardly detects the new entity which is 

not present in KB. 

Some supervised approaches also have been 

proposed. Li et al. (2009) and McNamee et al. 

(2009) train their models on a small manually 

created data set containing only 1,615 examples. 

But entity linking requires large training data. 

Agirre et al. (2009) use Wikipedia to construct 

their training data by utilizing Inter-Wikipedia 

links and the surrounding snippets of text. How-

ever, their training data is created from a         
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different domain which does not work well in 

the targeted news article domain.  

3 Approach

In this section we describe our two-stage ap-

proach for entity linking: name variation and 

entity disambiguation. The first stage finds vari-

ations for every entity in the KB and generates 

an entity candidate set for a given query. The 

second stage is entity disambiguation, which 

links an entity mention with the real world entity 

it refers to. 

3.1 Name Variation 

The aim for Name Variation is to build a 

Knowledge Repository of entities that contains 

vast amount of world knowledge of entities like 

name variations, acronyms, confusable names, 

spelling variations, nick names etc. We use 

Wikipedia to build our knowledge repository 

since Wikipedia is the largest encyclopedia in 

the world and surpasses other knowledge bases 

in its coverage of concepts and up-to-date 

content. We obtain useful information from 

Wikipedia by the tool named Java Wikipedia 

Library 2  (Zesch et al. 2008), which allows to 

access all information contained in Wikipedia. 

Cucerzan (2007) extracts the name variations 

of an entity by leveraging four knowledge 

sources in Wikipedia: “entity pages”, “disam-

biguation pages”  “redirect pages” and “anchor 

text”.

Entity page in Wikipedia is uniquely identified 

by its title – a sequence of words, with the first 

word always capitalized. The title of Entity Page 

represents an unambiguous name variation for 

the entity. A redirect page in Wikipedia is an aid 

to navigation. When a page in Wikipedia is redi-

rected, it means that those set of pages are refer-

ring to the same entity. They often indicate syn-

onym terms, but also can be abbreviations, more 

scientific or more common terms, frequent 

misspellings or alternative spellings etc. Disam-

biguation pages are created only for ambiguous 

mentions which denote two or more entities in 

Wikipedia, typically followed by the word “dis-
ambiguation” and containing a list of references 

to pages for entities that share the same name. 

This is more useful in extracting the abbrevia-

2 http://www.ukp.tu-darmstadt.de/software/JWPL 

tions of entities, other possible names for an ent-

ity etc. Besides, both outlinks and inlinks in Wi-

kipedia are associated with anchor texts that 

represent name variations for the entities.

Using these four sources above, we extracted 

name variations for every entity in KB to form 

the Knowledge Repository as Cucerzan’s (2007) 

method. For example, the variation set for entity 

E0272065 in KB is {Abbott Laboratories, Ab-
bott Nutrition, Abbott …}. Finally, we can gen-

erate the entity candidate set for a given query 

using the Knowledge Repository. For example, 

for the query containing “Abbott”, the entity 

candidate set retrieved is {E0272065, E0064214 
…}.

From our observation, for some queries the re-

trieved candidate set is empty. If the entity for 

the query is a new entity, not present in KB, 

empty candidate set is correct. Otherwise, we 

fail to identify the mention in the query as a var-

iation, commonly because the mention is a miss-

pelling or infrequently used name. So we pro-

pose to use two more sources “Did You Mean” 

and “Wikipedia Search Engine” when Cucerzan 

(2007) algorithm returns empty candidate set. 

Our experiment results show that both proposed 

knowledge sources are effective for entity link-

ing. This contributes to a performance improve-

ment on the final entity linking accuracy. 

Did You Mean: The “did you mean” feature 

of Wikipedia can provide one suggestion for 

misspellings of entities. This feature can help to 

correct the misspellings. For example, “Abbot 

Nutrition” can be corrected to “Abbott Nutri-

tion”.

Wikipedia Search Engine: This key word 

based search engine can return a list of relevant 

entity pages of Wikipedia. This feature is more 

useful in extracting infrequently used name. 

Algorithm 1 below presents the approach to 

generate the entity candidate set over the created 

Knowledge Repository. RefE(s) is the entity set 

indexed by mention s retrieved from Knowledge 

Repository.  In Step 8, we use the longest com-

mon subsequence algorithm to measure the simi-

larity between strings s and the title of the entity 

page with highest rank. More details about long-

est common subsequence algorithm can be 

found in Cormen et al. (2001). 
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Algorithm 1 Candidate Set Generation 

Input: mention s;       

1: if RefE(s) is empty

2:        s’ Wikipedia“did you 

           mean”Suggestion 

3:        If s’ is not NULL  

4:             s  s’
5:        else

6:            EntityPageList  WikipediaSear

               chEngine(s) 

7:            EntityPage FirstPage of EntityPageL 

               ist 

8:            Sim=Similarity(s,EntityPage.title)

9:            if Sim > Threshold 

10:   s  EntityPage.title
11:          end if 

12: end if 

13: end if 

Output: RefE(s);

3.2 Entity Disambiguation 

The disambiguation component is to link the 

mention in query with the entity it refers to in 

candidate set. If the entity to which the mention 

refers is a new entity which is not present in KB, 

nil will be returned. In this Section, we will de-

scribe the method for automatic data creation, 

domain adaptation from Wikipedia data, and our 

supervised learning approach as well. 

3.2.1 Automatic Data Creation  

The basic idea is to take a document with an un-

ambiguous reference to an entity E1 and replac-

ing it with a phrase which may refer to E1, E2 or 

others.

Observation: Some full names for the entities 

in the world are unambiguous. This phenomenon 

also appears in the given document collection of 

entity linking. The mention “Abbott Laborato-
ries” appearing at multiple locations in the doc-

ument collection refers to the same entity “a
pharmaceuticals health care company” in KB.

From this observation, our method takes into 

account the mentions in the Knowledge Reposi-

tory associated with only one entity and we treat 

these mentions as unambiguous name. Let us 

take Abbott Laboratories-{E0272065} in the 

Knowledge Repository as an example. We first 

use an index and search tool to find the docu-

ments with unambiguous mentions. Such as, the 

mention “Abbott Laboratories” occurs in docu-

ment LDC2009T13 and LDC2007T07 in the 

document collection. The chosen text indexing 

and searching tool is the well-known Apache 

Lucene information retrieval open-source li-

brary3.

Next, to validate the consistency of NE type 

between entities in KB and in document,   we 

run the retrieved documents through a Named 

Entity Recognizer, to tag the named entities in 

the documents. Then we link the document to 

the entity in KB if the document contains a 

named entity whose name exactly matches with 

the unambiguous mention and type (i.e. Person, 

Organization and Geo-Political Entity) exactly 

matches with the type of entity in KB. In this 

example, after Named Entity Recognition, “Ab-

bott Laboratories” in document LDC2009T13 is
tagged as an Organization which is consistent 

with the entity type of E0272065 in KB. We link 

the “Abbott Laboratories” occurring in 

LDC2009T13 with entity E0272065.  
Finally, we replace the mention in the selected 

documents with the ambiguous synonyms. For 

example, we replace the mention “Abbott La-
boratories” in document LDC2009T13 with

“Abbott” where Abbott-{E0064214, 
E0272065…} is an entry in Knowledge Reposi-

tory. “Abbott” is ambiguous, because it is refer-

ring not only to E0272065, but also to E0064214 
in Knowledge Repository. Then, we can get two 

instances for the created data set as Figure 1, 

where one is positive and the other is negative.  

Figure 1: An instance of the data set 

However, from our studies, we realize some 

limitations on our training data. For example, as 

shown in Figure 1, the negative instance for 

E0272065 and the positive instance for 

3
http://lucene.apache.org 

(Abbott, LDC2009T13)  E0272065    +

(Abbott, LDC2009T13)  E0064214    -

          … 

                         +   refer to  -  not refer to
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E0064214 are not in our created data set. 
However, those instances exist in the current 

document collection. We do not retrieve them 

since there is no unambiguous mention for 

E0064214 in the document collection.   

To reduce the effect of this problem, we pro-

pose to use the Wikipedia data as well, since 

Wikipedia data has training examples for all the 

entities in KB. Articles in Wikipedia often con-

tain mentions of entities that already have a cor-

responding article, and at least the first occur-

rence of the mentions of an entity in a Wikipedia 

article must be linked to its corresponding Wiki-

pedia article, if such an article exists. Therefore, 

if the mention is ambiguous, the hyperlink is 

disambiguating it. Next, we will describe how to 

incorporate Wikipedia data. 

Incorporating Wikipedia Data. The docu-

ment collection for entity linking is commonly 

from other domains, but not Wikipedia. To ben-

efit from Wikipedia data, we introduce a domain 

adaption approach (Daumé III, 2007) which is 

suitable for this work since we have enough 

“target” domain data. The approach is to aug-

ment the feature vectors of the instances. Denote 

by X the input space, and by Y the output space, 

in this case, X is the space of the real vectors 

 for the instances in data set and Y= {+1,-1} 

is the label. Ds is the Wikipedia domain dataset 

and Dt is our automatically created data set. 

Suppose for simplicity that X=RF for some F > 0 
(RF is the space of F-dimensions). The aug-

mented input space will be defined by  =R3F.

Then, define mappings s, t : X  for map-

ping the Wikipedia and our created data set re-

spectively.  These are defined as follows:

Where 0=<0,0,…,0> RF is the zero vector. We 

use the simple linear kernel in our experiments. 

However, the following kernelized version can 

help us to gain some insight into the method. K
denotes the dot product of two vectors. 

K(x,x’)=<  (x),  (x’)>. When the domain is 

the same, we get: 

. When they are 

from different domains, we get:

. Putting this togeth-

er, we have: 

This is an intuitively pleasing result. Loosely 

speaking, this means that data points from our 

created data set have twice as much influence as 

Wikipedia points when making predictions 

about test data from document collection. 

3.2.2 The Disambiguation Framework 

To disambiguate a mention in document collec-

tion, the ranking method is to rank the entities in 

candidate set based on the similarity score. In 

our work, we transform the ranking problem into 

a classification problem: deciding whether a 

mention refers to an entity on an SVM classifier.

If there are 2 or more than 2 candidate entities 

that are assigned positive label by the binary 

classifier, we will use the baseline system (ex-

plained in Section 4.2) to rank the candidates 

and the entity with the highest rank will be cho-

sen.

In the learning framework, the training or test-

ing instance is formed by (query, entity) pair.

For Wikipedia data, (query, entity) is positive if 

there is a hyperlink from the article containing 

the mention in query to the entity, otherwise 

(query, entity) is negative. Our automatically 

created data has been assigned labels in Section 

3.2.1.  Based on the training instances, a binary 

classifier is generated by using particular learn-

ing algorithm.  During disambiguation, (query,

entity) is presented to the classifier which then 

returns a class label.  

Each (query, entity) pair is represented by the 

feature vector using different features and simi-

larity metrics. We chose the following three 

classes of features as they represent a wide range 

of information - lexical features, word-category 

pair, NE type - that have been proved to be ef-

fective in previous works and tasks. We now 

discuss the three categories of features used in 

our framework in details. 

Lexical features. For Bag of Words feature in 

Web People Search, Artiles et al. (2009) illu-

strated that noun phrase and n-grams longer than 

2 were not effective in comparison with token-

based features and using bi-grams gives the best 
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results only reaching recall 0.7. Thus, we use 

token-based features. The similarity metric we 

choose is cosine (using standard tf.idf weight-

ing). Furthermore, we also take into account the 

co-occurring NEs and represent it in the form of 

token-based features. Then, the single cosine 

similarity feature is based on Co-occurring NEs 

and Bag of Words. 

Word Category Pair. Bunescu (2007) dem-

onstrated that word-category pairs extracted 

from the document and Wikipedia article are a 

good signal for disambiguation. Thus we also 

consider word-category pairs as a feature class, 

i.e., all (w,c) where w is a word from Bag of 

Words of document and c is a category to which 

candidate entity belongs.  

NE Type. This feature is a single binary fea-

ture to guarantee that the type of entity in docu-

ment (i.e. Person, Geo-Political Entity and Or-

ganization) is consistent with the type of entity 

in KB. 

4 Experiments and Discussions 

4.1 Experimental Setup 

    In our study, we use KBP-09 knowledge base 

and document collection for entity linking. In the 

current setting of KBP-09 Data, the KB has been 

generated automatically from Wikipedia. The 

KB contains 818,741 different entities. The doc-

ument collection is mainly composed of news-

wire text from different press agencies. The col-

lection contains 1.3 million documents that span 

from 1994 to the end of 2008. The test data has 

3904 queries across three named entity types: 

Person, Geo-Political Entity and Organization. 

Each query contains a document with an ambi-

guous mention.    

Wikipedia data can be obtained easily from 

the website4 for free research use. It is available 

in the form of database dumps that are released 

periodically. In order to leverage various infor-

mation mentioned in Section 3.1 to derive name 

variations, make use of the links in Wikipedia to 

generate our training corpus and get word cate-

gory information for the disambiguation, we fur-

ther get Wikipedia data directly from the website. 

The version we used in our experiments was re-

leased on Sep. 02, 2009. The automatically 

4
http://download.wikipedia.org   

created corpus (around 10K) was used as the 

training data, and 30K training instances asso-

ciated with the entities in our corpus was derived 

from Wikipedia. 

For pre-processing, we perform sentence 

boundary detection and Chunking derived from 

Stanford parser (Klein and Manning, 2003), 

Named Entity Recognition using a SVM based 

system trained and tested on ACE 2005 with 

92.5(P) 84.3(R) 88.2(F), and coreference resolu-

tion using a SVM based coreference resolver 

trained and tested on ACE 2005 with 79.5%(P), 

66.7%(R) and 72.5%(F).  

We select SVM as the classifier used in this 

paper since SVM can represent the stat-of-the-

art machine learning algorithm. In our imple-

mentation, we use the binary SVMLight devel-

oped by Joachims (1999). The classifier is 

trained with default learning parameters. 

We adopt the measure used in KBP-09 to eva-

luate the performance of entity linking. This 

measure is micro-averaged accuracy: the number 

of correct link divided by the total number of 

queries.

4.2 Baseline Systems 

We build the baseline using the ranking ap-

proach which ranks the candidates based on si-

milarity between mention and candidate entities. 

The entity with the highest rank is chosen. Bag 

of words and co-occurring NEs are represented 

in the form of token-based feature vectors. Then 

tf.idf is employed to calculate similarity between 

feature vectors.  

To make the baseline system with token-

based features state-of-the-art, we conduct a se-

ries of experiments.  Table 1 lists the perfor-

mances of our token-based ranking systems. In 

our experiment, local tokens are text segments 

generated by a text window centered on the 

mention. We set the window size to 55, which is 

the value that was observed to give optimum 

performance for the disambiguation problem 

(Gooi and Allan, 2004). Full tokens and NE are 

all the tokens and named entities co-occurring in 

the text respectively. We notice that tokens of 

the full text as well as the co-occurring named 

entity produce the best baseline performance, 

which we use for the further experiment. 
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 Micro-averaged 

Accuracy 

local tokens 60.0 

local tokens + NE 60.6 

full tokens + NE 61.9 

Table 1: Results of the ranking methods 

4.3 Experiment and Result 

As discussed in Section 3.1, we exploit two 

more knowledge sources in Wikipedia: “did you 

mean” (DYM) and “Wikipedia search engine” 

(SE) for name variation step. We conduct some 

experiments to compare our name variation me-

thod using Algorithm 1 in Section 3.1 with the 

name variation method of Cucerzan (2007). Ta-

ble 2 shows the comparison results of different 

name variation methods for entity linking. The 

experiments results show that, in entity linking 

task, our name variation method outperforms the 

method of Cucerzan (2007) for both entity dis-

ambiguation methods. 

Name Variation 

Approaches 

Ranking

Method 

Our Disambig-

uation Method 

Cucerzan

(2007) 

60.9 82.2 

+DYM+SE 61.9 83.8 

Table 2: Entity Linking Result for two name 

variation approaches. Column 1 used the base-

line method for entity disambiguation step. Col-

umn 2 used our proposed entity disambiguation 

method.

Table 3 compares the performance of different 

methods for entity linking on the KBP-09 test 

data. Row 1 is the result for baseline system. 

Row 2 and Row 3 show the results training on 

Wikipedia data and our automatically data re-

spectively. Row 4 is the result training on both 

Wikipedia and our created data using the domain 

adaptation method mentioned in Section 3.2.1. It 

shows that our method trained on the automati-

cally generated data alone significantly outper-

forms baseline. Compared Row 3 with Row 2, 

our created data set serves better at training the 

classifier than Wikipedia data. This is due to the 

reason that Wikipedia is a different domain from 

newswire domain. By comparing Row 4 with 

Row 3, we find that by using the domain adapta-

tion method in Section 3.2.1, our method for 

entity linking can be further improved by 1.5%. 

Likely, this is because of the limitation of the 

auto-generated corpus as discussed in Section 

3.2.1. In another hand, Wikipedia can comple-

ment the missing information with the auto-

generated corpus. So combining Wikipedia data 

with our generated data can achieve better result. 

Compared with baseline system using Cucerzan 

(2007) name variation method in Table 2, in to-

tal our proposed method achieves a significant 

22.9% improvement.  

 Micro-averaged Accu-

racy

Baseline 61.9 

Wiki 79.9 

Created Data 82.3 

Wiki  Created Data 83.8 

Table 3: Micro-averaged Accuracy for Entity 

Linking   

     To test the effectiveness of our method to 

deal with new entities not present in KB and ex-

isting entities in KB respectively, we conduct 

some experiments to compare with Baseline.  

Table 4 shows the performances of entity linking 

systems for existing entities (non-NIL) in KB 

and new entity (NIL) which is not present in KB. 

We can see that the binary classifier not only 

effectively reduces the ambiguities to the exist-

ing entities in KB, but also is very useful to 

highlight the new entities to KB for the further 

population. Note that, in baseline system, all the 

new entities are found by the empty candidate 

set of name variation process, while the disam-

biguation component has no contribution.  How-

ever, our approach finds the new entities not on-

ly by the empty candidate set, but also leverag-

ing on disambiguation component which also 

contributes to the performance improvement.  

 non-NIL NIL 

Baseline 72.6  52.4  

Wiki  Created 

Data 

79.2 87.8  

Table 4: Entity Linking on Existing and New 

Entities
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Finally, we also compare our method with the 

top 5 systems in KBP-09. Among them, 

Siel_093 (Varma et al. 2009) and NLPR_KBP1
(Han and Zhao 2009) use similarity ranking ap-

proach; Stanford_UBC2 (Agirre et al. 2009),

QUANTA1 (Li et al. 2009) and hltcoe1 (McNa-

mee et al. 2009) use supervised approach. From 

the results shown in Figure 2, we observe that 

our method outperforms all the top 5 systems 

and the baseline system of KBP-09. Specifically, 

our method achieves better result than both simi-

larity ranking approaches. This is due to the li-

mitations of the ranking approach which have 

been discussed in Section 2. We also observe 

that our method gets a 5% improvement over 

Stanford_UBC2. This is because they collect 

their training data from Wikipedia which is a 

different domain from document collection of 

entity linking, news articles in this case; while 

our automatic data generation method can create 

a data set from the same domain as the docu-

ment collection. Our system also outperforms 

QUANTA1 and hltcoe1 because they train their 

model on a small manually created data set 

(1,615 examples), while our method can auto-

matically generate a much larger data set. 

Figure 2: A comparison with KBP09 systems 

5 Conclusion

 The purpose of this paper is to explore how 

to leverage the automatically generated large 

scale annotation for entity linking. Traditionally, 

without any training data available, the solution 

is to rank the candidates based on similarity. 

However, it is difficult for the ranking approach 

to detect a new entity that is not present in KB, 

and it is also difficult to combine different fea-

tures. In this paper, we create a large corpus for 

entity linking by an automatic method. A binary 

classifier is then trained to filter out KB entities 

that are not similar to current mentions. We fur-

ther leverage on the Wikipedia documents to 

provide other information which is not available 

in our generated corpus through a domain adap-

tion approach. Furthermore, new information 

sources for finding more variations also contri-

bute to the overall 22.9% accuracy improve-

ments on KBP-09 test data over baseline. 
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��� � ��	 ���	 ����' �� ��� ��	�	������ ��		��

��� �	�	��� ��	������ ����� -� ����� �"�2	" '.

�	��� �0�0� �����	���� �������� � ���� ��"

3�-��	�) 8?,9= (��� 	� ��%) *++5�% 0�0 ������

��� ��	 �	����" � ��� ���	����	� �� �	 ��	��.

���� ����' ��" ������ ��	 �����	�� �� "!� �����

��	 ��-.�����	�� ���-���$	% ���� 2��� �����	� �	��	.

�	��� �	 ��	������ ����% 
�	 �����	���� ��������

�� ��!� �� ���!�%

4��	� ��� ���	����	� !����� ��	 ���	 ���	 �

����' ��� ��� ��	�	������ ��		��A

�8� &������ ��	 �	����"=

�*����	�� �	��	��	 �	����	 �	���� ���	�� � 	���

�	����" � ��� �����	�=

�5� '����� 	��� �	����" �	����	 �	��� ����� ���

�	��	��	 �	����	 �	���� ������	" � 	��� �����	�=

�9� #������ ��	��*� � ��	� �9� ����� �	��	��	 �	�.

���	 �	���� ��� ����� -	�!		� �����	��=

�6� ��� �� �����	�� ���-���$	�) ��" ��� 2��� ����.

�	��) 	��	 ���� ��	� �>�=

�>� ��	� ��	 �����	� !��� ����	�� �����.�����	� "��.

����	 ��� �! -� 2�"��� ��	 ���� � �	���� �� �	!

�	����"�) ��" ������ ��	�� �*� � ��	� �6�%

����� ��	 �-�	 ��������) !	 2�" �� ��	

���!��� ��	������ ���� �����	����� � "���	�	��

'��"� � ��	������ ����'� � �� 	#�	���	�� ��.

���A �8� �! ��	������ ����� �� C
���	D� � ����'A

C A ) D=

�*� ���		 ��	������ ����� �� C&�����	D� � ����'

��" C��������D� � ����'A

C A ) D=

�5� 2�	 ��	������ ����� �� C0�������D� � ����')

C3	���	" !�'D� � ����')

C0	��"���D� � ����')

��" C�#�	���	��D� � ����'A

C A ) D%


�	�	 ��	������ ���� �����	�� ���	���"

������ � ��	 "	2������ �� ��	 ����� ���" �����

� 
�-�	 8) ����� � ������ ��-	���� �� �����	"%

( ����	�� ���������	�� ���
�

G� ����� �� ��	������ �����#."���	� �"	�) ��	

���	�� � ������� ��	�	������ ��		�� ��� -	

"	����-	" �� ���!�% (���� !	 	#����� ����.

���E���"�� �	����	� ��� ��	�	������ ��		��)

��" ����������) "������	 �	����	� ��� ��	 B�3

��������-	" �	#�% 
�	�	 �	����	� ��	 "	����-	"

�� �	���� >%8% <	#� !	 ����	 ��	 ��	�	������

��		�� ��� ��	������ �����% 4��	� ��	 B�3 ����.

�������� � � ��	�	������ ��		��) �� ���' �� �

����	 ��	 ������������ �	��	��	� ��� ����'� ��"

��	� ��� ��	������ ����� ��	�� �"	�� ���� ������

���	���" � ��	 ��	������ ����'� ��" ����� ��


�-�	 8 ����"��� � ��	�� �	����	 �	����%  	

����"	� ��	 ������� ���	�� �� � �����.����� ����.

��2����� ��-�	�% ���� ��	������ ���� � 	���
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��	������ ����' �� �	��	�	��	" -� �	 �����%

����"	���� ���� �0�10 �B���� 	� ��%) *++5�

��-��	� ��	 �"������	� � ��#���� ������

������2	� ��" '	��	�� !��� ��	 	�	����	 ��" 	�.

2��	��� � �00�) ��" ��� 	��	����	�� ���"�	

��	 "	�	�"	��� -	�!		� �	���-���� �	��	��	�)

!	 ����� � �!	���.	����.����� �0�10 ������2	�

�� ������� ��		��) !��� �	 ����� �	��	�	�����

	��� ��	������ ����% B� �� 	#����	) ��	 �	�.

�	��	� ��-	�	" �� C A D -	��� � ��	 �	��"

��	������ ���� � C0	��"���D� � ����'%  	

���	 ���" ����) -� �'��� �� �� ����� � ��.

�	�	��	 ��	�	�������) ��	�'	�� ��"		" ���! ��	

C����' �"	�D � ��	 ���"	� ��	� ��	%  	 �"" ��	

���������� 	#������ -	�!		� C A D ��" C A D

!�	�	 C D ����"��� � ��	 C����' �"	�D �

��	 ���"	�% (������ ���� 	��� ���	� ��		�� �

������������ � � � ��	������ ���� ��-	� �	/�	��	

�% (� 	#����	 !	 !��� � �	��� � "�����������

������� �	� �����E����� �����

��� !���� !	 ��"��	 � ��	"����� -� ��#���$.

��� �	� ��	 ����� �����-�	 �� � ���	� ����� �%


�	 �	�	��� ��� � �� �����	�	� ��A

� � )
�

� � ) �8�

!�	�	 ) "	��	� � !	������� �����	�	� �	��� �

�	���%

 	 �����	 � -	 ���	�� �� ��	 ��.

-��	" �	����	 �	��	�	������ � ������) "	����-	"

�� �	���� >%8) ��" ������ � � %  	 ��	� �	�

� � ) ) � � % 0�	�	�) !	 �����

� '	��	� ������� �	� ��	 @��� �����E�����

����	 ���� ����A

� � � � � � � � �*�

��� -	 !����	� �� � ��� �	� ��	 �	���� � ��	

�	/�	��	 ��" "	����	" ��A

* �

*

* �5�

!�	�	 �� ��	 ��	������ ���� ��-	� �	�% * �� ��	

�	���� � ��	 -�	������ �	/�	��	 * �� �� ���	%

�� ����	" -� ������� �������� ���� "	�	�"

��� � ��-	�� �� ������ ��" )* �� !	�� ��

�0��'� ���	����%

 	 ��	� �	!���	 ����� ) ) ��

�/����� 9%

* � )

*

*

*

) *

*

�9�

:� "	�"��� ���	��) ����� ���� "	�����.

��� �B���� 	� ��%) *++5� !	 ��� "	2�	

*

�6�

�� ��	 ��#���� ���	 �� ��� ��-	�� !��� ��-	� ��

������ % ����� "������ ���������� !	 ��.

���	 * % 
�	 ������ ��-	� �	.

/�	��	 �� �	��	�	" -� -��'����'���%

+ �������	�� ������	
�� '�	� �,���
�

+-" .����
�	�� �������	�� �����

 	 ���" ����) -� �'��� �� �� ����� � ���	�.

	��	 ��	�	������� "	����-	" �� �	���� >%8) ��	.

�	������ ��	�'	�� " �� ��!��� ���! ��	 -��.

�	� ���� �"	� !����� � ����'%  �	� "	�������.

��� � ����	�� ���"	 ��	� ��� -	 ���	�"� ����"��.

��� ��	 �	#� ���"	% B-�� 887 � ��	 ��	������

����� �� ��	 ������������� ��	 �� � �"	� ���.�.

��� ��	 ���	���"��� -���	� ����� �� ��	 ��	�	�.

����� ���"	% B� �� ���	���� ���� � �� ��	������

�����#."���	� �������$���� �"	�) ��	 ��	���.

��� ���� �	/�	��	 ��" ���	/�	���� ��	 �	��	��	

�	/�	��	 ��	 �	�"	�	" !����� � ����'% 
�	 	#.

������� � �	�"	���� ���	� �� -��	" � ��	 �����.

�	�� -	�!		� ����	 ��	������ ���� �	/�	��	 ��

��	 ��		�� ������������ ��" ����	� ��	������ ����

�	/�	��	 �� ��	 ;!	� ;��� ���"	 �	��	��	�% ����

�	��	��	 �� �	��	�	��	" -� ��� ��	������ ���� ��-	�%

(� 	#����	) ��� ��	 �������� �	� ��" "	�	��.

�	�� �	� �� �	 � �� �	�".�� 	#�	���	�� �	�.

����� "	����-	" �� �	���� F) !	 	#�����	" ��	 ��.

�!��� �	�"	���� ���	�A �8� =
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(����	 *A ���"�"��	 �	��	��	 �	/�	��	� ���	� ��.

������ �	�"	���� ���	�

�*� = �5� =

�9� = �6� =

�>� %

:� 	��� �	�"	���� ���	) ��	 �	�� ��	� �	��	�	���

��	������ ���� �	/�	��	 � ��	 ������������ �	�.

�	��	� !���	 ��	 ����� ��	� �	��	�	��� ��	������

���� �	/�	��	 � -���	� ����� � ��	 ���	���"���

;!	� ;��� ���"	�% (�� ��	�	 �	�"	���� ���	�)

!	 ��� �		 ���� ��	 ��	�'	�� �� �� ����� ���'

�-�� ���	�� "	����-	" -� �����	 -���	� ����� ��%	

�� ��	 ��-�	/�	�� ��	������ ������) -�� �	�	� �		�

� �	�	�� ���	�� ��� -���	� ����� �� ��	 ��	����

�������%

+-$ �����	�� �������	�� �����

4��	� � �	��	��	 �	/�	��	 ��" ��� ���	���"���

��	������ ���� �	/�	��	 !����� 	��� ����') ���

�	�� � �����) !��� � �������� !��"! � �!) !	

�	���� �� ��	 �������� �	�"	���� ���	 ��" �".

@��� ��	 �"	� � ��	 �	��	��	� �	 �����	" ���	 ��

� ���	) ��	�"��� � �	� � �� ��� �	��	��	 �	.

/�	��	 ���"�"��	� �� 	��� ����' !�	�	 	/����

� ��	 �	���� � ��	 �	��	��	% (�� �� "���) !	

���" ���� ��	�	 ��	 �� ��� * �����	" ���	� �	�

�	��	��	 �	/�	��	% � �����"��� ��	 ������� �	.

/�	��	) �� ��� 9 ���"�"��	 �	/�	��	� ��	 �	�	�.

��	" �� 	��� ����'%

B �	�"	���� 	#����	 �� ��!� �� (����	 *%

 	 ����� ��	 �	�"	���� ���	� � � �	��	��	 �	.

/�	��	 C D ��" ��	 ���	���".

��� ���� �	/�	��	 C D% (�� ���.

"�"��	 �	�"	�	" �	��	��	 �	/�	��	 ��	 ��"��	"%

 ����� ��� �	�"	����) !	 �	� C���"�"��	 �	�.

�	��	 �	/�	��	 �8�D% ����� �	�"	���� 3��	 8) !	

�	� C���"�"��	 �	��	��	 �	/�	��	 �*�D%

/ ������	
�� ��������	���

�����	���	��

(��!��� �	��	��	 �	�"	����) ��	 	#�������	

�������$	� �	�	��� ����	�� �	��	��	� ��� 	���

����' ����� � -�����.����� ������2	�% 
�	 ������.

2	� �� ��� �	� ��� ���"�"��	 �	/�	��	� ��� �	�.

��� 9 ��" ��	 ����	� �	�	��� ��	 -	�� �	/�	��	

��" ��� ������� �	��	��	� ����"��� � ��	 ��.

��� ��-�-����� � ��	 ������2	�% 
�	 -	�� �	/�	��	

�����2	�

�>�

!�	�	 �	��	�	��� ��	 ��	������ ����' !����

��� �	�	��� ���"�"��	 �	/�	��	�) �����"��� ��	 �	.

/�	��	 %

�� �����

��-�-����� � ���� ��	 �	��	��	 �� ��	 ��	���.

��� ����' �� ������� �	��	��	%

B����) �� �0�10 ������2	� �� ��	" �� ����

����	% 
�	 �	��	��	 �	����	 �	��� � �! ��� ���

��	������ ���� ��-	� �� �� �""������ �	����	) �

��	�" � �	! �	��	��	 �	����	 �	��� �% (� ��	

�	��	��	 �	��� �	/�	��	 � � 	��� ����') !	

��-	� �� -� ����� ��	 ������ ������� %


�	 �������� ����	 �� ������� � ���� � ��������

��	 �0�10 ����	�% 
�	 "���	�	��	 �� ���� ��	

�0�10� �� �������$���� ��	 -����� ������.

2	��) !���	 ��	 �0�10 ����	� �� � �����.�����

������2	�%

0 .����	������ ����

0-" &�����

 	 ��	 � �	����	 ��		�� ����� ��������� !��	

2�	� � F8 ��	�	������� �	��"	" ��� "���	�	��

���"���� ��	�'	�� �� �! �	������� ���	�	��	�)

��	��	� !��� !	��.������	" ;!	� ;��� ���"	�)

������ �������������) ��" ��	�� �������	" ��"�

"���% ���� ��	�	������ ����� �-�� 86 �����	� �

��	���	% 
�	 F8 ��	�	������� ��	 ����� ��� 5?8

����'�) ��" 	��� �	��	��	 �� ������	" � ��	���.

��� ����' ��-	�) ����� ��	 ������	.��"	" �����

��-	���� �	��" �� "	����-	" �� �	���� *% ����
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����' ��� � ��	���	 9%5 ��	������ �����% 
�	 �	�.

	�	��	 ��	������ ���� ��-	�� ��	 ��	��	" -� �����

�����	����	" 0�0 �������� "	����-	" �� �	�.

��� *% ����	 ��	 ��-	���� ���	�� ��� ��	�"� ��

������	�� ���� -	�!		� ������������ �	��	��	�

��" ;!	� ;��� ���"	 -���	� �����) !	 	#�����

���	 �	��	��	� ���� ���	 ��	 ����	�� ������	��

���	� !��� ��	 -���	� ����� � ��� �	�	�	��	

������� �	��	��	�) ��	� ���	��	" -� 2�	 ��.

��� ��-@	��� ����"��� � ��	 ��	������ ����'

"	��������� �� ��	 ����� ����� � 
�-�	 8%  	

��	 ��	 '���� �	�2��	�� ������	�"���) 8?,+� ��

�	������� ���-����� � 	��� ������� ��" �	��.

"���-����� -	�!		� 	��� ���� � ��������% 
�	

��	���	 '���� �	�2��	�� �� ����	� ���� +%,6%

0-$  ������� ��� 1����	���

 	 ��	 ��	 "������	 �	����	 ;����<�� ��.

��	" �� �� ��	���� !�' �H���� 	� ��%) *++,�

!���� �� -��	" � ��	 ���!��� ����������A

2���) �� � �	��	��	 ������� �	! ��� !�"�) ��

��-�-�� ������� �	! ���������% 
�	 ���

!�"I� ;���� ���	 ����	� ����"��� � ��� ���.

���%  	 ��	 ;���� "�����-���� � ����#����	

��	 ��������% �	��") �� � ��� !�" ����� ��	.

/�	����) �� �� ��'	�� � -	 ��	 �������� ���� ��	�

��� !�"�) ��" ��	 �	��	��	 !��� ��	�	 ���� ��	.

/�	��� ��� !�"� ����" -	 �����"	" �� � ���.

����%  	 ��� ��	 ��	 ���!��� ������� ��" ���.

������� �	����	� �� �	��	�	����� �	��	��	�% 
�	

������� �	����	� ��	A "������ � ��	 �	��	��	) ��.

	���	 �����-�	 "������ � ��	 �	��	��	) (+ ��" ��.

	��� ���E��#E�	��E���	E����	 ����	 � ��	 �	�.

�	��	% 
�	 ���������� �	����	� ��	A �	��	��	 !�"

����) 
(E:�( � 	��� !�" �� ��	 �	��	��	) ��"

��	 !�" �"	����� �� 	��� �	��	��	%

 	 ��	 ���		 ���	����	 �������$���� �"	��
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��� �"	� �� B�3 �������������% 
�	 "���-��	
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��� �00 ����	!�' !��� �"�2	" �.�	���

��" �	��	���� �.�	��� ��������� �� 	#�������	
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��� �������	������� ��	 ��	" -� ��	�'	�� � ��.
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���	" � �0����) 8??F= 
	��	� ��" 0	��) *++*�

�� ���� !	 ����	 ����� ��	������ ����� �� ���.
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Abstract

A large body of prior research on coref-
erence resolution recasts the problem as
a two-class classification problem. How-
ever, standard supervised machine learn-
ing algorithms that minimize classifica-
tion errors on the training instances do not
always lead to maximizing the F-measure
of the chosen evaluation metric for coref-
erence resolution. In this paper, we pro-
pose a novel approach comprising the use
of instance weighting and beam search to
maximize the evaluation metric score on
the training corpus during training. Ex-
perimental results show that this approach
achieves significant improvement over the
state-of-the-art. We report results on stan-
dard benchmark corpora (two MUC cor-
pora and three ACE corpora), when evalu-
ated using the link-based MUC metric and
the mention-based B-CUBED metric.

1 Introduction

Coreference resolution refers to the process of
determining whether two or more noun phrases
(NPs) in a text refer to the same entity. Suc-
cessful coreference resolution benefits many nat-
ural language processing tasks. In the literature,
most prior work on coreference resolution recasts
the problem as a two-class classification problem.
Machine learning-based classifiers are applied to
determine whether a candidate anaphor and a po-
tential antecedent are coreferential (Soon et al.,
2001; Ng and Cardie, 2002b).

A large body of prior research on corefer-
ence resolution follows the same process: dur-

ing training, they apply standard supervised ma-
chine learning algorithms to minimize the number
of misclassified training instances; during testing,
they maximize either the local or the global proba-
bility of the coreferential relation assignments ac-
cording to the specific chosen resolution method.

However, minimizing the number of misclas-
sified training instances during training does not
guarantee maximizing the F-measure of the cho-
sen evaluation metric for coreference resolution.
First of all, coreference is a rare relation. There
are far fewer positive training instances than neg-
ative ones. Simply minimizing the number of mis-
classified training instances is suboptimal and fa-
vors negative training instances. Secondly, evalu-
ation metrics for coreference resolution are based
on global assignments. Not all errors have the
same impact on the metric score. Furthermore, the
extracted training instances are not equally easy to
be classified.

In this paper, we propose a novel approach
comprising the use of instance weighting and
beam search to address the above issues. Our pro-
posed maximum metric score training (MMST)
approach performs maximization of the chosen
evaluation metric score on the training corpus dur-
ing training. It iteratively assigns higher weights
to the hard-to-classify training instances. The out-
put of training is a standard classifier. Hence,
during testing, MMST is faster than approaches
which optimize the assignment of coreferential re-
lations during testing. Experimental results show
that MMST achieves significant improvements
over the baselines. Unlike most of the previous
work, we report improved results over the state-
of-the-art on all five standard benchmark corpora
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(two MUC corpora and three ACE corpora), with
both the link-based MUC metric and the mention-
based B-CUBED metric.

The rest of this paper is organized as follows.
We first review the related work and the evaluation
metrics for coreference resolution in Section 2 and
3, respectively. Section 4 describes the proposed
MMST algorithm. Experimental results and re-
lated discussions are given in Section 5. Finally,
we conclude in Section 6.

2 Related Work

Soonet al. (2001) proposed a training and test-
ing framework for coreference resolution. Dur-
ing training, a positive training instance is formed
by a pair of markables, i.e., the anaphor (a noun
phrase) and its closest antecedent (another noun
phrase). Each markable (noun phrase) between
the two, together with the anaphor, form a neg-
ative training instance. A classifier is trained on
all training instances, using a standard supervised
learning algorithm. During testing, all preceding
markables of a candidate anaphor are considered
as potential antecedents, and are tested in a back-
to-front manner. The process stops if either an an-
tecedent is found or the beginning of the text is
reached. This framework has been widely used in
the community of coreference resolution.

Recent work boosted the performance of coref-
erence resolution by exploiting fine-tuned feature
sets under the above framework, or adopting al-
ternative resolution methods during testing (Ng
and Cardie, 2002b; Yang et al., 2003; Denis and
Baldridge, 2007; Versley et al., 2008).

Ng (2005) proposed a ranking model to maxi-
mize F-measure during testing. In the approach,n
different coreference outputs for each test text are
generated, by varying four components in a coref-
erence resolution system, i.e., the learning algo-
rithm, the instance creation method, the feature
set, and the clustering algorithm. An SVM-based
ranker then picks the output that is likely to have
the highest F-measure. However, this approach
is time-consuming during testing, as F-measure
maximization is performed during testing. This
limits its usage on a very large corpus.

In the community of machine learning, re-
searchers have proposed approaches for learning

a model to optimize a chosen evaluation met-
ric other than classification accuracy on all train-
ing instances. Joachims (2005) suggested the use
of support vector machines to optimize nonlinear
evaluation metrics. However, the approach does
not differentiate between the errors in the same
category in the contingency table. Furthermore, it
does not take into account inter-instance relation
(e.g., transitivity), which the evaluation metric for
coreference resolution cares about.

Daume III (2006) proposed a structured learn-
ing framework for coreference resolution to ap-
proximately optimize the ACE metric. Our pro-
posed approach differs in two aspects. First, we
directly optimize the evaluation metric itself, and
not by approximation. Second, unlike the incre-
mental local loss in Daume III (2006), we evaluate
the metric score globally.

In contrast to Ng (2005), Ng and Cardie
(2002a) proposed a rule-induction system with
rule pruning. However, their approach is specific
to rule induction, and is not applicable to other
supervised learning classifiers. Ng (2004) varied
different components of coreference resolution,
choosing the combination of components that re-
sults in a classifier with the highest F-measure on
a held-out development set during training. In
contrast, our proposed approach employs instance
weighting and beam search to maximize the F-
measure of the evaluation metric during training.
Our approach is general and applicable to any su-
pervised learning classifiers.

Recently, Wick and McCallum (2009) pro-
posed a partition-wise model for coreference reso-
lution to maximize a chosen evaluation metric us-
ing the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970). However, they
found that training on classification accuracy, in
most cases, outperformed training on the corefer-
ence evaluation metrics. Furthermore, similar to
Ng (2005), their approach requires the generation
of multiple coreference assignments during test-
ing.

Vemulapalliet al. (2009) proposed a document-
level boosting technique for coreference resolu-
tion by re-weighting the documents that have
the lowest F-measures. By combining multiple
classifiers generated in multiple iterations, they
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achieved a CEAF score slightly better than the
baseline. Different from them, our approach
works at the instance level, and we output a sin-
gle classifier.

3 Coreference Evaluation Metrics

In this section, we review two commonly used
evaluation metrics for coreference resolution.

First, we introduce the terminology. The gold
standard annotation and the output by a coref-
erence resolution system are called key and re-
sponse, respectively. In both the key and the re-
sponse, a coreference chain is formed by a set of
coreferential mentions. Amention(or markable)
is a noun phrase which satisfies the markable def-
inition in an individual corpus. Alink refers to a
pair of coreferential mentions. If a mention has no
links to other mentions, it is called asingleton.

3.1 The MUC Evaluation Metric

Vilain et al. (1995) introduced the link-based
MUC evaluation metric for the MUC-6 and MUC-
7 coreference tasks. LetSi be an equivalence
class generated by the key (i.e.,Si is a corefer-
ence chain), andp(Si) be a partition ofSi relative
to the response. Recall is the number of correctly
identified links over the number of links in the key.

Recall =

∑
(|Si| − |p(Si)|)∑

(|Si| − 1)

Precision, on the other hand, is defined in the op-
posite way by switching the role of key and re-
sponse. F-measure is a trade-off between recall
and precision.

F =
2 · Recall · Precision

Recall + Precision

3.2 The B-CUBED Evaluation Metric

Bagga and Baldwin (1998) introduced the
mention-based B-CUBED metric. The B-
CUBED metric measures the accuracy of coref-
erence resolution based on individual mentions.
Hence, it also gives credit to the identification of
singletons, which the MUC metric does not. Re-
call is computed as

Recall =
1

N

∑

d∈D

∑

m∈d

|Om|
|Sm|

whereD, d, andm are the set of documents, a
document, and a mention, respectively.Sm is the
equivalence class generated by the key that con-
tainsm, while Om is the overlap ofSm and the
equivalence class generated by the response that
containsm. N is the total number of mentions in
D. The precision, again, is computed by switch-
ing the role of key and response. F-measure is
computed in the same way as the MUC metric.

4 Maximum Metric Score Training

Before explaining the algorithm, we describe our
coreference clustering method used during test-
ing. It is the same as most prior work in the lit-
erature, including Soonet al. (2001) and Ng and
Cardie (2002b). The individual classification de-
cisions made by the coreference classifier do not
guarantee that transitivity of coreferential NPs is
obeyed. So it can happen that the pairA andB,
and the pairB andC are both classified as coref-
erential, but the pairA and C is not classified
as coreferential by the classifier. After all coref-
erential markable pairs are found (no matter by
closest-first, best-first, or resolving-all strategies
as in different prior work), all coreferential pairs
are clustered together to form the coreference out-
put. By doing so, transitivity is kept: a markable is
in a coreference chain if and only if it is classified
to be coreferential to at least one other markable
in the chain.

4.1 Instance Weighting

Suppose there aremk andmr coreferential links
in the key and the response, respectively, and a
coreference resolution system successfully pre-
dicts n correct links. The recall and the preci-
sion are thenn

mk
and n

mr
, respectively. The learnt

classifier predicts false positive and false negative
instances during testing. For a false positive in-
stance, if we could successfully predict it as neg-
ative, the recall is unchanged, but the precision
will be n

mr−1 , which is higher than the original
precision n

mr
. For a false negative instance, it

is more subtle. If the two markables in the in-
stance are determined to be in the same corefer-
ence chain by the clustering algorithm, it does not
matter whether we predict this instance as posi-
tive or negative, i.e., this false negative does not
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change the F-measure of the evaluation metric at
all. If the two markables are not in the same coref-
erence chain under the clustering, in case that we
can predict it as positive, the recall will ben+1

mk
,

which is higher than the original recallnmk
, and

the precision will be n+1
mr+1 , which is higher than

the original precision n
mr

, asn < mr. In both
cases, the F-measure improves. If we can instruct
the learning algorithm to pay more attention to
these false positive and false negative instances
and to predict them correctly by assigning them
more weight, we should be able to improve the
F-measure.

In the literature, besides the training instance
extraction methods proposed by Soonet al.
(2001) and Ng and Cardie (2002b) as discussed
in Section 2, McCarthy and Lehnert (1995) used
all possible pairs of training instances. We also
use all pairs of training instances in our approach
to keep as much information as possible. Initially
all the pairs are equally weighted. We then itera-
tively assign more weights to the hard-to-classify
pairs. The iterative process is conducted by a
beam search algorithm.

4.2 Beam Search

Our proposed MMST algorithm searches for a set
of weights to assign to training instances such
that the classifier trained on the weighted training
instances gives the maximum coreference metric
score when evaluated on the training instances.
Beam search is used to limit the search. Each
search state corresponds to a set of weighted train-
ing instances, a classifier trained on the weighted
training instances minimizing misclassifications,
and the F-measure of the classifier when evalu-
ated on the weighted training instances using the
chosen coreference evaluation metric. The root
of the search tree is the initial search state where
all the training instances have identical weights of
one. Each search states can expand into two dif-
ferent children search statessl andsr. sl (sr) cor-
responds to assigning higher weights to the false
positive (negative) training instances ins. The
search space thus forms a binary search tree.

Figure 1 shows an example of a binary search
tree. Initially, the tree has only one node: the root
(node 1 in the figure). In each iteration, the algo-

1

2 3

4 5 6 7

8 9 10 11

Figure 1: An example of a binary search tree

rithm expands all the leaf nodes in the beam. For
example, in the first iteration, node 1 is expanded
to generate node 2 and 3, which corresponds to
adding weights to false positive and false nega-
tive training instances, respectively. An expanded
node always has two children in the binary search
tree. All the nodes are then sorted in descending
order of F-measure. Only the topM nodes are
kept, and the remaining nodes are discarded. The
discarded nodes can either be leaf nodes or non-
leaf nodes. For example, if node 5 is discarded
because of low F-measure, it will not be expanded
to generate children in the binary search tree. The
iterative algorithm stops when all the nodes in the
beam are non-leaf nodes, i.e., all the nodes in the
beam have been expanded.

Figure 2 gives the formal description of the
proposed maximum metric score training algo-
rithm. In the algorithm, assume that we have
N textsT1, T2, . . ., TN in the training data set.
mki and mkj are theith and jth markable in
the text Tk, respectively. Hence, for alli <
j, (mki, mkj , wkij) is a training instance for the
markable pair(mki, mkj), in which wkij is the
weight of the instance. LetLkij andL′

kij be the
true and predicted label of the pair(mki, mkj),
respectively. LetW , C, F , andE be the set of
weights{wkij |1 ≤ k ≤ N, i < j}, the classifier,
the F-measure, and a boolean indicator of whether
the search state has been expanded, respectively.
Finally, M is the beam size, andδ controls how
much we update the weights in each iteration.

Since we train the model on all possible pairs,
during testing we also test if a potential anaphor is
coreferential to each preceding antecedent.
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INPUT: T1, T2, . . . , TN

OUTPUT: classifierC
wkij ← 1, for all 1 ≤ k ≤ N andi < j
C ← train({(mki, mkj , wkij)|1 ≤ k ≤ N, i < j})
F ← resolve and evaluateT1, . . . , TN with C
E ← false
BEAM← {(W, C, F, E)}
repeat

BEAM′ ← {}
for all (W, C, F, E) in BEAM do

BEAM′ ← BEAM′ ⋃{(W, C, F, true)}
if E=falsethen

predict allL′
kij with C (1 ≤ k ≤ N, i < j)

cluster into coreference chains based onL′
kij

W ′ ← W
for all 1 ≤ k ≤ N, i < j do

if Lkij = false andL′
kij = true then

w′
kij ← w′

kij + δ
end if

end for
C′ ← train({(mki, mkj , w′

kij)|1 ≤ k ≤ N, i < j})
F ′ ← resolve and evaluateT1, . . . , TN with C′

BEAM′ ← BEAM′ ⋃{(W ′, C′, F ′, false)}
W ′′ ← W
for all 1 ≤ k ≤ N, i < j do

if Lkij = true andL′
kij = false and

Chain(mki) 6= Chain(mkj) then
w′′

kij ← w′′
kij + δ

end if
end for
C′′ ← train({(mki, mkj , w′′

kij)|1 ≤ k ≤ N, i < j})
F ′′ ← resolve and evaluateT1, . . . , TN with C′′

BEAM′ ← BEAM′ ⋃{(W ′′, C′′, F ′′, false)}
end if

end for
BEAM← BEAM′

sort BEAM in descending order ofF , keep topM elements
until for all E of all elements in BEAM,E = true
return C, from the top element(W, C, F, E) of BEAM

Figure 2: The maximum metric score training
(MMST) algorithm

5 Experiments

5.1 Experimental Setup

In the experiments, we used all the five commonly
used evaluation corpora for coreference resolu-
tion, namely the two MUC corpora (MUC6 and
MUC7) and the three ACE corpora (BNEWS,
NPAPER, and NWIRE). The MUC6 and the
MUC7 corpora were defined in the DARPA Mes-
sage Understanding Conference (MUC-6, 1995;
MUC-7, 1998). The dry-run texts were used as the
training data sets. In both corpora, each training
data set contains 30 texts. The test data sets for
MUC6 and MUC7 consist of the 30 and 20 for-
mal evaluation texts, respectively. The ACE cor-
pora were defined in NIST Automatic Content Ex-
traction phase 2 (ACE-2) (NIST, 2002). The three
data sets are from different news sources: broad-
cast news (BNEWS), newspaper (NPAPER), and

newswire (NWIRE). Each of the three data sets
contains two portions: training and development
test. They were used as our training set and test
set, respectively. The BNEWS, NPAPER, and
NWIRE data sets contain 216, 76, and 130 train-
ing texts, and 51, 17, and 29 test texts, respec-
tively.

Unlike some previous work on coreference res-
olution that assumes that the gold standard mark-
ables are known, we work directly on raw text in-
put. Versleyet al. (2008) presented the BART
package1, an open source coreference resolution
toolkit, that accepts raw text input and reported
state-of-the-art MUC F-measures on the three
ACE corpora. BART uses an extended feature set
and tree kernel support vector machines (SVM)
under the Soonet al. (2001) training and testing
framework. We used the BART package in our ex-
periments, and implemented the proposed MMST
algorithm on top of it. In our experiments reported
in this paper, the features we used areidenticalto
the features output by the preprocessing code of
BART reported in Versleyet al. (2008), except
that we did not use their tree-valued and string-
valued features (see the next subsection for de-
tails).

Since we use automatically extracted mark-
ables, it is possible that some extracted markables
and the gold standard markables are unmatched,
or twinlessas defined in Stoyanovet al. (2009).
How to use the B-CUBED metric for evaluating
twinless markables has been explored recently. In
this paper, we adopt theB3all variation proposed
by Stoyanovet al. (2009), which retains all twin-
less markables. We also experimented with their
B30 variation, which gave similar results. Note
that no matter which variant of the B-CUBED
metric is used, it is a fair comparison as long as
the baseline and our proposed MMST algorithm
are compared against each other using the same
B-CUBED variant.

5.2 The Baseline Systems

We include state-of-the-art coreference resolution
systems in the literature for comparison. Since
we use the BART package in our experiments,

1http://www.sfs.uni-tuebingen.de/
˜ versley/BART/
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we include the results of the original BART sys-
tem (with its extended feature set and SVM-light-
TK (Moschitti, 2006), as reported in Versleyet al.
(2008)) as the first system for comparison. Vers-
ley et al. (2008) reported only the results on the
three ACE data sets with the MUC evaluation met-
ric. Since we used all the five data sets in our
experiments, for fair comparison, we also include
the MUC results reported in Ng (2004). To the
best of our knowledge, Ng (2004) was the only
prior work which reported MUC metric scores on
all the five data sets. The MUC metric scores of
Versleyet al. (2008) and Ng (2004) are listed in
the row “Versleyet al. 08” and “Ng 04”, respec-
tively, in Table 1. For the B-CUBED metric, we
include Ng (2005) for comparison, although it is
unclear how Ng (2005) interpreted the B-CUBED
metric. The scores are listed in the row “Ng 05”
in Table 2.

Tree kernel SVM learning is time-consuming.
To reduce the training time needed, instead of us-
ing SVM-light-TK, we used a much faster learn-
ing algorithm, J48, which is the WEKA imple-
mentation of the C4.5 decision tree learning algo-
rithm. (Quinlan, 1993; Witten and Frank, 2005).
As tree-valued features and string-valued features
cannot be used with J48, in our experiments we
excluded them from the extended feature set that
BART used to produce state-of-the-art MUC F-
measures on the three ACE corpora. All our re-
sults in this paper were obtained using this re-
duced feature set and J48 decision tree learn-
ing. However, given sufficient computational re-
sources, our proposed approach is able to apply to
any supervised machine learning algorithms.

Our baselines that follow the Soonet al. (2001)
framework, using the reduced feature set and J48
decision tree learning, are shown in the row “SNL-
Style Baseline” in Table 1 and 2. The results
suggest that our baseline system is comparable
to the state of the art. Although in Table 1, the
performance of theSNL-style baseline is slightly
lower than Versleyet al. (2008) on the three ACE
corpora, the computational time needed has been
greatly reduced.

Our MMST algorithm trains and tests on all
pairs of markables. To show the effectiveness of
weight updating of MMST, we built another base-

line which trains and tests on all pairs. The per-
formance of this system is shown in the row “All-
Style Baseline” in Table 1 and 2.

5.3 Results Using Maximum Metric Score
Training

Next, we show the results of using the proposed
maximum metric score training algorithm. From
the description of the algorithm, it can be seen that
there are two parameters in the algorithm. One
parameter isM , the size of the beam. The other
parameter isδ, which controls how much we in-
crease the weight of a training instance in each
iteration.

Since the bestM andδ for the MUC evaluation
metric were not known, we used held-out develop-
ment sets to tune the parameters. Specifically, we
trained classifiers with different combinations of
M andδ on a development training set, and eval-
uated their performances on a development test
set. In our experiments, the development training
set contained 2/3 of the texts in the training set
of each individual corpus, while the development
test set contained the remaining 1/3 of the texts.
After having picked the bestM andδ values, we
trained a classifier on the entire training set with
the chosen parameters. The learnt classifier was
then applied to the test set.

2 4 6 8 10 12 14 16 18 20
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Figure 3: TuningM on the held-out development
set

To limit the search space, we tuned the two
parameters sequentially. First, we fixedδ =
1, which is equivalent to duplicating each train-
ing instance once in J48, and evaluatedM =
2, 4, 6, . . . , 20. After having chosen the best
M that corresponded to the maximum F-measure,
we fixed the value ofM , and evaluatedδ =
0.1, 0.2, 0.3, . . . , 2.0. Take MUC6 as an exam-
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MUC6 MUC7 BNEWS NPAPER NWIRE
Model R P F R P F R P F R P F R P F

Versleyet al. 08 – – 60.7 65.4 63.0 64.1 67.7 65.8 60.4 65.2 62.7
Ng 04 75.8 61.4 67.9 64.2 60.2 62.1 63.1 67.8 65.4 73.5 63.3 68.0 53.1 60.6 56.6

SNL-Style Baseline 67.0 49.2 56.7 63.0 54.2 58.3 57.4 64.3 60.7 61.6 67.3 64.3 58.6 66.1 62.1
All-Style Baseline 56.9 69.2 62.5 51.5 73.4 60.6 53.0 76.7 62.7 56.3 75.4 64.4 53.0 74.5 61.9

MMST 73.3 59.9 65.9∗∗†† 66.8 59.8 63.1∗∗† 70.5 61.9 65.9∗∗† 69.9 64.0 66.8† 64.7 64.7 64.7∗∗†

M = 6, δ = 1.0 M = 6, δ = 0.7 M = 6, δ = 1.8 M = 6, δ = 0.9 M = 14, δ = 0.7

Table 1: Results for the two MUC and three ACE corpora with MUCevaluation metric

MUC6 MUC7 BNEWS NPAPER NWIRE
Model R P F R P F R P F R P F R P F
Ng 05 – – 57.0 77.1 65.6 62.8 71.2 66.7 59.3 75.4 66.4

SNL-Style Baseline 57.8 74.4 65.1 57.6 76.5 65.7 62.0 74.7 67.8 61.8 70.4 65.8 65.8 75.9 70.5
All-Style Baseline 51.6 86.3 64.6 49.1 90.1 63.6 61.6 83.7 71.0 63.9 74.0 68.6 64.8 80.1 71.7

MMST 62.7 81.5 70.9∗∗†† 61.8 73.6 67.2†† 61.6 83.7 71.0∗∗ 63.1 76.2 69.1∗∗ 64.3 81.0 71.7
M = 6, δ = 1.0 M = 8, δ = 0.8 M = 6, δ = 0.9 M = 14, δ = 0.5 M = 6, δ = 0.1

Table 2: Results for the two MUC and three ACE corpora withB3 evaluation metric
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Figure 4: Tuningδ on the held-out development
set

ple. The results of tuningM on MUC6 are shown
in Figure 3. The maximum F-measure is obtained
whenM = 4 andM = 6. On all the differentM
values we have tried, MMST outperforms both the
SNL-style baseline and theAll-style baseline on
the development test set. We then fixedM = 6,
and evaluated differentδ values. The results are
shown in Figure 4. The best F-measure was ob-
tained whenδ = 1.0. Again, on all the different
δ values we have tried, MMST outperforms both
baselines on the development test set.

The rows “MMST” in Table 1 and 2 show the
performance of MMST on the test sets, with the
tuned parameters indicated. In our experiments,
the statistical significance test was conducted as
in Chinchor (1995).∗ and∗∗ stand forp < 0.05
andp < 0.01 over theSNL-style baseline, respec-
tively. † and†† stand forp < 0.05 andp < 0.01
over theAll-style baseline, respectively.

For the MUC metric, when compared to the
All-style baseline, MMST gains 3.4, 2.5, 3.2, 2.4,
and 2.8 improvement in F-measure on MUC6,
MUC7, BNEWS, NPAPER, and NWIRE, respec-
tively. The experimental results clearly show that
MMST gains not only consistent, but also sta-
tistically significant improvement over both the
SNL-style baseline and theAll-style baseline in all
combinations (five data sets and two baselines) on
the MUC metric, except that it is not significant
(p = 0.06) over theSNL-style baseline in NPA-
PER. As for the B-CUBED metric, MMST gains
significant improvement in F-measure on MUC6
and MUC7 data sets, while its performance on
the three ACE data sets are comparable to theAll-
style baseline.

5.4 Discussion

To see how MMST actually updates the weight,
we use the MUC metric as an example. Under the
experimental settings, it takes 6 – 9 iterations for
MMST to stop on the five data sets. The number
of explored states in the binary search tree, includ-
ing the root, is 33, 39, 25, 29, and 75 on MUC6,
MUC7, BNEWS, NPAPER, and NWIRE, respec-
tively. It is instructive to find out the final weight
of each instance. Take MUC6 as an example, the
number of positive instances with weight 1, 2, 3,
and 4 are 5,204, 1,568, 1,379, and 1,844, respec-
tively, while the number of negative instances with
weight 1 and 2 are 503,141 and 1,755, respec-
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tively. Counting the weighted number of instances
(e.g., an instance with weight 2 is equivalent to 2
instances), we have 19,853 positive and 506,651
negative training instances. This changes the ratio
of the positive instances from1.9% to 3.8%. As a
by-product, MMST reduces data skewness, while
using all possible NP pairs for training to keep as
much information as possible.

The change of weights of the training instances
is equivalent to the change of distribution of the
training instances. This effectively changes the
classification hypothesis to the one that tends to
yield higher evaluation metric score. Take the fol-
lowing sentence in the MUC6 data set as an ex-
ample:

In a news release,the company said the new
name more accurately reflectsits focus on high-
technology communications, including business
and entertainment software, interactive media
and wireless data and voice transmission.

In the above example, the pronounits is coref-
erential to the antecedent NPthe company. The
baseline classifier gives a probability of 0.02 that
the two NPs are coreferential. The pair is clas-
sified wrongly and none of the other pairs in the
article can link the two NPs together through clus-
tering. However, with MMST, this probability in-
creases to 0.54, which leads to the correct classi-
fication. This is because the baseline classifier is
not good at predicting in the case when the sec-
ond markable is a pronoun. In the above exam-
ple, its can have another candidate antecedentthe
new name. There are far more negative training
instances than positive ones for this case. In fact,
in the induced decision tree by the baseline, the
leaf node corresponding to the pairthe company
– its has 7,782 training instances, out of which
only 175 are positive. With MMST, however,
these numbers decrease to 83 and 45, respectively.
MMST also promotes the AnaphorIs Pronoun
feature to a higher level in the decision tree. Al-
though we use decision tree to illustrate the work-
ing of the algorithm, MMST is not limited to tree
learning, and can make use of any learning algo-
rithms that are able to take advantage of instance
weighting.

It can also be seen that with the B-CUBED
metric, MMST gains improvement on MUC6 and

MUC7, but not on the three ACE corpora. How-
ever, the results of MMST on the three ACE cor-
pora with the B-CUBED evaluation metric are at
least comparable with theAll-style baseline. This
is because we always pick the classifier which cor-
responds to the maximum evaluation metric score
on the training set and the classifier correspond-
ing to theAll-style baseline is one of the candi-
dates. In addition, our MMST approach improves
upon state-of-the-art results (Ng, 2004; Ng, 2005;
Versley et al., 2008) on most of the five standard
benchmark corpora (two MUC corpora and three
ACE corpora), with both the link-based MUC
metric and the mention-based B-CUBED metric.

Finally, our approach performs all the F-
measure maximization during training, and is very
fast during testing, since the output of the MMST
algorithm is a standard classifier. For example,
on the MUC6 data set with the MUC evaluation
metric, it took 1.6 hours and 31 seconds for train-
ing and testing, respectively, on an Intel Xeon
2.33GHz machine.

6 Conclusion

In this paper, we present a novel maximum met-
ric score training approach comprising the use of
instance weighting and beam search to maximize
the chosen coreference metric score on the train-
ing corpus during training. Experimental results
show that the approach achieves significant im-
provement over the baseline systems. The pro-
posed approach improves upon state-of-the-art re-
sults on most of the five standard benchmark cor-
pora (two MUC corpora and three ACE corpora),
with both the link-based MUC metric and the
mention-based B-CUBED metric.
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Abstract

This paper proposes a method that extracts
paraphrases from search engine query
logs. The method first extracts paraphrase
query-title pairs based on an assumption
that a search query and its correspond-
ing clicked document titles may mean the
same thing. It then extracts paraphrase
query-query and title-title pairs from the
query-title paraphrases with a pivot ap-
proach. Paraphrases extracted in each step
are validated with a binary classifier. We
evaluate the method using a query log
from Baidu1, a Chinese search engine.
Experimental results show that the pro-
posed method is effective, which extracts
more than 3.5 million pairs of paraphrases
with a precision of over 70%. The results
also show that the extracted paraphrases
can be used to generate high-quality para-
phrase patterns.

1 Introduction

The use of paraphrases is ubiquitous in hu-
man languages, which also presents a challenge
for natural language processing (NLP). Previous
studies have shown that paraphrasing can play im-
portant roles in plenty of areas, such as machine
translation (MT) (Callison-Burch et al., 2006;
Kauchak and Barzilay, 2006), question answer-
ing (QA) (Duboue and Chu-Carroll, 2006; Riezler
et al., 2007), natural language generation (NLG)
(Iordanskaja et al., 1991), and so on. As a result,
the research on paraphrasing and its applications
have attracted significant interest.

1www.baidu.com

This paper proposes a method that uses search
engine query logs for extracting paraphrases,
which is illustrated in Figure 1. Specifically, three
kinds of paraphrases can be extracted with our
method, which include (1) query-title (Q-T): a
query and a document title that users clicked on;
(2) query-query (Q-Q): two queries, for which
users clicked on the same document title; (3) title-
title (T-T): two titles that users clicked on for the
same query. We train a classifier for each kind to
filter incorrect pairs and refine the paraphrases.

Extracting paraphrases using query logs has
many advantages. First, query logs keep growing,
which have no scale limitation. Second, query
logs reflect web users’ real needs, hence the ex-
tracted paraphrases may be more useful than that
from other kinds of corpora. Third, paraphrases
extracted from query logs can be directed applied
in search engines for query suggestion and doc-
ument reranking. In addition, we find that both
queries and titles contain a good many question
sentences, which can be useful in developing QA
systems.

We conduct experiments using a query log of
a commercial Chinese search engine Baidu, from
which we extracted about 2.7 million pairs of
paraphrase Q-T, 0.4 million pairs of paraphrase Q-
Q, and 0.4 million pairs of paraphrase T-T. The
precision of the paraphrases is above 70%. In
addition, we generate paraphrase patterns using
the extracted paraphrases. The results show that
73,484 pairs of paraphrase patterns have been gen-
erated, with a precision of over 78%.

In the rest of the paper, we first review related
work in Section 2. Section 3 describes our method
in detail. Section 4 presents the evaluation and re-
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paraphrase Q-T extraction

query title both query and title

paraphrase Q-Q extraction paraphrase T-T extraction

paraphrase relation

Figure 1: Illustration of the proposed method.

sults. Section 5 concludes the paper and discusses
future directions.

2 Related Work

In this section, we briefly review previous studies
on paraphrase extraction and query log mining in
information retrieval (IR).

2.1 Paraphrase Extraction
A variety of data resources have been exploited
for paraphrase extraction. For example, some re-
searchers extract paraphrases from multiple trans-
lations of the same foreign novel (Barzilay and
McKeown, 2001; Ibrahim et al., 2003), while
some others make use of comparable news arti-
cles that report on the same event within a small
time interval (Shinyama et al., 2002; Barzilay and
Lee, 2003; Dolan et al., 2004). Besides the mono-
lingual corpora, bilingual parallel corpora have
also been used for extracting paraphrases (Ban-
nard and Callison-Burch, 2005; Callison-Burch,
2008; Zhao et al., 2008). Their basic assumption
is that phrases that align with the same foreign
phrase may have the same meaning.

The above methods have achieved promising
results. However, their performances are usually
constrained due to the scale and domain limita-
tion. As an alternative, researchers have tried
to acquire paraphrases from large-scale web cor-
pora (Lin and Pantel, 2001; Paşca and Dienes,
2005; Bhagat and Ravichandran, 2008) or directly
based on web mining (Ravichandran and Hovy,

2002). These methods are guided by an extended
version of distributional hypothesis, namely, if
two phrases often occur in similar contexts, their
meanings tend to be similar. The disadvantage
of these methods is that the underlying assump-
tion does not always hold. Phrases with opposite
meanings can also occur in similar contexts, such
as “X solves Y” and “X worsens Y” (Lin and Pan-
tel, 2001). In addition, the extracted paraphrases
are generally short fragments with two slots (vari-
ables) at both ends.

2.2 Query Log Mining in IR

Query logs are widely used in the IR commu-
nity, especially for mining similar queries. For ex-
ample, Wen et al. (2002) clustered queries based
on user click information. Their basic idea is
that if some queries result in similar user clicks,
the meanings of these queries should be similar.
Such methods have also been investigated in (Gao
et al., 2007) for cross-lingual query suggestion
and (Zhao et al., 2007) for synonymous questions
identification. This paper is partly inspired by
their studies. However, we do not simply use click
information as clues for mining similar queries.
Instead, we mine paraphrases across queries and
clicked document titles.

In addition, query logs can be used for query
expansion. For instance, Cui et al. (2002)
extract probabilistic correlations between query
terms and document terms by analyzing query
logs, which are then used to select high-quality
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H1: If a query q hits a title t, then q and
t are likely to be paraphrases.

H2: If queries q1 and q2 hit the same title t,
q1 and q2 are likely to be paraphrases.

H3: If a query q hits titles t1 and t2, then
t1 and t2 are likely to be paraphrases.

Table 1: Hypotheses for extracting paraphrases.

expansion terms for new queries. Note that the
expansion terms are merely related terms of the
queries, not necessarily paraphrases.

There are other studies that use query logs
for constructing ontologies (Sekine and Suzuki,
2007), learning named entities (Paşca, 2007),
building user profiles (Richardson, 2008), correct-
ing spelling errors (Ahmad and Kondrak, 2005),
and so forth.

3 The Proposed Method

3.1 Basic Idea
Nowadays, more and more users tend to search
long queries with search engines. Many users
even directly search questions to get exact an-
swers. By analyzing our query log that records
rich information including user queries, clicked
urls, titles, etc., we find that most titles of clicked
documents are highly related with search queries.
Especially, paraphrases can be easily found from
long queries and the corresponding clicked ti-
tles. This motivates us to extract paraphrases from
query-title pairs. Here we introduce a concept hit
that will be frequently used: given a query q, a
web document d, and d’s title t, if there exist some
users that click on d when searching q, then we
say q hits t.

The hypothesis for extracting paraphrase Q-T
is shown in Table 1 (H1). In addition, we find
that when several queries hit the same title, the
queries are likely to be paraphrases of each other.
The other way round, when a query hits several
titles, paraphrases can also be found among the ti-
tles. We therefore further extract paraphrase Q-Q
and T-T from the paraphrase Q-T. The underly-
ing hypotheses can be found in Table 1 (H2 and

INPUT: Q: query space, T : title space
OUTPUT: Pqt: the set of paraphrase Q-T,

Pqq: the set of paraphrase Q-Q,
Ptt: the set of paraphrase T-T,
ParaSet: the set of paraphrases

1. FOR any q ∈ Q and t ∈ T
2. IF q hits t
3. IF IsParaphrase(q, t)
4. Add ⟨q, t⟩ to Pqt

5. END IF
6. END IF
7. END FOR

8. FOR any q1, q2 ∈ Q and t ∈ T
9. IF ⟨q1, t⟩ ∈ Pqt and ⟨q2, t⟩ ∈ Pqt

10. IF IsParaphrase(q1, q2)
11. Add ⟨q1, q2⟩ to Pqq

12. END IF
13. END IF
14. END FOR

15. FOR any t1, t2 ∈ T and q ∈ Q
16. IF ⟨q, t1⟩ ∈ Pqt and ⟨q, t2⟩ ∈ Pqt

17. IF IsParaphrase(t1, t2)
18. Add ⟨t1, t2⟩ to Ptt

19. END IF
20. END IF
21. END FOR

22. RETURN ParaSet = Pqt ∪ Pqq ∪ Ptt

Table 2: Algorithm for extracting paraphrases.

H3). Note that, based on H2 and H3, paraphrase
Q-Q and T-T can be directly extracted from raw
Q-T pairs. However, in consideration of preci-
sion, we extract them from paraphrase Q-T. We
call our paraphrase Q-Q and T-T extraction ap-
proach as a pivot approach, since we use titles as
pivots (queries as targets) when extracting para-
phrase Q-Q and use queries as pivots (titles as tar-
gets) when extracting paraphrase T-T.

3.2 Algorithm

Our paraphrase extraction algorithm is shown in
Table 2. In particular, lines 1∼7 extract para-
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phrase Q-T from the query log. Lines 8∼14 and
15∼21 extract paraphrase Q-Q and T-T, respec-
tively. Line 22 combines the paraphrase Q-T, Q-
Q, and T-T together. To filter noise, the extracted
Q-T, Q-Q, and T-T pairs are all validated using
a function IsParaphrase(s1, s2). In this work,
we recast paraphrase validation as a binary clas-
sification problem. Any pair of ⟨s1, s2⟩ is classi-
fied as 1 (paraphrase) or 0 (non-paraphrase) with
a support vector machine (SVM) classifier. The
features used for classification will be detailed in
Section 3.3.

In practice, we exploit a query log that contains
287 million Q-T pairs, which are then filtered us-
ing the following constraints: (1) exclude Q-T
pairs that are too short, i.e., either query q or tittle
t contains less than three terms; (2) exclude Q-T
pairs where q subsumes t or vice versa, e.g., “牛
肉 (beef)” and “牛肉的做法 (cooking method of
beef)”; (3) exclude Q-T pairs in which the similar-
ity between q and t is below a predefined threshold
T 2; (4) exclude Q-T pairs whose t contains fre-
quent internet terms, such as “主页 (home page)”,
“网站 (web site)”, “在线 (online)”, since such ti-
tles are mostly organization home pages, online
videos, downloadable resources, etc., which are
useless for our purpose of paraphrase extraction.

3.3 Features for Paraphrase Validation

Given a pair of candidate paraphrases ⟨s1, s2⟩, in
which s1 and s2 can be either a query or a title, we
exploit the following features in the classification-
based paraphrase validation.

• Frequency Feature FF . FF is defined based
on each ⟨s1, s2⟩’s frequency. We expect that more
frequent ⟨s1, s2⟩ should be more reliable.

FF (s1, s2) = {
c(s1,s2)

C if c(s1, s2) < C
1 if c(s1, s2) ≥ C

(1)
where c(s1, s2) denotes the number of times that
the ⟨s1, s2⟩ pair occurs in the corpus. C is a nor-
malizing factor (C = 10 in our experiments).

2The similarity is computed based on word overlap rate,
which will be described in detail in section 3.3. We set T =
0.6 in the experiments.

• Length Rate Feature FLR:

FLR(s1, s2) =
min{cw(s1), cw(s2)}
max{cw(s1), cw(s2)}

(2)

where cw(s) denotes the number of words in s.

• Word Overlap Rate Feature FWOR:

FWOR(s1, s2) =
cw(s1 ∩ s2)

max{cw(s1), cw(s2)}
(3)

where “s1 ∩ s2” is the intersection of s1 and s2.

• Character Overlap Rate Feature FCOR. Chi-
nese words are composed of characters. It is quite
often that words with similar characters share
similar meanings, such as “爽快 (comfortable)”
and “痛快 (comfortable)”, “出售 (sell)” and “销
售 (sell)”. Here we use FCOR to measure the sim-
ilarity between s1 and s2 at the character level.
Detailedly, we segment s1 and s2 into sets of
characters and compute the overlap rate based on
Equation (3)3.

• Cosine Similarity Feature FCS . In FCS , both
s1 and s2 are represented as vectors and their co-
sine similarity is computed as:

FCS(s1, s2) =
vecw(s1) · vecw(s2)

∥vecw(s1)∥ × ∥vecw(s2)∥
(4)

where vecw(s) is the vector of words in s, “·” de-
notes the dot product of two vectors, ∥vecw(s)∥
is the norm of a vector. Here, the weight of each
word w in a vector is computed using a heuristic
similar to tf-idf:

W (w) = tf(w) × log(
N

c(w)
+ 0.1) (5)

where tf(w) is the frequency of w in the given s,
c(w) is the number of times that w occurs in the
corpus, N = maxw c(w).

• Edit Distance Feature FED. Let ED(s1, s2)
be the edit distance at the word level between s1

and s2, we compute FED as follows:

FED(s1, s2) = 1 − ED(s1, s2)

max{cw(s1), cw(s2)}
(6)

3In FCOR, cw(s) of Equation (3) denotes the number of
characters in s.
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• Named Entity (NE) Similarity Feature FNE .
NE information is critical in paraphrase identifica-
tion (Shinyama et al., 2002). We therefore com-
pute the NE similarity between s1 and s2 and take
it as a feature. We employ a Chinese NE recog-
nition tool that can recognize person names, loca-
tions, organizations, and numerals. The NE simi-
larity is computed as:

FNE(s1, s2) =
cne(s1 ∩ s2) + 1

max{cne(s1), cne(s2)} + 1
(7)

where cne(s) denotes the number of NEs in s.
Equation (7) guarantees FNE = 1 if there are no
NEs in either s1 or s2.

• Pivot Fertility Feature FPF : FPF is a fea-
ture specially designed for paraphrase Q-Q and
T-T extraction, which are based on the pivot ap-
proach4. Specifically, we define fertility of a pivot
as the number of targets it corresponds to. Our ob-
servation indicates that the larger the fertility of a
pivot is, the more noisy the targets are. Hence we
define FPF as:

FPF (s1, s2) = max
p

1

f(p)
(8)

where s1 = q1, s2 = q2, p = t when classifying
Q-Q, while s1 = t1, s2 = t2, p = q when classi-
fying T-T. f(p) denotes the fertility of the pivot p.
The value is maximized over p if s1 and s2 can be
extracted with multiple pivots.

3.4 Generating Paraphrase Patterns
A key feature of our method is that the extracted
paraphrases are particularly suitable for generat-
ing paraphrase patterns, especially for the hot do-
mains that are frequently searched. For example,
there are quite a few paraphrases concerning the
therapy of various diseases, from which we can
easily induce patterns expressing the meaning of
“How to treat [X] disease”, such as “[X] 病 如
何 治疗”, “怎么 治疗 [X] 病”, and “[X] 病 的
治疗 方法”. Therefore, in this work, we try to
generate paraphrase patterns using the extracted
paraphrases.

In our preliminary experiments, we only induce
paraphrase patterns from paraphrases that contain

4FPF is not used in paraphrase Q-T validation.

SAME RELA DIFF
percent (%) 55.92 44.08 -

Table 3: Human labeling of candidate Q-T.

no more than 6 words. In addition, only one slot
is allowed in each pair of paraphrase patterns. Let
s1 and s2 be a pair of paraphrases extracted above.
If there exist words w ∈ s1 and v ∈ s2 that satisfy
(1) w = v, (2) w and v are not stop words, then
we can induce a pair of paraphrase patterns by re-
placing w in s1 and v in s2 with a slot “[X]”. It is
obvious that several pairs of paraphrase patterns
may be induced from one pair of paraphrases.

4 Experiments

We experiment with a query log that contains a
total of 284,316,659 queries. Statistics reveal that
170,315,807 queries (59.90%) lead to at least one
user click, each having 1.69 clicks on average. We
extract 287,129,850 raw Q-T pairs using the query
log, from which 4,448,347 pairs of candidate Q-
T are left after filtering as described in Section
3.2. Almost all queries and titles are written in
Chinese, though some of them contain English or
Japanese words. The preprocessing of candidate
Q-T includes Chinese word segmentation (WSeg)
and NE recognition (NER). Our WSeg tool is im-
plemented based on forward maximum matching,
while the NER tool is based on a NE dictionary
mined from the web.

4.1 Evaluation of Candidate Q-T

We first evaluate candidate Q-T without valida-
tion. To this end, we randomly sampled 5000
pairs of candidate Q-T and labeled them manu-
ally. Each pair is labeled into one of the 3 classes:
SAME - q and t have the same meaning; RELA - q
and t have related meanings; DIFF - q and t have
clearly different meanings. The labeling results
are listed in Table 3. We can see that no candidate
Q-T is in the DIFF class. This is not surprising,
since users are unlikely to click on web pages un-
related to their queries.

To gain a better insight into the data, we ana-
lyzed the subtle types of candidate Q-T in both
SAME and RELA classes. In detail, we sampled
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1000 pairs of candidate Q-T from the 5000 pairs
labeled above, in which 563 are in the SAME
class, while the other 437 are in the RELA class.
Our analysis suggests that candidate Q-T in the
SAME class can be divided into 4 subtle types:

• Trivial change (12.61%): changes of punctu-
ation or stop words, such as “考研 失败 怎
么办” and “考研失败怎么办？”.

• Word or phrase replacement (68.38%): re-
placements of synonymous words or phrases,
such as “咖啡 斑 的 治疗 多少 钱 (how
mach is ...)” and “咖啡 斑 的 治疗 费用
是多少 (what is the price of ...)”.

• Structure change (7.10%): changes of both
words and word orders, such as “减肥中水
果 可以 吃 什么 (what fruit can I eat on a
diet)” and “吃 什么 水果 可以 瘦身 (what
fruit can help loss weight)”.

• Others (11.90%): candidate Q-T that cannot
be classified into the 3 types above.

The above analysis reveals that more than two
thirds of candidate Q-T in the SAME class are in
the “word or phrase replacement” type, while the
ones with structure changes are slightly more than
7%. We believe this is mainly because queries
and titles are relatively short and their structures
are simple. Thus structure rewriting can hardly be
conducted. This distribution is in line with that
reported in (Zhao et al., 2008).

As for the RELA class, we find that 42.33% of
such candidate Q-T share a problem of named en-
tity mismatch, such as “美国 (US) 大型 水利
工程” and “中国 (China) 急需 大型 水利 工
程”. This indicates that the NE similarity feature
is necessary in paraphrase validation.

4.2 Evaluation of Paraphrase Q-T
The candidate Q-T extracted above are classified
with a SVM classifier5 under its default setting.
To evaluate the classifier, we run 5-fold cross val-
idation with the 5000 human annotated data, in
which we use 4000 for training and the rest 1000
for testing in each run. The evaluation criteria are

5We use libsvm-2.82 toolkit, which can be downloaded
from http://www.csie.ntu.edu.tw/ cjlin/libsvm/

precision (P), recall (R), and f-measure (F), which
are defined as follows:

P =
∥Sa ∩ Sm∥

∥Sa∥
(9)

R =
∥Sa ∩ Sm∥

∥Sm∥ (10)

F =
2 × P × R

P + R
(11)

where Sa is the set of paraphrases automatically
recognized with the classifier, Sm is the set of
paraphrases manually annotated. Precision, re-
call, and f-measure are averaged over 5 runs in
the 5-fold cross validation.

Figure 2 (a) shows the classification results
(dark bars). For comparison, we also show the
precision, recall6, and f-measure of the candidate
Q-T (light bars). As can be seen, the precision is
improved from 0.5592 to 0.7444 after classifica-
tion. F-measure is also evidently enhanced. This
result indicates that the classification-based para-
phrase validation is effective. We then use all of
the 5000 annotated data to train a classifier and
classify all the candidate Q-T. Results show that
2,762,291 out of 4,448,347 pairs of candidate Q-
T are classified as paraphrases.

4.3 Evaluation of Paraphrase Q-Q and T-T

From the paraphrase Q-T, we further extracted
934,758 pairs of candidate Q-Q and 438,954 pairs
of candidate T-T (without validation). We ran-
domly sampled 5000 from each for human an-
notation. The results show that the precisions of
candidate Q-Q and T-T are 0.4672 and 0.6860, re-
spectively. As can be seen, the precision of can-
didate Q-Q is much lower than that of candidate
T-T. Our analysis reveals that it is mainly because
candidate Q-Q are more noisy, since user queries
contain quite a lot of spelling mistakes and infor-
mal expressions.

The candidate Q-Q and T-T are also refined
based on classification. We first evaluate the clas-
sification performance using the 5000 human la-
beled data. The experimental setups for Q-Q and

6We assume all possible paraphrases are included in the
candidates, thus its recall is 100%.
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(a) Q-T classification
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(b) Q-Q classification
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(c) T-T classification
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Figure 2: Classification precision (P), recall (R), and f-measure (F).

T-T classification are the same as that of Q-T clas-
sification, in which we run 5-fold cross validation
with a SVM classifier using its default parameters.
Figure 2 (b) and (c) give the classification results
(dark bars) as well as the precision, recall, and f-
measure of the candidates (light bars).

We can see that the precision of Q-Q is signifi-
cantly enhanced from 0.4672 to 0.7345 after clas-
sification, which suggests that a substantial part
of errors and noise are removed. The increase of
f-measure demonstrates the effectiveness of clas-
sification despite the decrease of recall. Mean-
while, the quality of candidate T-T is not clearly
improved after classification. The reason should
be that the precision of candidate T-T is already
pretty high. We then use all 5000 human labeled
data to train a classifier for Q-Q and T-T respec-
tively and classify all candidate Q-Q and T-T. Re-
sults show that 390,920 pairs of paraphrase Q-Q
and 415,539 pairs of paraphrase T-T are extracted
after classification.

4.4 Evaluation of Paraphrase Patterns

Using the method introduced in Section 3.4, we
have generated 73,484 pairs of paraphrase pat-
terns that appear at least two times in the cor-
pus. We randomly selected 500 pairs and labeled
them manually. The results show that the preci-
sion is 78.4%. Two examples are shown in Ta-
ble 4, in which p1 and p2 are paraphrase patterns.
Some slot fillers are also listed below. We real-

p1 [X]文件怎么打开
p2 如何打开 [X]文件

(how to open [X] file)
slot 7z; ashx; aspx; bib; cda; cdfs; cmp;

cpi; csf; csv; cur; dat; dek...
p1 关于 [X]的诗词
p2 有关 [X]的诗歌

(poems about [X])
slot 草原 (prairies);长江 (Yangtze River);

泰山 (Mount Tai);乡愁 (nostalgia)...

Table 4: Examples of paraphrase patterns.

ize that the method currently used for inducing
paraphrase patterns is simple. Hence we will im-
prove the method in our following experiments.
Specifically, multiple slots will be allowed in a
pair of patterns. In addition, we will try to ap-
ply the alignment techniques in the generation of
paraphrase patterns, as Zhao et al. (2008) did.

4.5 Analysis

Feature Contribution. To investigate the contri-
butions of different features used in classification,
we tried different feature combinations for each of
our three classifiers. The results are shown in Ta-
ble 5, in which “+” means the feature has contri-
bution to the corresponding classifier. As can be
seen, the character overlap rate feature (FCOR),
cosine similarity feature (FCS), and NE similarity
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Feature Q-T Q-Q T-T
FF +
FLR +
FWOR

FCOR + + +
FCS + + +
FED +
FNE + + +
FPF +

Table 5: Feature contribution.

feature (FNE) are the most useful, which play im-
portant roles in all the three classifiers. The other
features are useful in some of the classifiers ex-
cept the word overlap rate feature (FWOR). The
classification results reported in prior sections are
all achieved with the optimal feature combination.

Analysis of the Paraphrases. We combine the
extracted paraphrase Q-T, Q-Q and T-T and get
a total of 3,560,257 pairs of unique paraphrases.
Statistics show that only 8380 pairs (0.24%) are
from more than one source, which indicates that
the intersection among the three sets is very small.
Further statistics show that the average length of
the queries and titles in the paraphrases is 6.69
(words).

To have a detailed analysis of the extracted
paraphrases, we randomly selected 1000 pairs and
manually labeled the precision, types, and do-
mains. It is found that more than 43% of the para-
phrases are paraphrase questions, in which how
(36%), what (19%), and yes/no (14%) questions
are the most common. In addition, we find that
the precision of paraphrase questions (84.26%)
is evidently higher than non-question paraphrases
(65.14%). Those paraphrase questions are useful
in question analysis and expansion in QA, which
can hardly be extracted from other kinds of cor-
pora.

As expected, the paraphrases we extract cover
a variety of domains. However, around 50% of
them are in the 7 most popular domains7, includ-
ing: (1) health and medicine, (2) documentary
download, (3) entertainment, (4) software, (5) ed-

7Note that pornographic queries have been filtered from
the query log beforehand.

ucation and study, (6) computer game, (7) econ-
omy and finance. This analysis reflects what web
users are most concerned about. These domains,
especially (4) and (6), are not well covered by the
parallel and comparable corpora previously used
for paraphrase extraction.

5 Conclusions and Future Directions

In this paper, we put forward a novel method that
extracts paraphrases from search engine query
logs. Our contribution is that we, for the first
time, propose to extract paraphrases from user
queries and the corresponding clicked document
titles. Specifically, three kinds of paraphrases
are extracted, which can be (1) a query and a
hit title, (2) two queries that hit the same title,
and (3) two titles hit by the same query. The
extracted paraphrases are refined based on clas-
sification. Using the proposed method, we ex-
tracted over 3.5 million pairs of paraphrases from
a query log of Baidu. Human evaluation results
show that the precision of the paraphrases is above
70%. The results also show that we can gener-
ate high-quality paraphrase patterns from the ex-
tracted paraphrases.

Our future research will be conducted along the
following directions. Firstly, we will use a much
larger query log for paraphrase extraction, so as to
enhance the coverage of paraphrases. Secondly,
we plan to have a deeper study of the transitivity
of paraphrasing. Simply speaking, we want to find
out whether we can extract ⟨s1, s3⟩ as paraphrases
given that ⟨s1, s2⟩ and ⟨s2, s3⟩ are paraphrases.
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Abstract

This paper proposes a method that lever-
ages multiple machine translation (MT)
engines for paraphrase generation (PG).
The method includes two stages. Firstly,
we use a multi-pivot approach to acquire
a set of candidate paraphrases for a source
sentence S. Then, we employ two kinds
of techniques, namely the selection-based
technique and the decoding-based tech-
nique, to produce a best paraphrase T for
S using the candidates acquired in the first
stage. Experimental results show that:
(1) The multi-pivot approach is effective
for obtaining plenty of valuable candi-
date paraphrases. (2) Both the selection-
based and decoding-based techniques can
make good use of the candidates and pro-
duce high-quality paraphrases. Moreover,
these two techniques are complementary.
(3) The proposed method outperforms a
state-of-the-art paraphrase generation ap-
proach.

1 Introduction

This paper addresses the problem of paraphrase
generation (PG), which seeks to generate para-
phrases for sentences. PG is important in many
natural language processing (NLP) applications.
For example, in machine translation (MT), a
sentence can be paraphrased so as to make it
more translatable (Zhang and Yamamoto, 2002;
Callison-Burch et al., 2006). In question answer-
ing (QA), a question can be paraphrased to im-
prove the coverage of answer extraction (Duboue
and Chu-Carroll, 2006; Riezler et al., 2007). In

natural language generation (NLG), paraphrasing
can help to increase the expressive power of the
NLG systems (Iordanskaja et al., 1991).

In this paper, we propose a novel PG method.
For an English sentence S, the method first ac-
quires a set of candidate paraphrases with a multi-
pivot approach, which uses MT engines to auto-
matically translate S into multiple pivot languages
and then translate them back into English. Fur-
thermore, the method employs two kinds of tech-
niques to produce a best paraphrase T for S us-
ing the candidates, i.e., the selection-based and
decoding-based techniques. The former selects
a best paraphrase from the candidates based on
Minimum Bayes Risk (MBR), while the latter
trains a MT model using the candidates and gen-
erates paraphrases with a MT decoder.

We evaluate our method on a set of 1182 En-
glish sentences. The results show that: (1) al-
though the candidate paraphrases acquired by MT
engines are noisy, they provide good raw ma-
terials for further paraphrase generation; (2) the
selection-based technique is effective, which re-
sults in the best performance; (3) the decoding-
based technique is promising, which can generate
paraphrases that are different from the candidates;
(4) both the selection-based and decoding-based
techniques outperform a state-of-the-art approach
SPG (Zhao et al., 2009).

2 Related Work

2.1 Methods for Paraphrase Generation

MT-based method is the mainstream method on
PG. It regards PG as a monolingual machine trans-
lation problem, i.e., “translating” a sentence S
into another sentence T in the same language.
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Quirk et al. (2004) first presented the MT-based
method. They trained a statistical MT (SMT)
model on a monolingual parallel corpus extracted
from comparable news articles and applied the
model to generate paraphrases. Their work shows
that SMT techniques can be extended to PG. How-
ever, its usefulness is limited by the scarcity of
monolingual parallel data.

To overcome the data sparseness problem, Zhao
et al. (2008a) improved the MT-based PG method
by training the paraphrase model using multi-
ple resources, including monolingual parallel cor-
pora, monolingual comparable corpora, bilingual
parallel corpora, etc. Their results show that bilin-
gual parallel corpora are the most useful among
the exploited resources. Zhao et al. (2009) further
improved the method by introducing a usability
sub-model into the paraphrase model so as to gen-
erate varied paraphrases for different applications.

The main disadvantage of the MT-based
method is that its performance heavily depends on
the fine-grained paraphrases, such as paraphrase
phrases and patterns, which provide paraphrase
options in decoding. Hence one has to first ex-
tract fine-grained paraphrases from various cor-
pora with different methods (Zhao et al., 2008a;
Zhao et al., 2009), which is difficult and time-
consuming.

In addition to the MT-based method, re-
searchers have also investigated other methods for
paraphrase generation, such as the pattern-based
methods (Barzilay and Lee, 2003; Pang et al.,
2003), thesaurus-based methods (Bolshakov and
Gelbukh, 2004; Kauchak and Barzilay, 2006),
and NLG-based methods (Kozlowski et al., 2003;
Power and Scott, 2005).

2.2 Pivot Approach for Paraphrasing

Bannard and Callison-Burch (2005) introduced
the pivot approach to extracting paraphrase
phrases from bilingual parallel corpora. Their ba-
sic assumption is that two English phrases aligned
with the same phrase in a foreign language (also
called a pivot language) are potential paraphrases.
Zhao et al. (2008b) extended the approach and
used it to extract paraphrase patterns. Both of the
above works have proved the effectiveness of the
pivot approach in paraphrase extraction.

Pivot approach can also be used in paraphrase
generation. It generates paraphrases by translating
sentences from a source language to one (single-
pivot) or more (multi-pivot) pivot languages and
then translating them back to the source language.
Duboue et al. (2006) first proposed the multi-
pivot approach for paraphrase generation, which
was specially designed for question expansion in
QA. In addition, Max (2009) presented a single-
pivot approach for generating sub-sentential para-
phrases. A clear difference between our method
and the above works is that we propose selection-
based and decoding-based techniques to gener-
ate high-quality paraphrases using the candidates
yielded from the pivot approach.

3 Multi-pivot Approach for Acquiring
Candidate Paraphrases

A single-pivot PG approach paraphrases a sen-
tence S by translating it into a pivot language
PL with a MT engine MT1 and then translat-
ing it back into the source language with MT2.
In this paper, a single-pivot PG system is repre-
sented as a triple (MT1, PL, MT2). A multi-
pivot PG system is made up of a set of single-pivot
systems with various pivot languages and MT en-
gines. Given m pivot languages and n MT en-
gines, we can build a multi-pivot PG system con-
sisting of N (N ≤ n ∗ m ∗ n) single-pivot ones,
where N = n ∗ m ∗ n iff all the n MT engines
can perform bidirectional translation between the
source and each pivot language.

In this work, we experiment with 6 pivot lan-
guages (Table 1) and 3 MT engines (Table 2) in
the multi-pivot approach. All the 3 MT engines
are off-the-shelf systems, in which Google and
Microsoft translators are SMT engines, while Sys-
tran translator is a rule-based MT engine. Each
MT engine can translate English to all the 6 pivot
languages and back to English. We thereby con-
struct a multi-pivot PG system consisting of 54
(3*6*3) single-pivot systems.

The advantages of the multi-pivot PG approach
lie in two aspects. First, it effectively makes use
of the vast bilingual data and translation rules un-
derlying the MT engines. Second, the approach is
simple, which just sends sentences to the online
MT engines and gets the translations back.
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Source Sentence he said there will be major cuts in the salaries of high-level civil servants .
(GG, G, MS) he said there are significant cuts in the salaries of high-level officials .
(GG, F , GG) he said there will be significant cuts in the salaries of top civil level .
(MS, C, MS) he said that there will be a major senior civil service pay cut .
(MS, F , ST ) he said there will be great cuts in the wages of the high level civils servant .
(ST , G, GG) he said that there are major cuts in the salaries of senior government officials .

Table 3: Examples of candidate paraphrases obtained using the multi-pivot approach.

1 French (F) 4 Italian (I)
2 German (G) 5 Portuguese (P)
3 Spanish (S) 6 Chinese (C)

Table 1: Pivot languages used in the approach.

1 Google Translate (GG)
(translate.google.com)

2 Microsoft Translator (MS)
(www.microsofttranslator.com)

3 Systran Online Translation (ST)
(www.systransoft.com)

Table 2: MT engines utilized in the approach.

4 Producing High-quality Paraphrases
using the Candidates

Table 3 shows some examples of candidate para-
phrases for a sentence. As can be seen, the can-
didates do provide some correct and useful para-
phrase substitutes (in bold) for the source sen-
tence. However, they also contain quite a few er-
rors (in italic) due to the limited translation qual-
ity of the MT engines. The problem is even
worse when the source sentences get longer and
more complicated. Therefore, we need to com-
bine the outputs of the multiple single-pivot PG
systems and produce high-quality paraphrases out
of them. To this end, we investigate two tech-
niques, namely, the selection-based and decoding-
based techniques.

4.1 Selection-based Technique
Given a source sentence S along with a set D of
candidate paraphrases {T1, T2, ..., Ti, ...TN}, the
goal of the selection-based technique is to select
the best paraphrase T̂i for S from D. The para-
phrase selection technique we propose is based on

Minimum Bayes Risk (MBR). In detail, the MBR
based technique first measures the quality of each
candidate paraphrase Ti ∈ D in terms of Bayes
risk (BR), and then selects the one with the min-
imum BR as the best paraphrase. In detail, given
S, a candidate Ti ∈ D, a reference paraphrase
T 1, and a loss function L(T, Ti) that measures the
quality of Ti relative to T , we define the Bayes
risk as follows:

BR(Ti) = EP (T,S)[L(T, Ti)], (1)

where the expectation is taken under the true dis-
tribution P (T, S) of the paraphrases. According
to (Bickel and Doksum, 1977), the candidate para-
phrase that minimizes the Bayes risk can be found
as follows:

T̂i = arg min
Ti∈D

∑

T∈T
L(T, Ti)P (T |S), (2)

where T represents the space of reference para-
phrases. In practice, however, the collection of
reference paraphrases is not available. We thus
construct a set D′ = D

∪{S} to approximate T 2.
In addition, we cannot estimate P (T |S) in Equa-
tion (2), either. Therefore, we make a simplifica-
tion by assigning a constant c to P (T |S) for each
T ∈ D′, which can then be removed:

T̂i = arg min
Ti∈D

∑

T∈D′
L(T, Ti). (3)

Equation (3) can be further rewritten using a gain
function G(T, Ti) instead of the loss function:

1Here we assume that we have the collection of all possi-
ble paraphrases of S, which are used as references.

2The source sentence S is included in D′ based on the
consideration that a sentence is allowed to keep unchanged
during paraphrasing.
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T̂i = arg max
Ti∈D

∑

T∈D′
G(T, Ti). (4)

We define the gain function based on BLEU:
G(T, Ti) = BLEU(T, Ti). BLEU is a
widely used metric in the automatic evaluation of
MT (Papineni et al., 2002). It measures the sim-
ilarity of two sentences by counting the overlap-
ping n-grams (n=1,2,3,4 in our experiments):

BLEU(T, Ti) = BP ·exp(

4∑

n=1

wn log pn(T, Ti)),

where pn(T, Ti) is the n-gram precision of Ti and
wn = 1/4. BP (≤ 1) is a brevity penalty that
penalizes Ti if it is shorter than T .

In summary, for each sentence S, the MBR
based technique selects a paraphrase that is the
most similar to all candidates and the source sen-
tence. The underlying assumption is that correct
paraphrase substitutes should be common among
the candidates, while errors committed by the
single-pivot PG systems should be all different.
We denote this approach as S-1 hereafter.

Approaches for comparison. In the experiments,
we also design another two paraphrase selection
approaches S-2 and S-3 for comparison with S-1.

S-2: S-2 selects the best single-pivot PG
system from all the 54 ones. The selection
is also based on MBR and BLEU. For each
single-pivot PG system, we sum up its gain
function values over a set of source sentences
(i.e.,

∑
S

∑
TS∈D′

S
G(TS , TSi)). Then we se-

lect the one with the maximum gain value as
the best single-pivot system. In our experi-
ments, the selected best single-pivot PG system is
(ST, P, GG), the candidate paraphrases acquired
by which are then returned as the best paraphrases
in S-2.

S-3: S-3 is a simple baseline, which just ran-
domly selects a paraphrase from the 54 candidates
for each source sentence S.

4.2 Decoding-based Technique
The selection-based technique introduced above
has an inherent limitation that it can only select
a paraphrase from the candidates. That is to say, it

major cuts high-level civil servants
significant cuts senior officials
major cuts* high-level officials
important cuts senior civil servants
big cuts
great cuts

Table 4: Extracted phrase pairs. (*This is called
a self-paraphrase of the source phrase, which
is generated when a phrase keeps unchanged in
some of the candidate paraphrases.)

can never produce a perfect paraphrase if all the
candidates have some tiny flaws. To solve this
problem, we propose the decoding-based tech-
nique, which trains a MT model using the can-
didate paraphrases of each source sentence S and
generates a new paraphrase T for S with a MT
decoder.

In this work, we implement the decoding-based
technique using Giza++ (Och and Ney, 2000) and
Moses (Hoang and Koehn, 2008), both of which
are commonly used SMT tools. For a sentence
S, we first construct a set of parallel sentences
by pairing S with each of its candidate para-
phrases: {(S,T1),(S,T2),...,(S,TN )} (N = 54).
We then run word alignment on the set using
Giza++ and extract aligned phrase pairs as de-
scribed in (Koehn, 2004). Here we only keep the
phrase pairs that are aligned ≥3 times on the set,
so as to filter errors brought by the noisy sentence
pairs. The extracted phrase pairs are stored in a
phrase table. Table 4 shows some extracted phrase
pairs.

Note that Giza++ is sensitive to the data size.
Hence it is interesting to examine if the alignment
can be improved by augmenting the parallel sen-
tence pairs. To this end, we have tried augmenting
the parallel set for each sentence S by pairing any
two candidate paraphrases. In this manner, C2

N

sentence pairs are augmented for each S. We con-
duct word alignment using the (N +C2

N ) sentence
pairs and extract aligned phrases from the original
N pairs. However, we have not found clear im-
provement after observing the results. Therefore,
we do not adopt the augmentation strategy in our
experiments.
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Using the extracted phrasal paraphrases, we
conduct decoding for the sentence S with Moses,
which is based on a log-linear model. The default
setting of Moses is used, except that the distortion
model for phrase reordering is turned off3. The
language model in Moses is trained using a 9 GB
English corpus. We denote the above approach as
D-1 in what follows.

Approach for comparison. The main advantage
of the decoding-based technique is that it allows
us to customize the paraphrases for different re-
quirements through tailoring the phrase table or
tuning the model parameters. As a case study,
this paper shows how to generate paraphrases with
varied paraphrase rates4.

D-2: The extracted phrasal paraphrases (in-
cluding self-paraphrases) are stored in a phrase ta-
ble, in which each phrase pair has 4 scores mea-
suring their alignment confidence (Koehn et al.,
2003). Our basic idea is to control the paraphrase
rate by tuning the scores of the self-paraphrases.
We thus extend D-1 to D-2, which assigns a
weight λ (λ > 0) to the scores of the self-
paraphrase pairs. Obviously, if we set λ < 1,
the self-paraphrases will be penalized and the de-
coder will prefer to generate a paraphrase with
more changes. If we set λ > 1, the decoder will
tend to generate a paraphrase that is more similar
to the source sentence. In our experiments, we set
λ = 0.1 in D-2.

5 Experimental Setup

Our test sentences are extracted from the paral-
lel reference translations of a Chinese-to-English
MT evaluation5, in which each Chinese sentence
c has 4 English reference translations, namely e1,
e2, e3, and e4. We use e1 as a test sentence to para-
phrase and e2, e3, e4 as human paraphrases of e1

for comparison with the automatically generated
paraphrases. We process the test set by manually
filtering ill-formed sentences, such as the ungram-
matical or incomplete ones. 1182 out of 1357

3We conduct monotone decoding as previous work
(Quirk et al., 2004; Zhao et al., 2008a, Zhao et al., 2009).

4The paraphrase rate reflects how different a paraphrase
is from the source sentence.

52008 NIST Open Machine Translation Evaluation: Chi-
nese to English Task.

Score Adequacy Fluency
5 All Flawless English
4 Most Good English
3 Much Non-native English
2 Little Disfluent English
1 None Incomprehensible

Table 5: Five point scale for human evaluation.

test sentences are retained after filtering. Statistics
show that about half of the test sentences are from
news and the other half are from essays. The aver-
age length of the test sentences is 34.12 (words).

Manual evaluation is used in this work. A para-
phrase T of a sentence S is manually scored based
on a five point scale, which measures both the “ad-
equacy” (i.e., how much of the meaning of S is
preserved in T ) and “fluency” of T (See Table 5).
The five point scale used here is similar to that in
the human evaluation of MT (Callison-Burch et
al., 2007). In MT, adequacy and fluency are eval-
uated separately. However, we find that there is a
high correlation between the two aspects, which
makes it difficult to separate them. Thus we com-
bine them in this paper.

We compare our method with a state-of-the-
art approach SPG6 (Zhao et al., 2009), which
is a statistical approach specially designed for
PG. The approach first collects a large volume of
fine-grained paraphrase resources, including para-
phrase phrases, patterns, and collocations, from
various corpora using different methods. Then it
generates paraphrases using these resources with
a statistical model7.

6 Experimental Results

We evaluate six approaches, i.e., S-1, S-2, S-3, D-
1, D-2 and SPG, in the experiments. Each ap-
proach generates a 1-best paraphrase for a test
sentence S. We randomize the order of the 6 para-
phrases of each S to avoid bias of the raters.

6SPG: Statistical Paraphrase Generation.
7We ran SPG under the setting of baseline-2 as described

in (Zhao et al., 2009).
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Figure 1: Evaluation results of the approaches.

6.1 Human Evaluation Results

We have 6 raters in the evaluation, all of whom
are postgraduate students. In particular, 3 raters
major in English, while the other 3 major in com-
puter science. Each rater scores the paraphrases
of 1/6 test sentences, whose results are then com-
bined to form the final scoring result. The av-
erage scores of the six approaches are shown in
Figure 1. We can find that among the selection-
based approaches, the performance of S-3 is the
worst, which indicates that randomly selecting a
paraphrase from the candidates works badly. S-
2 performs much better than S-3, suggesting that
the quality of the paraphrases acquired with the
best single-pivot PG system are much higher than
the randomly selected ones. S-1 performs the best
in all the six approaches, which demonstrates the
effectiveness of the MBR-based selection tech-
nique. Additionally, the fact that S-1 evidently
outperforms S-2 suggests that it is necessary to ex-
tend a single-pivot approach to a multi-pivot one.

To get a deeper insight of S-1, we randomly
sample 100 test sentences and manually score all
of their candidates. We find that S-1 successfully
picks out a paraphrase with the highest score for
72 test sentences. We further analyze the remain-
ing 28 sentences for which S-1 fails and find that
the failures are mainly due to the BLEU-based
gain function. For example, S-1 sometimes se-
lects paraphrases that have correct phrases but in-
correct phrase orders, since BLEU is weak in eval-
uating phrase orders and sentence structures. In
the next step we shall improve the gain function
by investigating other features besides BLEU.

In the decoding-based approaches, D-1 ranks
the second in the six approaches only behind S-1.
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Figure 2: Evaluation results from each rater.

We will further improve D-1 in the future rather
than simply use Moses in decoding with the de-
fault setting. However, the value of D-1 lies in
that it enables us to break down the candidates
and generate new paraphrases flexibly. The per-
formance decreases when we extend D-1 to D-2
to achieve a larger paraphrase rate. This is mainly
because more errors are brought in when more
parts of a sentence are paraphrased.

We can also find from Figure 1 that S-1, S-2,
and D-1 all get higher scores than SPG, which
shows that our method outperforms this state-of-
the-art approach. This is more important if we
consider that our method is lightweight, which
makes no effort to collect fine-grained paraphrase
resources beforehand. After observing the results,
we believe that the outperformance of our method
can be mainly ascribed to the selection-based and
decoding-based techniques, since we avoid many
errors by voting among the candidates. For in-
stance, an ambiguous phrase may be incorrectly
paraphrased by some of the single-pivot PG sys-
tems or the SPG approach. However, our method
may obtain the correct paraphrase through statis-
tics over all candidates and selecting the most
credible one.

The human evaluation of paraphrases is subjec-
tive. Hence it is necessary to examine the coher-
ence among the raters. The scoring results from
the six raters are depicted in Figure 2. As it can be
seen, they show similar trends though the raters
have different degrees of strictness.
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Figure 3: Paraphrase rates of the approaches.

6.2 Paraphrase Rate
Human evaluation assesses the quality of para-
phrases. However, the paraphrase rates cannot be
reflected. A paraphrase that is totally transformed
from the source sentence and another that is al-
most unchanged may get the same score. There-
fore, we propose two strategies, i.e., PR1 and PR2,
to compute the paraphrase rate:

PR1(T ) = 1 − OL(S, T )

L(S)
; PR2(T ) =

ED(S, T )

L(S)
.

Here, PR1 is defined based on word overlapping
rate, in which OL(S, T ) denotes the number of
overlapping words between a paraphrase T and its
source sentence S, L(S) denotes the number of
words in S. PR2 is defined based on edit distance,
in which ED(S, T ) denotes the edit distance be-
tween T and S. Obviously, PR1 only measures
the percentage of words that are changed from
S to T , whereas PR2 further takes word order
changes into consideration. It should be noted that
PR1 and PR2 not only count the correct changes
between S and T , but also count the incorrect
ones. We compute the paraphrase rate for each
of the six approaches by averaging the paraphrase
rates over the whole test set. The results are shown
in the left part of Figure 3.

On the whole, the paraphrase rates of the ap-
proaches are not high. In particular, we can see
that the paraphrase rate of D-2 is clearly higher
than D-1, which is in line with our intention of de-
signing D-2. We can also see that the paraphrase
rate of S-3 is the highest among the approaches.
We find it is mainly because the paraphrases gen-

erated with S-3 contain quite a lot of errors, which
contribute most of the changes.

7 Analysis

7.1 Effectiveness of the Proposed Method

Our analysis starts from the candidate paraphrases
acquired with the multi-pivot approach. Actu-
ally, the results of S-3 reflect the average qual-
ity of the candidate paraphrases. A score of 2.78
(See Figure 1) indicates that the candidates are
unacceptable according to the human evaluation
metrics. This is in line with our expectation that
the automatically acquired paraphrases through a
two-way translation are noisy. However, the re-
sults of S-1 and D-1 demonstrate that, using the
selection-based and decoding-based techniques,
we can produce paraphrases of good quality. Es-
pecially, S-1 gets a score of nearly 4, which sug-
gests that the paraphrases are pretty good accord-
ing to our metrics. Moreover, our method out-
performs SPG built on pre-extracted fine-grained
paraphrases. It shows that our method makes good
use of the paraphrase knowledge from the large
volume of bilingual data underlying the multiple
MT engines.

7.2 How to Choose Pivot Languages and MT
Engines in the Multi-pivot Approach

In our experiments, besides the six pivot lan-
guages used in the multi-pivot system, we have
also tried another five pivot languages, including
Arabic, Japanese, Korean, Russian, and Dutch.
They are finally abandoned since we find that they
perform badly. Our experience on choosing pivot
languages is that: (1) a pivot language should be
a language whose translation quality can be well
guaranteed by the MT engines; (2) it is better to
choose a pivot language similar to the source lan-
guage (e.g., French - English), which is easier to
translate; (3) the translation quality of a pivot lan-
guage should not vary a lot among the MT en-
gines. On the other hand, it is better to choose
MT engines built on diverse models and corpora,
which can provide different paraphrase options.
We plan to employ a syntax-based MT engine in
our further experiments besides the currently used
phrase-based SMT and rule-based MT engines.
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S he said there will be major cuts in the salaries of high-level civil servants .
S-1 he said that there will be significant cuts in the salaries of senior officials .
S-2 he said there will be major cuts in salaries of civil servants high level .
S-3 he said that there will be significant cuts in the salaries of senior officials .
D-1 he said , there will be significant cuts in salaries of senior civil servants .
D-2 he said , there will be significant cuts in salaries of senior officials .
SPG he said that there will be the main cuts in the wages of high-level civil servants .
HP1 he said there will be a big salary cut for high-level government employees .
HP2 he said salaries of senior public servants would be slashed .
HP3 he claimed to implement huge salary cut to senior civil servants .

Table 6: Comparing the automatically generated paraphrases with the human paraphrases.

7.3 Comparing the Selection-based and
Decoding-based Techniques

It is necessary to compare the paraphrases gener-
ated via the selection-based and decoding-based
techniques. As stated above, the selection-based
technique can only select a paraphrase from the
candidates, while the decoding-based technique
can generate a paraphrase different from all can-
didates. In our experiments, we find that for
about 90% test sentences, the paraphrases gener-
ated by the decoding-based approach D-1 are out-
side the candidates. In particular, we compare the
paraphrases generated by S-1 and D-1 and find
that, for about 40% test sentences, S-1 gets higher
scores than D-1, while for another 21% test sen-
tences, D-1 gets higher scores than S-18. This
indicates that the selection-based and decoding-
based techniques are complementary. In addition,
we find examples in which the decoding-based
technique can generate a perfect paraphrase for
the source sentence, even if all the candidate para-
phrases have obvious errors. This also shows that
the decoding-based technique is promising.

7.4 Comparing Automatically Generated
Paraphrases with Human Paraphrases

We also analyze the characteristics of the gener-
ated paraphrases and compare them with the hu-
man paraphrases (i.e., the other 3 reference trans-
lations in the MT evaluation, see Section 5, which
are denoted as HP1, HP2, and HP3). We find that,
compared with the automatically generated para-
phrases, the human paraphrases are more com-

8For the rest 39%, S-1 and D-1 get identical scores.

plicated, which involve not only phrase replace-
ments, but also structure reformulations and even
inferences. Their paraphrase rates are also much
higher, which can be seen in the right part of Fig-
ure 3. We show the automatic and human para-
phrases for the example sentence of this paper in
Table 6. To narrow the gap between the automatic
and human paraphrases, it is necessary to learn
structural paraphrase knowledge from the candi-
dates in the future work.

8 Conclusions and Future Work

We put forward an effective method for para-
phrase generation, which has the following con-
tributions. First, it acquires a rich fund of para-
phrase knowledge through the use of multiple MT
engines and pivot languages. Second, it presents
a MBR-based technique that effectively selects
high-quality paraphrases from the noisy candi-
dates. Third, it proposes a decoding-based tech-
nique, which can generate paraphrases that are
different from the candidates. Experimental re-
sults show that the proposed method outperforms
a state-of-the-art approach SPG.

In the future work, we plan to improve the
selection-based and decoding-based techniques.
We will try some standard system combination
strategies, like confusion networks and consensus
decoding. In addition, we will refine our evalu-
ation metrics. In the current experiments, para-
phrase correctness (adequacy and fluency) and
paraphrase rate are evaluated separately, which
seem to be incompatible. We plan to combine
them together and propose a uniform metric.
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Abstract 

Ambiguity of entity mentions and con-
cept references is a challenge to mining 
text beyond surface-level keywords. We 
describe an effective method of disambi-
guating surface forms and resolving them 
to Wikipedia entities and concepts. Our 
method employs an extensive set of fea-
tures mined from Wikipedia and other 
large data sources, and combines the fea-
tures using a machine learning approach 
with automatically generated training da-
ta. Based on a manually labeled evalua-
tion set containing over 1000 news ar-
ticles, our resolution model has 85% pre-
cision and 87.8% recall. The performance 
is significantly better than three baselines 
based on traditional context similarities 
or sense commonness measurements. Our 
method can be applied to other languages 
and scales well to new entities and con-
cepts. 

1 Introduction 

Ambiguity in natural language is prevalent and, 
as such, it can be a difficult challenge for infor-
mation retrieval systems and other text mining 
applications. For example, a search for “Ford” in 
Yahoo! News retrieves about 40 thousand ar-
ticles containing Ford referring to a company 
(Ford Motors), an athlete (Tommy Ford), a place 
(Ford City), etc. Due to reference ambiguity, 
even if we knew the user was only interested in 
the company, they would still have to contend 
with articles referring to the other concepts as 
well. 

In this paper we focus on the problem of re-
solving references of named-entities and con-
cepts in natural language through their textual 
surface forms. Specifically, we present a method 

of resolving surface forms in general text docu-
ments to Wikipedia entries. The tasks of resolu-
tion and disambiguation are nearly identical; we 
make the distinction that resolution specifically 
applies when a known set of referent concepts 
are given a priori. Our approach differs from oth-
ers in multiple aspects including the following.  

1) We employ a rich set of disambiguation 
features leveraging mining results from large-
scale data sources. We calculate context-
sensitive features by extensively mining the cat-
egories, links and contents of the entire Wikipe-
dia corpus. Additionally we make use of context-
independent data mined from various data 
sources including Web user-behavioral data and 
Wikipedia. Our features also capture the one-to-
one relationship between a surface form and its 
referent.  

2) We use machine learning methods to train 
resolution models with a large automatically la-
beled training set. Both ranking-based and classi-
fication-based resolution approaches are ex-
plored.  

3) Our method disambiguates both entities and 
word senses. It scales well to new entities and 
concepts, and it can be easily applied to other 
languages.  

We propose an extensive set of metrics to eva-
luate not only overall resolution performance but 
also out-of-Wikipedia prediction. Our systems 
for English language are evaluated using real-
world test sets and compared with a number of 
baselines. Evaluation results show that our sys-
tems consistently and significantly outperform 
others across all test sets. 

The paper is organized as follows. We first de-
scribe related research in Section 2, followed by 
an introduction of Wikipedia in Section 3. We 
then introduce our learning method in Section 4 
and our features in Section 5. We show our expe-
rimental results in Section 6, and finally close 
with a discussion of future work. 
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2 Related Work 

Named entity disambiguation research can be 
divided into two categories: some works (Bagga 
and Baldwin, 1998; Mann and Yarowsky, 2003;  
Pedersen et al., 2005; Fleischman and Hovy, 
2004; Ravin and Kazi, 1999) aim to cluster am-
biguous surface forms to different groups, with 
each representing a unique entity; others (Cucer-
zan, 2007; Bunescu and Paşca, 2006; Han and 
Zhao, 2009; Milne and Witten, 2008a; Milne and 
Witten, 2008b) resolve a surface form to an enti-
ty or concept extracted from existing knowledge 
bases. Our work falls into the second category. 

Looking specifically at resolution, Bunescu 
and Pasca (2006) built a taxonomy SVM kernel 
to enrich a surface form’s representation with 
words from Wikipedia articles in the same cate-
gory. Cucerzan (2007) employed context vectors 
consisting of phrases and categories extracted 
from Wikipedia. The system also attempted to 
disambiguate all surface forms in a context si-
multaneously, with the constraint that their re-
solved entities should be globally consistent on 
the category level as much as possible. Milne and 
Witten (2008a, 2008b) proposed to use Wikipe-
dia’s link structure to capture the relatedness 
between Wikipedia entities so that a surface form 
is resolved to an entity based on its relatedness to 
the surface form’s surrounding entities. Besides 
relatedness, they also define a commonness fea-
ture that captures how common it is that a sur-
face form links to a particular entity in general. 
Han and Zhao (2009) defined a novel alignment 
strategy to calculate similarity between surface 
forms based on semantic relatedness in the con-
text.  

Milne and Witten’s work is most related to 
what we propose here in that we also employ 
features similar to their relatedness and com-
monness features. However, we add to this a 
much richer set of features which are extracted 
from Web-scale data sources beyond Wikipedia, 
and we develop a machine learning approach to 
automatically blend our features using complete-
ly automatically generated training data. 

3 Wikipedia 

Wikipedia has more than 200 language editions, 
and the English edition has more than 3 million 
articles as of March 2009. Newsworthy events 

are often added to Wikipedia within days of oc-
currence; Wikipedia has bi-weekly snapshots 
available for download.  

Each article in Wikipedia is uniquely identi-
fied by its title which is usually the most com-
mon surface form of an entity or concept. Each 
article includes body text, outgoing links and 
categories. Here is a sample sentence in the ar-
ticle titled “Aristotle” in wikitext format. “To-
gether with Plato and [[Socrates]] (Plato's 
teacher), Aristotle is one of the most important 
founding figures in [[Western philosophy]].” 
Near the end of the article, there are category 
links such as “[[Category:Ancient Greek mathe-
maticians]]”. The double brackets annotate out-
going links to other Wikipedia articles with the 
specified titles. The category names are created 
by authors. Articles and category names have 
many-to-many relationships. 

In addition to normal articles, Wikipedia also 
has special types of articles such as redirect ar-
ticles and disambiguation articles. A redirect ar-
ticle’s title is an alternative surface form for a 
Wikipedia entry. A disambiguation article lists 
links to similarly named articles, and usually its 
title is a commonly used surface form for mul-
tiple entities and concepts.  

4 Method of Learning 

Our goal is to resolve surface forms to entities or 
concepts described in Wikipedia. To this end, we 
first need a recognizer to detect surface forms to 
be resolved. Then we need a resolver to map a 
surface form to the most probable entry in Wiki-
pedia (or to out-of-wiki) based on the context. 

Recognizer: We first create a set of Wikipedia 
(article) entries E = {e1, e2, …} to which we want 
to resolve surface forms. Each entry’s surface 
forms are mined from multiple data sources. 
Then we use simple string match to recognize 
surface forms from text documents.  

Among all Wikipedia entries, we exclude 
those with low importance. In our experiments, 
we removed the entries that would not interest 
general Web users, such as stop words and punc-
tuations. Second, we collect surface forms for 
entries in E using Wikipedia and Web search 
query click logs based on the following assump-
tions:  
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• Each Wikipedia article title is a surface form 
for the entry. Redirect titles are taken as alter-
native surface forms for the target entry.  

• The anchor text of a link from one article to 
another is taken as an alternative surface form 
for the linked-to entry.  

• Web search engine queries resulting in user 
clicks on a Wikipedia article are taken as alter-
native surface forms for the entry. 
As a result, we get a number of surface forms 

for each entry ei. If we let sij denote the j-th sur-
face form for entry i, then we can represent our 
entry dictionary as EntSfDict = {<e1, (s11, s12, 
…)>, <e2, (s21, s22, …)>, …}.  

Resolver: We first build a labeled training set 
automatically, and then use supervised learning 
methods to learn models to resolve among Wiki-
pedia entries. In the rest of this section we de-
scribe the resolver in details. 

4.1 Automatically Labeled Data 

To learn accurate models, supervised learning 
methods require training data with both large 
quantity and high quality, which often takes lots 
of human labeling effort. However, in Wikipedia, 
links provide a supervised mapping from surface 
forms to article entries. We use these links to 
automatically generate training data. If a link's 
anchor text is a surface form in EntSfDict, we 
extract the anchor text as surface form s and the 
link's destination article as Wikipedia entry e, 
then add the pair (s, e) with a positive judgment 
to our labeled example set. Continuing, we use 
EntSfDict to find other Wikipedia entries for 
which s is a surface form and create negative 
examples for these and add them to our labeled 
example set. If e does not exist in EntSfDict (for 
example, if the link points to a Wikipedia article 
about a stop word), then a negative training ex-
ample is created for every Wikipedia entry to 
which s may resolve. We use oow (out-of-wiki) 
to denote this case. 

Instead of article level coreference resolution, 
we only match partial names with full names 
based on the observation that surface forms for 
named entities are usually capitalized word se-
quences in English language and a named entity 
is often mentioned by a long surface form fol-
lowed by mentions of short forms in the same 
article. For each pair (s, e) in the labeled example 
set, if s is a partial name of a full name s’ occur-

ring earlier in the same document, we replace (s, 
e) with (s’, e) in the labeled example set.  

Using this methodology we created 2.4 million 
labeled examples from only 1% of English Wiki-
pedia articles. The abundance of data made it 
possible for us to experiment on the impact of 
training set size on model accuracy.  

4.2 Learning Algorithms 

In our experiments we explored both Gradient 
Boosted Decision Trees (GBDT) and Gradient 
Boosted Ranking (GBRank) to learn resolution 
models. They both can easily combine features 
of different scale and with missing values. Other 
supervised learning methods are to be explored 
in the future.  

GBDT: We use the stochastic variant of 
GBDTs (Friedman, 2001) to learn a binary logis-
tic regression model with the judgments as the 
target. GBDTs compute a function approxima-
tion by performing a numerical optimization in 
the function space. It is done in multiple stages, 
with each stage modeling residuals from the 
model of the last stage using a small decision 
tree. A brief summary is given in Algorithm 1. In 
the stochastic version of GBDT, one sub-samples 
the training data instead of using the entire train-
ing set to compute the loss function. 
Algorithm 1 GBDTs 
Input: training data N

iii yx 1)},{( =
 , loss function 

L[y, f(x)] , the number of nodes for each tree J 
, the number of trees M . 
1: Initialize f(x)=f0 
2: For m = 1 to M 
2.1:   For i = 1 to N, compute the negative 

gradient by taking the derivative of the 
loss with respect to f(x) and substitute 
with 

iy and )(1
i

m
i xf − . 

2.2:    Fit a J-node regression tree to the 
components of the negative gradient. 

2.3:   Find the within-node updates m
ja  for j 

= 1 to J by performing J univariate op-
timizations of the node contributions to 
the estimated loss. 

2.4:   Do the update m
ji

m
ii

m
i arxfxf ×+= − )()( 1 , 

where j is the node that xi belongs to, r 
is learning rate. 

3: End for 
4: Return fM 
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In our setting, the loss function is a negative 
binomial log-likelihood, xi is the feature vector 
for a surface-form and Wikipedia-entry pair (si, 
ei), and yi is +1 for positive judgments and -1 is 
for negative judgments. 

GBRank: From a given surface form’s judg-
ments we can infer that the correct Wikipedia 
entry is preferred over other entries. This allows 
us to derive pair-wise preference judgments from 
absolute judgments and train a model to rank all 
the Wikipedia candidate entries for each surface 
form. Let },...,1),()(|),{( '' NixlxlxxS iiii =≥=  be the set of 
preference judgments, where xi and xi' are the 
feature vectors for two pairs of surface-forms and 
Wikipedia-entry, l(xi) and l(xi') are their absolute 
judgments respectively. GBRank (Zheng et al., 
2007) tries to learn a function h such that 

)()( '
ii xhxh ≥ for Sxx ii ∈),( ' . A sketch of the algorithm 

is given in Algorithm 2. 
Algorithm 2 GBRank 
1: Initialize h=h0 
2: For k=1 to K 
2.1:   Use hk-1 as an approximation of h and 

compute 
})()(|),{( '

11
' τ+≥∈= −−

+
ikikii xhxhSxxS

})()(|),{( '
11

' τ+<∈= −−
−

ikikii xhxhSxxS  
where ))()(( '

ii xlxl −=ατ  
2.2:   Fit a regression function gk using 

GBDT and the incorrectly predicted 
examples 

}),(|))(,(),)(,{( '
1

''
1

−
−− ∈−+ Sxxxhxxhx iiikiiki ττ  

2.3:   Do the update 
)1/())()(()( 1 ++= − kxgxkhxh kkk η , where η  is  

learning rate. 
3: End for 
4: Return hK 

We use a tuning set independent from the 
training set to select the optimal parameters for 
GBDT and GBRank. This includes the number 
of trees M, the number of nodes J, the learning 
rate r, and the sampling rate for GBDT; and for 
GBRank we select  K, α and η.  

The feature importance measurement given by 
GBDT and GBRank is computed by keeping 
track of the reduction in the loss function at each 
feature variable split and then computing the to-
tal reduction of loss along each explanatory fea-
ture variable. We use it to analyze feature effec-
tiveness. 

4.3 Prediction 

After applying a resolution model on the given 
test data, we obtain a score for each surface-form 
and Wikipedia-entry pair (s, e). Among all the 
pairs containing s, we find the pair with the high-
est score, denoted by (s, e~ ). 

It’s very common that a surface form refers to 
an entity or concept not defined in Wikipedia. So 
it’s important to correctly predict whether the 
given surface form cannot be mapped to any Wi-
kipedia entry in EntSfDict. 

We apply a threshold to the scores from reso-
lution models. If the score for (s, e~ ) is lower than 
the threshold, then the prediction is oow (see 
Section 4.1), otherwise e~  is predicted to be the 
entry referred by s. We select thresholds based 
on F1 (see Section 6.2) on a tuning set that is 
independent from our training set and test set. 

5 Features 

For each surface-form and Wikipedia-entry pair 
(s, e), we create a feature vector including fea-
tures capturing the context surrounding s and 
features independent of the context. They are 
context-dependent and context-independent fea-
tures respectively. Various data sources are 
mined to extract these features, including Wiki-
pedia articles, Web search query-click logs, and 
Web-user browsing logs. In addition, (s, e) is 
compared to all pairs containing s based on 
above features and the derived features are called 
differentiation features.  

5.1 Context-dependent Features 

These features measure whether the given sur-
face form s resolving to the given Wikipedia en-
try e would make the given document more co-
herent. They are based on 1) the vector represen-
tation of e, and 2) the vector representation of the 
context of s in a document d. 

Representation of e: By thoroughly mining 
Wikipedia and other large data sources we ex-
tract contextual clues for each Wikipedia entry 
e and formulate its representation in the follow-
ing ways. 

1) Background representation. The overall 
background description of e is given in the cor-
responding Wikipedia article, denoted as Ae. Na-
turally, a bag of terms and surface forms in Ae 
can represent e. So we represent e by a back-
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ground word vector Ebw and a background sur-
face form vector Ebs, in which each element is 
the occurrence count of a word or a surface form 
in Ae’s first paragraph. 

2) Co-occurrence representation. The terms 
and surface forms frequently co-occurring with e 
capture its contextual characteristics. We first 
identify all the Wikipedia articles linking to Ae. 
Then, for each link pointing to Ae we extract the 
surrounding words and surface forms within a 
window centered on the anchor text. The window 
size is set to 10 words in our experiment. Finally, 
we select the words and surface forms with the 
top co-occurrence frequency, and represent e by 
a co-occurring word vector Ecw and a co-
occurring surface form vector Ecs, in which each 
element is the co-occurrence frequency of a se-
lected word or surface form.  

3) Relatedness representation. We analyzed 
the relatedness between Wikipedia entries from 
different data sources using various measure-
ments, and we computed over 20 types of rela-
tedness scores in our experiments. In the follow-
ing we discuss three types as examples. The first 
type is computed based on the overlap between 
two Wikipedia entries’ categories. The second 
type is mined from Wikipedia inter-article links. 
(In our experiments, two Wikipedia entries are 
considered to be related if the two articles are 
mutually linked to each other or co-cited by 
many Wikipedia articles.) The third type is 
mined from Web-user browsing data based on 
the assumption that two Wikipedia articles co-
occurring in the same browsing session are re-
lated. We used approximately one year of Yahoo! 
user data in our experiments. A number of differ-
ent metrics are used to measure the relatedness. 
For example, we apply the algorithm of Google 
distance (Milne and Witten, 2008b) on Wikipe-
dia links to calculate the Wikipedia link-based 
relatedness, and use mutual information for the 
browsing-session-based relatedness. In summary, 
we represent e by a related entry vector Er for 
each type of relatedness, in which each element 
is the relatedness score between e and a related 
entry. 

Representation of s: We represent a surface 
form’s context as a vector, then calculate a con-
text-dependent feature for a pair <s,e> by a simi-
larity function Sim from two vectors. Here are 
examples of context representation. 

1) s is represented by a word vector Sw and a 
surface form vector Ss, in which each element is 
the occurrence count of a word or a surface form 
surrounding s. We calculate each vector’s simi-
larity with the background and co-occurrence 
representation of e, and it results in Sim(Sw, Ebw) , 
Sim(Sw, Ecw) , Sim(Ss, Ebs) and Sim(Ss, Ecs) . 

2) s is represented by a Wikipedia entry vector 
Se, in which each element is a Wikipedia entry to 
which a surrounding surface form s could re-
solve. We calculate its similarity with the rela-
tedness representation of e, and it results in 
Sim(Se, Er). 

In the above description, similarity is calcu-
lated by dot product or in a summation-of-
maximum fashion. In our experiments we ex-
tracted surrounding words and surface forms for 
s from the whole document or from the text win-
dow of 55 tokens centered on s, which resulted in 
2 sets of features. We created around 50 context-
dependent features in total. 

5.2 Context-independent Features  

These features are extracted from data beyond 
the document containing s. Here are examples. 
• During the process of building the dictionary 

EntSfDict as described in Section 4, we count 
how often s maps to e and estimate the proba-
bility of s mapping to e for each data source. 
These are the commonness features. 

• The number of Wikipedia entries that s could 
map to is a feature about the ambiguity of s. 

• The string similarity between s and the title of 
Ae is used as a feature. In our experiments 
string similarity was based on word overlap. 

5.3 Differentiation Features 

Among all surface-form and Wikipedia-entry 
pairs that contain s, at most one pair gets the pos-
itive judgment. Based on this observation we 
created differentiation features to represent how 
(s, e) is compared to other pairs for s.  They are 
derived from the context-dependent and context-
independent features described above. For exam-
ple, we compute the difference between the 
string similarity for (s, e) and the maximum 
string similarity for all pairs containing s. The 
derived feature value would be zero if (s, e) has 
larger string similarity than other pairs contain-
ing s. 
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6 Experimental Results 

In our experiments we used the Wikipedia snap-
shot for March 6th, 2009.  Our dictionary 
EntSfDict contains 3.5 million Wikipedia entries 
and 6.5 million surface forms. 

A training set was created from randomly se-
lected Wikipedia articles using the process de-
scribed in Section 4.1. We varied the number of 
Wikipedia articles from 500 to 40,000, but the 
performance did not increase much after 5000. 
The experimental results reported in this paper 
are based on the training set generated from 5000 
articles. It contains around 1.4 million training 
examples. There are approximately 300,000 sur-
face forms, out of which 28,000 are the oow case.  

Around 400 features were created in total, and 
200 of them were selected by GBDT and 
GBRank to be used in our resolution models. 

6.1 Evaluation Datasets 

Three datasets from different data sources are 
used in evaluation. 

1) Wikipedia hold-out set. Using the same 
process for generating training data and exclud-
ing the surface forms appearing in the training 
data, we built the hold-out set from approximate-
ly 15,000 Wikipedia articles, containing around 
600,000 labeled instances. There are 400,000 
surface forms, out of which 46,000 do not re-
solve to any Wikipedia entry. 

2) MSNBC News test set. This entity disam-
biguation data set was introduced by Cucerzan 
(2007). It contains 200 news articles collected 
from ten MSNBC news categories as of January 
2, 2007. Surface forms were manually identified 
and mapped to Wikipedia entities. The data set 
contains 756 surface forms. Only 589 of them are 
contained in our dictionary EntSfDict, mainly 
because EntSfDict excludes surface forms of out-
of-Wikipedia entities and concepts. Since the 
evaluation task is focused on resolution perfor-
mance rather than recognition, we exclude the 
missing surface forms from the labeled example 
set. The final dataset contains 4,151 labeled in-
stances. There are 589 surface forms and 40 of 
them do not resolve to any Wikipedia entry. 

3) Yahoo! News set. One limitation of the 
MSNBC test set is the small size. We built a 
much larger data set by randomly sampling 
around 1,000 news articles from Yahoo! News 
over 2008 and had them manually annotated. The 

experts first identified person, location and or-
ganization names, then mapped each name to a 
Wikipedia article if the article is about the entity 
referred to by the name. We didn’t include more 
general concepts in this data set to make the ma-
nual effort easier. This data set contains around 
100,000 labeled instances. The data set includes 
15,387 surface forms and 3,532 of them cannot 
be resolved to any Wikipedia entity. We random-
ly split the data set to 2 parts of equal size. One 
part is used to tune parameters of GBDT and 
GBRank and select thresholds based on F1 value. 
The evaluation results presented in this paper is 
based on the remaining part of the Yahoo! News 
set. 

6.2 Metrics 

The possible outcomes from comparing a resolu-
tion system’s prediction with ground truth can be 
categorized into the following types. 
• True Positive (TP), the predicted e was correct-

ly referred to by s.   
• True Negative (TN), s was correctly predicted 

as resolving to oow.  
• Mismatch (MM), the predicted e was not cor-

rectly referred to by s and should have been e’ 
from EntSfDict. 

• False Positive (FP), the predicted e was not 
correctly referred to by s and should have been 
oow. 

• False Negative (FN), the predicted oow is not 
correct and should have been e’ from 
EntSfDict. 
Similar to the widely used metrics for classifi-

cation systems, we use following metrics to eva-
luate disambiguation performance.  

MMFPTP
TPprecision
++

=                  
MMFNTP

TPrecall
++

=  

recallprecision
recallprecisionF

+
××

=
21   

MMFNTNFPTP
TNTPaccuracy

++++
+

=  

In the Yahoo! News test set, 23.5% of the sur-
face forms do not resolve to any Wikipedia en-
tries, and in the other two test sets the percentag-
es of oow are between 10% and 20%. This de-
monstrates it is necessary in real-world applica-
tions to explicitly measure oow prediction. We 
propose following metrics. 

FNTN
TNoowprecision
+

=_                  
FPTN

TNoowrecall
+

=_  

oowrecalloowprecision
oowrecalloowprecisionoowF

__
__2_1

+
××

=
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6.3 Evaluation Results 

With our training set we trained one resolution 
model using GBDT (named as WikiRes-c) and 
another resolution model using GBRank (named 
as WikiRes-r). The models were evaluated along 
with the following systems. 

1) Baseline-r: each surface form s is randomly 
mapped to oow or a candidate entry for s in 
EntSfDict. 

2) Baseline-p: each surface form s is mapped 
to the candidate entry e for s with the highest 
commonness score. The commonness score is 
linear combination of the probability of s being 
mapped to e estimated from different data 
sources. The commonness score is among the 
features used in WikiRes-c and WikiRes-r.  

3) Baseline-m: we implemented the approach 
brought by Cucerzan (2007) based on our best 
understanding. Since we use a different version 
of Wikipedia and a different entity recognition 
approach, the evaluation result differs from the 
result presented in their paper. But we believe 
our implementation follows the algorithm de-
scribed in their paper. 

In Table 1 we present the performance for 
each system on the Yahoo! News test set and the 
MSNBC test set. The performance of WikiRes-c 
and WikiRes-r are computed after we apply the 
thresholds selected on the tuning set described in 
Section 6.1. In the upper half of Table 1, the 
three baselines use the thresholds that lead to the 
best F1 on the Yahoo! News test set. In the lower 
half of Table 1, the three baselines use the thre-
sholds that lead to the best F1 on the MSNBC 
test set. 

Among the three baselines, Baseline-r has the 
lowest performance. Baseline-m uses a few con-
text-sensitive features and Baseline-p uses a con-
text-independent feature. These two types of fea-
tures are both useful, but Baseline-p shows better 
performance, probably because the surface forms 
in our test sets are dominated by common senses. 
In our resolution models, these features are com-
bined together with many other features calcu-
lated from different large-scale data sources and 
on different granularity levels. As shown in Ta-
ble 1, both of our resolution solutions substan-
tially outperform other systems.  Furthermore, 
WikiRes-c and WikiRes-r have similar perfor-
mance. 

 

 Precision Recall F1 Accuracy p-value 
Yahoo! News Test Set 
Baseline-r 47.023 60.831 53.043 47.023 0 
Baseline-p 73.869 88.157 80.383 73.175 5.2e-78 
Baseline-m 62.240 80.517 70.208 62.240 1.3e-160
WikiRes-r 83.406 88.858 86.046 80.717 0.012 
WikiRes-c 85.038 87.831 86.412 81.463 --- 
MSNBC Test Set 
Baseline-r 60.272 64.545 62.335 60.272 8.9e-19 
Baseline-p 82.292 86.182 84.192 82.003 0.306 
Baseline-m 78.947 84.545 81.651 78.947 0.05 
WikiRes-r 88.785 86.364 87.558 84.550 0.102 
WikiRes-c 88.658 85.273 86.932 83.192 --- 
Table 1. Performance on the Yahoo! News Test 

Set and the MSNBC Test set 

 
Figure 1. Precision-recall on the Yahoo! News 

Test Set and the MSNBC Test Set 
 

We compared WikiRes-c with each competitor 
and from the statistical significance test results in 
the last column of Table 1 we see that on the Ya-
hoo! News test set WikiRes-c significantly out-
performs others. The p-values for the MSNBC 
test set are much higher than for the Yahoo! 
News test set because the MSNBC test set is 
much smaller. 

Attempting to address this point, we see that 
the F1 values of WikiRes on the MSNBC test set 
and on the Yahoo! News test set only differs by a 
couple percentage points, although, these test 
sets were created independently. This suggests 
the objectivity of our method for creating the 
Yahoo! News test set and provides a way to 
measure resolution model performance on what 
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would occur in a general news corpus in a statis-
tically significant manner. 

In Figure 1 we present the precision-recall 
curves on the Yahoo! News and the MSNBC test 
sets. We see that our resolution models are sub-
stantially better than the other two baselines at 
any particular precision or recall value on both 
test sets. Baseline-r is not included in the com-
parison since it does not have the tradeoff be-
tween precision and recall. We find the preci-
sion-recall curve of WikiRes-r is very similar to 
WikiRes-c at the lower precision area, but its re-
call is much lower than other systems after preci-
sion reaches around 90%. So, in Figure 1 the 
curves of WikiRes-r are truncated at the high pre-
cision area. 

In Table 2 we compare the performance of 
out-of-Wikipedia prediction. The comparison is 
done on the Yahoo! News test set only, since 
there are only 40 surface forms of oow case in 
the MSNBC test set. Each system’s threshold is 
the same as that used for the upper half of Table 
1. The results show our models have substantial-
ly higher precision and recall than Baseline-p and 
Baseline-m. From the statistical significance test 
results in the last column, we can see that Wi-
kiRes-c significantly outperforms Baseline-p and 
Baseline-m. Also, our current approaches still 
have room to improve in the area of out-of-
Wikipedia prediction.  

We also evaluated our models on a Wikipedia 
hold-out set. The model performance is greater 
than that obtained from the previous two test sets 
because the hold-out set is more similar to the 
training data source itself. Again, our models 
perform better than others. 

From the feature importance lists of our 
GBDT model and GBRank model, we find that 
the commonness features, the features based on 
Wikipedia entries’ co-occurrence representation 
and the corresponding differentiation features are 
the most important. 

 
 Precision Recall F1 p-value 

Baseline-p 64.907 22.152 33.03 1.6e-20 
Baseline-m 47.207 44.78 45.961 1.3e-34 
WikiRes-r 68.166 52.994 59.630 0.084 
WikiRes-c 67.303 59.777 63.317 ---
Table 2. Performance of Out-of-Wikipedia Pre-

diction on the Yahoo! News Test Set 

7 Conclusions 

We have described a method of learning to re-
solve surface forms to Wikipedia entries. Using 
this method we can enrich the unstructured doc-
uments with structured knowledge from Wikipe-
dia, the largest knowledge base in existence. The 
enrichment makes it possible to represent a doc-
ument as a machine-readable network of senses 
instead of just a bag of words. This can supply 
critical semantic information useful for next-
generation information retrieval systems and oth-
er text mining applications. 

Our resolution models use an extensive set of 
novel features and are leveraged by a machine 
learned approach that depends only on a purely 
automated training data generation facility. Our 
methodology can be applied to any other lan-
guage that has Wikipedia and Web data available 
(after modifying the simple capitalization rules in 
Section 4.1). Our resolution models can be easily 
and quickly retrained with updated data when 
Wikipedia and the relevant Web data are 
changed. 

For future work, it will be important to inves-
tigate other approaches to better predict oow. 
Adding global constraints on resolutions of the 
same term at multiple locations in the same doc-
ument may also be important. Of course, devel-
oping new features (such as part-of-speech, 
named entity type, etc) and improving training 
data quality is always critical, especially for so-
cial content sources such as those from Twitter. 
Finally, directly demonstrating the degree of ap-
plicability to other languages is interesting when 
accounting for the fact that the quality of Wiki-
pedia is variable across languages. 
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Abstract

There often exist multiple corpora for the
same natural language processing (NLP)
tasks. However, such corpora are gen-
erally used independently due to distinc-
tions in annotation standards. For the pur-
pose of full use of readily available hu-
man annotations, it is significant to simul-
taneously utilize multiple corpora of dif-
ferent annotation standards. In this pa-
per, we focus on the challenge of con-
stituent syntactic parsing with treebanks
of different annotations and propose a col-
laborative decoding (or co-decoding) ap-
proach to improve parsing accuracy by
leveraging bracket structure consensus be-
tween multiple parsing decoders trained
on individual treebanks. Experimental re-
sults show the effectiveness of the pro-
posed approach, which outperforms state-
of-the-art baselines, especially on long
sentences.

1 Introduction

Recent years have seen extensive applications of
machine learning methods to natural language
processing problems. Typically, increase in the
scale of training data boosts the performance of
machine learning methods, which in turn en-
hances the quality of learning-based NLP systems
(Banko and Brill, 2001). However, annotating
data by human is expensive in time and labor. For
this reason, human-annotated corpora are consid-
ered as the most valuable resource for NLP.

In practice, there often exist more than one cor-
pus for the same NLP tasks. For example, for
constituent syntactic parsing (Collins, 1999; Char-
niak, 2000; Petrov et al., 2006) in Chinese, in ad-
dition to the most popular treebank Chinese Tree-
bank (CTB) (Xue et al., 2002), there are also
other treebanks such as Tsinghua Chinese Tree-
bank (TCT) (Zhou, 1996). For the purpose of
full use of readily available human annotations
for the same tasks, it is significant if such cor-
pora can be used jointly. At first sight, a di-
rect combination of multiple corpora is a way to
this end. However, corpora created for the same
NLP tasks are generally built by different orga-
nizations. Thus such corpora often follow dif-
ferent annotation standards and/or even different
linguistic theories. We take CTB and TCT as
a case study. Although both CTB and TCT are
Chomskian-style treebanks, they have annotation
divergences in at least two dimensions: a) CTB
and TCT have dramatically different tag sets, in-
cluding parts-of-speech and grammar labels, and
the tags cannot be mapped one to one; b) CTB
and TCT have distinct hierarchical structures. For
example, the words “中国 (Chinese)传统 (tradi-
tional)文化 (culture)” are grouped as a flat noun
phrase according to the CTB standard (right side
in Fig. 1), but in TCT, the last two words are in-
stead grouped together beforehand (left side in
Fig. 1). The differences cause such treebanks
of different annotations to be generally used in-
dependently. This paper is dedicated to solving
the problem of how to use jointly multiple dis-
parate treebanks for constituent syntactic parsing.
Hereafter, treebanks of different annotations are
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calledheterogeneous treebanks, and correspond-
ingly, the problem of syntactic parsing with het-
erogeneous treebanks is referred to asheteroge-
neous parsing.

Previous work on heterogeneous parsing is of-
ten based on treebank transformation (or treebank
conversion) (Wang et al., 1994; Niu et al., 2009).
The basic idea is to transform annotations of one
treebank (source treebank) to fit the standard of
another treebank (target treebank). Due to diver-
gences of treebank annotations, such transforma-
tion is generally achieved in an indirect way by
selecting transformation results from the output of
a parser trained on the target treebank. A com-
mon property of all the work mentioned above is
that transformation accuracy is heavily dependent
on the performance of parsers trained on the tar-
get treebank. Sometimes transformation accuracy
is not so satisfactory that techniques like instance
pruning are needed in order to refine transforma-
tion results (Niu et al., 2009).

We claim there exists another way, interesting
but less studied for heterogeneous parsing. The
basic idea is that, although there are annotation
divergences between heterogenous treebanks, ac-
tually we can also find consensus in annotations
of bracket structures. Thus we would like to train
parsers on individual heterogeneous treebanks and
guide the parsers to gain output with consensus in
bracket structures as much as possible when they
are parsing the same sentences.

To realize this idea, we propose a generic col-
laborative decoding (or co-decoding) framework
where decoders trained on heterogeneous tree-
banks can exchange consensus information be-
tween each other during the decoding phase. The-
oretically the framework is able to incorporate a
large number of treebanks and various functions
that formalize consensus statistics.

Our contributions can be summarized: 1) we
propose a co-decoding approach to directly uti-
lizing heterogeneous treebanks; 2) we propose a
novel function to measure parsing consensus be-
tween multiple decoders. We also conduct ex-
periments on two Chinese treebanks: CTB and
TCT. The results show that our approach achieves
promising improvements over baseline systems
which make no use of consensus information.

np

nS

中国

np

a

传统

n

文化

NP

NR

中国

NN

传统

NN

文化

中国传统文化
(Chinese) (traditional) (culture)

Figure 1: Example tree fragments with TCT (left)
and CTB (right) annotations

2 Collaborative Decoding-based
Heterogeneous Parsing

2.1 Motivation

This section describes the motivation to use
co-decoding for heterogeneous parsing. We first
use the example in Fig. 1 to illustrate what con-
sensus information exists between heterogenous
treebanks and why such information might help
to improve parsing accuracy. This figure contains
two partial parse trees corresponding to the
words “中国 (Chinese)传统 (traditional)文化
(culture)”, annotated according to the TCT (left
side) and CTB (right side) standards respectively.
Despite the distinctions in tag sets and bracket
structures, these parse trees actually have partial
agreements in bracket structures. That is, not all
bracket structures in the parse trees are different.
Specifically put, although the internal structures
of the parse trees are different, both CTB and
TCT agree to take “中国 传统 文化” as a noun
phrase. Motivated by this observation, we would
like to guide parsers that are trained on CTB and
TCT respectively to verify their output interac-
tively by using consensus information implicitly
contained in these treebanks. Better performance
is expected when such information is considered.

A feasible framework to make use of consensus
information is n-best combination (Henderson
and Brill, 1999; Sagae and Lavie, 2006; Zhang et
al., 2009; Fossum and Knight, 2009). In contrast
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to previous work on n-best combination where
multiple parsers, say, Collins parser (Collins,
1999) and Berkeley parser (Petrov et al., 2006)
are trained on the same training data, n-best
combination for heterogeneous parsing is instead
allowed to use either a single parser or multiple
parsers which are trained on heterogeneous
treebanks. Consensus information can be incor-
porated during the combination of the output
(n-best list of full parse trees following distinct
annotation standards) of individual parsers. How-
ever, despite the success of n-best combination
methods, they suffer from the limited scope of
n-best list. Taking this into account, we prefer
to apply the co-decoding approach such that
consensus information is expected to affect the
entire procedure of searching hypothesis space.

2.2 System Overview

The idea of co-decoding is recently extensively
studied in the literature of SMT (Li et al., 2009;
Liu et al., 2009). As the name shows, co-decoding
requires multiple decoders be combined and pro-
ceed collaboratively. As with n-best combination,
there are at least two ways to build multiple de-
coders: we can either use multiple parsers trained
on the same training data (use of diversity of mod-
els), or use a single parser on different training
data (use of diversity of datasets)1. Both ways
can build multiple decoders which are to be inte-
grated into co-decoding. For the latter case, one
method to get diverse training data is to use dif-
ferent portions of the same training set. In this
study we extend the case to an extreme situation
where heterogeneous treebanks are used to build
multiple decoders.

Fig. 2 represents a basic flow chart of heteroge-
neous parsing via co-decoding. Note that here we
discuss the case of co-decoding with only two de-
coders, but the framework is generic enough to in-
tegrate more than two decoders. For convenience
of reference, we call a decoder without incorpo-
rating consensus information asbaseline decoder

1To make terminologies clear, we useparseras its regular
sense, including training models (ex. Collins model 2) and
parsing algorithms (ex. the CKY algorithm used in Collins
parser), and we usedecoderto represent parsing algorithms
with specified parameter values

treebank1 treebank2

decoder1 decoder2

co-decoding

test data

Figure 2: Basic flow chart of co-decoding

and correspondingly refer to a decoder augmented
with consensus information asmember decoder.
So the basic steps of co-decoding for heteroge-
neous parsing is to first build baseline decoders on
heterogeneous treebanks and then use the baseline
decoders to parse sentences with consensus infor-
mation exchanged between each other.

To complete co-decoding for heterogeneous
parsing, three key components should be consid-
ered in the system:

• Co-decoding model. A co-decoder con-
sists of multiple member decoders which are
baseline decoders augmented with consen-
sus information. Co-decoding model de-
fines how baseline decoders and consensus
information are correlated to get member de-
coders.

• Decoder coordination. Decoders in the co-
decoding model cannot proceed indepen-
dently but should have interactions between
each other in order to exchange consensus in-
formation. A decoder coordination strategy
decides on when, where, and how the inter-
actions happen.

• Consensus-based score function. Consensus-
based score functions formalize consensus
information between member decoders. Tak-
ing time complexity into consideration, con-
sensus statistics should be able to be com-
puted efficiently.
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In the following subsections, we first present
the generic co-decoding model and then describe
in detail how member decoders collaborate. Fi-
nally we introduce a novel consensus-based score
function which is used to quantify consensus in-
formation exchanged between member decoders.

2.3 Generic Co-decoding Model

The generic co-decoding model described here is
also used in (Li et al., 2009) for co-decoding of
machine translators. For a given sentenceS, a
parsing algorithm (decoder) seeks a parse treeT ∗

which is optimal in the sense that it maximizes
some score functionF (T ), as shown in Eq. 1.

T ∗ = arg max
Ts.t.S=yield(T )

F (T ) (1)

whereTs.t.S = yield(T ) represents the set of
parse trees that yield the input sentenceS. For
baseline decoders, the score functionF (T ) is
generally just the inside probabilityP (T ) 2 of
a tree T , defined as the product of probabili-
ties of grammar rules appearing in parse treeT :∏

r∈R(T ) P (r). In the co-decoding framework,
F (T ) is extended so as to integrate consensus-
based score functions which measure consensus
information between member decoders, as shown
in Eq. 2.

Fm(T ) = Pm(T ) +

n∑

k,k 6=m

Ψk(Hk(S), T ) (2)

We usedk to denote thekth decoder and use
Hk(S) to denote corresponding parsing hypoth-
esis space of decoderdk. Moreover,Pm(T ) is
referred to asbaseline scoregiven by baseline
decoders andΨk(Hk(S), T ) is consensus score
between decodersdm and dk, which is defined
as a linear combination of consensus-based score
functions, as shown in Eq. 3.

Ψk(Hk(S), T ) =
∑

l

λk,lfk,l(Hk(S), T ) (3)

where fk,l(Hk(S), T ) represents a consensus-
based score function betweenT and Hk(S),
and λk,l is the corresponding weight. Indexl

2Actually, the joint probability P(S,T) of sentenceS and
parse treeT is used, but we can prove thatP (S, T ) = P (T ).

ranges over all consensus-based score functions
in Eq. 3. Theoretically we can define a variety
of consensus-based score functions.

For the simplest case where there are only two
member decoders and one consensus-based score
function, Eq. 2 and Eq. 3 can be combined and
simplified into the equation

Fi(T ) = Pi(T ) + λ1−if(H1−i(S), T ) (4)

where indexi is set to the value of either 1 or 0.
This simplified version is used in the experiments
of this study.

2.4 Decoder Coordination

This subsection discusses the problem of decoder
coordination. Note that although Eq. 2 is defined
at sentence level, the co-decoding model actu-
ally should be applied to the parsing procedure
of any subsequence (word span) of sentenceS.
So it is natural to render member decoders col-
laborate when they are processing the same word
spans. To this end, we would like to adopt best-
first CKY-style parsing algorithms as baseline de-
coders, since CKY-style decoders have the prop-
erty that they process word spans in the ascend-
ing order of span sizes. Moreover, the hypothe-
ses3 spanning the same range of words are read-
ily stacked together in a chart cell before CKY-
style decoders move on to process other spans.
Thus, member decoders can process the same
word spans collaboratively from small ones to big
ones until they finally complete parsing the entire
sentence.

A second issue in Eq. 2 is that consensus-
based score functions are dependent on hypoth-
esis spaceHk(S). Unfortunately, the whole hy-
pothesis space is not available most of the time.
To address this issue, one practical method is to
approximateHk(S) with a n-best hypothesis list.
For best-first CKY parsing, we actually retain all
unpruned partial hypotheses over the same span
as the approximation. Hereafter, the approxima-
tion is denoted aŝHk(S)

Finally, we notice in Eq. 2 that consensus score

3In the literature of syntactic parsing, especially in chart
parsing, hypotheses is often callededges. This paper will
continue to use the terminologyhypothesiswhen no ambigu-
ity exists.
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Ψk(Hk(S), T ) andHk(S) form a circular depen-
dency: searching forHk(S) requires both base-
line score and consensus score; on the other hand,
calculating consensus score needsHk(S) (its ap-
proximation in practice) to be known beforehand.
Li et al. (2009) solves this dilemma with a boot-
strapping method. It starts with seedy n-best lists
generated by baseline decoders and then alter-
nates between calculating consensus scores and
updating n-best hypothesis lists. Such bootstrap-
ping method is a natural choice to break down the
circular dependency, but multi-pass re-decoding
might dramatically reduce decoding efficiency.
Actually, Li et al. (2009) restricts the iteration
number to two in their experiments. In this paper,
we instead use an alternative to the bootstrapping
method. The process is described as follows.

1. In traditional best-first CKY-style parsing al-
gorithms, hypotheses over the same word
spans are grouped according to some crite-
rion of hypothesis equivalence4. Among
equivalent hypotheses, only a single optimal
hypothesis is retained. In this paper, we in-
stead keep topk of equivalent hypotheses in
a data structure calledbest-first cache.

2. Use hypotheses in best-first caches to ap-
proximateHk(S), and calculate consensus
scoreΨk(Hk(S), T ) between decoders.

3. Use baseline score and consensus score to lo-
cally rerank hypotheses in best-first caches.
Then remove hypotheses in caches except the
top one hypothesis.

In this study, we choose the best-first CKY-style
parsing algorithm used in Collins parser (Collins,
1999). Algorithm 1 extends this algorithm for co-
decoding. The first two steps initialize baseline
decoders and assign appropriate POS tags to sen-
tenceSt. Since baseline decoders are built on het-
erogeneous treebanks, POS taggers correspond-
ing to each baseline decoder are demanded, unless
gold POS tags are provided. The third step is the
core of the co-decoding algorithm. Here thecom-
pleteprocedure invokes baseline decoders to com-

4the simplest criterion of equivalence is whether hypothe-
ses have the same grammar labels.

Algorithm 1 CKY-style Co-decoding
Argument: dk{the set of baseline decoders}

St{a sentence to be parsed}
Begin
Steps:
1. assign POS tags to sentenceSt

2. initialize baseline decodersdk

3. for span from 2 to sentencelengthdo
for start from 1 to (sentencelength-span+1)do

end := (start + span - 1)
for each base decoderdk do

complete(dk, start, end)
do co-decoding(start, end)

End

Subroutine:
complete(dk, start, end): base decoderdk generates

hypotheses over the span (begin.end), and fills in best-
first caches.

co-decoding(start, end): calculate consensus score
and rerank hypotheses in best-first caches. The top 1 is
chosen to be the best-first hypothesis.

plete parsing on the span[start, end] and gener-
atesĤk(s). Theco-decodingprocedure calculates
consensus score and locally reranks hypotheses in
best-first caches.

2.5 Consensus-based Score Function

There are at least two feasible ways to mea-
sure consensus between constituency parse trees.
By viewing parse trees from diverse perspectives,
we can either use functions on bracket structures
of parse trees, as in (Wang et al., 1994), or
use functions on head-dependent relations by first
transforming constituency trees into dependency
trees, as in (Niu et al., 2009). Although the co-
decoding model is generic enough to integrate var-
ious consensus-based score functions in a uniform
way, this paper only uses a bracket structure-based
function.

As mentioned above, the function proposed in
(Wang et al., 1994) is based on bracket struc-
tures. Unfortunately, that function is not appli-
cable in the situation of this paper. The reason is
that, the function in (Wang et al., 1994) is de-
fined to work on two parse trees, but this paper
instead needs a function on a treeT and a set of
trees (the approximation̂Hk(S)). To this end, we
first introduce the concept ofconstituent set (CS)
of a parse tree. Conceptually, CS of a parse tree is
a set of word spans corresponding to all the sub-
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Figure 3: Constituent set of a synthetic parse tree

trees of the tree, as illustrated in Fig. 3. For exam-
ple, the constituent set of the tree rooted at node
6 has three elements:[1, 1], [1, 3], and[1, 2]. For
Ĥk(S), the constituent set is defined as the union
of constituent sets of all elements it contains.

CS(Ĥk(S)) =
⋃

T∈Ĥk(S)

CS(T )

In practice, we need to cut off elements in
CS(Ĥk(S)) in order to retain most confident
word spans.

With the concept of constituent set, a
consensus-based score function onT andĤk(S)
can be defined as follows.

f(Ĥk(S), T ) =

∑
c∈CS(T ) I(c, CS(Ĥk(S)))

|CS(T )| (5)

whereI(c, CS(Ĥk(S))) is an indicator function
which returns one ifc ∈ CS(T ) is compatible
with all the elements inCS(Ĥk(S)), zero oth-
erwise. Two spans,[a, b] and [i, j] are said to
be compatible if they satisfy one of the following
conditions: 1)i > b; 2) a > j; 3) a ≤ i ≤ b and
j ≤ b; 4) i ≤ a ≤ j andb ≤ j. Fig 4 uses two
example to illustrate the concept of compatibility.

3 Experiments

3.1 Data and Performance Metric

The most recent version of the CTB corpus, CTB
6.0 and the CIPS ParsEval data are used as hetero-
geneous treebanks in the experiments. Following
the split utilized in (Huang et al., 2007), we di-
vided the dataset into blocks of 10 files. For each

w1 w2 w3 w4 w1 w2 w3 w4

Figure 4: left) two spans conflict; right) two spans
are compatible

block, the first file was added to the CTB develop-
ment data, the second file was added to the CTB
testing data, and the remaining 8 files were added
to the CTB training data. For the sake of parsing
efficiency, we randomly sampled 1,000 sentences
of no more than 40 words from the CTB test set.

CTB-Partitions Train Dev Test
#Sentences 22,724 2,855 1,000
#Words 627,833 78,653 25,100
Ave-Length 30.1 30.0 20.3
TCT-Partitions Train Dev Test
#Sentences 32,771 N/A 1,000
#Words 354,767 N/A 10,400
Ave-Length 10.6 N/A 10.4

Table 1: Basic statistics on the CTB and TCT data

CIPS-ParsEval data is publicly available for the
first Chinese syntactic parsing competition, CIPS-
ParsEval 2009. Compared to CTB, sentences in
CIPS-ParsEval data are much shorter in length.
We removed sentences which have words less
than three. CIPS-ParsEval test set has 7,995 sen-
tences after sentence pruning. As with the CTB
test set, we randomly sampled 1,000 sentences
for evaluating co-decoding performance. Since
CIPS-ParsEval data is actually a portion of the
TCT corpus, for convenience of reference, we will
refer to CIPS-ParsEval data as TCT in the follow-
ing sections. Table 1 contains statistics on CTB
and TCT.

The two training sets are used individually to
build baseline decoders. With regard to the test
sets, each sentence in the test sets should have
two kinds of POS tags, according to the CTB and
TCT standards respectively. To this end, we ap-
plied a HMM-based method for POS annotation
transformation (Zhu and Zhu, 2009). During the
POS transformation, the divergences of word seg-
mentation are omitted.

For all experiments,bracketing F1is used as
the performance metric, provided byEVALB5.

5http://nlp.cs.nyu.edu/evalb
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3.2 Baseline Decoders

As already mentioned above, we apply Collins
parser in this paper. Specifically speaking, two
CKY-style baseline decoders to participate co-
decoding are built on CTB and TCT respectively
with Collins model two. For the CTB-based de-
coder, we use the CTB training data with slight
modifications: we replaced POS tags of punctua-
tions with specific punctuation symbols.

To get the TCT-based decoder, we made follow-
ing modifications. Firstly, TCT is available with
manually annotated head indices for all the con-
stituents in parse trees. For example, a grammar
label, say, np-1, means that the constituent is a
noun phrase with the second child being its head
child. In order to relax context independence as-
sumptions made in PCFG, we appended head in-
dices to grammar labels to get new labels, for ex-
amplenp1. Secondly, since Collins parser is a
lexicalized parser, head rules specific to the TCT
corpus were manually created, which are used to-
gether with readily available head indices. Such
adaptation is also used in (Chen et al., 2009);

3.3 Parsing Results

We conduct experiments on both CTB and TCT
test sets. Two parameters need to be set: the cut-
off threshold for constructing constituent set of
Ĥk(S) and the weightλ 6 of consensus score in
Eq. 4. We tuned the parameters on the CTB de-
velopment set and finally set them to 5 and 20
respectively in the experiments. Table 2 presents
bracketing F1 scores of baseline systems and the
co-decoding approach. Here, the row ofbaseline
represents the performance of individual baseline
decoders, and the comparison of baseline and co-
decoding on a test set, say CTB, demonstrates
how much boosting the other side, say TCT, can
supply. For the co-decoding approach, the size
of best-first cache is set to 5 which achieves the
best result among the cache sizes we have experi-
mented.

As the results show, co-decoding achieves
promising improvements over baseline systems
on both test sets. Interestingly, we see that the
improvement on the TCT test set is larger than

6We use the sameλ for both member decoders.

Test Set CTB TCT
Baseline 79.82 81.02

Co-decoding 80.33 81.77

Table 2: Baseline and Co-decoding on the CTB
and TCT test sets

that on the CTB test set. In general, a relatively
strong decoder can improve co-decoding perfor-
mance more than a relatively weak decoder does.
At the first sight, the TCT-based decoder seems to
have better performance than the CTB-based de-
coder. But if taking sentence length into consid-
eration, we can find that the TCT-based decoder
is actually relatively weak. Table 3 shows the
performance of the CTB-based decoder on short
sentences.

3.4 Analysis

Fig. 5 shows the bracketing F1 on the CTB test set
at different settings of the best-first cache sizeC.
F1 scores reach the peak beforeC increases to 6.
As a result, we setC to 5 in all our experiments.

 79

 79.5

 80

 80.5

 81

 0  1  2  3  4  5  6

br
ac

ke
tin

g 
F1

size of best-first cache

CTB

Figure 5: Bracketing F1 with varying best-first
cache size

To evaluate the effect of sentence length on co-
decoding, Table 3 presents F1 scores on portions
of the CTB test set, partitioned according to sen-
tence length. From the results we can see that
co-decoding performs better on long sentences.
One possible reason is that member decoders have
more consensus on big spans. Taking this obser-
vation into consideration, one enhancement to the
co-decoding approach is to enable co-decoding
only on long sentences. This way, parsing ef-
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Partitions [0,10] (10,20] (20,30] (30,40]
# Sentence 276 254 266 204
Ave-Length 6.07 15.64 25.43 35.20

Baseline 92.83 84.34 78.98 76.69
Co-decoding 92.84 84.36 79.43 77.65

Table 3: Effect of sentence length on co-decoding
performance

ficiency of co-decoding can be improved. It is
worth emphasizing that co-decoding is still help-
ful for parsers whose performance on short sen-
tences is not satisfactory, as shown in Table 2.

Another interesting analysis is to check how
many parsing results are affected by co-decoding,
compared to baseline decoders. Table 4 shows
the statistics.

Test Set # All # Improved # Decreased
CTB 1000 225 109
TCT 1000 263 92

Table 4: Statistics on sentences of test data

As the table shows, although overall accuracy is
increased, we find that on some sentences, co-
decoding instead worsens parsing accuracy. In
order to get insights on error sources, we manu-
ally analyzed 20 sentences on which co-decoding
achieves negative results. We find a large por-
tion (14 of 20) of sentences are short sentences
(of words less than 20). Actually, due to high ac-
curacy of the CTB-based decoder on short sen-
tences, co-decoding is indifferent when this de-
coder is processing short sentences. And we also
find that some errors are derived from differences
in annotation standards. Fortunately, the diver-
gence of annotations mainly exists in relatively
small spans. So one solution to the problem is to
enable co-decoding on relatively big spans. These
will be done in our future work.

4 Related Work

4.1 System Combination

In the literature of syntactic parsing, n-best com-
bination methods include parse selection, con-
stituent recombination, production recombina-
tion, and n-best reranking. Henderson and Brill
(1999) performs parse selection by maximizing

the expected precision of selected parse with re-
spect to the set of parses to be combined. Sagae
and Lavie (2006) proposes to recombine con-
stituents from the output of individual parsers.
More recently, Fossum and Knight (2009) studies
a combination method at production level. Zhang
et al. (2009) reranks n-best list of one parser with
scores derived from another parser.

Compared to n-best combination, co-decoding
(Li et al., 2009; Liu et al., 2009) combines sys-
tems during decoding phase. Theoretically, sys-
tem combination during decoding phase helps de-
coders to select better approximation to hypothe-
sis space, since pruning is practically unavoidable.
To the best of our knowledge, co-decoding meth-
ods have not been applied to syntactic parsing.

4.2 Treebank Transformation

The focus of this study is heterogeneous parsing.
Previous work on this challenge is generally based
on treebank transformation. Wang et al. (1994)
describes a method for transformation between
constituency treebanks. The basic idea is to train
a parser on a target treebank and generate a n-best
list for each sentence in source treebank(s). Then,
a matching metric which is a function on the num-
ber of the same word spans between two trees is
defined to select a best parse from each n-best list.
Niu et al. (2009) applies a closely similar frame-
work as with (Wang et al., 1994) to transform a
dependency treebank to a constituency one.

5 Conclusions

This paper proposed a co-decoding approach to
the challenge of heterogeneous parsing. Com-
pared to previous work on this challenge, co-
decoding is able to directly utilize heterogeneous
treebanks by incorporating consensus information
between partial output of individual parsers dur-
ing the decoding phase. Experiments demonstrate
the effectiveness of the co-decoding approach, es-
pecially the effectiveness on long sentences.
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Abstract

In this paper, we consider sentence sim-
plification as a special form of translation
with the complex sentence as the source
and the simple sentence as the target.
We propose a Tree-based Simplification
Model (TSM), which, to our knowledge,
is the first statistical simplification model
covering splitting, dropping, reordering
and substitution integrally. We also de-
scribe an efficient method to train our
model with a large-scale parallel dataset
obtained from the Wikipedia and Simple
Wikipedia. The evaluation shows that our
model achieves better readability scores
than a set of baseline systems.

1 Introduction

Sentence simplification transforms long and dif-
ficult sentences into shorter and more readable
ones. This helps humans read texts more easily
and faster. Reading assistance is thus an impor-
tant application of sentence simplification, espe-
cially for people with reading disabilities (Carroll
et al., 1999; Inui et al., 2003), low-literacy read-
ers (Watanabe et al., 2009), or non-native speakers
(Siddharthan, 2002).

Not only human readers but also NLP ap-
plications can benefit from sentence simplifica-
tion. The original motivation for sentence sim-
plification is using it as a preprocessor to facili-
tate parsing or translation tasks (Chandrasekar et
al., 1996). Complex sentences are considered as
stumbling blocks for such systems. More recently,
sentence simplification has also been shown help-
ful for summarization (Knight and Marcu, 2000),

∗ This work has been supported by the Emmy Noether
Program of the German Research Foundation (DFG) under
the grant No. GU 798/3-1, and by the Volkswagen Founda-
tion as part of the Lichtenberg-Professorship Program under
the grant No. I/82806.

sentence fusion (Filippova and Strube, 2008b), se-
mantic role labeling (Vickrey and Koller, 2008),
question generation (Heilman and Smith, 2009),
paraphrase generation (Zhao et al., 2009) and
biomedical information extraction (Jonnalagadda
and Gonzalez, 2009).

At sentence level, reading difficulty stems ei-
ther from lexical or syntactic complexity. Sen-
tence simplification can therefore be classified
into two types: lexical simplification and syntac-
tic simplification (Carroll et al., 1999). These two
types of simplification can be further implemented
by a set of simplification operations. Splitting,
dropping, reordering, and substitution are widely
accepted as important simplification operations.
The splitting operation splits a long sentence into
several shorter sentences to decrease the complex-
ity of the long sentence. The dropping operation
further removes unimportant parts of a sentence to
make it more concise. The reordering operation
interchanges the order of the split sentences (Sid-
dharthan, 2006) or parts in a sentence (Watanabe
et al., 2009). Finally, the substitution operation re-
places difficult phrases or words with their simpler
synonyms.

In most cases, different simplification opera-
tions happen simultaneously. It is therefore nec-
essary to consider the simplification process as
a combination of different operations and treat
them as a whole. However, most of the ex-
isting models only consider one of these opera-
tions. Siddharthan (2006) and Petersen and Osten-
dorf (2007) focus on sentence splitting, while sen-
tence compression systems (Filippova and Strube,
2008a) mainly use the dropping operation. As far
as lexical simplification is concerned, word sub-
stitution is usually done by selecting simpler syn-
onyms from Wordnet based on word frequency
(Carroll et al., 1999).

In this paper, we propose a sentence simplifica-
tion model by tree transformation which is based
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on techniques from statistical machine translation
(SMT) (Yamada and Knight, 2001; Yamada and
Knight, 2002; Graehl et al., 2008). Our model in-
tegrally covers splitting, dropping, reordering and
phrase/word substitution. The parameters of our
model can be efficiently learned from complex-
simple parallel datasets. The transformation from
a complex sentence to a simple sentence is con-
ducted by applying a sequence of simplification
operations. An expectation maximization (EM)
algorithm is used to iteratively train our model.
We also propose a method based on monolingual
word mapping which speeds up the training pro-
cess significantly. Finally, a decoder is designed to
generate the simplified sentences using a greedy
strategy and integrates language models.

In order to train our model, we further com-
pile a large-scale complex-simple parallel dataset
(PWKP) from Simple English Wikipedia1 and En-
glish Wikipedia2, as such datasets are rare.

We organize the remainder of the paper as fol-
lows: Section 2 describes the PWKP dataset. Sec-
tion 3 presents our TSM model. Sections 4 and 5
are devoted to training and decoding, respectively.
Section 6 details the evaluation. The conclusions
follow in the final section.

2 Wikipedia Dataset: PWKP

We collected a paired dataset from the English
Wikipedia and Simple English Wikipedia. The
targeted audience of Simple Wikipedia includes
“children and adults who are learning English lan-
guage”. The authors are requested to “use easy
words and short sentences” to compose articles.
We processed the dataset as follows:

Article Pairing 65,133 articles from Simple
Wikipedia3 and Wikipedia4 were paired by fol-
lowing the “language link” using the dump files
in Wikimedia.5 Administration articles were fur-
ther removed.

Plain Text Extraction We use JWPL (Zesch et
al., 2008) to extract plain texts from Wikipedia ar-
ticles by removing specific Wiki tags.

Pre-processing including sentence boundary
detection and tokenization with the Stanford

1http://simple.wikipedia.org
2http://en.wikipedia.org
3As of Aug 17th, 2009
4As of Aug 22nd, 2009
5http://download.wikimedia.org

Parser package (Klein and Manning, 2003),
and lemmatization with the TreeTagger (Schmid,
1994).

Monolingual Sentence Alignment As we need
a parallel dataset aligned at the sentence level,
we further applied monolingual sentence align-
ment on the article pairs. In order to achieve
the best sentence alignment on our dataset, we
tested three similarity measures: (i) sentence-level
TF*IDF (Nelken and Shieber, 2006), (ii) word
overlap (Barzilay and Elhadad, 2003) and (iii)
word-based maximum edit distance (MED) (Lev-
enshtein, 1966) with costs of insertion, deletion
and substitution set to 1. To evaluate their perfor-
mance we manually annotated 120 sentence pairs
from the article pairs. Tab. 1 reports the precision
and recall of these three measures. We manually
adjusted the similarity threshold to obtain a recall
value as close as possible to 55.8% which was pre-
viously adopted by Nelken and Shieber (2006).

Similarity Precision Recall
TF*IDF 91.3% 55.4%
Word Overlap 50.5% 55.1%
MED 13.9% 54.7%

Table 1: Monolingual Sentence Alignment
The results in Tab. 1 show that sentence-level
TF*IDF clearly outperforms the other two mea-
sures, which is consistent with the results reported
by Nelken and Shieber (2006). We henceforth
chose sentence-level TF*IDF to align our dataset.

As shown in Tab. 2, PWKP contains more
than 108k sentence pairs. The sentences from
Wikipedia and Simple Wikipedia are considered
as “complex” and “simple” respectively. Both the
average sentence length and average token length
in Simple Wikipedia are shorter than those in
Wikipedia, which is in compliance with the pur-
pose of Simple Wikipedia.

Avg. Sen. Len Avg. Tok. Len #Sen.Pairs
complex simple complex simple -
25.01 20.87 5.06 4.89 108,016

Table 2: Statistics for the PWKP dataset
In order to account for sentence splitting, we al-

low 1 to n sentence alignment to map one complex
sentence to several simple sentences. We first per-
form 1 to 1 mapping with sentence-level TF*IDF
and then combine the pairs with the same complex
sentence and adjacent simple sentences.

3 The Simplification Model: TSM
We apply the following simplification operations
to the parse tree of a complex sentence: splitting,
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dropping, reordering and substitution. In this sec-
tion, we use a running example to illustrate this
process. c is the complex sentence to be simpli-
fied in our example. Fig. 1 shows the parse tree of
c (we skip the POS level).
c: August was the sixth month in the ancient Ro-
man calendar which started in 735BC.

NP VP

S

August was

NPinsixththe
SBAR

NP

NP PP

WHNP S

VP

started PP

in 735BC

ancient calendar whichthe Roman

month

Figure 1: Parse Tree of c

3.1 Splitting
The first operation is sentence splitting, which we
further decompose into two subtasks: (i) segmen-
tation, which decides where and whether to split
a sentence and (ii) completion, which makes the
new split sentences complete.

First, we decide where we can split a sentence.
In our model, the splitting point is judged by the
syntactic constituent of the split boundary word
in the complex sentence. The decision whether a
sentence should be split is based on the length of
the complex sentence. The features used in the
segmentation step are shown in Tab. 3.

Word Constituent iLength isSplit Prob.
“which” SBAR 1 true 0.0016
“which” SBAR 1 false 0.9984
“which” SBAR 2 true 0.0835
“which” SBAR 2 false 0.9165

Table 3: Segmentation Feature Table (SFT)
Actually, we do not use the direct constituent of

a word in the parse tree. In our example, the direct
constituent of the word “which” is “WHNP”. In-
stead, we use Alg. 1 to calculate the constituent
of a word. Alg. 1 returns “SBAR” as the ad-
justed constituent for “which”. Moreover, di-
rectly using the length of the complex sentence
is affected by the data sparseness problem. In-
stead, we use iLength as the feature which is
calculated as iLength = ceiling( comLength

avgSimLength),
where comLength is the length of the complex
sentence and avgSimLength is the average length
of simple sentences in the training dataset. The
“Prob.” column shows the probabilities obtained
after training on our dataset.

Algorithm 1 adjustConstituent(word, tree)
constituent← word.father;
father ← constituent.father;
while father 6= NULL AND constituent is the most
left child of father do
constituent← father;
father ← father.father;

end while
return constituent;

In our model, one complex sentence can be split
into two or more sentences. Since many splitting
operations are possible, we need to select the most
likely one. The probability of a segmentation op-
eration is calculated as:

P (seg|c) =
∏

w:c

SFT (w|c) (1)

where w is a word in the complex sentence c and
SFT (w|c) is the probability of the word w in the
Segmentation Feature Table (SFT); Fig. 2 shows
a possible segmentation result of our example.

NP VP

S

August was

NPinsixththe

SBAR

NP

NP PP

WHNP S

VP

started PP

in 735BC

ancient calendar

which

the Roman

month

Figure 2: Segmentation
The second step is completion. In this step,

we try to make the split sentences complete and
grammatical. In our example, to make the second
sentence “which started in 735BC” complete and
grammatical we should first drop the border word
“which” and then copy the dependent NP “the
ancient Roman calendar” to the left of “started”
to obtain the complete sentence “the ancient Ro-
man calendar started in 735BC”. In our model,
whether the border word should be dropped or
retained depends on two features of the border
word: the direct constituent of the word and the
word itself, as shown in Tab. 4.

Const. Word isDropped Prob.
WHNP which True 1.0
WHNP which False Prob.Min

Table 4: Border Drop Feature Table (BDFT)

In order to copy the necessary parts to complete
the new sentences, we must decide which parts
should be copied and where to put these parts in
the new sentences. In our model, this is judged
by two features: the dependency relation and the
constituent. We use the Stanford Parser for pars-
ing the dependencies. In our example, the de-
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pendency relation between “calendar” in the com-
plex sentence and the verb “started” in the second
split sentence is “gov nsubj”.6 The direct con-
stituent of “started” is “VP” and the word “calen-
dar” should be put on the “left” of “started”, see
Tab. 5.

Dep. Const. isCopied Pos. Prob.
gov nsubj VP(VBD) True left 0.9000
gov nsubj VP(VBD) True right 0.0994
gov nsubj VP(VBD) False - 0.0006

Table 5: Copy Feature Table (CFT)

For dependent NPs, we copy the whole NP
phrase rather than only the head noun.7 In our
example, we copy the whole NP phrase “the an-
cient Roman calendar” to the new position rather
than only the word “calendar”. The probability of
a completion operation can be calculated as

P (com|seg) =
Y
bw:s

BDFT (bw|s)
Y
w:s

Y
dep:w

CFT (dep).

where s are the split sentences, bw is a border
word in s, w is a word in s, dep is a dependency
of w which is out of the scope of s. Fig. 3 shows
the most likely result of the completion operation
for our example.

NP VP

pt1

August was

NPinsixththe

NP
NP PPpt2

VP

started PP

in 735BC

ancient calendarthe RomanNP

ancient calendarthe Roman

month

Figure 3: Completion

3.2 Dropping and Reordering
We first apply dropping and then reordering to
each non-terminal node in the parse tree from top
to bottom. We use the same features for both drop-
ping and reordering: the node’s direct constituent
and its children’s constituents pattern, see Tab. 6
and Tab. 7.

Constituent Children Drop Prob.
NP DT JJ NNP NN 1101 7.66E-4
NP DT JJ NNP NN 0001 1.26E-7

Table 6: Dropping Feature Table (DFT)

6With Stanford Parser, “which” is a referent of “calender”
and the nsubj of “started”. “calender” thus can be considered
to be the nsubj of “started” with “started” as the governor.

7The copied NP phrase can be further simplified in the
following steps.

Constituent Children Reorder Prob.
NP DT JJ NN 012 0.8303
NP DT JJ NN 210 0.0039

Table 7: Reordering Feature Table (RFT)
The bits ‘1’ and ‘0’ in the “Drop” column indi-

cate whether the corresponding constituent is re-
tained or dropped. The number in the “Reorder”
column represents the new order for the children.
The probabilities of the dropping and reordering
operations can be calculated as Equ. 2 and Equ. 3.

P (dp|node) = DFT (node) (2)

P (ro|node) = RFT (node) (3)

In our example, one of the possible results is
dropping the NNP “Roman”, as shown in Fig. 4.

NP VP

pt1

August was

NPinsixththe

NP
NP PPpt2

VP

started PP

in 735BC

ancient calendartheNP

ancient calendarthe

month

Figure 4: Dropping & Reordering

3.3 Substitution
3.3.1 Word Substitution

Word substitution only happens on the termi-
nal nodes of the parse tree. In our model, the
conditioning features include the original word
and the substitution. The substitution for a word
can be another word or a multi-word expression
(see Tab. 8). The probability of a word substitu-
tion operation can be calculated as P (sub|w) =
SubFT (Substitution|Origin).

Origin Substitution Prob.
ancient ancient 0.963
ancient old 0.0183
ancient than transport 1.83E-102
old ancient 0.005

Table 8: Substitution Feature Table (SubFT)

3.3.2 Phrase Substitution
Phrase substitution happens on the non-

terminal nodes and uses the same conditioning
features as word substitution. The “Origin” con-
sists of the leaves of the subtree rooted at the
node. When we apply phrase substitution on a
non-terminal node, then any simplification opera-
tion (including dropping, reordering and substitu-
tion) cannot happen on its descendants any more
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because when a node has been replaced then its
descendants are no longer existing. Therefore, for
each non-terminal node we must decide whether a
substitution should take place at this node or at its
descendants. We perform substitution for a non-
terminal node if the following constraint is met:

Max(SubFT (∗|node)) ≥
Y

ch:node

Max(SubFT (∗|ch)).

where ch is a child of the node. “∗” can
be any substitution in the SubFT. The proba-
bility of the phrase substitution is calculated as
P (sub|node) = SubFT (Substitution|Origin).
Fig. 5 shows one of the possible substitution re-
sults for our example where “ancient” is replaced
by “old”.

NP VP

pt1

August was

NPinsixththe

NP

NP PPpt2

VP

started PP

in 735BC

old calendartheNP

old calendarthe

month

Figure 5: Substitution
As a result of all the simplification operations,

we obtain the following two sentences: s1 =
Str(pt1)=“August was the sixth month in the old
calendar.” and s2 = Str(pt2)=“The old calendar
started in 735BC.”

3.4 The Probabilistic Model
Our model can be formalized as a direct transla-
tion model from complex to simple P (s|c) multi-
plied by a language model P (s) as shown in Equ.
4.

s = argmax
s

P (s|c)P (s) (4)

We combine the parts described in the previous
sections to get the direct translation model:

P (s|c) =
∑

θ:Str(θ(c))=s

(P (seg|c)P (com|seg)

(5)
∏

node

P (dp|node)P (ro|node)P (sub|node)
∏

w

(sub|w)).

where θ is a sequence of simplification operations
and Str(θ(c)) corresponds to the leaves of a sim-

plified tree. There can be many sequences of op-
erations that result in the same simplified sentence
and we sum up all of their probabilities.

4 Training

In this section, we describe how we train the prob-
abilities in the tables. Following the work of
Yamada and Knight (2001), we train our model
by maximizing P (s|c) over the training corpus
with the EM algorithm described in Alg. 2, us-
ing a constructed graph structure. We develop the
Training Tree (Fig. 6) to calculate P (s|c). P (s|c)
is equal to the inside probability of the root in the
Training Tree. Alg. 3 and Alg. 4 are used to cal-
culate the inside and outside probabilities. We re-
fer readers to Yamada and Knight (2001) for more
details.
Algorithm 2 EM Training (dataset)

Initialize all probability tables using the uniform distribu-
tion;
for several iterations do

reset all cnt = 0;
for each sentence pair < c, s > in dataset do
tt = buildTrainingTree(< c, s >);
calcInsideProb(tt);
calcOutsideProb(tt);
update cnt for each conditioning feature in each
node of tt: cnt = cnt + node.insideProb ∗
node.outsideProb/root.insideProb;

end for
updateProbability();

end for

root

sp

sp_res1 sp_res2

dp

ro

mp

mp_res1 mp_res2

sub

mp

mp_res

subsub

dp

ro

mp_res

root

sp

sp_res sp_res

dp

ro

ro_res ro_res

sub

ro_res

subsub

dp

ro

ro_res

sub_res

sub_res sub_res

Figure 6: Training Tree (Left) and Decoding Tree
(Right)

We illustrate the construction of the training
tree with our running example. There are two
kinds of nodes in the training tree: data nodes in
rectangles and operation nodes in circles. Data
nodes contain data and operation nodes execute
operations. The training is a supervised learning
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process with the parse tree of c as input and the
two strings s1 and s2 as the desired output. root
stores the parse tree of c and also s1 and s2. sp,
ro, mp and sub are splitting, reordering, mapping
and substitution operations. sp res and mp res
store the results of sp and mp. In our example,
sp splits the parse tree into two parse trees pt1
and pt2 (Fig. 3). sp res1 contains pt1 and s1.
sp res2 contains pt2 and s2. Then dp, ro and mp
are iteratively applied to each non-terminal node
at each level of pt1 and pt2 from top to down.
This process continues until the terminal nodes
are reached or is stopped by a sub node. The func-
tion of mp operation is similar to the word map-
ping operation in the string-based machine trans-
lation. It maps substrings in the complex sentence
which are dominated by the children of the current
node to proper substrings in the simple sentences.

Speeding Up The example above is only one
of the possible paths. We try all of the promis-
ing paths in training. Promising paths are the
paths which are likely to succeed in transform-
ing the parse tree of c into s1 and s2. We select
the promising candidates using monolingual word
mapping as shown in Fig. 7. In this example,
only the word “which” can be a promising can-
didate for splitting. We can select the promising
candidates for the dropping, reordering and map-
ping operations similarly. With this improvement,
we can train on the PWKP dataset within 1 hour
excluding the parsing time taken by the Stanford
Parser.

We initialize the probabilities with the uniform
distribution. The binary features, such as SFT and
BDFT, are assigned the initial value of 0.5. For
DFT and RFT, the initial probability is 1

N! , where
N is the number of the children. CFT is initial-
ized as 0.25. SubFT is initialized as 1.0 for any
substitution at the first iteration. After each itera-
tion, the updateProbability function recalculates
these probabilities based on the cnt for each fea-
ture.

Algorithm 3 calcInsideProb (TrainingTree tt)
for each node from level = N to root of tt do

if node is a sub node then
node.insideProb = P (sub|node);

else if node is a mp OR sp node then
node.insideProb =

Q
child child.insideProb;

else
node.insideProb =

P
child child.insideProb;

end if
end for

Algorithm 4 calcOutsideProb (TrainingTree tt)
for each node from root to level = N of tt do

if node is the root then
node.outsideProb = 1.0;

else if node is a sp res OR mp res node then
{COMMENT: father are the fathers of the current
node, sibling are the children of father excluding
the current node}
node.outsideProb =

P
father

father.outsideProb ∗Q
sibling sibling.insideProb;

else if node is a mp node then
node.outsideProb = father.outsideProb ∗ 1.0;

else if node is a sp, ro, dp or sub node then
node.outsideProb = father.outsideProb ∗
P (sp or ro or dp or sub|node);

end if
end for

August was the sixth in the ancient Roman calendar statedwhich in 735BC

August was the sixth in the old Roman calendar stated in 735BCThe old calendar.

.

.

Complex sentence

Simple sentences

month

month

Figure 7: Monolingual Word Mapping
5 Decoding

For decoding, we construct the decoding tree
(Fig. 6) similarly to the construction of the train-
ing tree. The decoding tree does not have mp op-
erations and there can be more than one sub nodes
attached to a single ro res. The root contains the
parse tree of the complex sentence. Due to space
limitations, we cannot provide all the details of the
decoder.

We calculate the inside probability and out-
side probability for each node in the decoding
tree. When we simplify a complex sentence, we
start from the root and greedily select the branch
with the highest outside probability. For the sub-
stitution operation, we also integrate a trigram
language model to make the generated sentences
more fluent. We train the language model with
SRILM (Stolcke, 2002). All the articles from the
Simple Wikipedia are used as the training corpus,
amounting to about 54 MB.

6 Evaluation

Our evaluation dataset consists of 100 complex
sentences and 131 parallel simple sentences from
PWKP. They have not been used for training.
Four baseline systems are compared in our eval-
uation. The first is Moses which is a state of
the art SMT system widely used as a baseline in
MT community. Obviously, the purpose of Moses
is cross-lingual translation rather than monolin-
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gual simplification. The goal of our comparison
is therefore to assess how well a standard SMT
system may perform simplification when fed with
a proper training dataset. We train Moses with the
same part of PWKP as our model. The second
baseline system is a sentence compression sys-
tem (Filippova and Strube, 2008a) whose demo
system is available online.8 As the compression
system can only perform dropping, we further ex-
tend it to our third and fourth baseline systems,
in order to make a reasonable comparison. In our
third baseline system, we substitute the words in
the output of the compression system with their
simpler synonyms. This is done by looking up
the synonyms in Wordnet and selecting the most
frequent synonym for replacement. The word fre-
quency is counted using the articles from Simple
Wikipedia. The fourth system performs sentence
splitting on the output of the third system. This
is simply done by splitting the sentences at “and”,
“or”, “but”, “which”, “who” and “that”, and dis-
carding the border words. In total, there are 5
systems in our evaluation: Moses, the MT sys-
tem; C, the compression system; CS, the com-
pression+substitution system; CSS, the compres-
sion+substitution+split system; TSM, our model.
We also provide evaluation measures for the sen-
tences in the evaluation dataset: CW: complex
sentences from Normal Wikipedia and SW: par-
allel simple sentences from Simple Wikipedia.

6.1 Basic Statistics and Examples
The first three columns in Tab. 9 present the ba-
sic statistics for the evaluation sentences and the
output of the five systems. tokenLen is the aver-
age length of tokens which may roughly reflect the
lexical difficulty. TSM achieves an average token
length which is the same as the Simple Wikipedia
(SW). senLen is the average number of tokens in
one sentence, which may roughly reflect the syn-
tactic complexity. Both TSM and CSS produce
shorter sentences than SW. Moses is very close to
CW. #sen gives the number of sentences. Moses,
C and CS cannot split sentences and thus produce
about the same number of sentences as available
in CW.
Here are two example results obtained with our
TSM system.
Example 1. CW: “Genetic engineering has ex-
panded the genes available to breeders to utilize
in creating desired germlines for new crops.” SW:

8http://212.126.215.106/compression/

“New plants were created with genetic engineer-
ing.” TSM: “Engineering has expanded the genes
available to breeders to use in making germlines
for new crops.”
Example 2. CW: “An umbrella term is a word that
provides a superset or grouping of related con-
cepts, also called a hypernym.” SW: “An umbrella
term is a word that provides a superset or group-
ing of related concepts.” TSM: “An umbrella term
is a word. A word provides a superset of related
concepts, called a hypernym.”
In the first example, both substitution and drop-
ping happen. TSM replaces “utilize” and “cre-
ating” with “use” and “making”. “Genetic” is
dropped. In the second example, the complex sen-
tence is split and “also” is dropped.

6.2 Translation Assessment
In this part of the evaluation, we use traditional
measures used for evaluating MT systems. Tab. 9
shows the BLEU and NIST scores. We use
“mteval-v11b.pl”9 as the evaluation tool. CW
and SW are used respectively as source and ref-
erence sentences. TSM obtains a very high BLEU
score (0.38) but not as high as Moses (0.55).
However, the original complex sentences (CW)
from Normal Wikipedia get a rather high BLEU
(0.50), when compared to the simple sentences.
We also find that most of the sentences generated
by Moses are exactly the same as those in CW:
this shows that Moses only performs few modi-
fications to the original complex sentences. This
is confirmed by MT evaluation measures: if we
set CW as both source and reference, the BLEU
score obtained by Moses is 0.78. TSM gets 0.55
in the same setting which is significantly smaller
than Moses and demonstrates that TSM is able to
generate simplifications with a greater amount of
variation from the original sentence. As shown in
the “#Same” column of Tab. 9, 25 sentences gen-
erated by Moses are exactly identical to the com-
plex sentences, while the number for TSM is 2
which is closer to SW. It is however not clear how
well BLEU and NIST discriminate simplification
systems. As discussed in Jurafsky and Martin
(2008), “BLEU does poorly at comparing systems
with radically different architectures and is most
appropriate when evaluating incremental changes
with similar architectures.” In our case, TSM and
CSS can be considered as having similar architec-
tures as both of them can do splitting, dropping

9http://www.statmt.org/moses/
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TokLen SenLen #Sen BLEU NIST #Same Flesch Lix(Grade) OOV% PPL
CW 4.95 27.81 100 0.50 6.89 100 49.1 53.0 (10) 52.9 384
SW 4.76 17.86 131 1.00 10.98 3 60.4 (PE) 44.1 (8) 50.7 179
Moses 4.81 26.08 100 0.55 7.47 25 54.8 48.1 (9) 52.0 363
C 4.98 18.02 103 0.28 5.37 1 56.2 45.9 (8) 51.7 481
CS 4.90 18.11 103 0.19 4.51 0 59.1 45.1 (8) 49.5 616
CSS 4.98 10.20 182 0.18 4.42 0 65.5 (PE) 38.3 (6) 53.4 581
TSM 4.76 13.57 180 0.38 6.21 2 67.4 (PE) 36.7 (5) 50.8 353

Table 9: Evaluation

and substitution. But Moses mostly cannot split
and drop. We may conclude that TSM and Moses
have different architectures and BLEU or NIST is
not suitable for comparing them. Here is an exam-
ple to illustrate this: (CW): “Almost as soon as he
leaves, Annius and the guard Publius arrive to es-
cort Vitellia to Titus, who has now chosen her as
his empress.” (SW): “Almost as soon as he leaves,
Annius and the guard Publius arrive to take Vitel-
lia to Titus, who has now chosen her as his em-
press.” (Moses): The same as (SW). (TSM): “An-
nius and the guard Publius arrive to take Vitellia
to Titus. Titus has now chosen her as his empress.”
In this example, Moses generates an exactly iden-
tical sentence to SW, thus the BLUE and NIST
scores of Moses is the highest. TSM simplifies
the complex sentence by dropping, splitting and
substitution, which results in two sentences that
are quite different from the SW sentence and thus
gets lower BLUE and NIST scores. Nevertheless,
the sentences generated by TSM seem better than
Moses in terms of simplification.

6.3 Readability Assessment
Intuitively, readability scores should be suitable
metrics for simplification systems. We use the
Linux “style” command to calculate the Flesch
and Lix readability scores. The results are pre-
sented in Tab. 9. “PE” in the Flesch column stands
for “Plain English” and the “Grade” in Lix repre-
sents the school year. TSM achieves significantly
better scores than Moses which has the best BLEU
score. This implies that good monolingual trans-
lation is not necessarily good simplification. OOV
is the percentage of words that are not in the Ba-
sic English BE850 list.10 TSM is ranked as the
second best system for this criterion.

The perplexity (PPL) is a score of text proba-
bility measured by a language model and normal-
ized by the number of words in the text (Equ. 6).

10http://simple.wikipedia.org/wiki/
Wikipedia:Basic_English_alphabetical_
wordlist

PPL can be used to measure how tight the lan-
guage model fits the text. Language models con-
stitute an important feature for assessing readabil-
ity (Schwarm and Ostendorf, 2005). We train a
trigram LM using the simple sentences in PWKP
and calculate the PPL with SRILM. TSM gets the
best PPL score. From this table, we can conclude
that TSM achieves better overall readability than
the baseline systems.

PPL(text) = P (w1w2...wN )
− 1

N (6)

There are still some important issues to be con-
sidered in future. Based on our observations, the
current model performs well for word substitution
and segmentation. But the completion of the new
sentences is still problematic. For example, we
copy the dependent NP to the new sentences. This
may break the coherence between sentences. A
better solution would be to use a pronoun to re-
place the NP. Sometimes, excessive droppings oc-
cur, e.g., “older” and “twin” are dropped in “She
has an older brother and a twin brother...”. This
results in a problematic sentence: “She has an
brother and a brother...”. There are also some er-
rors which stem from the dependency parser. In
Example 2, “An umbrella term” should be a de-
pendency of “called”. But the parser returns “su-
perset” as the dependency. In the future, we will
investigate more sophisticated features and rules
to enhance TSM.

7 Conclusions
In this paper, we presented a novel large-scale par-
allel dataset PWKP for sentence simplification.
We proposed TSM, a tree-based translation model
for sentence simplification which covers splitting,
dropping, reordering and word/phrase substitution
integrally for the first time. We also described an
efficient training method with speeding up tech-
niques for TSM. The evaluation shows that TSM
can achieve better overall readability scores than
a set of baseline systems.
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Abstract

Many Semantic Role Labeling (SRL)
combination strategies have been pro-
posed and tested on English SRL task.
But little is known about how much Chi-
nese SRL can benefit from system combi-
nation. And existing combination strate-
gies trust each individual system’s output
with the same confidence when merging
them into a pool of candidates. In our ap-
proach, we assign different weights to dif-
ferent system outputs, and add a weighted
merging stage to the conventional SRL
combination architecture. We also pro-
pose a method to obtain an appropriate
weight for each system’s output by min-
imizing some error function on the devel-
opment set. We have evaluated our strat-
egy on Chinese Proposition Bank data set.
With our minimum error weighting strat-
egy, the F1 score of the combined result
achieves 80.45%, which is 1.12% higher
than baseline combination method’s re-
sult, and 4.90% higher than the best in-
dividual system’s result.

1 Introduction

In recent years, Chinese Semantic Role Labeling
has received much research effort (Sun and Juraf-
sky, 2004; Xue, 2008; Che et al., 2008; Ding and
Chang, 2008; Sun et al., 2009; Li et al., 2009).
And Chinese SRL is also included in CoNLL-
2009 shared task (Hajič et al., 2009). On the data
set used in (Xue, 2008), the F1 score of the SRL
results using automatic syntactic analysis is still
in low 70s (Xue, 2008; Che et al., 2008; Sun et

al., 2009). As pointed out by Xue (Xue, 2008),
the SRL errors are mainly caused by the errors
in automatic syntactic analysis. In fact, Chinese
SRL suffers from parsing errors even more than
English SRL, because the state-of-the-art parser
for Chinese is still not as good as that for En-
glish. And previous research on English SRL
shows that combination is a robust and effective
method to alleviate SRL’s dependency on pars-
ing results (Màrquez et al., 2005; Koomen et
al., 2005; Pradhan et al., 2005; Surdeanu et al.,
2007; Toutanova et al., 2008). However, the ef-
fect of combination for Chinese SRL task is still
unknown. This raises two questions at least: (1)
How much can Chinese SRL benefit from combi-
nation? (2) Can existing combination strategies
be improved? All existing combination strate-
gies trust each individual system’s output with the
same confidence when putting them into a pool
of candidates. But according to our intuition, dif-
ferent systems have different performance. And
the system that have better performance should
be trusted with more confidence. We can use our
prior knowledge about the combined systems to
do a better combination.

The observations above motivated the work in
this paper. Instead of directly merging outputs
with equal weights, different outputs are assigned
different weights in our approach. An output’s
weight stands for the confidence we have in that
output. We acquire these weights by minimizing
an error function on the development set. And
we use these weights to merge the outputs. In
this paper, outputs are generated by a full parsing
based Chinese SRL system and a shallow parsing
based SRL system. The full parsing based system
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use multiple parse trees to generate multiple SRL
outputs. Whereas the shallow parsing based sys-
tem only produce one SRL output. After merging
all SRL outputs, we use greedy and integer lin-
ear programming combination methods to com-
bine the merged outputs.

We have evaluated our combination strategy on
Chinese Propbank data set used in (Xue, 2008)
and get encouraging results. With our minimum
error weighting (MEW) strategy, the F1 score
of the combined result achieves 80.45%. This
is a significant improvement over the best re-
ported SRL performance on this data set, which
is 74.12% in the literature (Sun et al., 2009).

2 Related work

A lot of research has been done on SRL combina-
tion. Most of them focused on English SRL task.
But the combination methods are general. And
they are closely related to the work in this paper.

Punyakanok et al. (2004) formulated an Integer
Linear Programming (ILP) model for SRL. Based
on that work, Koomen et al. (2005) combined sev-
eral SRL outputs using ILP method. Màrquez et
al. (2005) proposed a combination strategy that
does not require the individual system to give a
score for each argument. They used a binary clas-
sifier to filter different systems’ outputs. Then
they used a greedy method to combine the can-
didates that pass the filtering process. Pradhan
et al. (2005) combined systems that are based on
phrase-structure parsing, dependency parsing, and
shallow parsing. They also used greedy method
when combining different outputs. Surdeanu et
al. (2007) did a complete research on a variety of
combination strategies. All these research shows
that combination can improve English SRL per-
formance by 2∼5 points on F1 score. However,
little is known about how much Chinese SRL can
benefit from combination. And, as we will show,
existing combination strategies can still be im-
proved.

3 Individual SRL Systems

3.1 Full Parsing Based System

The full parsing based system utilize full syn-
tactic analysis to perform semantic role labeling.

We implemented a Chinese semantic role label-
ing system similar to the one described in (Xue,
2008). Our system consists of an argument identi-
fication stage and an argument classification stage.
In the argument identification stage, a number of
argument locations are identified in a sentence.
In the argument classification stage, each location
identified in the first stage is assigned a semantic
role label. The features used in this paper are the
same with those used in (Xue, 2008).

Maximum entropy classifier is employed for
both the argument identification and classification
tasks. And Zhang Le’s MaxEnt toolkit1 is used for
implementation.

3.2 Shallow Parsing Based System

The shallow parsing based system utilize shal-
low syntactic information at the level of phrase
chunks to perform semantic role labeling. Sun
et al. (2009) proposed such a system on Chinese
SRL and reported encouraging results. The sys-
tem used in this paper is based on their approach.
For Chinese chunking, we adopted the method
used in (Chen et al., 2006), in which chunking is
regarded as a sequence labeling task with IBO2
representation. The features used for chunking
are the uni-gram and bi-gram word/POS tags with
a window of size 2. The SRL task is also re-
garded as a sequence labeling problem. For an
argument with label ARG*, we assign the label
B-ARG* to its first chunk, and the label I-ARG*
to its rest chunks. The chunks outside of any argu-
ment are assigned the label O. The features used
for SRL are the same with those used in the one-
stage method in (Sun et al., 2009).

In this paper, we employ Tiny SVM along with
Yamcha (Kudo and Matsumoto, 2001) for Chi-
nese chunking, and CRF++2 for SRL.

3.3 Individual systems’ outputs

The maximum entropy classifier used in full pars-
ing based system and the CRF model used in shal-
low paring based system can both output classi-
fication probabilities. For the full parsing based
system, the classification probability of the ar-

1http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit
.html

2http://crfpp.sourceforge.net/
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gument classification stage is used as the argu-
ment’s probability. Whereas for the shallow pars-
ing based system, an argument is usually com-
prised of multiple chunks. For example, an argu-
ment with label ARG0 may contain three chunks
labeled as: B-ARG0, I-ARG0, I-ARG0. And each
chunk has a label probability. Thus we have three
probabilities p1, p2, p3 for one argument. In this
case, we use the geometric mean of individual
chunks’ probabilities (p1 · p2 · p3)1/3 as the ar-
gument’s probability.

As illustrated in Figure 1, in an individual sys-
tem’s output, each argument has three attributes:
its location in sentence loc, represented by the
number of its first word and last word; its semantic
role label l; and its probability p.

Sent: 外商投资企业成为中国外贸重要增长点

Args: [ ARG0 ] [pred] [ ARG1 ]

loc: (0, 2) (4, 7)

l: ARG0 ARG1

p: 0.94 0.92

Figure 1: Three attributes of an output argument:
location loc, label l, and probability p.

So each argument outputted by a system is a
triple (loc, l, p). For example, the ARG0 in Fig-
ure 1 is ((0, 2),ARG0, 0.94). Because the outputs
of baseline systems are to be combined, we call
such triple a candidate for combination.

4 Approach Overview

As illustrated in Figure 2, the architecture of our
system consists of a candidates generation stage, a
weighted merging stage, and a combination stage.
In the candidates generation stage, the baseline
systems are run individually and their outputs are
collected. We use 2-best parse trees of Berkeley
parser (Petrov and Klein, 2007) and 1-best parse
tree of Bikel parser (Bikel, 2004) and Stanford
parser (Klein and Manning, 2003) as inputs to the
full parsing based system. The second best parse
tree of Berkeley parser is used here for its good
quality. So together we have four different out-
puts from the full parsing based system. From the
shallow parsing based system, we have only one
output.

Sentence

Weighted

merging

Full parsing based SRL system
Shallow parsing 

based SRL system

Berkeley

parser

Bikel

parser

Stanford

parser
Chunker

Output1 Output4Output3Output2 Output5

Candidates pool

Combination

Final results

Candidates

Generation

Stage

Weigthed

Merging

Stage

Combination

Stage

Figure 2: The overall architecture of our system.

In the weighted merging stage, each system
output is assigned a weight according to our prior
knowledge obtained on the development set. De-
tails about how to obtain appropriate weights will
be explained in Section 6. Then all candidates
with the same loc and l are merged to one by
weighted summing their probabilities. Specifi-
cally, suppose that there are n system outputs to
be combined, with the i-th output’s weight to be
wi. And the candidate in the i-th output with loc
and l is (loc, l, pi) (If there is no candidate with loc
and l in the i-th output, pi is 0.). Then the merged
candidate is (loc, l, p), where p =

∑n
i=1wipi.

After the merging stage, a pool of merged can-
didates is obtained. In the combination stage,
candidates in the pool are combined to form a
consistent SRL result. Greedy and integer lin-
ear programming combination methods are exper-
imented in this paper.
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5 Combination Methods

5.1 Global constraints

When combining the outputs, two global con-
straints are enforced to resolve the conflict be-
tween outputs. These two constraints are:

1. No duplication: There is no duplication for
key arguments: ARG0 ∼ ARG5.

2. No overlapping: Arguments cannot overlap
with each other.

We say two argument candidates conflict with
each other if they do not satisfy the two constraints
above.

5.2 Two combination methods

Under these constraints, two methods are explored
to combine the outputs. The first one is a greedy
method. In this method, candidates with probabil-
ity below a threshold are deleted at first. Then the
remaining candidates are inspected in descending
order according to their probabilities. And each
candidate will be put into a solution set if it does
not conflict with candidates already in the set.
This greedy combination method is very simple
and has been adopted in previous research (Prad-
han et al., 2005; Màrquez et al., 2005).

The second combination method is integer lin-
ear programming (ILP) method. ILP method was
first applied to SRL in (Punyakanok et al., 2004).
Here we formulate an ILP model whose form is
different from the model in (Punyakanok et al.,
2004; Koomen et al., 2005). For convenience, we
denote the whole label set as {l1, l2, . . . , ln}. And
let l1 ∼ l6 stand for the key argument labels ARG0
∼ARG5 respectively. Suppose there are m differ-
ent locations, denoted as loc1, . . . , locm, among
all candidates in the pool. And the probability of
assigning lj to loci is pij . A binary variable xij is
defined as:

xij =

{
1 if loci is assigned label lj ,
0 otherwise.

The objective of the ILP model is to maximize the
sum of arguments’ probabilities:

max
m∑

i=1

n∑

j=1

(pij − T )xij (1)

where T is a threshold to prevent including too
many candidates in solution. T is similar to the
threshold in greedy combination method. In this
paper, both thresholds are empirically tuned on
development data, and both are set to be 0.2.

The inequalities in equation (2) make sure that
each loc is assigned at most one label.

∀1 ≤ i ≤ m :
n∑

j=1

xij ≤ 1 (2)

The inequalities in equation (3) satisfy the No
duplication constraint.

∀1 ≤ j ≤ 6 :

m∑

i=1

xij ≤ 1 (3)

For any location loci, let Ci denote the index
set of the locations that overlap with it. Then
the No overlapping constraint means that if loci
is assigned a label, i.e.,

∑n
j=1 xij = 1, then for

any k ∈ Ci, lock cannot be assigned any label,
i.e.,

∑n
j=1 xkj = 0. A common technique in ILP

modeling to form such a constraint is to use a suf-
ficiently large auxiliary constant M . And the con-
straint is formulated as:

∀1 ≤ i ≤ m :
∑

k∈Ci

n∑

j=1

xkj ≤ (1−
n∑

j=1

xij)M

(4)
In this case, M only needs to be larger than the
number of candidates to be combined. In this pa-
per, M = 500 is large enough. And we employ
lpsolve3 to solve the ILP model.

Note that the form of the ILP model in this
paper is different from that in (Punyakanok et
al., 2004; Koomen et al., 2005) in three as-
pects: (1) A special label class null, which means
no label is assigned, was added to the label set
in (Punyakanok et al., 2004; Koomen et al., 2005).
Whereas no such special class is needed in our
model, because if no label is assigned to loci,∑n

j=1 xij = 0 would simply indicate this case.
This makes our model contain fewer variables.
(2) Without null class in our model, we need to
use a different technique to formulate the No-
overlapping constraint. (3) In order to compare

3http://lpsolve.sourceforge.net/

1365



with the greedy combination method, the ILP
model in this paper conforms to exactly the same
constraints as the greedy method. Whereas many
more global constraints were taken into account
in (Punyakanok et al., 2004; Koomen et al., 2005).

6 Train Minimum Error Weights

The idea of minimum error weighting is straight-
forward. Individual outputs O1, O2, . . . , On

are assigned weights w1, w2, . . . , wn respectively.
These weights are normalized, i.e.,

∑n
i=1wi = 1.

An output’s weight can be seen as the confidence
we have in that output. It is a kind of prior knowl-
edge we have about that output. We can gain this
prior knowledge on the development set. As long
as the data of the development set and the test set
are similar, this prior knowledge should be able
to help to guide SRL combination on test set. In
this section, we discuss how to obtain appropriate
weights.

6.1 Training model
Suppose the golden answer and SRL result on de-
velopment set are d and r respectively. An error
function Er(r, d) is a function that measures the
error contained in r in reference to d. An error
function can be defined as the number of wrong
arguments in r. It can also be defined using preci-
sion, recall, or F1 score. For example, Er(r, d) =
1− Precision(r, d), or Er(r, d) = 1− F1(r, d).
Smaller value of error function means less error in
r.

The combination process can also be seen as
a function, which maps the outputs and weights
to the combined result r: r = Comb(On

1 , w
n
1 ).

Therefore, the error function of our system on de-
velopment set is:

Er(r, d) = Er(Comb(On
1 , w

n
1 ), d) (5)

From equation (5), it can be seen that: Given de-
velopment set d, if the outputs to be combined On

1

and the combination method Comb are fixed, the
error function is just a function of the weights. So
we can obtain appropriate weights by minimizing
the error function:

ŵn
1 = argmin

wn
1

Er(Comb(On
1 , w

n
1 ), d) (6)

6.2 Training algorithm

Algorithm 1 Powell Training Algorithm.
1: Input : Error function Er(w).
2: Initialize n directions d1, . . . ,dn, and

a start point w in Rn.
3: Set termination threshold δ.
4: do:
5: w1 ← w
6: for i← 1, . . . , n:
7: αi ← argmin

α
f(wi + αdi)

8: wi+1 ← wi + αidi

9: dn+1 ← wn+1 −w
10: α∗ ← argmin

α
f(w + αdn+1)

11: w′ ← w + α∗dn+1

12: ∆Er ← Er(w)− Er(w′)
13: i← arg max

1≤j≤n
Er(wj)− Er(wj+1)

14: if (α∗)2 ≥ ∆Er
Er(wi)− Er(wi+1)

:

15: for j ← i, . . . , n:
16: dj ← dj+1

17: w ← w′

18: while ∆Er > δ
19: Output: The minimum error weights w.

There are two difficulties to solve the optimiza-
tion problem in equation 6. The first one is that
the error function cannot be written to an analyt-
ical form. This is because the Comb function,
which stands for the combination process, cannot
be written as an analytical formula. So the prob-
lem cannot be solved using canonical gradient-
based optimization algorithms, because the gradi-
ent function cannot be derived. The second diffi-
culty is that, according to our experience, the er-
ror function has many local optima, which makes
it difficult to find a global optima.

To resolve the first difficulty, Modified Powell’s
method (Yuan, 1993) is employed to solve the op-
timization problem. Powell’s method is a heuris-
tic search method that does not require the objec-
tive function to have an explicit analytical form.
The training algorithm is presented in Algorithm
1. In Algorithm 1, the line search problem in steps
7 and 10 is solved using Brent’s method (Yuan,
1993). And the temination threshold δ is empiri-
cally set to be 0.001 in this paper.
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To resolve the second difficulty, we perform
multiple searches using different start points, and
then choose the best solution found.

7 Experiments

7.1 Experimental setup

We use Chinese Proposition Bank (CPB) 1.0 and
Chinese Tree Bank (CTB) 5.0 of Linguistic Data
Consortium corpus in our experiments. The train-
ing set is comprised of 648 files(chtb 081.fid to
chtb 885.fid). The development set is comprised
of 40 files(chtb 041.fid to chtb 080.fid). The
test set is comprised of 72 files(chtb 001.fid to
chtb 040.fid and chtb 900.fid to chtb 931.fid).

The same data setting has been used in (Xue,
2008; Ding and Chang, 2008; Sun et al., 2009).
Sun et al. (2009) used sentences with golden seg-
mentation and POS tags as input to their SRL
system. However, we use sentences with only
golden segmentation as input. Then we perform
automatic POS tagging using Stanford POS tag-
ger (Toutanova et al., 2003). In (Xue, 2008), the
parser used by the SRL system is trained on the
training and development set plus 275K words of
broadcast news. In this paper, all parsers used
by the full parsing based system are trained on
the training set plus the broadcast news portion
of CTB6.0. And the chunker used in the shallow
parsing based system is trained just on the training
set.

7.2 Individual outputs’ performance

In this paper the four outputs of the full parsing
based system are represented by FO1 ∼ FO4 re-
spectively. Among them, FO1 and FO2 are the
outputs using the first and second best parse trees
of Berkeley parser, FO3 and FO4 are the outputs
using the best parse trees of Stanford parser and
Bikel parser respectively. The output of the shal-
low parsing based system is represented by SO.
The individual outputs’ performance on develop-
ment and test set are listed in Table 1.

From Table 1 we can see that the performance
of individual outputs are similar on development
set and test set. On both sets, the F1 scores of
individual outputs are in the same order: FO1 >
FO2 > SO > FO3 > FO4.

Data set Outputs P (%) R(%) F1

FO1 79.17 72.09 75.47
FO2 77.89 70.56 74.04

development FO3 72.57 67.02 69.68
FO4 75.60 63.45 69.00
SO 73.72 67.35 70.39

FO1 80.75 70.98 75.55
FO2 79.44 69.37 74.06

test FO3 73.95 66.37 70.00
FO4 75.89 63.26 69.00
SO 75.69 67.90 71.59

Table 1: The results of individual systems on de-
velopment and test set.

7.3 Combining outputs of full parsing based
system

In order to investigate the benefit that the full
parsing based system can get from using multi-
ple parsers, we combine the four outputs FO1 ∼
FO4. The combination results are listed in Ta-
ble 2. In tables of this paper, “Grd” and “ILP”
stand for greedy and ILP combination methods re-
spectively, and “+MEW” means the combination
is performed with MEW strategy.

P (%) R(%) F1

Grd 82.68 73.36 77.74
ILP 82.21 73.93 77.85

Grd+MEW 81.30 75.38 78.23
ILP+MEW 81.27 75.74 78.41

Table 2: The results of combining outputs of full
parsing based system on test set.

Er FO1 FO2 FO3 FO4
Grd 1− F1 0.31 0.16 0.30 0.23
ILP 1− F1 0.33 0.10 0.27 0.30

Table 3: The minimum error weights for the re-
sults in Table 2.

From Table 2 and Table 1, we can see that, with-
out MEW strategy, the F1 score of combination
result is about 2.3% higher than the best individ-
ual output. With MEW strategy, the F1 score is
improved about 0.5% further. That is to say, with
MEW strategy, the benefit of combination is im-
proved by about 20%. Therefore, the effect of
MEW is very encouraging.

Here the error function for MEW training is
chosen to be 1 − F1. And the trained weights
for greedy and ILP methods are listed in Table 3
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separately. In tables of this paper, the column Er
corresponds to the error function used for MEW
strategy.

7.4 Combining all outputs
We have also combined all five outputs. The re-
sults are listed in Table 4. Compared with the re-
sults in Table 2, we can see that the combination
results is largely improved, especially the recall.

P (%) R(%) F1

Grd 83.64 75.32 79.26
ILP 83.31 75.71 79.33

Grd+MEW 83.34 77.47 80.30
ILP+MEW 83.02 78.03 80.45

Table 4: The results of combining all outputs on
test set.

From Table 4 and Table 1 we can see that with-
out MEW strategy, the F1 score of combination
result is about 3.8% higher than the best individ-
ual output. With MEW, the F1 score is improved
further by more than 1%. That means the bene-
fit of combination is improved by over 25% with
MEW strategy.

Here the error function for MEW training is still
1 − F1, and the trained weights are listed in Ta-
ble 5.

Er FO1 FO2 FO3 FO4 SO
Grd 1− F1 0.23 0.12 0.23 0.20 0.22
ILP 1− F1 0.24 0.08 0.22 0.21 0.25

Table 5: The minimum error weights for the re-
sults in Table 4.

7.5 Using alternative error functions for
minimum error weights training

In previous experiments, we use 1 − F1 as error
function. As pointed out in Section 6, the def-
inition of error function is very general. So we
have experimented with two other error functions,
which are 1 − Precision, and 1 − Recall. Ob-
viously, these two error functions favor precision
and recall separately. The results of combining
all five outputs using these two error functions are
listed in Table 6, and the trained weights are listed
in Table 7.

From Table 6 and Table 4, we can see that when
1 − Precison is used as error function, the pre-

Er P (%) R(%) F1

Grd+MEW 1− P 85.31 73.42 78.92
ILP+MEW 1− P 85.62 72.76 78.67
Grd+MEW 1−R 81.94 77.55 79.68
ILP+MEW 1−R 79.74 78.34 79.03

Table 6: The results of combining all outputs with
alternative error functions.

Er FO1 FO2 FO3 FO4 SO
Grd 1− P 0.25 0.24 0.22 0.22 0.07
ILP 1− P 0.30 0.26 0.20 0.15 0.09
Grd 1−R 0.21 0.10 0.17 0.15 0.37
ILP 1−R 0.24 0.04 0.10 0.22 0.39

Table 7: The minimum error weights for the re-
sults in Table 6.

cision of combination result is largely improved.
But the recall decreases a lot. Similar effect of the
error function 1−Recall is also observed.

The results of this subsection reflect the flex-
ibility of MEW strategy. This flexibility comes
from the generality of the definition of error func-
tion. The choice of error function gives us some
control over the results we want to get. We can
define different error functions to favor precision,
or recall, or some error counts such as the number
of misclassified arguments.

7.6 Discussion

In this paper, the greedy and ILP combination
methods conform to the same simple constraints
specified in Section 5. From the experiment
results, we can see that ILP method generates
slightly better results than greedy method.

In Subsection 7.4, we see that combining all
outputs using ILP method with MEW strategy
yields 4.90% improvement on F1 score over the
best individual output FO1. In order to under-
stand each output’s contribution to the improve-
ment over FO1. We compare the differences be-
tween outputs.

Let CO denote the set of correct arguments in
an output O. Then we get the following statistics
when comparing two outputs A and B: (1) the
number of common correct arguments in A and
B, i.e., |CA ∩ CB| ; (2) the number of correct ar-
guments in A and not in B, i.e., |CA \CB|; (3) the
number of correct arguments in B and not in A,
i.e., |CB \ CA|. The comparison results between
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some outputs on test set are listed in Table 8. In
this table, UF stands for the union of the 4 outputs
FO1 ∼ FO4.

A B |CA ∩ CB | |CA \ CB | |CB \ CA|
FO2 5498 508 372
FO3 5044 962 552
FO4 4815 1191 512

FO1

SO 4826 1180 920
UF SO 5311 1550 435

Table 8: Comparison between outputs on test set.

From Table 8 we can see that the output SO
has 4826 common correct arguments with FO1,
which is relatively small. And, more importantly,
SO contains 920 correct arguments not in FO1,
which is much more than any other output con-
tains. Therefore, SO is more complementary to
FO1 than other outputs. On the contrary, FO2 is
least complementary to FO1. Even compared with
the union of FO1 ∼ FO4, SO still contains 435
correct arguments not in the union. This shows
that the output of shallow parsing based system is
a good complement to the outputs of full parsing
based system. This explains why recall is largely
improved when SO is combined in Subsection 7.4.
From the analysis above we can also see that the
weights in Table 5 are quite reasonable. In Ta-
ble 5, SO is assigned the largest weight and FO2
is assigned the smallest weight.

In Subsection 7.3, the MEW strategy improves
the benefit of combination by about 20%. And in
Subsection 7.4, the MEW strategy improves the
benefit of combination by over 25%. This shows
that the MEW strategy is very effective for Chi-
nese SRL combination.

To our best knowledge, no results on Chinese
SRL combination has been reported in the litera-
ture. Therefore, to compare with previous results,
the top two results of single SRL system in the
literature and the result of our combination sys-
tem on this data set are listed in Table 9. For the
results in Table 9, the system of Sun et al. uses
sentences with golden POS tags as input. Xue’s
system and our system both use sentences with
automatic POS tags as input. The result of Sun
et al. (2009) is the best reported result on this data
set in the literature.

POS P (%) R(%) F1

(Xue, 2008) auto 76.8 62.5 68.9
(Sun et al., 2009) gold 79.25 69.61 74.12

Ours auto 83.02 78.03 80.45

Table 9: Previous best single system’s results and
our combination system’s result on this data set.

8 Conclusions

In this paper, we propose a minimum error
weighting strategy for SRL combination and in-
vestigate the benefit that Chinese SRL can get
from combination. We assign different weights to
different system outputs and add a weighted merg-
ing stage to conventional SRL combination sys-
tem architecture. And we also propose a method
to train these weights on development set. We
evaluate the MEW strategy on Chinese Propbank
data set with greedy and ILP combination meth-
ods.

Our experiments have shown that the MEW
strategy is very effective for Chinese SRL combi-
nation, and the benefit of combination can be im-
proved over 25% with this strategy. And also, the
MEW strategy is very flexible. With different def-
initions of error function, this strategy can favor
precision, or recall, or F1 score. The experiments
have also shown that Chinese SRL can benefit a
lot from combination, especially when systems
based on different syntactic views are combined.
The SRL result with the highest F1 score in this
paper is generated by ILP combination together
with MEW strategy. In fact, the MEW strategy is
easy to incorporate with other combination meth-
ods, just like incorporating with the greedy and
ILP combination methods in this paper.
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Abstract

Unrehearsed spoken language often
contains disfluencies. In order to cor-
rectly interpret a spoken utterance,
any such disfluencies must be identi-
fied and removed or otherwise dealt
with. Operating on transcripts of
speech which contain disfluencies, our
particular focus here is the identifica-
tion and correction of speech repairs
using a noisy channel model. Our aim
is to develop a high-accuracy mecha-
nism that can identify speech repairs
in an incremental fashion, as the ut-
terance is processed word-by-word.

We also address the issue of the evalu-
ation of such incremental systems. We
propose a novel approach to evalua-
tion, which evaluates performance in
detecting and correcting disfluencies
incrementally, rather than only assess-
ing performance once the processing of
an utterance is complete. This demon-
strates some shortcomings in our ba-
sic incremental model, and so we then
demonstrate a technique that improves
performance on the detection of disflu-
encies as they happen.

1 Introduction

One of the most obvious differences between
written language and spoken language is the
fact that the latter presents itself incremen-
tally over some time period. Most natural lan-
guage processing applications operate on com-
plete sentences; but for real time spontaneous
speech, there are potential benefits to incre-
mentally processing the input so that a system
can stay responsive and interact directly be-

fore a speaker’s utterance is complete. Work
in psycholinguistics supports the view that the
human parsing mechanism works incremen-
tally, with partial semantic interpretations be-
ing produced before the complete utterance
has been heard (Marslen-Wilson, 1973). Our
interest is in developing similarly incremental
processing techniques for natural language in-
terpretation, so that, for example, a speech
recognizer might be able to interject during
a long utterance to object, cut the speaker
short, or correct a mistaken assumption; such
a mechanism is even required for the appro-
priate timing of backchannel signals. Addi-
tionally the incremental nature of the model
allows potential application of this model in
speech recognition models.

Another feature of unrehearsed spoken lan-
guage that has no obvious correlate in written
language is the presence of disfluencies.1 Dis-
fluencies are of different types, ranging from
simple filled pauses (such as um and uh) to
more complicated structures where the se-
quence of words that make up the utterance is
‘repaired’ while it is being produced. Whereas
simpler disfluencies may be handled by sim-
ply deleting them from the sequence of words
under consideration, the editing terms in a
speech repair are part of the utterance, and
therefore require more sophisticated process-
ing.

There are three innovations in the present
paper. First, we demonstrate that a noisy
channel model of speech repairs can work ac-
curately in an incremental fashion. Second,
we provide an approach to the evaluation of

1Although some disfluencies can be considered
grammatical errors, they are generally quite distinct
in both cause and nature from the kinds of grammat-
ical errors found in written text.
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such an incremental model. Third, we tackle
the problem of the early detection of speech
repairs, and demonstrate a technique that de-
creases the latency (as measured in tokens)
involved in spotting that a disfluency has oc-
curred.

The rest of the paper is structured as fol-
lows. Section 2 provides some background
on speech repairs and existing approaches to
handling them, including Johnson and Char-
niak’s (2004) model, which we use as a start-
ing point for our incremental model. Section
3 describes our model in detail, focusing on
the noisy channel model and the incremental
component of this model. Section 4 introduces
some considerations that arise in the develop-
ment of techniques for the evaluation of in-
cremental disfluency detection; we then pro-
vide a quantitative assessment of our perfor-
mance using these techniques. Our evaluation
reveals that our basic incremental model does
not perform very well at detecting disfluencies
close to where they happen, so in Section 5 we
present a novel approach to optimise detection
of these disfluencies as early as possible. Fi-
nally Section 6 concludes and discusses future
work.

2 Speech Repairs

We adopt the terminology and definitions in-
troduced by Shriberg (1994) to discuss disflu-
ency. We are particularly interested in what
are called repairs. These are the hardest
types of disfluency to identify since they are
not marked by a characteristic vocabulary.
Shriberg (1994) identifies and defines three
distinct parts of a repair, referred to as the
reparandum, the interregnum and the re-
pair. Consider the following utterance:

I want a flight

reparandum︷ ︸︸ ︷
to Boston,

uh, I mean
︸ ︷︷ ︸

interregnum

to Denver
︸ ︷︷ ︸

repair

on Friday
(1)

The reparandum to Boston is the part of the
utterance that is being edited out; the inter-
regnum uh is a filler, which may not always be

present; and the repair to Denver replaces the
reparandum.

Given an utterance that contains such a re-
pair, we want to be able to correctly detect
the start and end positions of each of these
three components. We can think of each word
in an utterance as belonging to one of four
categories: fluent material, reparandum, in-
terregnum, or repair. We can then assess the
accuracy of techniques that attempt to detect
disfluencies by computing precision and recall
values for the assignment of the correct cate-
gories to each of the words in the utterance,
as compared to the gold standard as indicated
by annotations in the corpus.

An alternative means of evaluation would
be to simply generate a new signal with the
reparandum and filler removed, and compare
this against a ‘cleaned-up’ version of the ut-
terance; however, Core and Schubert (1999)
argue that, especially in the case of speech
repairs, it is important not to simply throw
away the disfluent elements of an utterance,
since they can carry meaning that needs to
be recovered for proper interpretation of the
utterance. We are therefore interested in the
first instance in a model of speech error detec-
tion, rather than a model of correction.

Johnson and Charniak (2004) describe such
a model, using a noisy-channel based approach
to the detection of the start and end points of
reparanda, interregna and repairs. Since we
use this model as our starting point, we pro-
vide a more detailed explanation in Section 3.

The idea of using a noisy channel model
to identify speech repairs has been explored
for languages other than English. Honal and
Schultz (2003) use such a model, compar-
ing speech disfluency detection in spontaneous
spoken Mandarin against that in English. The
approach performs well in Mandarin, although
better still in English.

Both the models just described operate on
transcripts of completed utterances. Ideally,
however, when we deal with speech we would
like to process the input word by word as it is
received. Being able to do this would enable
tighter integration in both speech recognition
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and interpretation, which might in turn im-
prove overall accuracy.

The requirement for incrementality is recog-
nised by Schuler et al. (2010), who employ
an incremental Hierarchical Hidden Markov
Model (HHMM) to detect speech disfluen-
cies. The HHMM is trained on manually an-
notated parse trees which are transformed by
a right corner transformation; the HHMM is
then used in an incremental fashion on un-
seen data, growing the parse structure each
time a new token comes in. Special subtrees
in this parse can carry a marker indicating
that the span of the subtree consists of tokens
corresponding to a speech disfluency. Schuler
et al.’s approach thus provides scope for de-
tecting disfluencies in an incremental fashion.
However, their reported accuracy scores are
not as good as those of Johnson and Char-
niak (2004): they report an F-score of 0.690
for their HHMM+RCT model, as compared
to 0.797 for Johnson and Charniak’s parser
model.

Our aim in this paper, then, is to investigate
whether it is possible to adapt Johnson and
Charniak’s model to process utterances incre-
mentally, without any loss of accuracy. To
define the incremental component more pre-
cisely, we investigate the possibility of mark-
ing the disfluencies as soon as possible during
the processing of the input. Given two models
that provide comparable accuracy measured
on utterance completion, we would prefer a
model which detects disfluencies earlier.

3 The Model

In this section, we describe Johnson and Char-
niak’s (2004) noisy channel model, and show
how this model can be made incremental.

As a data set to work with, we use the
Switchboard part of the Penn Treebank 3 cor-
pus. The Switchboard corpus is a corpus of
spontaneous conversations between two par-
ties. In Penn Treebank 3, the disfluencies are
manually annotated. Following Johnson and
Charniak (2004), we use all of sections 2 and
3 for training; we use conversations 4[5-9]* for
a held-out training set; and conversations 40*,

41[0-4]* and 415[0-3]* as the held-out test set.

3.1 The Noisy Channel Model

To find the repair disfluencies a noisy channel
model is used. For an observed utterance with
disfluencies, y, we wish to find the most likely
source utterance, x̂, where:

x̂ = argmaxx p(x | y) (2)

= argmaxx p(y | x) p(x)

Here we have a channel model p(y|x) which
generates an utterance y given a source x and
a language model p(x). We assume that x
is a substring of y, i.e., the source utterance
can be obtained by marking words in y as a
disfluency and effectively removing them from
this utterance.

Johnson and Charniak (2004) experiment
with variations on the language model; they
report results for a bigram model, a trigram
model, and a language model using the Char-
niak Parser (Charniak, 2001). Their parser
model outperforms the bigram model by 5%.
The channel model is based on the intuition
that a reparandum and a repair are generally
very alike: a repair is often almost a copy of
the reparandum. In the training data, over
60% of the words in a reparandum are lexically
identical to the words in the repair. Exam-
ple 1 provides an example of this: half of the
repair is lexically identical to the reparandum.
The channel model therefore gives the high-
est probability when the reparandum and re-
pair are lexically equivalent. When the poten-
tial reparandum and potential repair are not
identical, the channel model performs dele-
tion, insertion or substitution. The proba-
bilities for these operations are defined on a
lexical level and are derived from the training
data. This channel model is formalised us-
ing a Synchronous Tree Adjoining Grammar
(STAG) (Shieber and Schabes, 1990), which
matches words from the reparandum to the
repair. The weights for these STAG rules are
learnt from the training text, where reparanda
and repairs are aligned to each other using a
minimum edit-distance string aligner.

1373



For a given utterance, every possible ut-
terance position might be the start of a
reparandum, and every given utterance po-
sition thereafter might be the start of a re-
pair (to limit complexity, a maximum distance
between these two points is imposed). Ev-
ery disfluency in turn can have an arbitrary
length (again up to some maximum to limit
complexity). After every possible disfluency
other new reparanda and repairs might occur;
the model does not attempt to generate cross-
ing or nested disfluencies, although they do
very occasionally occur in practice. To find
the optimal selection for reparanda and re-
pairs, all possibilities are calculated and the
one with the highest probability is selected.
A chart is filled with all the possible start
and end positions of reparanda, interregna
and repairs; each entry consists of a tuple
〈rmbegin, irbegin, rrbegin, rrend〉, where rm is the
reparandum, ir is the interregnum and rr is
the repair. A Viterbi algorithm is used to find
the optimal path through the utterance, rank-
ing each chart entry using the language model
and channel model. The language model, a
bigram model, can be easily calculated given
the start and end positions of all disfluency
components. The channel model is slightly
more complicated because an optimal align-
ment between reparandum and repair needs
to be calculated. This is done by extending
each partial analysis by adding a word to the
reparandum, the repair or both. The start po-
sition and end position of the reparandum and
repair are given for this particular entry. The
task of the channel model is to calculate the
highest probable alignment between reparan-
dum and repair. This is done by initialising
with an empty reparandum and repair, and
‘growing’ the analysis one word at a time. Us-
ing a similar approach to that used in calculat-
ing the edit-distance between reparandum and
repair, the reparandum and repair can both be
extended with one of four operations: deletion
(only the reparandum grows), insertion (only
the repair grows), substitution (both grow),
or copy (both grow). When the reparandum
and the repair have their length correspond-

ing to the current entry in the chart, the chan-
nel probability can be calculated. Since there
are multiple alignment possibilities, we use dy-
namic programming to select the most proba-
ble solutions. The probabilities for insertion,
deletion or substitution are estimated from
the training corpus. We use a beam-search
strategy to find the final optimum when com-
bining the channel model and the language
model.

3.2 Incrementality

Taking Johnson and Charniak’s model as a
starting point, we would like to develop an in-
cremental version of that algorithm. We sim-
ulate incrementality by maintaining for each
utterance to be processed an end-of-prefix
boundary; tokens after this boundary are
not available for the model to use. At each
step in our incremental model, we advance this
boundary by one token (the increment), un-
til finally the entire utterance is available. We
make use of the notion of a prefix, which is
a substring of the utterance consisting of all
tokens up to this boundary marker.

Just as in the non-incremental model, we
keep track of all the possible reparanda and re-
pairs in a chart. Every time the end-of-prefix
boundary advances, we update the chart: we
add all possible disfluencies which have the
end position of the repair located one token
before the end-of-prefix boundary, and we add
all possible start points for the reparandum,
interregna and repair, and end points for the
reparandum and interregna, given the order-
ing constraints of these components.

In our basic incremental model, we leave the
remainder of the algorithm untouched. When
the end-of-prefix boundary reaches the end of
the utterance, and thus the entire utterance
is available, this model results in an iden-
tical analysis to that provided by the non-
incremental model, since the chart contains
identical entries, although calculated in a dif-
ferent order. Intuitively, this model should
perform well when the current prefix is very
close to being a complete utterance; and it
should perform less well when a potential dis-
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fluency is still under construction, since these
situations are not typically found in the train-
ing data. We will return to this point further
below.

We do not change the training phase of the
model and we assume that the optimal values
found for the non-incremental model are also
optimal for the incremental model, since most
weights which need to be learned are based on
lexical values. Other weights are bigram based
values, and values dealing with unknown to-
kens (i.e., tokens which occur in the test data,
but not in the training data); it is not unrea-
sonable to assume these weights are identical
or very similar in both the incremental and
the non-incremental model.

4 Evaluation Models and Their
Application

As well as evaluating the accuracy of the anal-
ysis returned at the end of the utterance, it
seems reasonable to also evaluate how quickly
and accurately an incremental algorithm de-
tects disfluencies on a word-by-word basis as
the utterance is processed. In this section, we
provide the methodological background to our
approach, and in Section 5.2 we discuss the
performance of our model when evaluated in
this way.

Incremental systems are often judged solely
on the basis of their output when the utter-
ance being processed is completed. Although
this does give an insight into how well a system
performs overall, it does not indicate how well
the incremental aspects of the mechanism per-
form. In this section we present an approach
to the evaluation of a model of speech repair
detection which measures the performance of
the incremental component.

One might calculate the accuracy over all
prefixes using a simple word accuracy score.
However, because each prefix is a superstring
of each previous prefix, such a calculation
would not be fair: tokens that appear in early
in the utterance will be counted more often
than tokens that appear later in the utterance.
In theory, the analysis of the early tokens can
change at each prefix, so arguably it would

make sense to reevaluate the complete analy-
sis so far at every step. In practice, however,
these changes do not happen, and so this mea-
surement would not reflect the performance of
the system correctly.

Our approach is to define a measure of re-
sponsiveness: that is, how soon is a dis-
fluency detected? We propose to measure
responsiveness in two ways. The time-to-
detection score indicates how many tokens
following a disfluency are read before the given
disfluency is marked as one; the delayed ac-
curacy score looks n tokens back from the
boundary of the available utterance and, when
there is a gold standard disfluency-marked to-
ken at that distance, counts how often these
tokens are marked correctly.

We measure the time-to-detection score by
two numbers, corresponding to the number of
tokens from the start of the reparandum and
the number of tokens from the start of the re-
pair. We do this because disfluencies can be of
different lengths. We assume it is unlikely that
a disfluency will be found before the reparan-
dum is completed, since the reparandum it-
self is often fluent. We measure the time-to-
detection by the first time a given disfluency
appears as one.

Since the model is a statistical model, it
is possible that the most probable analysis
marks a given word at position j as a disflu-
ency, while in the next prefix the word in the
same position is now no longer marked as be-
ing disfluent. A prefix later this word might
be marked as disfluent again. This presents
us with a problem. How do we measure when
this word was correctly identified as disfluent:
the first time it was marked as such or the sec-
ond time? Because of the possibility of such
oscillations, we take the first marking of the
disfluency as the measure point. Disfluencies
which are never correctly detected are not part
of the time-to-detection score.

Since the evaluation starts with disfluencies
found by the model, this measurement has
precision-like properties only. Consequently,
there are easy ways to inflate the score arti-
ficially at the cost of recall. We address this
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by also calculating the delayed accuracy. This
is calculated at each prefix by looking back n
tokens from the prefix boundary, where n = 0
for the prefix boundary. For each n we cal-
culate the accuracy score at that point over
all prefixes. Each token is only assessed once
given a set value of n, so we do not suffer
from early prefixes being assessed more often.
However, larger values of n do not take all to-
kens into account, since the last y tokens of
an utterance will not play a part in the ac-
curacy when y < n. Since we evaluate given
a gold standard disfluency, this measurement
has recall-like properties.

Together with the final accuracy score over
the entire utterance, the time-to-detection
and delayed accuracy scores provide different
insights and together give a good measure-
ment of the responsiveness and performance
of the model.

Our incremental model has the same fi-
nal accuracy as the original non-incremental
model; this corresponds to an F-score (har-
monic mean) of 0.778 on a word basis.

We found the average time to detection,
measured in tokens for this model to be 8.3
measured from the start of reparandum and
5.1 from the start of repair. There are situ-
ations where disfluencies can be detected be-
fore the end of the repair; by counting from
the start rather than the end of the disfluency
components, we provide a way of scoring in
such cases. To provide a better insight into
what is happening, we also report the average
distance since the start of the reparandum.
We find that the time to detect is larger than
the average repair length; this implies that,
under this particular model, most disfluencies
are only detected after the repair is finished.
In fact the difference is greater than 1, which
means that in most cases it takes one more to-
ken after the repair before the model identifies
the disfluency.

Table 1 shows the delayed accuracy. We can
see that the score first rises quickly after which
the increases become much smaller. As men-
tioned above, a given disfluency detection in
theory might oscillate. In practice, however,

oscillating disfluencies are very rare, possibly
because a bigram model operates on a very lo-
cal level. Given that oscillation is rare, a quick
stabilisation of the score indicates that, when
we correctly detect a disfluency, this happens
rather quickly after the disfluency has com-
pleted, since the accuracy for the large n is
calculated over the same tokens as the accu-
racy for the smaller n (although not in the
same prefix).

5 Disfluencies around Prefix
Boundaries

5.1 Early detection algorithm

Our model uses a language model and a chan-
nel model to locate disfluencies. It calculates
a language model probability for the utterance
with the disfluency taken out, and it calculates
the probability of the disfluency itself with the
STAG channel model.

Consider the following example utterance
fragment where a repair disfluency occurs:

. . . wi

reparandum︷ ︸︸ ︷
rni+1 rni+2

repair︷ ︸︸ ︷
rri+3 rri+4 wi+5 . . . (3)

Here, the subscripts indicate token position in
sequence; w is a token outside the disfluency;
and rn is a reparandum being repaired by
the repair rr. The language model estimates
the continuation of the utterance without the
disfluency. The model considers whether the
utterance continuation after the disfluency is
probable given the language model; the rel-
evant bigram here is p(rri+3|wi), continuing
with p(rri+4|rri+3). However, under the in-
cremental model, it is possible the utterance
has only been read as far as token i + 3, in
which case the probability p(wi+4|wi+3) is un-
defined.

We would like to address the issue of look-
ing beyond a disfluency under construction.
We assume the issue of not being able to look
for an utterance continuation after the repair
component of the disfluency can be found back
in the incremental model scores. A disfluency
is usually only detected after the disfluency is
completely uttered, and always requires one
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n tokens back 1 2 3 4 5 6
accuracy 0.500 0.558 0.631 0.665 0.701 0.714

Table 1: delayed accuracy, n tokens back from the end of prefixes

n tokens back 1 2 3 4 5 6
accuracy 0.578 0.633 0.697 0.725 0.758 0.770

Table 2: delayed accuracy under the updated model

more token in the basic model. In the given
instance this means it is unlikely that we will
detect the disfluency before i + 5.

In order to make our model more respon-
sive, we propose a change which makes it
possible for the model to calculate channel
probabilities and language model probabili-
ties before the repair is completed. Assum-
ing we have not yet reached the end of utter-
ance, we would like to estimate the continua-
tion of the utterance with the relevant bigram
p(rri+4|rri+3). Since rri+4 is not yet avail-
able we cannot calculate this probability. The
correct thing to do is to sum over all possible
continuations, including the end of utterance
token (for the complete utterance, as opposed
to the current prefix). This results in the fol-
lowing bigram estimation:

∑

t∈vocabulary

p(t|wi) (4)

This estimation is not one we need to derive
from our data set, since p is a true probability.
In this case, the sum over all possible continu-
ations (this might include an end of utterance
marker, in which case the utterance is already
complete) equals 1. We therefore modify the
algorithm so that it takes this into account.
This solves the problem of the language model
assessing the utterance with the disfluency cut
out, when nothing from the utterance contin-
uation after a disfluency is available.

The other issue which needs to be addressed
is the alignment of the reparandum with the
repair when the repair is not yet fully avail-
able. Currently the model is encouraged to
align the individual tokens of the reparandum
with those of the repair. The algorithm has

lower estimations when the reparandum can-
not be fully aligned with the repair because
the reparandum and repair differ considerably
in length.

We note that most disfluencies are very
short: reparanda and repairs are often only
one or two tokens each in length, and the inter-
regnum is often empty. To remove the penalty
for an incomplete repair, we allow the repair to
grow one token beyond the prefix boundary;
given the relative shortness of the disfluencies,
this seems reasonable. Since this token is not
available, we cannot calculate the lexical sub-
stitution value. Instead we define a new opera-
tion in the channel model: in addition to dele-
tion, insertion, copy, and substitution, we add
an additional substitution operation, the in-
cremental completion substitution. This
operation does not compete with the copy op-
eration or the normal substitution operation,
since it is only defined when the last token of
the repair falls at the prefix boundary.

5.2 Results for the Early detection
algorithm

The results of these changes are reflected
in new time-to-detection and delayed accu-
racy scores. Again we calculated the time-
to-detection, and found this to be 7.5 from
the start of reparandum and 4.6 from the
start of repair. Table 2 shows the results un-
der the new early completion model using the
delayed accuracy method. We see that the
updated model has lower time-to-detection
scores (close to a full token earlier); for de-
layed accuracy, we note that the scores sta-
bilise in a similar fashion, but the scores for
the updated model rise slightly more quickly.
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6 Conclusions and Future Work

We have demonstrated an incremental model
for finding speech disfluencies in spoken lan-
guage transcripts. When we consider com-
plete utterances, the incremental model pro-
vides identical results to those of a non-
incremental model that delivers state-of-the-
art accuracy in speech repair detection. We
have investigated a number of measures which
allow us to evaluate the model on an incremen-
tal level. Most disfluencies are identified very
quickly, typically one or two tokens after the
disfluency has been completed. We addressed
the problems of the model around the end of
prefix boundaries. These are repairs which are
either still in the process of being uttered or
have just been completed. We have addressed
this issue by making some changes to how the
model deals with prefix boundaries, and we
have shown that this improves the responsive-
ness of the model.

The work reported in this paper uses a n-
gram model as a language model and a STAG
based model for the repair. We would like
to replace the n-gram language model with a
better language model. Previous work (John-
son and Charniak, 2004) has shown that dis-
fluency detection can be improved by replac-
ing the n-gram language model with a statis-
tical parser. Besides a reported 5% accuracy
improvement, this also provides a structural
analysis, something which an n-gram model
does not. We would like to investigate a sim-
ilar extension in our incremental approach,
which will require the integration of an in-
cremental statistical parser with our noisy
channel model. While transcripts of spoken
texts come with manually annotated sentence
boundaries, real time spoken language does
not. The language model in particular takes
these sentence boundaries into account. We
therefore propose to investigate the proper-
ties of this model when sentence boundaries
are removed.
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Abstract

We show how the use of syntactic struc-
ture enables the resolution of hedge scope
in a hybrid, two-stage approach to un-
certainty analysis. In the first stage, a
Maximum Entropy classifier, combining
surface-oriented and syntactic features,
identifies cue words. With a small set of
hand-crafted rules operating over depen-
dency representations in stage two, we at-
tain the best overall result (in terms of
both combined ranks and average F1) in
the 2010CoNLL Shared Task.

1 Background—Motivation

Recent years have witnessed an increased interest
in the analysis of various aspects of sentiment in
natural language (Pang & Lee, 2008). The sub-
task ofhedge resolution deals with the analysis of
uncertainty as expressed in natural language, and
the linguistic means (so-called hedges) by which
speculation or uncertainty are expressed. Infor-
mation of this kind is of importance for various
mining tasks which aim at extracting factual data.
Example (1), taken from the BioScope corpus
(Vincze, Szarvas, Farkas, Móra, & Csirik, 2008),
shows a sentence where uncertainty is signaled by
the modal verbmay.1

(1) {The unknown amino acid〈may〉 be used by these
species}.

The topic of the Shared Task at the 2010 Con-
ference for Natural Language Learning (CoNLL)
is hedge detection in biomedical literature—in a
sense ‘zooming in’ on one particular aspect of the
broader BioNLP Shared Task in 2009 (Kim, Ohta,
Pyysalo, Kano, & Tsujii, 2009). It involves two
subtasks: Task 1 is described aslearning to detect

1In examples throughout this paper, angle brackets high-
light hedge cues, and curly braces indicate the scope of a
given cue, as annotated in BioScope.

sentences containing uncertainty; the objective of
Task 2 islearning to resolve the in-sentence scope
of hedge cues (Farkas, Vincze, Mora, Csirik, &
Szarvas, 2010). The organizers further suggest:
This task falls within the scope of semantic analy-
sis of sentences exploiting syntactic patterns [...].

The utility of syntactic information within var-
ious approaches to sentiment analysis in natu-
ral language has been an issue of some debate
(Wilson, Wiebe, & Hwa, 2006; Ng, Dasgupta,
& Arifin, 2006), and the potential contribution of
syntax clearly varies with the specifics of the task.
Previous work in the hedging realm has largely
been concerned with cue detection, i.e. identify-
ing uncertainty cues such asmay in (1), which
are predominantly individual tokens (Medlock &
Briscoe, 2007; Kilicoglu & Bergler, 2008). There
has been little previous work aimed at actually
resolving the scope of such hedge cues, which
presumably constitutes a somewhat different and
likely more difficult problem. Morante and Daele-
mans (2009) present a machine-learning approach
to this task, using token-level, lexical informa-
tion only. To this end,CoNLL 2010 enters largely
uncharted territory, and it remains to be seen (a)
whether syntactic analysis indeed is a necessary
component in approaching this task and, more
generally, (b) to what degree the specific task
setup can inform us about the strong and weak
points in current approaches and technology.

In this article, we investigate the contribution
of syntax to hedge resolution, by reflecting on our
experience in theCoNLL 2010 task.2 Our CoNLL

system submission ranked fourth (of 24) on Task 1
and third (of 15) on Task 2, for an overall best av-
erage result (there appears to be very limited over-
lap among top performers for the two subtasks).

2It turns out, in fact, that all the top-performing systems
in Task 2 of theCoNLLShared Task rely on syntactic informa-
tion provided by parsers, either in features for machine learn-
ing or as input to manually crafted rules (Morante, Asch, &
Daelemans, 2010; Rei & Briscoe, 2010).
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Sentences Hedged Cues Multi-Word Tokens Cue Tokens
Sentences Cues

Abstracts 11871 2101 2659 364 309634 3056
Articles 2670 519 668 84 68579 782
Total 14541 2620 3327 448 378213 3838

Table 1: Summary statistics for the Shared Task training data.

This article transcends ourCoNLL system descrip-
tion (Velldal, Øvrelid, & Oepen, 2010) in several
respects, presenting updated and improved cue de-
tection results (§ 3 and § 4), focusing on the role
of syntactic information rather than on machine
learning specifics (§ 5 and § 6), providing an anal-
ysis and discussion of Task 2 errors (§ 7), and gen-
erally aiming to gauge the value of available anno-
tated data and processing tools (§ 8). We present
a hybrid, two-level approach for hedge resolution,
where a statistical classifier detects cue words, and
a small set of manually crafted rules operating
over syntactic structures resolve scope. We show
how syntactic information—produced by a data-
driven dependency parser complemented with in-
formation from a ‘deep’, hand-crafted grammar—
contributes to the resolution of in-sentence scope
of hedge cues, discussing various types of syn-
tactic constructions and associated scope detec-
tion rules in considerable detail. We furthermore
present a manual error analysis, which reveals re-
maining challenges in our scope resolution rules
as well as several relevant idiosyncrasies of the
preexisting BioScope annotation.

2 Task, Data, and System Basics

Task Definition and Evaluation Metrics
Task 1 is a binary sentence classification task:
identifying utterances as beingcertain or uncer-
tain. Following common practice, this subtask
is evaluated in terms of precision, recall, and
F1 for the ‘positive’ class, i.e.uncertain. In
our work, we approach Task 1 as a byproduct
of the full hedge resolution problem, labeling a
sentence asuncertain if it contains at least one
token classified as a hedge cue. In addition to
the sentence-level evaluation for Task 1, we also
present precision, recall, and F1 for the cue-level.

Task 2 comprises two subtasks: cue detection
and scope resolution. The officialCoNLL eval-

uation does not tease apart these two aspects of
the problem, however: Only an exact match of
both the cue and scope bracketing (in terms of
substring positions) will be counted as a success,
again quantified in terms of precision, recall, and
F1. Discussing our results below, we report cue
detection and scope resolution performance sepa-
rately, and further put scope results into perspec-
tive against an upper bound based on the gold-
standard cue annotation.

Besides the primary biomedical domain data,
some annotated Wikipedia data was provided
for Task 1, and participating systems are classi-
fied asin-domain (using exclusively the domain-
specific data), cross-domain (combining both
types of training data), oropen (utilizing addi-
tional uncertainty-related resources). In our work,
we focus on the interplay of syntax and the more
challenging Task 2; we ignored the Wikipedia
track in Task 1. Despite our using generalNLP

tools (see below), our system falls into the most
restrictive,in-domain category.

Training and Evaluation Data The training
data for theCoNLL 2010 Shared Task is taken from
the BioScope corpus (Vincze et al., 2008) and
consists of 14,541 ‘sentences’ (or other root-level
utterances) from biomedical abstracts and articles
(see Table 1).3 The BioScope corpus provides
annotation for hedge cues as well as their scope.
According to the annotation guidelines (Vincze et
al., 2008), the annotation adheres to a principle
of minimalism when it comes to hedge cues, i.e.
the minimal unit expressing hedging is annotated.
The inverse is true of scope annotations, which ad-
here to a principle of maximal scope—meaning
that scope should be set to the largest syntactic

3As it was known beforehand that evaluation would draw
on full articles only, we put more emphasis on the article
subset of the training data, for example in cross validation
testing and manual diagnosis of errors.

1380



ID FORM LEMMA POS FEATS HEAD DEPREL XHEAD XDEP
1 The the DT _ 4 NMOD 4 SPECDET
2 unknown unknown JJ degree:attributive 4 NMOD 4 ADJUNCT
3 amino amino JJ degree:attributive 4 NMOD 4 ADJUNCT
4 acid acid NN pers:3|case:nom|num:sg|ntype:common 5 SBJ 3 SUBJ
5 may may MD mood:ind|subcat:MODAL|tense:pres|clauseType:decl 0 ROOT 0 ROOT
6 be be VB _ 5 VC 7 PHI
7 used use VBN subcat:V-SUBJ-OBJ|vtype:main|passive:+ 6 VC 5 XCOMP
8 by by IN _ 7 LGS 9 PHI
9 these these DT deixis:proximal 10 NMOD 10 SPECDET
10 species specie NNS num:pl|pers:3|case:obl|common:count|ntype:common 8 PMOD 7 OBL-AG
11 . . . _ 5 P 0 PUNC

Table 2: Stacked dependency representation of example (1),with MaltParser andXLE annotations.

unit possible.
For evaluation purposes, the task organizers

provided newly annotated biomedical articles, fol-
lowing the same general BioScope principles. The
CoNLL 2010 evaluation data comprises 5,003 ad-
ditional utterances (138,276 tokens), of which 790
are annotated as hedged. The data contains a to-
tal of 1033 cues, of which 87 are so-called multi-
word cues (i.e. cues spanning multiple tokens),
comprising 1148 cue tokens altogether.

Stacked Dependency Parsing For syntactic
analysis we employ the open-source MaltParser
(Nivre, Hall, & Nilsson, 2006), a platform for
data-driven dependency parsing. For improved
accuracy and portability across domains and gen-
res, we make our parser incorporate the pre-
dictions of a large-scale, general-purposeLFG

parser—following the work of Øvrelid, Kuhn, and
Spreyer (2009). A technique dubbedparser stack-
ing enables the data-driven parser to learn, not
only from gold standard treebank annotations, but
from the output of another parser (Nivre & Mc-
Donald, 2008). This technique has been shown to
provide significant improvements in accuracy for
both English and German (Øvrelid et al., 2009),
and a similar setup employing anHPSG gram-
mar has been shown to increase domain indepen-
dence in data-driven dependency parsing (Zhang
& Wang, 2009). The stacked parser combines
two quite different approaches—data-driven de-
pendency parsing and ‘deep’ parsing with a hand-
crafted grammar—and thus provides us with a
broad range of different types of linguistic infor-
mation for the hedge resolution task.

MaltParser is based on a deterministic pars-
ing strategy in combination with treebank-induced
classifiers for predicting parse transitions. It sup-
ports a rich feature representation of the parse his-

tory in order to guide parsing and may easily be
extended to take additional features into account.
The procedure to enable the data-driven parser
to learn from the grammar-driven parser is quite
simple. We parse a treebank with theXLE plat-
form (Crouch et al., 2008) and the English gram-
mar developed within the ParGram project (Butt,
Dyvik, King, Masuichi, & Rohrer, 2002). We
then convert theLFG output to dependency struc-
tures, so that we have two parallel versions of the
treebank—one gold standard and one withLFG

annotation. We extend the gold standard treebank
with additional information from the correspond-
ing LFG analysis and train MaltParser on the en-
hanced data set.

Table 2 shows the enhanced dependency rep-
resentation of example (1) above, taken from the
training data. For each token, the parsed data con-
tains information on the word form, lemma, and
part of speech (PoS), as well as on the head and
dependency relation in columns 6 and 7. The
addedXLE information resides in theFEATS col-
umn, and in theXLE-specific head and depen-
dency columns 8 and 9. Parser outputs, which in
turn form the basis for our scope resolution rules
discussed in Section 5, also take this same form.
The parser employed in this work is trained on
the Wall Street Journal sections 2 – 24 of the Penn
Treebank (PTB), converted to dependency format
(Johansson & Nugues, 2007) and extended with
XLE features, as described above. Parsing uses the
arc-eager mode of MaltParser and anSVM with
a polynomial kernel. When tested using 10-fold
cross validation on the enhancedPTB, the parser
achieves a labeled accuracy score of 89.8.

PoS Tagging and Domain Variation Our
parser is trained on financial news, and although
stacking with a general-purposeLFG parser is ex-
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pected to aid domain portability, substantial dif-
ferences in domain and genre are bound to neg-
atively affect syntactic analysis (Gildea, 2001).
MaltParser presupposes that inputs have beenPoS

tagged, leaving room for variation in preprocess-
ing. On the one hand, we aim to make parser
inputs maximally similar to its training data (i.e.
the conventions established in thePTB); on the
other hand we wish to benefit from specialized re-
sources for the biomedical domain.

The GENIA tagger (Tsuruoka et al., 2005) is
particularly relevant in this respect (as could be
the GENIA Treebank proper4). However, we
found thatGENIA tokenization does not match the
PTB conventions in about one out of five sen-
tences (for example wrongly splitting tokens like
‘390,926’ or ‘Ca(2+)’); also in tagging proper
nouns, GENIA systematically deviates from the
PTB. Hence, we adapted an in-house tokenizer
(using cascaded finite-state rules) to theCoNLL

task, run twoPoS taggers in parallel, and eclec-
tically combine annotations across the various
preprocessing components—predominantly giv-
ing precedence toGENIA lemmatization andPoS

hypotheses.
To assess the impact of improved, domain-

adapted inputs on our hedge resolution system,
we contrast two configurations: first, running the
parser in the exact same manner as Øvrelid, Kuhn,
and Spreyer (2010), we use TreeTagger (Schmid,
1994) and its standard model for English (trained
on thePTB) for preprocessing; second, we give as
inputs to the parser our refined tokenization and
mergedPoS tags, as described above. When eval-
uating the two modes of preprocessing on the ar-
ticles subset of the training data, and using gold-
standard cues, our system for resolving cue scopes
(presented in § 5) achieves an F1 of 66.31 with
TreeTagger inputs, and 72.30 using our refined to-
kenization and tagger combination. These results
underline the importance of domain adaptation for
accurate syntactic analysis, and in the following
we assume our hybrid in-house setup.

4Although theGENIA Treebank provides syntactic anno-
tation in a form inspired by thePTB, it does not provide func-
tion labels. Therefore, our procedure for converting from
constituency to dependency requires non-trivial adaptation
before we can investigate the effects of retraining the parser
againstGENIA.

3 Stage 1: Identifying Hedge Cues

For the task of identifying hedge cues, we devel-
oped a binary maximum entropy (MaxEnt) clas-
sifier. The identification of cue words is used
for (a) classifying sentences as certain/uncertain
(Task 1), and (b) providing input to the syntac-
tic rules that we later apply for resolving the in-
sentence scope of the cues (Task 2). We also re-
port evaluation scores for the sub-task of cue de-
tection in isolation.

As annotated in the training data, it is possible
for a hedge cue to span multiple tokens, e.g. as in
whether or not. The majority of the multi-word
cues in the training data are very infrequent, how-
ever, most occurring only once, and the classifier
itself is not sensitive to the notion of multi-word
cues. Instead, the task of determining whether a
cue word forms part of a larger multi-word cue, is
performed in a separate post-processing step (ap-
plying a heuristic rule targeted at only the most
frequently occurring patterns of multi-word cues
in the training data).

During development, we trained cue classifiers
using a wide variety of feature types, both syn-
tactic and surface-oriented. In the end, however,
we foundn-gram-based lexical features to have
the greatest contribution to classifier performance.
Our best-performing classifier so far (see ‘Final’
in Table 3) includes the following feature types:
n-grams over forms (up to 2 tokens to the right),
n-grams over base forms (up to 3 tokens left
and right), PoS (from GENIA), subcategorization
frames (fromXLE), and phrase-structural coordi-
nation level (fromXLE). Our CoNLL system de-
scription includes more details of the various other
feature types that we experimented with (Velldal
et al., 2010).

4 Cue Detection Evaluation

Table 3 summarizes the performance of our Max-
Ent hedge cue classifier in terms of precision, re-
call and F1, computed using the official Shared
Task scorer script. The sentence-level scores cor-
respond to Task 1 of the Shared Task, and the cue-
level scores are based on the exact-match counts
for full hedge cues (possibly spanning multiple to-
kens).
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Sentence Level Cue Level
Configuration Prec Rec F1 Prec Rec F1

Baseline, Development 79.25 79.45 79.20 77.37 71.70 74.43
Final, Development 91.39 86.78 89.00 90.18 79.47 84.49
Final, Held-Out 85.61 85.06 85.33 81.97 76.41 79.10

Table 3: Isolated evaluation of the hedge cue classifier.

As theCoNLL test data was known beforehand
to consist of articles only, in 10-fold cross vali-
dation for classifier development we tested exclu-
sively against the articles segment, while always
including all sentences from the abstracts in the
training set. This corresponds to the development
results in Table 3, while the held-out results are
for the official Shared Task evaluation data (train-
ing on all the available training data). A model
using only unigram features serves as a baseline.

5 Stage 2: Resolving Scope

Hedge scope may vary quite a lot depending on
linguistic properties of the cue in question. In our
approach to scope resolution we rely heavily on
syntactic information, taken from the dependency
structures proposed by both MaltParser andXLE,
as well as on various additional features relating
to specific syntactic constructions.

We constructed a small set of heuristic rules
which define the scope for each cue detected in
Stage 1. In developing these rules, we made use
of the information provided by the guidelines for
scope annotation in the BioScope corpus (Vincze
et al., 2008), combined with manual inspection of
the training data in order to further generalize over
the phenomena discussed by Vincze et al. (2008)
and work out interactions of constructions for var-
ious types of cues.

The rules take as input a parsed sentence which
has been further tagged with hedge cues. They
operate over the dependency structures and ad-
ditional features provided by the parser. Default
scope is set to start at the cue word and span to
the end of the sentence (modulo punctuation), and
this scope also provides the baseline for the eval-
uation of our rules. In the following, we discuss
broad classes of rules, organized by categories of
hedge cues. As there is no explicit representa-
tion of phrase or clause boundaries in our depen-

dency universe, we assume a set of functions over
dependency graphs, for example finding the left-
or rightmost (direct)dependent of a given node,
or transitively selecting left- or rightmostdescen-
dants.

Coordination The dependency analysis of co-
ordination provided by our parser makes the first
conjunct the head of the coordination. For cues
that are coordinating conjunctions (PoS tag CC),
such asor, we define the scope as spanning the
whole coordinate structure, i.e. start scope is set
to the leftmost dependent of the head of the coor-
dination, e.g.,roX in (2), and end scope is set to
its rightmost dependent (conjunct), e.g.,RNAs in
(2). This analysis provides us with coordinations
at various syntactic levels, such asNP andN (2),
AP andAdvP, or VP (3):

(2) [...] the{roX genes〈or〉 RNAs} recruit the entire set
of MSL proteins [...]

(3) [...] the binding interfaces are more often{kept〈or〉
even reused} rather than lost in the course of
evolution.

Adjectives We distinguish between adjectives
(JJ) in attributive (NMOD) function and adjectives
in predicative (PRD) function. Attributive adjec-
tives take scope over their (nominal) head, with all
its dependents, as in (4) and (5):

(4) The{〈possible〉 selenocysteine residues} are shown
in red, [...]

(5) Extensive analysis of the flanks failed to show any
hallmarks of{〈putative〉 transposons that might be
associated with this RAG1-like protein}, [...]

For adjectives in a predicative function the scope
includes the subject argument of the head verb
(the copula), as well as a (possible) clausal argu-
ment, as in (6). The scope does not, however, in-
clude expletive subjects, as in (7).
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(6) Therefore,{the unknown amino acid, if it is encoded
by a stop codon, is〈unlikely〉 to exist in the current
databases of microbial genomes}.

(7) For example, it is quite{〈likely〉 that there exists an
extremely long sequence that is entirely unique to U}.

Verbs The scope of verbal cues is a bit more
complex and depends on several factors. In our
rules, we distinguishpassive usages from active
usages,raising verbs from non-raising verbs, and
the presence or absence of a subject-control em-
bedding context. The scopes of both passive and
raising verbs include the subject argument of their
head verb, as in (8) and (9), unless it is an exple-
tive pronoun, as in (10).

(8) {Interactions determined by high-throughput methods
are generally〈considered〉 to be less reliable than
those obtained by low-throughput studies} 1314 and
as a consequence [...]

(9) {Genomes of plants and vertebrates〈seem〉 to be free
of any recognizable Transib transposons} (Figure 1).

(10) It has been{〈suggested〉 that unstructured regions of
proteins are often involved in binding interactions,
particularly in the case of transient interactions} 77.

In the case of subject control involving a hedge
cue, specifically modals, subject arguments are in-
cluded in scopes where the controller heads a pas-
sive construction or a raising verb, as in exam-
ple (1) above, repeated here for convenience:

(11) {The unknown amino acid〈may〉 be used by these
species}.

In general, the end scope of verbs should ex-
tend over the minimal clause that contains the verb
in question. In terms of dependency structures,
we define the clause boundary as comprising the
chain of descendants of a verb which is not inter-
vened by a token with a higher attachment in the
graph than the verb in question. In example (8)
for instance, the sentence-level conjunctionand
marks the end of the clause following the cuecon-
sidered.

Prepositions and Adverbs Cues that are tagged
as prepositions (including some complementizers)
take scope over their argument, with all its de-
scendants, (12). Adverbs take scope over their
head with all its (non-subject) syntactic descen-
dants (13).

Configuration F1

B
S

P Default, Gold Cues 45.21
Rules, Gold Cues 72.31
Rules, System Cues 64.77

B
S

E Rules, Gold Cues 66.73
Rules, System Cues 55.75

Table 4: Evaluation of scope resolution rules.

(12) {〈Whether〉 the codon aligned to the inframe stop
codon is a nonsense codon or not} was neglected at
this stage.

(13) These effects are{〈probably〉 mediated through the
1,25(OH)2D3 receptor}.

Multi-Word Cues In the case of multi-word
cues, such asindicate that or either ... or, we need
to determine the head of the multi-word unit. We
then set the scope of the whole unit to the scope
of the head token.

As an illustration of rule processing, consider
our running example (11), with its syntactic anal-
ysis as shown in Table 2 above. This example
invokes a variety of syntactic properties, includ-
ing parts of speech, argumenthood, voice etc. Ini-
tially, the scope of the hedge cue is set to default
scope. Then the subject control rule is applied,
which checks the properties of the verbal argu-
mentused, going through a chain of verbal depen-
dents from the modal verb. Since it is marked as
passive in theLFG analysis, the start scope is set to
include the subject of the cue word (the leftmost
descendant in itsSBJ dependent).

6 Rule Evaluation

Table 4 summarizes scope resolution performance
(viewed as a an isolated subtask) for various con-
figurations, both against the articles section of the
CoNLL training data (dubbedBSP) and against the
held-out evaluation data (BSE). First of all, we note
that the ‘default scope’ baseline is quite strong:
unconditionally extending the scope of a cue to
the end of the sentence yields an F1 of 45.21.
Given gold standard cue information, our scope
rules improve on the baseline by 27 points on the
articles section of the data set, for an F1 of 72.31;
with system-assigned hedge cues, our rules still
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achieve an F1 of 64.77. Note that scope resolu-
tion scores based on classified cues also yield the
end-to-end system evaluation for Task 2.

The bottom rows of Table 4 show the evaluation
of scope rules on theCoNLL held-out test data. Us-
ing system cues, scope resolution on the held-out
data scores at 55.75 F1. Comparing to the result
on the (articles portion of the) training data, we
observe a substantial drop in performance (of six
points with gold-standard cues, nine points with
system cues). There are several possible explana-
tions for this effect. First of all, there may well
be a certain degree of overfitting of our rules to
the training data. The held-out data may contain
hedging constructions that are not covered by our
current set of scope rules, or annotation of parallel
constructions may in some cases differ in subtle
ways (see § 7 below). Moreover, scope resolution
performance is of course influenced by cue detec-
tion (see Table 3). The cue-level F1 of our sys-
tem on the held-out data set is 79.10, compared to
84.49 (using cross validation) on the training data.
This drop in cue-level performance appears to af-
fect classification precision far more than recall.
Of course, given that our heuristics for identifying
multi-word cues were based on patterns extracted
from the training data, some loss in the cue-level
score was expected.

7 Error Analysis

To start shedding some light on the significance
of our results, we performed a manual error anal-
ysis on the article portion of the training material
(BSP), with two of the authors (trained linguists)
working in tandem. Using gold-standard cues,
our scope resolution rules fail to exactly replicate
the target annotation in 185 (of 668) cases, corre-
sponding to 72.31 F1 in Table 4 above. Our eval-
uators reviewed and discussed these 185 cases,
classifying 156 (84%) as genuine system errors,
22 (12%) as likely5 annotation errors, and a re-

5In some cases, there is no doubt that annotation is er-
roneous, i.e. in violation of the available annotation guide-
lines (Vincze et al., 2008) or in conflict with otherwise un-
ambiguous patterns. In other cases, however, judgments are
necessarily based on generalizations made by the evaluators,
i.e. assumptions about the underlying system and syntactic
analyses implicit in the BioScope annotations. Furthermore,
selecting items for manual analysis that do not align with the

maining seven cases as involving controversial or
seemingly arbitrary decisions.

The two most frequent classes of system er-
rors pertain (a) to the recognition of phrase and
clause boundaries and (b) to not dealing success-
fully with relatively superficial properties of the
text. Examples (14) and (15) illustrate the first
class of errors, where in addition to the gold-
standard annotation we use vertical bars (‘|’) to
indicate scope predictions of our system.

(14) [...]{the reverse complement|mR of m will be
〈considered〉 to be [...]|}

(15) This|{〈might〉 affect the results} if there is a
systematic bias on the composition of a protein
interaction set|.

In our syntax-driven approach to scope resolution,
system errors will almost always correspond to a
failure in determining constituent boundaries, in a
very general sense. However, specifically exam-
ple (15) is indicative of a key challenge in this
task, where adverbials of condition, reason, or
contrast frequently attach within the dependency
domain of a hedge cue, yet are rarely included in
the scope annotation.

Example (16) demonstrates our second fre-
quent class of system errors. One in six items
in the BSP training data contains a sentence-final
parenthesized element or trailing number, as for
example (2), (9), or (10) above; most of these are
bibliographic or other in-text references, which
are never included in scope annotation. Hence,
our system includes a rule to ‘back out’ from trail-
ing parentheticals; in examples like (16), how-
ever, syntax does not make explicit the contrast
between an in-text reference vs. another type of
parenthetical.

(16) More specifically,{|the bristle and leg phenotypes are
〈likely〉 to result from reduced signaling by Dl| (and
not by Ser)}.

Moving on to apparent annotation errors, the
rules for inclusion (or not) of the subject in
the scope of verbal hedge cues and decisions
on boundaries (or internal structure) of nominals

predictions made by our scope resolution rules is likely to
bias our sample, such that our estimated proportion of12%
annotation errors cannot be used to project an overall error
rate.
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seem problematic—as illustrated in examples (17)
to (22).6

(17) [...] and|this is also{〈thought〉 to be true for the full
protein interaction networks we are modeling}|.

(18) [...]{Neur |〈can〉 promote Ser signaling|}.

(19) |Some of the domain pairs{〈seem〉 to mediate a large
number of protein interactions, thus acting as reusable
connectors}|.

(20) One{|〈possible〉 explanation| is functional
redundancy with the mouse Neur2 gene}.

(21) [...] |redefinition of{one of them is〈feasible〉}|.

(22) |The{Bcl-2 family 〈appears〉 to function [...]}|.

Finally, the difficult corner cases invoke non-
constituent coordination, ellipsis, or NP-initial fo-
cus adverbs—and of course interactions of the
phenomena discussed above. Without making the
syntactic structures assumed explicit, it is often
very difficult to judge such items.

8 Reflections — Outlook

Our combination of stacked dependency parsing
and hand-crafted scope resolution rules proved
adequate for theCoNLL 2010 competition, con-
firming the central role of syntax in this task.
With a comparatively small set of rules (imple-
mented in a few hundred lines of code), con-
structed through roughly two full weeks of ef-
fort (studying BioScope annotations and develop-
ing rules), ourCoNLL system achieved an end-to-
end F1 of 55.33 on Task 2.7 The two submis-
sions with better results (at 57.32 and 55.65 F1)
represent groups who have pioneered the hedge
analysis task in previous years (Morante et al.,
2010; Rei & Briscoe, 2010). Scores for other ‘in-
domain’ participants range from 52.24 to 2.15 F1.

6Like in the presentation of system errors, we include
scope predictions of our own rules here too, which we be-
lieve to be correct in these cases. Also in this class of errors,
we find the occasional ‘uninteresting’ mismatch, for exam-
ple related to punctuation marks and inconsistencies around
parentheses.

7In § 4 and § 6 above, we report scores for a slightly im-
proved version of our system, where (after the officialCoNLL

submission date) we eliminated a bug related to the treatment
of sentence-initial whitespace in theXML annotations. At an
end-to-end F1 of 55.75, this system would outrank the sec-
ond best performer in Task 2.

Doubtless there is room for straightforward exten-
sion: for example retraining our parser on theGE-

NIA Treebank, further improving the cue classifier,
and refining scope resolution rules in the light of
the error analysis above.

At the same time, we remain mildly am-
bivalent about the long-term impact of some of
the specifics of the 2010CoNLL task. Shared
tasks (i.e. system bake-offs) have become increas-
ingly popular in past years, and in some sub-
fields (e.g.IE, SMT, or dependency parsing) high-
visibility competitions can shape community re-
search agendas. Hence, even at this early stage, it
seems appropriate to reflect on the possible con-
clusions to be drawn from the 2010 hedge res-
olution task. First, we believe the harsh ‘exact
substring match’ evaluation metric underestimates
the degree to which current technology can solve
this problem; furthermore, idiosyncratic, string-
level properties (e.g. the exact treatment of punc-
tuation or parentheticals) may partly obscure the
interpretation of methods used and corresponding
system performance.

These effects are compounded by some con-
cerns about the quality of available annotation.
Even though we tried fine-tuning our cross vali-
dation testing to the nature of the evaluation data
(comprising only articles), our system performs
substantially worse on the newly annotatedCoNLL

test data, in both stages.8 In our view, the anno-
tation of hedge cues and scopes ideally would be
overtly related to at least some level of syntactic
annotation—as would in principle be possible for
the segment of BioScope drawing on the abstracts
of theGENIA Treebank.
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