
HIGH MODIFIABILITY MVC FRAMEWORK WITH COMBINED
SPRING FRAMEWORK AND MODEL TRANSLATOR

Vittayasak Rujivorakul

School of Information Technology, Mae Fah Luang University, Chiangrai, Thailand

Email: vittayasak@gmail.com

ABSTRACT

This paper proposes a highly modifiable web application
framework based on the J2EE platform that applies
Model-View-Control (MVC) design pattern and
combined Spring Framework with Model Translator to
generate more than 14 related classes of source code and
more than 6 configuration files for each Create-Read-
Update-Delete (CRUD) module. This can reduce impact
between layers changed and software development team
can start project faster than other modern MVC
framework. The result, a software development team can
modify in every layer and reduce the time to develop 67-
73%, reduce time to initiate project 60%.Moreover the
system developed from the proposed framework provides
multi-language user interface, unit testing for each layer
and can deploy to many platforms that support java.

Index Terms-- MVC; Spring; J2EE; Framework; Model
Translator; Modifiability

1. INTRODUCTION

The MVC design pattern[1] -is most commonly used for
today’s web application development. However, there are
many available types of technology. This means decisions
have to be made regarding the selection of the best of
components for use in each layer which are up to
experience of the software development team. For the first
time of software development team, researcher or students
that need to implements their first software project many
of them have a problem to select the best components, re-
configuration and add more languages to the system.

To solve the problem, this paper proposes the highly
modifiable web application framework based on J2EE[2]
platform, MVC design pattern, Spring Framework
dependency injection and model translator by using model
driven architecture tools (MDA)[3]. That can configure
through XML configuration and key-value properties file
to enable a high degree of modifiability without re-
compiling the whole project. All configuration files
support major web application needs: loosely couple
between layers, support multi-platform and support unit
test on each layer.

The paper is organized as follows: section 2 is related
work and technology; section 3 is the design concept;
section 4 applies the proposed framework; section 5 is the
reference system; and section 6 concludes.

2. RELATED WORK AND TECHNOLOGY

2.1. MVC Architecture

MVC[1] is architectural design pattern for interactive
applications. MVC separates into three modules: Model-
interacts with persistence storage such as database or
other systems; View- renders the model into a form
suitable for interaction; Controller-receives input and
initiates a response by making calls on model objects.

Figure 1. Modern MVC architecture.

From the modern MVC architecture it can be tightly
coupled between Model and View, Controller and Model
or View and Controller. Furthermore these days we have
more choice of technology to make decision to selected
for Model (JDBC, DAO, Hibernate, JPA, EJB), View
(JSP, JSF, Struts, Spring MVC, Swing) and Controller
(Servlet, Struts, Spring Controller)

2.2. Spring Framework

Spring Framework [4] is an open source application
framework for the Java platform. The center of Spring
Framework is Inversion of Control (IoC) container, which
provides a consistent means of configuration and
managing Java object using callbacks. The container is
responsible for managing object lifecycles: creating
objects, calling initialization method, and configuring
objects by wiring them together from XML configuration
files.

Figure 2. Spring IoC architecture.

The main problem of Spring is many possible
configurations and which may cause human error for
manual configuration.

NCIT 2010 172

2.3. Model Translator

The concept of Model Translator are make a model first
by using class diagram and create template to convert
graphical model to the target source code or framework.
The well know open source Model Translator is
AndroMDA[5], which uses Model Driven Architecture
(MDA) concept and provides many templates
(AndroMDA call “cartridge”) for current web application
technology.

Figure 3. Model Translator architecture.

However many of the templates are too specific and
hard to understand for first time software development
team.

3. FRAMEWORK DESIGN CONCEPT

Objectives of the proposed framework with respect to
research include:
• Can modify components in every layers.
• Supported configuration for multi-language UI.
• Supported unit testing.
• 100 percent generated from template.
• Supported Create Read Update Delete (CRUD)

application.

Figure 4. The propose framework.

From design we use Spring as core configuration and
Inject object to the context and applies many J2EE design
patterns[5] such as: Data Access Object(DAO), Value
Object(VO), Transfer Object(TO), Business Interface(BI),
View Controller, View Helper and MVC

The model translator generates 14 classes and can be
separated by layer:
• Persistence Layer: VO, DAO, DAOHibernate and

DAOTest for unit test (by using jUnit[7]).
• Business Interface: BI and BITest.
• Controller: MainController, NewForm, EditForm and

TO for collect data from VO to the View.
• Presentation Layer: ListPage, NewPage, ViewPage

and EditPage. All of them use Java Server Page(JSP),
Java Standard Tag Library(JSTL) and Expression
Language(EL)

Other than classes the model translator also generates

6 configuration files that associate to 14 classes:
• xxx.hbm.xml for Hibernate O/R mapping[8] that

associate between VO class and table from database.

<?xml version="1.0" encoding="UTF-8"?>
<hibernate-mapping>
 <class name="...vo.LecturerVO" table="Lecturer">
 <id name="id" type="long"> <generator class="assigned"/> </id>
 <property name="name" type="String" column="NAME" />
 <property name="phone" type="String" column="PHONE" />
 <property name="email" type="String" column="EMAIL" />
 <property name="research" type="String" column="RESEARCH"/>
 </class>
</hibernate-mapping>

Figure 5. Hibernate O/R mapping configuration file.

• DataAccessContext.xml for setting object and O/R
mapping configuration files and associate to DAO
class.

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
<bean id="mySessionFactory" class="...LocalSessionFactoryBean">
 <property name="mappingResources">
 <list> <value>hbm/Lecturer.hbm.xml</value> </list>
 </property>
 </bean>
 <bean id="lecturerDAO"
 class="….dao.hibernate.LecturerDAOHibernate">
 </bean>
</beans>

Figure 6. DataAccessContext file for DAO configuration.

• ApplicationContext.xml for setting DAO to BI class
before using in Controller class.

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
<bean id="lecturerBI" class="….TransactionProxyFactoryBean">
 <property name="target">
 <bean class="...bi.LecturerBI">
 <property name="dao"> <ref bean="lecturerDAO"/>
 </property>
 </bean>
 </property>
</bean>
</beans>

Figure 7. ApplicationContext file for BI configuration.

ORM mapping

From DataAccessContext.xml

NCIT 2010 173

• xxx-view.properties for associated between JSP page
and alias view name that use in Controller
configuration file.

lecturer_editForm.class=...servlet.view.JstlView
lecturer_editForm.url=/WEB-INF/jsp/Lecturer_edit.jsp
lecturer_newForm.class=...servlet.view.JstlView
lecturer_newForm.url=/WEB-INF/jsp/Lecturer_new.jsp
lecturer_listView.class=...servlet.view.JstlView
lecturer_listView.url=/WEB-INF/jsp/Lecturer_list.jsp
lecturer_viewView.class=...servlet.view.JstlView
lecturer_viewView.url=/WEB-INF/jsp/Lecturer_view.jsp

Figure 8. View mapping between JSP page and alias view name.

• xxx-servlet.xml for setting BI and some attribute
value to Controller class and associated multi-
languages configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
<bean id="urlMapping" class="...SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/lecturer_view.spm">mainController</prop>
 <prop key="/lecturer_list.spm">mainController</prop>
 <prop key="/lecturer_del.spm">mainController</prop>
 <prop key="/lecturer_new.spm">lecturerNewForm</prop>
 <prop key="/lecturer_edit.spm">lecturerEditForm</prop>
 </props>
 </property>
</bean>

<bean id="mainControllerResolver"
class="...PropertiesMethodNameResolver">
 <property name="mappings"> <props>
 <prop key="/lecturer_list.spm">lecturer_listMethod</prop>
 <prop key="/lecturer_del.spm">lecturer_delMethod</prop>
 <prop key="/lecturer_view.spm">lecturer_viewMethod
 </prop>
 </props> </property>
</bean>

<bean id="lecturerNewForm"
class="com.mfu.spm.web.LecturerNewForm">
 <property name="service"><ref bean="lecturerBI"/>
</property>
 <property name="usersService"><ref bean="usersBI"/>
</property>
</bean>

<bean id="lecturerEditForm"
class="com.mfu.spm.web.LecturerEditForm">
 <property name="service"><ref bean="lecturerBI"/>
</property>
</bean>
</beans>

Figure 9. xxx-servlet.xml for Controller configuration.

• xxx_message.properties to setting as key-value for

multi-languages feature.

#xxx_message.properties
lecturer.id=Id
lecturer.name=Name
lecturer.phone=Phone
lecturer.email=Email

Figure 10. Resource bundle file for English UI.

#xxx_message_th_TH.properties
lecturer.id=รหสั
lecturer.name=ช่ือ-สกลุ
lecturer.phone=เบอร์โทร
lecturer.email=อีเมล ์

Figure 11. Resource bundle file for Thai UI

From present framework it has many classes and

configurations, this means it is very complex and can take
a long time for implementation. This paper proposes
model translator by using AndroMDA[5] tools. But we
need to create template for 14 classes and 6
configurations. Following this is an example 1 of 20
templates that are created by using Velocity language.

#set ($webpackagename =
 $packagename.replaceFirst("entity", "web"))
<bean id="urlMapping" class="...SimpleUrlHandlerMapping">
#set ($packagename = $transform.findPackageName(
 ${class.package}))
#foreach ($onePackage in $model.packages)
#if($onePackage.name == $packagename)
#foreach ($class in $onePackage.classes)
#set ($lclassname = ${str.lowerCaseFirstLetter(${class.name})})
<prop key="/${lclassname}_view.spm">mainController</prop>
<prop key="/${lclassname}_list.spm">mainController</prop>
<prop key="/${lclassname}_del.spm">mainController</prop>
<prop key="/${lclassname}_new.spm">
 ${lclassname}NewForm</prop>
<prop key="/${lclassname}_edit.spm">
 ${lclassname}EditForm</prop>
 #end
#end
#end
</props>
</property>
</bean>

Figure 12. Some part of xxx-servlet.xml template.

4. APPLICATION TO OTHER SYSTEMS

After finishing the creation of the proposed framework
and tested. Researcher is setup training class for publish
the propose framework. That can follow step-by-step to
create the web application system.
• Create class diagram from UML tools (In this case

using open source UML tools: ArgroUML) and save
as XMI format.

• Convert model from XMI to source code and
configuration files.

• Copy generated code and configuration to NetBean
IDE[10] project.

• Build and deploy to Glass fish server.

To prove the proposed framework, researchers
followed up all attendees to progress their software
development project. The result is present in section 5.

From ApplicationContext.xml

NCIT 2010 174

Figure 13. State to apply propose framework.

5. REFERENCE SYSTEM

To prove the proposed framework this paper uses Basic
COCOMO[11] model (As an Organic projects) to
estimate man-month from following formula.

 Effort Applied = ab x (KLOC)^bb (1)

For Organic project get ab = 2.4, bb = 1.05 and from

this framework average LOC to supported each table is
500LOC.This three value are use for next estimation.

• Management Information System for University

Qualities Assurance – Developed by 5 developers
supported 44 tables. From estimation model need
12.3 month. But by the propose framework they can
finish in 4 month. That mean this framework can save
time to develop more than 67%. They have more than
20 changes, refactoring and re-configure the system.

• Ubiquitous Learning Environment System- This
system was developed to support other research by 2
developers has 17 tables. From estimation model
need 11.3 month. But by the propose framework they
can finish in 3 month. They can save development
time 73%.They have more than 15 changes in the
system and provide web-services on this system.

Moreover development times. They also reduce

learning and initial project time from normal training
process approximately 30 days (training, initial
framework, standardize, etc) to just 10 days. That means
60% save time to initial project.

6. CONCLUSION AND FUTURE WORK

This paper proposes a framework that adds highly
modifiable which also reduces development time
particularly for initial projects. Furthermore each layer
can be modified without impact to others layers.

This research can help many developers, researchers,
lecturers and students who need to implement small and
medium enterprise web application systems. They can use
this proposed framework to focus on their research
objectives.

For the future work it is possible to add Rich Internet
Architecture (RIA)[12] into this framework by using Java
Script Framework as jQuery[13] and may be provide
adaptor for exchange data as web services in kind of
SOAP[14] or REST[15].

REFERENCES

[1] Wikipedia. "Model-View-Controller".
http://en.wikipedia.org/wiki/Model-view-controller. 2010.
[2] Oracle Sun Developer Network. "J2EE Framework".
http://java.sun.com/javaee/. 2010.
[3] Wikipedia. "Model-driven architecture".
http://en.wikipedia.org/wiki/Model-driven_architecture.
2010.
[4] Spring Source. "Spring Framework".
http://www.springsource.org. 2010.
[5] AndroMDA.org. "AndroMDA".
http://www.andromda.org.2010.
[6] D. Alur, D. Marks and J.Crupi, "Core J2EE Pattern",
Prentice Hall, 2 editions, 2003.
[7] jUnit.org. "jUnit". http://www.junit.org/. 2010.
[8] Hibernate.org. "Hibernate". http://www.hibernate.org/.
2010.
[10] NetBeans.org. "NetBean IDE".
http://www.netbeans.org. 2010.
[11] Wikipedia. "COCOMO".
http://en.wikipedia.org/wiki/COCOMO.2010.
[12] Wikipedia. “Rich Internet Application”.
http://en.wikipedia.org/wiki/Rich_Internet_application.
2010
[13] jQuery.com. “jQuery”. http://jquery.com. 2010.
[14] Wikipedia. “SOAP”.
http://en.wikipedia.org/wiki/SOAP. 2010
[15] Wikipedia. “REST”.
http://en.wikipedia.org/wiki/Representational_State_Trans
fer. 2010.

NCIT 2010 175

