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ABSTRACT 
 

Multicore processors are gaining ground in the world of 

modern computers. With faster performance, it would 

allow DNA or protein alignment, which is a fundamental 

procedure in molecular biology, to be done faster, paving 

the way to faster multiple genome comparison. However, 

in order to harvest the advantages of multicore processors, 

corresponding parallel algorithms need to be developed 

and tested. This study aimed to develop a suitable parallel 

longest common subsequence (LCS) algorithm for 

pairwise alignment. The proposed parallel LCS performed 

approximately 30-40% faster than serial LCS, while 

yielding the same alignment results. 

 

Index Terms—Parallel algorithm; longest common 

subsequence; biological sequence alignment; 

computational biology 

 

1. INTRODUCTION 
 

Biological sequence comparison has numerous 

applications and has been extensively studied by 

biologists. Sequence alignment deals with problems 

arising from processing DNA and protein sequence 

information: to find the homology between two or more 

organisms. The sequences of different organisms differ to 

some degree. Homologies in two different genomes 

suggest conserved biological structures and functions [1]. 

This could be used in further biological analyses on the 

organisms‟ ecological niche and evolution [2]. Sequence 

alignment, due to its usefulness and various applications, 

has become a fundamental operation in biology and 

bioinformatics [3].  

To align biological sequences, different algorithms for 

finding the longest common subsequence (LCS) are used. 

The LCS problem for two sequences (2LCS) can be 

solved in O(mn) by using the dynamic programming 

technique where m and n are the lengths of the two input 

sequences [4]. Examples of common algorithms for 

solving LCS problems are dynamic programming and 

Hidden Markov Model. The former is known to be more 

accurate, providing optimal solutions, while taking longer 

time to run and requiring more computational resources. 

The latter, on the contrary, runs faster and uses less 

resource while providing acceptable results. In order to 

obtain a non-compromised result, we focus on dynamic 

programming algorithm for LCS and aim to take 

advantage of the current multiple-cored processor 

technologies to reduce the run-time of dynamic 

programming LCS. 

Due to a number of physical limitations such as power 

consumption and heat dissipation [5], it is no longer 

possible to engineer increasingly more powerful chips by 

increasing the number of transistor components while 

reducing their sizes. Instead, manufacturers have turned to 

building chips with multiple processor cores. A single 

processor in a multicore processor architecture does not 

necessarily perform as fast as the latest designed single-

core models. Nonetheless, they improve overall 

performance by handling more work in parallel [6]. It is 

estimated that a dualcore chip running multiple 

applications is approximately 1.5 times faster than a chip 

with just one comparable core [6]. 

However, there has been a lag on the development on 

parallelizing compilers. This could be due to the increased 

complications in designing a parallel algorithm. Also, 

parallelism works only for a restricted class of problems 

[5]. Consequently, many applications are not designed or 

have not been rewritten to be run in parallel architectures. 

Therefore, even though we are in the multicore era, the 

advantage of the multiple execution units of processors 

has not yet been fully materialized. 

Despite its importance in biological arena, there have 

been very limited studies for the parallel sequence 

alignment problem. Biological sequence alignment with 

LCS dynamic algorithm could take longer time when the 

sequences become longer. This study aims to experiment 

on parallel pairwise alignment with LCS dynamic 

programming algorithm to find out if the problem of 

biological sequence alignment could be rewritten with 

parallelism and still yield optimal results. PLCS in this 

paper refers to parallel LCS. 
 

2. PROBLEM FORMULATION 

 

2.1. LCS Problem 

 

To align two biological sequences, the letters which 

represent either amino acids or bases are shifted either 

right or left to align as many identical letters as possible. 

Gaps (denoted by “-”) are inserted into the sequences to 

obtain better alignment [3]. Scoring functions are used to 

represent the degree of matching between each pair of the 

letters. An optimal alignment is one with the highest 

cumulative score.  Note that it is possible for multiple 

optimal alignments; however, this is unlikely for 

increasingly longer sequences. 
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Figure 1. Flowchart of score filling in traditional LCS. 

The flowchart in Figure 1 shows how traditional LCS 

fills similarity scores in the edit table during the dynamic 

programming process. Note that both vertical and 

horizontal cells are filled at the same time in a sequential 

manner. 

 

2.2. PLCS Algorithm 
 

Important things to concern when creating a serial 

algorithm are the accuracy of the program results and the 

resources (time and memory) required for the program to 

run [7]. In the case of parallel computing, result accuracy 

has to be taken more into account [5]. This is due to the 

data dependency between multi-concurrent threads. For 

example, one processor might retrieve the results for 

further calculation before the result is ready or before the 

job of the other processor is completed. In addition, 

deadlocks could occur when the first thread waits for the 

second thread while the second thread also waits for the 

first one, rendering the program to cease. 

Another challenge in parallel programming is to 

balance the work load between CPUs in order to gain the 

optimal CPU allocation and a better run time. In order to 

obtain a better run time, CPU waiting should be 

minimized. That is, ideally, the CPU would not need to 

wait for the results from other processes before the next 

operation. 

Taking the above considerations into account, we 

could write a parallel LCS algorithm as described and 

shown in Figure 2. 

Referring to the figure, sequence A and sequence B 

have length lA and lB, respectively. The starting points to 

fill the edit table are startX and startY, both being at 

location 0. The variable start is for confirmation of the 

readiness of startX and startY. The status „lock‟ means the 

thread is in critical session. The initial status of start is 

„unlock‟. Memory on RAM is allocated for WeightTable 

(for assigning the scores in each cell) and DirTable (for 

determining the direction of table filling). The vertical and 

horizontal threads are created using different filling 

patterns. When the processes in both threads are 

completed, every cell in the table is filled. The program 

will use the directions in filling of the table to traceback to 

obtain the optimal path for LCS. 

 

 

Figure 2. Parallel LCS flowchart. 

The flowchart in Figure 3 shows how the table is 

filled by thread in the horizontal and vertical directions. 

Thread Vertical fills the similarity scores for the cells 
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along the vertical direction. Thread Horizontal fills in the 

cells along horizontal direction. Both threads work until 

the start point is outside the table reference position. They 

begin filling by changing the variable start from the 

unlock state to lock state. Next, the value startX and startY 

are used as reference variable for filling the table. Then 

the working position shifts. Thread Vertical shifts to X+1 

position while Y remains unchanged. Thread Horizontal 

shifts to Y+1 while X remains unchanged. Next, variable 

start changes to unlock. Then both threads start filling the 

scores in their own directions until reaching the stopping 

criteria.   

 

 

Figure 3. Flowchart of score filling in parallel LCS. 

Figure 4 shows the topology of the order of filling for 

a sample pairwise alignment of DNA sequences 

ATCTGATC and TGCATAC.  The vertical and horizontal 

threads are represented by the vertical and horizontal 

rectangles in the figure.  Whereas the arrows denote the 

order of simultaneous data filling of the edit table from the 

top left to the bottom right by the two parallel threads. 

 

 

Figure 4. Topology of data filling in PLCS method. 

3. METHODOLOGY 
 

To evaluate the performance of parallel LCS algorithm 

compared to traditional LCS algorithm, it is necessary to 

control the factors which could affect the running time of 

the program. Both algorithms were implemented in C and 

were compiled using GNU Complier Collection (GCC). 

The random sequences of A, T, C, and G were generated 

for testing inputs of each program. Each program was then 

executed on the same computer, equipped with 2 Itanium 

CPUs which have a clock rate of 1.33GHz. 
 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
 

The accuracy of parallel LCS and traditional LCS is the 

same. That is, the alignments from both algorithms are the 

same. However, the calculation time is improved by about 

30% and 44% when tested with randomly generated 

1,000-bases sequence alignment and 10,000-bases 

sequence alignment, respectively.  

The means, standard deviations, minimal values and 

maximal values of the calculation time are shown in Table 

1. The percentages of improvement are calculated from 

the medians, also shown in Table 1. The reduced running 

time is clearly shown in Figures 5 and 6 for 1,000 bases 

sequence alignment and 10,000 bases sequence alignment, 

respectively. The boxplot on the left of the figures 

represent the running time for the serial LCS while the 

right boxplot represents that of the parallel LCS.  The 

boxes are very thin so they appear like grey horizontal 

lines.  The whiskers represent standard deviations and the 

black dots are outliers. 

Table 1. Comparison of the running time of serial and parallel LCS 

algorithms 

 
The standard deviations varied because of the random 

workload of the cluster computer used for running the 

programs. As the cluster is a public cluster and can be 

accessed by many remote users, it could be doing other 

jobs while performing both LCS and PLCS, resulting in 

CPU sharing and different running time results. The 

standard deviations of LCS performance were higher, as 

well as the spread of the outlier range. This was expected 

since in the case of parallel computing, all CPUs were 

used. CPU sharing, thus, affected the performance of 

PLCS more significantly. However, it could be seen that 

PLCS still performed faster regardless of the random 

incremental workloads by other users of the cluster. 
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Figure 5. Boxplot comparing run time of serial LCS and parallel LCS for 

1,000-bases sequence alignment.  

 

 

Figure 6. Boxplot comparing run time of serial LCS and parallel LCS for 

10,000-bases sequence alignment. 

The performance of PLCS was not much improved in 

1,000-bases sequence alignment than in 10,000-bases 

alignment. This is because the time taken for the 

sequences in both alignment jobs to be uploaded into the 

cluster was not different, providing a constant initial 

running time for both LCS and PLCS. Therefore, PLCS 

showed greatly improved performance when the running 

time is sufficiently long. 

 

5. CONCLUDING REMARKS 
 

Parallel LCS could perform faster than LCS while yielding 

the same optimal solutions. There have been increasing 

studies on comparative genomics [8] which require longer 

running time for alignment due to the use of whole 

genome sequences. Such analyses, which require multiple 

genome comparison, have a wider range of applications 

[2]. There should be further development on parallel 

multiple biological sequence alignments to realize the 

increased power of multicore computing. 
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