
PARALLEL LCS ALGORITHM FOR PAIRWISE SEQUENCE ALIGNMENT

Pich Tantichukaitikul
1
, Sattara Hattirat

1
 and Jonathan H. Chan

1,2*

1
Bioinformatics and Systems Biology Program, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

2
School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

*Corresponding Email: jonathan@sit.kmutt.ac.th

ABSTRACT

Multicore processors are gaining ground in the world of

modern computers. With faster performance, it would

allow DNA or protein alignment, which is a fundamental

procedure in molecular biology, to be done faster, paving

the way to faster multiple genome comparison. However,

in order to harvest the advantages of multicore processors,

corresponding parallel algorithms need to be developed

and tested. This study aimed to develop a suitable parallel

longest common subsequence (LCS) algorithm for

pairwise alignment. The proposed parallel LCS performed

approximately 30-40% faster than serial LCS, while

yielding the same alignment results.

Index Terms—Parallel algorithm; longest common

subsequence; biological sequence alignment;

computational biology

1. INTRODUCTION

Biological sequence comparison has numerous

applications and has been extensively studied by

biologists. Sequence alignment deals with problems

arising from processing DNA and protein sequence

information: to find the homology between two or more

organisms. The sequences of different organisms differ to

some degree. Homologies in two different genomes

suggest conserved biological structures and functions [1].

This could be used in further biological analyses on the

organisms‟ ecological niche and evolution [2]. Sequence

alignment, due to its usefulness and various applications,

has become a fundamental operation in biology and

bioinformatics [3].

To align biological sequences, different algorithms for

finding the longest common subsequence (LCS) are used.

The LCS problem for two sequences (2LCS) can be

solved in O(mn) by using the dynamic programming

technique where m and n are the lengths of the two input

sequences [4]. Examples of common algorithms for

solving LCS problems are dynamic programming and

Hidden Markov Model. The former is known to be more

accurate, providing optimal solutions, while taking longer

time to run and requiring more computational resources.

The latter, on the contrary, runs faster and uses less

resource while providing acceptable results. In order to

obtain a non-compromised result, we focus on dynamic

programming algorithm for LCS and aim to take

advantage of the current multiple-cored processor

technologies to reduce the run-time of dynamic

programming LCS.

Due to a number of physical limitations such as power

consumption and heat dissipation [5], it is no longer

possible to engineer increasingly more powerful chips by

increasing the number of transistor components while

reducing their sizes. Instead, manufacturers have turned to

building chips with multiple processor cores. A single

processor in a multicore processor architecture does not

necessarily perform as fast as the latest designed single-

core models. Nonetheless, they improve overall

performance by handling more work in parallel [6]. It is

estimated that a dualcore chip running multiple

applications is approximately 1.5 times faster than a chip

with just one comparable core [6].

However, there has been a lag on the development on

parallelizing compilers. This could be due to the increased

complications in designing a parallel algorithm. Also,

parallelism works only for a restricted class of problems

[5]. Consequently, many applications are not designed or

have not been rewritten to be run in parallel architectures.

Therefore, even though we are in the multicore era, the

advantage of the multiple execution units of processors

has not yet been fully materialized.

Despite its importance in biological arena, there have

been very limited studies for the parallel sequence

alignment problem. Biological sequence alignment with

LCS dynamic algorithm could take longer time when the

sequences become longer. This study aims to experiment

on parallel pairwise alignment with LCS dynamic

programming algorithm to find out if the problem of

biological sequence alignment could be rewritten with

parallelism and still yield optimal results. PLCS in this

paper refers to parallel LCS.

2. PROBLEM FORMULATION

2.1. LCS Problem

To align two biological sequences, the letters which

represent either amino acids or bases are shifted either

right or left to align as many identical letters as possible.

Gaps (denoted by “-”) are inserted into the sequences to

obtain better alignment [3]. Scoring functions are used to

represent the degree of matching between each pair of the

letters. An optimal alignment is one with the highest

cumulative score. Note that it is possible for multiple

optimal alignments; however, this is unlikely for

increasingly longer sequences.

NCIT 2010 192

Figure 1. Flowchart of score filling in traditional LCS.

The flowchart in Figure 1 shows how traditional LCS

fills similarity scores in the edit table during the dynamic

programming process. Note that both vertical and

horizontal cells are filled at the same time in a sequential

manner.

2.2. PLCS Algorithm

Important things to concern when creating a serial

algorithm are the accuracy of the program results and the

resources (time and memory) required for the program to

run [7]. In the case of parallel computing, result accuracy

has to be taken more into account [5]. This is due to the

data dependency between multi-concurrent threads. For

example, one processor might retrieve the results for

further calculation before the result is ready or before the

job of the other processor is completed. In addition,

deadlocks could occur when the first thread waits for the

second thread while the second thread also waits for the

first one, rendering the program to cease.

Another challenge in parallel programming is to

balance the work load between CPUs in order to gain the

optimal CPU allocation and a better run time. In order to

obtain a better run time, CPU waiting should be

minimized. That is, ideally, the CPU would not need to

wait for the results from other processes before the next

operation.

Taking the above considerations into account, we

could write a parallel LCS algorithm as described and

shown in Figure 2.

Referring to the figure, sequence A and sequence B

have length lA and lB, respectively. The starting points to

fill the edit table are startX and startY, both being at

location 0. The variable start is for confirmation of the

readiness of startX and startY. The status „lock‟ means the

thread is in critical session. The initial status of start is

„unlock‟. Memory on RAM is allocated for WeightTable

(for assigning the scores in each cell) and DirTable (for

determining the direction of table filling). The vertical and

horizontal threads are created using different filling

patterns. When the processes in both threads are

completed, every cell in the table is filled. The program

will use the directions in filling of the table to traceback to

obtain the optimal path for LCS.

Figure 2. Parallel LCS flowchart.

The flowchart in Figure 3 shows how the table is

filled by thread in the horizontal and vertical directions.

Thread Vertical fills the similarity scores for the cells

NCIT 2010 193

along the vertical direction. Thread Horizontal fills in the

cells along horizontal direction. Both threads work until

the start point is outside the table reference position. They

begin filling by changing the variable start from the

unlock state to lock state. Next, the value startX and startY

are used as reference variable for filling the table. Then

the working position shifts. Thread Vertical shifts to X+1

position while Y remains unchanged. Thread Horizontal

shifts to Y+1 while X remains unchanged. Next, variable

start changes to unlock. Then both threads start filling the

scores in their own directions until reaching the stopping

criteria.

Figure 3. Flowchart of score filling in parallel LCS.

Figure 4 shows the topology of the order of filling for

a sample pairwise alignment of DNA sequences

ATCTGATC and TGCATAC. The vertical and horizontal

threads are represented by the vertical and horizontal

rectangles in the figure. Whereas the arrows denote the

order of simultaneous data filling of the edit table from the

top left to the bottom right by the two parallel threads.

Figure 4. Topology of data filling in PLCS method.

3. METHODOLOGY

To evaluate the performance of parallel LCS algorithm

compared to traditional LCS algorithm, it is necessary to

control the factors which could affect the running time of

the program. Both algorithms were implemented in C and

were compiled using GNU Complier Collection (GCC).

The random sequences of A, T, C, and G were generated

for testing inputs of each program. Each program was then

executed on the same computer, equipped with 2 Itanium

CPUs which have a clock rate of 1.33GHz.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The accuracy of parallel LCS and traditional LCS is the

same. That is, the alignments from both algorithms are the

same. However, the calculation time is improved by about

30% and 44% when tested with randomly generated

1,000-bases sequence alignment and 10,000-bases

sequence alignment, respectively.

The means, standard deviations, minimal values and

maximal values of the calculation time are shown in Table

1. The percentages of improvement are calculated from

the medians, also shown in Table 1. The reduced running

time is clearly shown in Figures 5 and 6 for 1,000 bases

sequence alignment and 10,000 bases sequence alignment,

respectively. The boxplot on the left of the figures

represent the running time for the serial LCS while the

right boxplot represents that of the parallel LCS. The

boxes are very thin so they appear like grey horizontal

lines. The whiskers represent standard deviations and the

black dots are outliers.

Table 1. Comparison of the running time of serial and parallel LCS

algorithms

The standard deviations varied because of the random

workload of the cluster computer used for running the

programs. As the cluster is a public cluster and can be

accessed by many remote users, it could be doing other

jobs while performing both LCS and PLCS, resulting in

CPU sharing and different running time results. The

standard deviations of LCS performance were higher, as

well as the spread of the outlier range. This was expected

since in the case of parallel computing, all CPUs were

used. CPU sharing, thus, affected the performance of

PLCS more significantly. However, it could be seen that

PLCS still performed faster regardless of the random

incremental workloads by other users of the cluster.

NCIT 2010 194

Figure 5. Boxplot comparing run time of serial LCS and parallel LCS for

1,000-bases sequence alignment.

Figure 6. Boxplot comparing run time of serial LCS and parallel LCS for

10,000-bases sequence alignment.

The performance of PLCS was not much improved in

1,000-bases sequence alignment than in 10,000-bases

alignment. This is because the time taken for the

sequences in both alignment jobs to be uploaded into the

cluster was not different, providing a constant initial

running time for both LCS and PLCS. Therefore, PLCS

showed greatly improved performance when the running

time is sufficiently long.

5. CONCLUDING REMARKS

Parallel LCS could perform faster than LCS while yielding

the same optimal solutions. There have been increasing

studies on comparative genomics [8] which require longer

running time for alignment due to the use of whole

genome sequences. Such analyses, which require multiple

genome comparison, have a wider range of applications

[2]. There should be further development on parallel

multiple biological sequence alignments to realize the

increased power of multicore computing.

ACKNOWLEDGMENT

The authors would like to thank Itanium cluster, Large

Scale Simulation Research Laboratory, NECTEC for the

use of their cluster.

REFERENCES

[1] K-M Chao and L. X. Zhang, Sequence Comparison:

Theory and Method. London: Springer-Verlag, 2009.

[2] C. M. Fraser, J. Eisen, R. D. Fleischmann, K. A.

Ketchum, and S. Peterson, “Comparative genomics and

understanding of microbial biology,” Emerging Infectious

Diseases, vol. 6, no. 5, pp. 505–512, 2000.

[3] A. Driga, P. Lu, J. Schaeffer, D. Szafron, K. Charter

and I. Parsons, “FastLSA: A Fast, Linear-Space, Parallel

and Sequential Algorithm for Sequence Alignment,”

Algorithmica, vol. 45, pp. 337-335, 2006.

[4] S. J. Shyu and C. Y. Tsai, “Finding the longest

common subsequence for multiple biological sequences by

ant colony optimization,” Computers and Operations

Research, vol. 36, pp. 73–91, 2009.

[5] A. Buttari, J. Langou, J. Kurzak and J. Dongarra, “A

class of parallel tiled linear algebra algorithms for

multicore architectures,” Parallel Computing, vol. 35, pp.

38-53, Jan. 2009.

[6] D. Geer, “Chip makers turn to multicore processors,”

Computer, vol. 38, no. 5, pp. 11-13, 2005.

[7] M. A. Weiss, Data Structures and algorithm analysis

in C, 2nd Ed. California: Addison-Wesley, 1997.

[8] T. T. Binnewies, Y. Motro, P. F. Hallin, O. Lund, D.

Dunn, T. La, D. J. Hampson, M. Bellgard, T. M.

Wassenaar and D. W. Ussery, “Ten years of bacterial

genome sequencing: comparative-genomics based

discoveries,” Functional and Integrative Genomics, vol.

6, pp. 165-185, 2006.

NCIT 2010 195

