
LARGE SIZE IMAGE PROCESSING USING

DIVISIBLE LOADING TECHNIQUE

Surapong Uttama

School of Information Technology, Mae Fah Luang University, Chiang Rai, Thailand

Email: usurapong@gmail.com

ABSTRACT

Recent advance in image technology induces more

numbers of large size images which require greater space

and time resources. In this paper we propose a novel

image model and a new image processing method called a

divisible loading technique to cope with possible problems

of loading and processing large size images. We

experiment our proposed method on various aspects

including image loading and spatial image processing such

as computing image statistics and image convolution. The

result indicates that the novel technique outperforms the

normal one in terms of memory usage, loading time and

region of interest processing especially for very large size

images.

Index Terms—Large size image; large image processing;

divisible loading; subimage processing

1. INTRODUCTION

With the ongoing growth of the image acquisition

technology and computer processing power there are more

production and needs on large size images. Recent

development in a charge-coupled device (CCD) provides a

capability of a digital compact camera to easily record 10

million pixel images with approximately 3500x2500

pixels resolution and 24 bits depth. This single image after

compression could require more than 10 Megabytes (MB)

on a secondary storage and even ten times larger in

computer memory. Another illustration of large size image

is in the filed of remote sensing when researchers need

images covering very large areas and containing more

details as possible. A medium size of a landscape image

may have a resolution of 6000x5000 pixels requiring 14

MB disk space. A large size of a celestial map could

require 9000x12000 pixels and 30 MB. Various huge

remote sensing images could have storage sizes measured

in Gigabytes or even Terabytes.

It is clearly seen that large size images will lead to at

least two major problems in image processing. Firstly,

loading these images requires large memory space and

may result in the insufficient computer memory. Most

image processing application reserves the memory, usually

the heap, of limited space. Therefore, loading entirely a

very large image at once could issue the unexpected end of

application due to the inadequate memory. Secondly,

processing image especially in spatial domain relies on

pixel or subimage operation which is an iterative and

memory consuming process. Certainly this would bring

about the insufficient memory. Moreover, in image

processing we often focus on specific regions of interest

(ROI). Consequently it could be better not wasting time

and memory to load a whole large image before a ROI

operation.

Thus in case we need to apply a spatial image

processing in pixel or region level to a very large image, it

is possible to load and process a smaller subimage

progressively. Therefore, our contribution in this paper is

to develop an image model and an image processing

technique corresponding to this concept for large size

images.

The paper is organized as follows. In Section 2 we

present the theory and related works on large size image

processing. Section 3 provides computational details

including the algorithm and its implementation. Then we

describe our experimental set-up, results and discussion in

Section 4. Finally, in section 5, we draw conclusions and

suggest some possible future works.

2. THEORY AND RELATED WORKS

Large size image processing is a well recognized topic

especially in the remote sensing area. However, it is not a

very hot issue in image processing as seen from very few

related literature. One possible reason could be because

the computer running the remote sensing application and

dealing with very large image is usually a computer server

with powerful performance. Nevertheless, we found that

there are attempts on large size image processing in two

aspects: hardware and software.

Using hardware to help improving large size image

processing is found in [1] and [2]. Both literatures focus

on how to distribute the image processing load to many

computers in a network. Thus they developed algorithms

to partition an image and scheduled the image processing

tasks to many network computers while checking load

balancing. The result shows that this technique improves

the image processing speed provided that the network has

good topology and the load distribution is optimized.

Regarding software aspect, some literatures [3-6] are

found. Different techniques were used to enhance

processing speed such as finite element [3], wavelet [4]

[5], and training data [6]. All results go along in the

direction that satisfies the reduction of memory usage and

NCIT 2010 390

computation time. Some suggest that the speed will be

better with parallel processing.

It is observed from the literature both in hardware and

software directions that though they can improve image

processing speed and reduce memory usage, they focus on

the processing steps not on the image loading process.

That means the algorithms in the literature are

implemented after loading a whole image into the

memory. Therefore, if the input image is too large to fit

into the memory, those algorithms will not be

implemented and we can not process our image.

Here we propose a novel concept of large image

processing. Instead of loading an entire image to the

memory at once, we will read a smaller subimage

progressively. We name this method “divisible loading

technique” which refers to the loading of a divided piece

of image one by one. Then for each subimage we apply

image processing algorithm and merge the results. The

loading process is in physical level based on the

knowledge that an image file always contains a piece of

information telling image’s sizes, encoding algorithm,

metadata etc. Knowing this information helps us to load

and decode a part of an image rather than a whole image.

In order to load a part of an image and process it

properly, firstly we have to define an image model. An

image can be modeled to many subimages in the following

two schemes.

1. Distinct subimages: each subimage is independent to

one another. There is no overlap between any two

subimages.

Figure 1. An image and its distinct subimages

An image (I) is denoted by the disjoint union of many

subimages (i).

 (1)

where J is the set of numbers of subimages.

2. Overlapped subimages: there are overlaps between two

neighboring subimages.

Figure 2. An image and its overlapped subimages

In this model, an image (I) is denoted by the union of

many subimages (i).

Jj

jiI

 (2)

where J is the set of numbers of subimages.

The reason why we propose these two models is to

prepare the image structure to be relevant with the image

processing operations. The distinct subimage model is

suitable for pixel processing or distinct block operation

such as finding simple image statistics, image histogram

and image negative, etc. In contrast, the overlapped

subimage model is appropriate for sliding neighborhood

operation such as an image convolution.

3. COMPUTATIONAL DETAILS

For any large size image that we need to process, the

computational steps are as follows.

1. Read image information (sizes, encoding, metadata,

etc.) for image loading preparation

2. Choose image processing operation and its

corresponding image structure (distinct or overlapped)

3. Define a subimage size or a region of interest (ROI)

4. Load a subimage according to the size or ROI in step 3.

5. Apply image processing algorithm to the subimage.

6. Repeat step 4 and 5 for the next subimage if necessary

7. Merge the outputs if necessary

To verify our proposed principle, we set up experiments

with various image processing operations which are:

1. Image loading

2. Simple statistic: arithmetic mean

3. Image histogram

4. Image convolution: 32x32 Smoothing filter

5. ROI operation: 512x512 square region on an image

center and computation of arithmetic mean

For a new proposed method, a progressive load of a

512x512 square subimage is chosen.

The testing environment is Windows XP, Intel Core2Duo

E8400 CPU, 2 GB memory. The algorithm is implemented

on JAVA programming language having 256 MB heap

size. Three large images in grayscale JPEG encoding

format are chosen and the details are as follows.

1. Landscape image: 6679x4724 pixels, 8 bits per pixel,

Disk size 13.74 MB, Memory size 30 MB.

Figure 3. Landscape image

I
i

I
i

NCIT 2010 391

2. Galaxy image: 8858x11811 pixels, 24 bits per pixel,

Disk size 28.36 MB, Memory size 99.8 MB.

Figure 4. Galaxy image

3. Earth image: 12700x11592 pixels, 8 bits per pixel, Disk

size 31.45 MB, Memory size 140.4 MB

Figure 5. Earth image

4. RESULTS AND DISCUSSION

We perform the test on three large images and compare

the results between an old or normal approach (an entire

image loading and processing) and a new or proposed

method (a progressive image loading and processing). The

comparison criteria are processing speed and remaining

memory space. For a first image processing operation

which is an image loading, it is evident that the new

method is faster because it reads just only a small part of

an image. However, if comparing the time to load until we

get the whole image, the old method is superior. This is

certainly due to the iterative loading process of the new

method which is slower. However, in case we do not have

enough predefined heap space, the old loading method is

impossible while the new one can.

The results of other image processing operations are

shown in Table 1. Here a symbol signifies a better

performance. We notice that firstly the new method is

better for ROI operation for all images. Surely this is

because the new method load and process only ROI while

the old one wastes time loading a whole image before ROI

processing. Next if we observe the Landscape image, the

old method displays better performance. This happens

from the fact that accessing data in a computer memory is

much faster than in a secondary storage i.e. a hard drive.

More times of image loading results in lower processing

speed.

Regarding a larger image Galaxy, the old method is more

effective for computing image mean and histogram but

less effective for smoothing. We can explain that this

image commonly consumes quite a large memory due to

its large size. By adding the smoothing convolution, it will

abruptly consume more memory resource.

For a very large image Earth, the new operation seems to

be more efficient in terms of memory use and speed. The

old method wastes lots of times loading an entire image

which is very large and spends too many memory space.

This could cause an insufficient memory problem when

computing smoothing convolution.

Table 1. A comparison between a normal and a proposed image

processing. symbol means better performance.

Operation Landscape Galaxy Earth

Method old new old new old new

Mean

Histogram

Smoothing

ROI

One thing that should be noted from the experimental

result is that image size plays an important role in

choosing the image processing method. Our new proposed

method is likely to be superior for bigger images.

5. CONCLUSION

Our novel proposed method namely divisible loading

technique is developed to improve the performance of

large size image processing. We recognize that large size

images such as remote sensing images require a great

amount of memory space and loading time. For a personal

computer with limited resource, it is hardly possible to do

anything with these images. So we develop a new image

loading and processing technique based on smaller

subimages. This approach acquires a part of an image

progressively from disk storage. Thus it requires really

smaller amount of memory comparing to the normal image

loading method which loads a whole image at once. This

will permit us to tackle very large images with least

NCIT 2010 392

amount of memory and computing resources. Nonetheless,

it trades off between less resources and more complexity.

The proposed method has higher complexity in terms of

iterative loading and processing. Hence it will not be

recommended for small to medium size image but will

outperform in case of larger images.

A future development of this work is to design more

rigorous experiments with various sizes of images i.e. up

to GB or TB and also with color images. One should try

more image processing operations and set up more rigid

criteria to evaluate the performance quantitatively.

REFERENCES

[1] C. K. Lee and M. Hamdi, “Parallel image processing

applications on network of workstations,” Parallel

Computing, vol. 21, pp. 137–160, 1995.

[2] B. Veeravalli and S. Ranganath, “Theoretical and

experimental study on large size image processing

applications using divisible load paradigm on distributed

bus networks,” Image and Vision Computing, vol. 20, pp.

917-935, 2002.

[3] T. Preußer and M. Rumpf, “An Adaptive Finite

Element Method for Large Scale Image Processing,”

Journal of Visual Communication and Image

Representation, vol. 11, pp. 183-195, 2000.

[4] G. Uytterhoeven, D. Roose, and A. Bultheel, “A

Wavelet Toolbox for Large Scale Image Processing,”

ACPC’99, LNCS1557, pp. 337-346, 1999.

[5] D. Chaver, M. Prieto, L. Piñuel and F. Tirado,

“Parallel Wavelet Transform for Large Scale Image

Processing,” Proceedings of the International Parallel

and Distributed Processing Symposium (IPDPSí02),

2002.

[6] N. R. Pal and J. C. Bezdek, “Complexity Reduction for

Large Image Processing,” IEEE Transactions on Systems,

Man, and Cybernetics Part B: Cybernetics, vol.32, no.5,

pp. 598-611, October 2002.

NCIT 2010 393

